
A Philosophical Conception of

Propositional Modal Logic∗

Edward N. Zalta

Center for the Study of Language and Information

Stanford University

The definitions of propositional modal logic are traditionally formu-
lated in the following way.1 First, a formal language is defined, usually
with atomic formulas p, q, . . . and complex formulas involving the connec-
tives ¬, → and the � operator. Models M for this language are then
defined as triples 〈W,R,V〉 in which W is a nonempty set of worlds,
R is an accessibility relation, and V is a valuation function that maps
each atomic sentence of the formal language to a set of worlds. Truth (at
a world, in a model), validity, and logical consequence are then defined
as semantic properties of, or relations among, sentences of the language.
Finally, a proof theory is developed so that the consequences of (sets of)
sentences may be derived. In recent developments of this proof theory,
rules of inference are conceived as relations between sentences, and a logic
Σ is defined to be a set of sentences closed under certain rules. With such
a framework of definitions, modal logicians then investigate metatheoretic
questions, such as whether sentences valid in certain models are theorems
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(i.e., elements) of certain logics, etc.
From a philosophical point of view, however, this traditional concep-

tion of propositional modal logic has some unsatisfactory features, and in
this paper, we shall argue for a different conception. Under the conception
for which we argue, propositional modal logic (‘ML’) is concerned with
propositions rather than sentences. A domain P of structured proposi-
tions (i.e., structured meanings) is distinguished, and models M represent
the change in truth value of these propositions at various possible worlds.
The notions of truth and validity are construed as properties of propo-
sitions. The notions of a rule of inference and a logic are construed,
respectively, as a relation among propositions and a set of propositions
closed under certain rules. Of course, in addition to this, a language may
be defined. The interpretation of the language consists of a function that
maps the sentences of the language to propositions. Given such an in-
terpretation, one may define secondary notions of truth, validity, rule of
inference, and logic, all of which apply to sentences.

In what follows, we precisely define this philosophical conception of
ML and describe its advantages. In Section 1, however, we begin by de-
scribing the unsatisfactory features of the traditional conception to which
we alluded above. This serves to motivate Section 2, in which we frame
the precise definitions that embody the philosophical conception. In Sec-
tion 3, we compare and contrast these definitions with the traditional
ones. Finally, in Section 4, we discuss one of the more interesting con-
sequences of the philosophical conception, namely, that modal contexts
are not, strictly speaking, intensional contexts. The paper concludes with
some final observations.

The philosophical conception of ML is grounded by a precise theory
of propositions, and in particular, by the theory of propositions deriv-
able from the theory of relations developed in Zalta [1983], [1988a], and
[1993].2 On this theory, propositions are defined as 0-place relations that
are governed by: (a) a derived abstraction schema that comprehends the
domain of propositions, and (b) theoretically-defined identity conditions
which permit necessarily equivalent propositions (i.e., propositions p and
q such that �(p↔ q)) to be distinct. Since this theory has been published
elsewhere, we shall not go through the details here. Readers unfamiliar
with this background theory of propostions should not be at a loss, how-

2The theories of propositions developed by Bealer [1982] and Menzel [1986] would

serve equally well to ground our conception.
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ever, since those details of the theory that are required for developing
the philosophical conception of ML will be introduced at the appropriate
time. For the rest, the mere fact that the background theory of proposi-
tions exists and precisely grounds the conception should suffice.

§1: Motivation for the Philosophical Conception

One, but by no means the only, reason for developing a new conception of
ML is to resolve an ambiguity about what traditionally conceived models
represent. To help us understand what the ambiguity is, recall that the
truth of a sentence depends both on what it means and the way the
world is. The truth of the sentence ‘Snow is white’, for example, depends
both on the fact that it means that snow is white and on the fact that
the substance snow has the property of being white. A natural way to
distinguish these two ingredients for truth is to point out, counterfactually,
that ‘Snow is white’ would have turned out false: (a) if it had meant that
grass is purple, or (b) if the substance snow had had the property of being
green.3 In the first alternative, the sentence ‘Snow is white’ would have
been false if our language had been different , that is, if the words ‘snow’
and ‘white’ had acquired different meanings. In the second alternative,
the sentence would have been false if our world had been different , that
is, if snow had been some other color.

Ordinarily when we express ourselves using modal language, we are
concerned with the second rather than the first alternative. When we
ask, might snow have failed to be white, we are not asking about whether
the sentence ‘Snow is white’ could have expressed a falsehood, but rather
whether the substance snow might have been some other color. When we
assert that snow might not have been white, we are not asserting, even in
part, that the sentence ‘snow is white’ might have meant something else.
Instead, we are asserting something about the modal nature of (things
in) the world.

The traditional models of the modal language of ML, however, do not
distinguish these two alternatives. The V function of models maps the
atomic sentences of the language to sets of worlds. It essentially evaluates

3Much of what I have to say in the next few paragraphs has been influenced by

the ideas in Etchemendy [1990]. I’ve also benefited from reading Menzel [1990]. While

reflecting on the ideas in these works, it occurred to me that there was a natural way

to modify the semantic development in Zalta [1983] and [1988a] to make it clear that

ordinary sentences do not change meanings when evaluated at other worlds.
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them as true or false in counterfactual circumstances. An atomic sentence
‘p’ is true in all those worlds w such that w ∈ V(p), and false in the
others. But there are two ways to interpret the fact that w1 ∈ V(p), say,
but w2 �∈ V(p); in other words, the models do not distinguish between
the following two interpretations for the fact that ‘p’ is true in w1 but
not in w2:

(a) ‘p’ means one thing in w1 and means something else in w2, and
moreover, what it means in w1 is true in w1 and what it means in
w2 is false in w2

(b) ‘p’ has the same meaning in both w1 and w2, but what it means is
true in w1 and false in w2

For all that the models tell us, it might well be that sentences such as
‘�¬p’ are true in virtue of circumstances such as (a). Yet this is something
that ought to be ruled out.

It is no good to argue that formal sentences such as ‘p’ are presupposed
to have a meaning (just as ‘Snow is white’ already has a meaning), that
our models are therefore defined for an interpreted language, and that
they represent the truth conditions of already meaningful sentences. For
there is nothing in the traditional conception that tells us wherein the
meaningfulness of the formal sentences lies. Of course, we might take the
Montagovian intension of ‘p’ (i.e., the function that maps a world w to the
truth value T if w ∈ V(p), and maps w to the truth value F otherwise) as
the meaning of ‘p’, and introduce some changes into the basic definition
of a model, to reflect that we are trying to model the second of the two
alternatives described above. But that explicitly identifies the meaning of
all necessarily equivalent propositions, contrary to intuition. And besides,
there is a better way.

To resolve this ambiguity, we shall need to distinguish sentences from
the propositions they denote (or express, or signify). To develop this
distinction, let us review some of the details of the theory of proposi-
tions that grounds our conception. The theory of propositions in Zalta
[1983], [1988a], and [1993] is couched in a formal language with a formal
semantics. This semantics gives us a precise way to talk unambiguously
about the proposition that a sentence denotes. Consider a simple English
sentence such as ‘John is happy’, which is represented in the object lan-
guage by the formal sentence ‘Hj’. The formal sentence is not only an
atomic formula, but also a 0-place (complex) term. In virtue of being
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a term, ‘Hj’ receives a denotation in addition to the truth conditions it
receives in virtue of being a formula. A recursively defined denotation
function identifies the denotation of the complex term ‘Hj’ on the basis
of the denotations of the component terms. Now let H be the property
denoted by the predicate ‘H ’, and let j be the object denoted by the name
‘j’. Then, the denotation function identifies the denotation of ‘Hj’ as a
structured proposition (i.e., 0-place relation) which can be formally de-
scribed in terms of an algebraic logical operation PLUGi which, among
other things, harnesses a property (i.e., 1-place relation) and an object
into a proposition.4 Specifically, the denotation function has the following
consequence:

‘Hj’ denotes PLUG1(H, j).

So the denotation of the formal sentence ‘Hj’ is the structured proposition
having the denotation of the object term ‘j’ plugged into the first (and
only) place of the property denoted by the predicate ‘H ’.

There are three important features of this analysis worth noting. First,
the property H denoted by the predicate ‘H ’ is not to be conceived as a
set-theoretic entity of any kind, but is rather to be construed as a prim-
itive entity. For those who want to know more about such entities, my
previously cited works also contain a general theory of properties, includ-
ing both comprehension and identity principles for that domain.5 Second,

4PLUG was developed independently in Bealer [1979] (who calls it ‘pred’) and in

Parsons [1980], and used in McMichael and Zalta [1980], Bealer [1982], Zalta [1983]

and Menzel [1986]. The subscript ‘i’ in ‘PLUGi’ signifies the place in the relation

into which the object is plugged. So PLUG2, for example, could be used to plug an

object into the second place of a 2-place relation, or into the second place of a 3-place

relation, etc.
5In the cited works, the reader will find motivation for and explanation of the

following comprehension and identity principles governing properties:

∃F�∀x(Fx↔ ϕ), where ϕ has no free F s, no encoding formulas, and no quan-

tifiers binding relation variables.

F =G =df �∀x(xF ↔ xG)

These principles are developed in terms of the notion of an object x encoding a property

F (symbolically: xF ), a notion which is systematized in the cited works. The theory

of propositions can be stated in terms of the property theory:

∃p�(p ↔ ϕ), where ϕ has no free ps, no encoding formulas, and no quantifiers

binding relation variables. (footnote continues on next page)

p=q =df [λy p] = [λy q]

In these principles, ‘p’ and ‘q’ range over propositions (i.e., 0-place relations). In the
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the denotation function is not relativized to a world. In particular, the
denotation of the predicate ‘H ’ is simply the property H, and this does
not change from world to world. Of course, the extension of the property
H may vary from world to world, but the meaning of the predicate (i.e.,
the property it denotes) is fixed. Similarly, the denotation of the whole
sentence ‘Hj’ is independent of the worlds. However, the proposition it
denotes, PLUG1(H, j), has an extension (a truth value) that varies from
world to world. Third, constraints on the extension function for prop-
erties and propositions require that the extension of PLUG1(H, j) at a
world w be the truth value T iff j is an element of the extension of the
property H at w.6

Now, with this formal analysis of atomic propositions in mind, let us
return to an example of a simple English sentence. Let ‘being happy’
be a semantic name of the property denoted by the predicate ‘is happy’
and let ‘John’ be the semantic name of the object denoted by the name
‘John’. Then, by analogy with our formal language and formal semantics,
we may say with some precision:

‘John is happy’ denotes PLUG1(being happy, John)

Such claims, in which a sentence is distinguished from the proposition it
signifies, should now be clear enough for us to proceed with our discussion
of the ambiguity inherent in the traditional conception of models. For
historical reasons, however, let us revert to the example ‘Snow is white’,
despite the problems inherent in the analysis of mass terms such as ‘snow’.
Let us suppose that claims such as the following are clear enough:

‘Snow is white’ denotes Snow is white.

‘Grass is purple’ denotes Grass is purple.

If greater clarity is needed, the reader may now substitute examples such
as ‘John is happy’.

identity principle, [λy p] and [λy q] denote ‘propositional properties’ (properties that

things exemplify in virtue of propositions being true or false). So the identity principle

says that propositions p and q are identical iff the property being such that p is identical

to the property of being such that q . So the identity of propositions is defined in terms

of the identity of properties. Compare Myhill [1963].
6The domains containing j and H are fixed and independent of the worlds, and so

these entities ‘exist’ at all other worlds. This, of course, is not to say that the object

j has a location in spacetime at all worlds.
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So given the theoretical distinction between a sentence and the propo-
sition it expresses, there is a natural way to describe in theoretical terms
the two kinds of counterfactual circumstances in which ‘Snow is white’
would have turned out false. ‘Snow is white’ would have been false: (a) if
‘Snow is white’ had denoted a false proposition, say Grass is purple, in-
stead of denoting Snow is white, or (b) if the proposition ‘Snow is white’
in fact denotes, namely, Snow is white, had been false. In circumstances
such as (a), ‘Snow is white’ would have had a different meaning (the lan-
guage would have been different). We don’t want the models of modal
logic to leave open the question of whether circumstances such as (a) make
the sentence ‘Snow might not have been white’ true. We can rule out this
question by making sure that the proposition that a sentence denotes is
independent of the worlds in a model, so that models cannot be inter-
preted as assigning some other proposition to a sentence at other possible
worlds. In circumstances such as (b), the world would have been differ-
ent, since if the proposition Snow is white had been false, the substance
snow would not be in the extension of the property of being white. We
want our models of modal logic to reflect that circumstances such as (b)
make the sentence ‘Snow might not have been white’ true. We can do this
by defining models so that the V function (or something equivalent to it)
assigns truth values to propositions at each possible world, rather than to
sentences. Under such a conception, models need not say which proposi-
tion a sentence denotes (i.e., they need not tell us about the meaning or
interpretation of the language); rather, they simply describe the nature
of other possible worlds by recording what truth values propositions have
there. Our goal, then, is to develop models that clearly reflect the fact
that the change in truth value of a sentence at other worlds is due not to
a change in their meaning but rather to a change in the world.

§2: Definition of the Philosophical Conception

To define these models, we extend the idea that propositions, modal or
otherwise, are structured entities. Let us suppose that there is a fixed,
denumerable set of expressible atomic propositions P∗ = {p1,p2, . . .}.
We form the set P of all the expressible propositions as follows, using the
boldface symbols ‘ϕ’ and ‘ψ’ as variables ranging over propositions:7

7We are appealing here to a notion of ‘expressibility’ under which the set of ex-

pressible propositions is denumerable.
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P is the smallest set satisfying the following conditions:

(a) Every element of P∗ is an element of P

(b) If ϕ,ψ ∈ P, so are NEG(ϕ), COND(ϕ,ψ), and NEC(ϕ)

We may suppose that NEG, COND, NEC are algebraic logical oper-
ations that harness simpler propositions into more complex ones. NEG
and NEC are unary operations, whereas COND is a binary operation.

A model M of the domain P is any quadruple of the form 〈W,wα,R,
ext〉, where W is a nonempty set of possible worlds, wα is a distinguished
element of W called the actual world, R is a binary accessibility relation
on W, and ext is a binary extension function with domain P × W and
range {T,F} satisfying the following constraints (in which ext is indexed
to its second argument):

(a) extw(NEG(ϕ)) = T iff extw(ϕ) = F

(b) extw(COND(ϕ,ψ)) = T iff
either extw(ϕ) = F or extw(ψ) = T

(c) extw(NEC(ϕ)) = T iff
for every world w′ such that Rww′, extw′(ϕ) = T

Hereafter, we sometimes index the major elements of M as: WM, RM,
and M-extw, respectively. Notice that models are defined relative to the
domain of propositions P.

We now define notions of truth that apply to the propositions in P.
The notions ϕ is true at world w in M (in symbols: M,w |= ϕ) and ϕ
is true in model M (in symbols: M |= ϕ) are defined as follows:

M,w |= ϕ =df M-extw(ϕ) = T

M |= ϕ =df M,wα |= ϕ

We define the notion ϕ is valid (in symbols: |= ϕ) as follows:

|= ϕ =df For every M, M |= ϕ

Finally, we define, for set Γ of propositions, the idea that Γ logically
implies ϕ, as follows:

Γ logically implies ϕ =df

For every M, if M |= ψ, for each ψ ∈ Γ, then M |= ϕ
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Now that truth, validity, and logical consequence have been defined
for propositions, we may consider how language enters the picture. Let
us take a standard language, L, containing atomic formulas p1, p2, . . . and
complex formulas of the form: ¬ϕ, ϕ → ψ, and �ϕ. Notice here that
we are using nonbold letters ‘ϕ’ and ‘ψ’ to range over sentences. An
interpretation I of this language is simply any pair 〈P, δ〉, consisting of:
(a) the (fixed) domain P of expressible propositions defined above, and
(b) a denotation function δ that maps the formulas of L to propositions
in P subject to the conditions that:

If ϕ = ¬ψ, δ(ϕ) = NEG(δ(ψ))

If ϕ = ψ → χ, δ(ϕ) = COND(δ(ψ), δ(χ))

If ϕ = �ψ, δ(ϕ) = NEC(δ(ψ))

It proves useful to single out an interpretation I∗ that constitutes the
intended interpretation of our language. I∗ is simply the interpretation
such that δI∗ is defined on the atomic formulas of L as follows:

If ϕ = pi, δI∗(ϕ) = pi, for every i

Of course, other interpretations relax the definition of δI in a variety of
ways: (a) δI need not map each atomic sentence to the correspondingly
numbered atomic proposition, (b) δI need not map the atomic sentences
onto P∗, and (c) δI need not map the atomic sentences to atomic propo-
sitions.

We may now formulate the following general definitions of the mean-
ingfulness of sentences ϕ and the expressibility of propositions ϕ relative
to an interpretation I:

ϕ is meaningful I =df ∃ϕ ∈ P such that δI(ϕ) = ϕ

ϕ is expressibleI =df ∃ϕ ∈ L such that δI(ϕ) = ϕ

In other words:

A sentence ϕ is meaningful relative to interpretation I iff there is
some proposition in P that ϕ denotes under I.

A proposition ϕ is expressible relative to interpretation I iff there
is a sentence in L that denotes ϕ under I.
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Of course, we have set things up so that in every interpretation I, all of
the sentences of L are meaningfulI. However, there are interpretations of
the language in which some of the propositions in P are not expressible.

Now, it is straightforward to define related notions of truth at a world,
truth, and validity, all of which apply to sentences. Such definitions pre-
suppose a fixed interpretation of the language, for these subordinate no-
tions of truth and logical truth are only properly defined for interpreted
sentences. To emphasize that these notions are being defined relative
to a fixed interpretation of the language, we use ‘[ϕ]I’ to talk about the
formula ϕ under the interpretation I. Though models M were originally
defined relative to the domain P, it is now useful to suppose that they
are defined relative to I itself, despite the fact that they have nothing to
do with δI. We shall not, however, index the models to I, since it is to
be understood that they are defined for the fixed domain P in I. We then
have the following definitions:

M,w |= [ϕ]I =df M,w |= δI(ϕ)

M |= [ϕ]I =df M |= δI(ϕ)

|= [ϕ]I =df |= δI(ϕ)

In general, a sentence under interpretation I will have a semantic property
just in case the proposition it denotes under I has that property. We may
also define a notion of logical consequence that holds between a set of
interpreted sentences ΓI (i.e., a set of sentences Γ each member of which
is interpreted under I) and [ϕ]I as follows:

ΓI logically implies [ϕ]I =df

For every M, if M |= [ψ]I, for every ψ ∈ Γ, then M |= [ϕ]I

The idea that logic is primarily about propositions and secondarily
about (interpreted) sentences can also be applied to the proof theory.
Rules of inference can be defined as relations among propositions. Since
propositions have a precisely understood structure, there should be no
question as to when several propositions are related as the premises and
conclusions of the classical rules. For example, the rule Modus Ponens is
the rule that relates propositions ϕ and COND(ϕ,ψ) to the proposition
ψ as the premises and conclusion of the rule, respectively. A logic Σ can
be defined as a set of propositions (containing zero or more propositions
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as ‘axioms’) which is closed under certain rules of inference. Theorem-
hood is a property of propositions: a proposition ϕ is a theorem of logic
Σ (in symbols: 
Σ ϕ) iff ϕ ∈ Σ. We may define the consistency and
completeness of logic Σ relative to the class of models C in the usual
way:

Σ is sound with respect to C =df If 
Σϕ, then |=Cϕ

Σ is complete with respect to C =df If |=Cϕ, then 
Σϕ

And, finally, using our denotation function, we may develop the secondary
notions of rule of inference, logic, and theoremhood, and derivability as
they apply to interpreted sentences. This is straightforward, and we shall
spend no further time developing the definitions.

Since we have, for simplicity, defined the domain of propositions P
to be structurally identical to the set of formulas L, there should be no
question that all of the classical results of ML can be reconceived as results
about propositions.

§3: Virtues of the Philosophical Conception

We now have a broader conception under which ML is concerned pri-
marily with propositions and their truth conditions, and secondarily with
interpreted sentences and their truth conditions. Validity and theorem-
hood are primarily notions that apply to propositions, and secondarily, to
interpreted sentences. No matter what fixed interpretation I our language
L has, the proposition a sentence denotes varies neither from model to
model nor from world to world.

The reason that an atomic sentence ‘p’ has a different truth value in
w1 and w2 is that the proposition it denotes changes truth values in these
worlds, and this reflects a difference in the worlds themselves. Moreover,
there is no room to suppose that the reason ‘�¬p’ is true is that there
are worlds where ‘p’ denotes a (false) proposition different from the one
it in fact denotes. So, the first virtue of the present conception is that it
eliminates the undesirable interpretation of the fact that the truth value
of a sentence can vary from one world to the next.

Thus, we may conceive of models M as models of the world (or rather,
as models of the possibluum), rather than as models for a language. We
can clearly separate the notion of an interpretation of the language from
the notion of a model of the world . On the traditional conception, these
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two notions are not clearly separated. And the reason they aren’t is
that the V function of traditional models does two jobs that should be
separated. V not only interprets the language but also tells us what
the facts are in the various possible worlds. It conflates the work of the
denotation function δ that forms part of an interpretation with that of
the ext function that forms part of the model. V essentially defines truth
for an uninterpreted sentence ‘p’ at the same time that it interprets ‘p’.
By separating out the δ function and the ext function, we distinguish
the interpretation of ‘p’ from the truth conditions of the proposition it
denotes, and thereby clarify our picture of how language works. Truth
can be conceived as a property of sentences only if the sentences are
interpreted, i.e., are meaningful. And given our definitions in the previous
section, we are able to say precisely wherein lies the meaningfulness of
sentences.

Since we can distinguish interpretations from models, we can also dis-
tinguish the intended interpretation from the intended model for the in-
tended interpretation.8 If we suppose that P houses the propositions that
are expressible in English and that each sentence ϕ of L abbreviates a sen-
tence S of English, then we would define the intended interpretation I∗

not as we did in the previous section, but rather as that interpretation
in which δI∗(ϕ) is the proposition S in fact denotes. Consequently, the
intended model M∗ for the intended interpretation will be that model
in which: (a) W contains all of the possible worlds that there are, in
addition to the real world wα, (b) R relates the members of W in just
the way required by the real modal accessibility relation (whatever that
turns out to be), and (c) ext distributes truth values to the propositions
at each world in just the way required by the (modal) facts. Condition
(c) requires, for example, that whenever S is a true English sentence, and
ϕ abbreviates S in L, then M∗-extwα

(δI∗(ϕ)) = T. Since M∗ has to
accomodate the true modal English sentences of the form “It is possible
that S′” and “It is necessary that S′”, M∗ will be that model for the
intended interpretation that correctly represents modal reality.

A second virtue of the present conception concerns the presence of a
distinguished world in the models. This follows Kripke’s original formu-
lation, in which he includes such a distinguished element. By contrast,
many recent developments of modal logic abandon this element. We shall
not spend much time here discussing why we follow Kripke, since we have

8Compare Hanson and Hawthorne [1985].
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described reasons for doing so at length in Zalta [1988b]. Note simply
that without a distinguished actual world, one must define truth-in-M
as truth at every world in M (as opposed to truth at the distinguished
world of the model). But this seems to confuse truth with a kind of nec-
essary truth. The lack of a distinguished world also affects the resulting
definition of validity. If truth in M is defined as truth at all worlds in
M, then validity (i.e., logical truth) must be defined as truth in every
world in every model. In Zalta [1988b], we show that this definition is
not equivalent to the notion of validity which Kripke originally defined
and which we preserved in the previous section. We argued that there
are valid propositions that are not necessarily true, and that this should
make one extremely careful when moving from the model-theoretically de-
fined claim that ϕ is valid to the metaphysical claim that the proposition
NEC(ϕ) is true.9 On the present model-theoretic analysis, the valid-
ity of a proposition depends on whether certain nonmodal facts about
set-theoretic structures hold. Nothing follows about whether that propo-
sition is metaphysically necessary, or true in all possible worlds, at least
not unless certain other assumptions are made.

The main virtue of the philosophical conception of ML, however, is
that it is more general. Our conception of ML reduces to the traditional
one in the special case where the members of P are taken to be nothing
other than the sentences of our formal language L! But there is also a

9For those readers unfamiliar with my [1988b], here is an example of a logical truth

that is not necessary. Consider the proposition if it is actually the case that p, then p,

which we may represent using the actuality operator A! as: COND(A!p,p). Suppose

that for any model M, the extension of the proposition A!ϕ (it is actually the case

that ϕ) is the value T at a world w iff the extension of ϕ is T at the actual world.

Notice that COND(A!p,p) is logically true—in any model M, COND(A!p,p) is

true in M. But there are models in which the necessitation of this proposition is false.

Consider the model M1 containing two worlds wα and w1 and such that:

(a) Rwαw1

(b) extwα(p) = T

(c) extw1(p) = F

Then, it is easy to prove that:

M1 �|= NEC(COND(A!p,p))

To see this, just consider that in M1 there is a world accessible to the actual world in

which the conditional COND(A!p,p)) is false, namely, w1. So the necessitation of

COND(A!p,p) is not true in M1. Thus, relative to M1, we have a case of a logical

truth which is not necessary.
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second way of reducing our conception to the old, namely, by requiring
that our background theory of propositions identify necessarily equivalent
propositions.10 On the traditional account, such as that in Montague
[1974], Lewis [1986], and elsewhere, p and NEG(NEG(p)) must be the
same proposition, for example, since they have the same truth value at
each world. Moreover, since there is exactly one function that maps every
world to the value T, the traditional account permits exactly one neces-
sary proposition. By way of contrast, however, the fine-grained theory
of propositions upon which our philosophical conception is grounded al-
lows us to suppose that p and NEG(NEG(p)) are distinct despite being
necessarily equivalent. We may further suppose that there are an infinite
number of distinct necessary truths. From this point of view, the tra-
ditional reconstruction of propositions as functions from worlds to truth
values appears to confuse a proposition with a mathematical model of its
behavior. Our more general approach separates propositions from their
extensions, yet reduces to the Montagovian conception if one places a fur-
ther constraint on the background theory of propositions, requiring that
necessarily equivalent propositions be identical.

A final virtue of the philosophical conception is that it offers a more
subtle understanding of logical equivalence. There are now two ways in
which sentences ϕ and ψ can be logically equivalent. To distinguish these
kinds of equivalence, let us digress momentarily to reflect upon the differ-
ence between formulas and terms. Formulas and terms are semantically
significant in distinct ways. Formulas are expressions that have truth
conditions. Formally speaking, they are the kind of expression for which
truth in a model is defined. Terms, on the other hand, are expressions
that have denotations. Formally speaking, they are expressions that fall
in the domain of the function δ. Having truth conditions and having a
denotation are different ways in which an expression can be semantically
significant, and there is a separate notion of logical equivalence that is
appropriate for each kind of semantic significance. Two formulas ϕ and ψ
are logically equivalent just in case they logically imply each other (i.e.,
just in case ϕ and ψ are true in the same models). Two terms, however,
are logically equivalent just in case they have the same denotation.

To make these definitions formally precise, we relativize these notions
to an interpretation I of the language. By analogy with the notation ‘[ϕ]I’,

10In other words, by adding the axiom �(p↔ q) → p=q to our background theory

of propositions.
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we introduce the notation ‘[τ ]I’ to refer to term τ under interpretation I:

Formulas [ϕ]I and [ψ]I are logically equivalent =df

[ϕ]I logically implies [ψ]I and [ψ]I logically implies [ϕ]I

Terms [τ ]I and [τ ′]I are logically equivalent =df δI(τ) = δI(τ ′)

Thus, logical equivalence is defined in one way for interpreted formulas
and in a second way for interpreted terms.

Recall now that the sentences of our language L are both formulas and
terms. They are defined directly as formulas, and as such, receive truth
conditions. But they also lie in the domain of the denotation function, and
as such, constitute terms. Consequently, given an interpretation I, both of
the above notions of logical equivalence apply to sentences. Henceforth,
if two sentences are logically equivalent in the first sense, we shall say
they are formula-equivalent. If they are logically equivalent in the second
sense, we shall say they are term-equivalent.11

Whereas the notion of formula-equivalence has played the dominant
role in the contemporary history of (modal) logic, term-equivalence (i.e.,
having the same denotation) is really the stronger kind of logical equiv-
alence among sentences. It should be easy to see that if [ϕ]I and [ψ]I
are term-equivalent, then they are formula-equivalent. Just fix an inter-
pretation I and suppose that [ϕ]I and [ψ]I are term-equivalent. If δI(ϕ)
just is δI(ψ), then any model in which [ϕ]I is true is a model in which
[ψ]I is true, and vice versa. So [ϕ]I and [ψ]I logically imply each other,
and so they are formula-equivalent. However, the formula-equivalence of
two sentences, doesn’t guarantee their term-equivalence. Again, fix an
interpretation I and suppose [ϕ]I and [ψ]I are formula-equivalent. If [ϕ]I
and [ψ]I are true in the same models, it doesn’t follow that they have
the same denotation under I. For δI(ϕ) and δI(ψ) may be distinct but
logically equivalent propositions.12

11Strictly speaking, we should distinguish the formula ϕ from its counterpart term

[λϕ] (read: that-ϕ). In a language with enough expressive power to predicate proper-

ties of propositions, we should make such a distinction. The discussion that now fol-

lows should then be understood as remarks about the fact that the term-equivalence of

[λϕ] and [λψ] in such a language would provide a stronger ground for the substitution

principle than the formula-equivalence of ϕ and ψ.
12Examples of sentences that are formula-equivalent but not term-equivalent are

easy to produce. Take the example we used a few paragraphs back. Propositions

p and NEG(NEG(p)) are distinct propositions (this is something that is either a

consequence of or consistent with any fine-grained theory of propositions). But, by the
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The distinction between term-equivalence and formula-equivalence is
especially useful for the analysis of other ‘intensional’ contexts. Consider
the analysis of belief contexts, and take any two propositions that are
intuitively distinct though logically equivalent; for example, (a) there is a
barber who shaves all and only those who don’t shave themselves, and (b)
Clinton is president and it is not the case that Clinton is president. These
two propositions are logically equivalent because in any model, they are
both (necessarily) false. But someone could believe (a) and not (b), and so
the fact that someone believes (a) does not imply that that person believes
(b). In an intensional language and logic constructed in the spirit of our
philosophical conception of ML, in which term- and formula- equivalence
are distinguished, the formal representation of (a) would not imply the
formal representation of (b). Here is why.

In an enriched formal language, sentence (a) might be denoted by the
formula ‘(∃x)(Bx & (∀y)(Sxy ≡ ∼Syy))’ (let this be ϕ), and sentence
(b) might be denoted by the formula ‘Pc & ∼Pc’ (let this be ψ). In any
semantic treatment along the lines of the present conception, there will
be interpretations I for which [ϕ]I and [ψ]I are formula-equivalent but not
term-equivalent. This suggests an explanation of why a formal sentence
such as Bel(x, ϕ), asserting that person x stands in the belief relation to
the proposition denoted by ϕ, would not imply the sentence Bel(x, ψ),
asserting that x stands in the belief relation to the proposition denoted
by ψ. The further assumption that ϕ and ψ are term-equivalent is re-
quired for the valid inference from Bel(x, ϕ) to Bel(x, ψ). Belief contexts
are sensitive to the identity of the proposition denoted by the embed-
ded sentence. The formula-equivalence of two sentences (i.e., ‘logically
equivalent’ in the traditional sense) is not a strong enough condition to
preserve the identity of the propositions denoted, and so not a strong
enough condition to guarantee the truth-preserving substitution of one
sentence for another inside belief contexts. This approach may be con-
trasted with Montague’s [1974] treatment of this case, in which Bel(x,̂ ϕ)
implies Bel(x,̂ ψ), contrary to intuition.13

constraints on ext, they are true in the same models. Now pick any interpretation I

and let it be a convention that δI(p) = p. It then follows by constraints on δ that δI(p)

and δI(¬¬p) logically imply each other. So [p]I and [¬¬p]I are formula-equivalent. But

they are not term-equivalent, since δI(p) (i.e., p) and δI(¬¬p) (i.e., NEG(NEG(p)))

are distinct.
13The distinction between formula- and term-equivalence does not help to explain

all of the cases of substitution failure that are problematic for Montague’s system.
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§4: A Consequence and Some Observations

An interesting consequence of our conception is that it reveals that the
idea that ‘modal contexts are intensional’ to be somewhat confused. This
idea has come to be one of the unquestioned truths of the analysis of
language, but it may be largely in error. Here is a simple argument that
shows that modal contexts are not intensional. Take the widely-accepted
definition of intensionality found in van Benthem [1988]:

Intensional Logic as understood here is a research program
based upon the broad presupposition that so-called “inten-
sional contexts” in natural language can be explained seman-
tically by the idea of multiple reference. (p. 1)

So, in particular, if the propositional modal contexts of natural language
are intensional, they are to be explained by the idea of a shift in deno-
tation. But inspection of our definitions shows that the modal contexts
of ML are not properly analyzed in such terms. If the modal contexts
‘Necessarily,. . . ’ of natural language are analyzable in terms of formal
sentences of the form �ϕ in ML, and these formal sentences are not eval-
uated in terms of the multiple reference or shifting denotation of ϕ, it
follows, by van Benthem’s definition of intensionality, that such contexts
of natural language are not intensional. On the philosophical conception
of ML, the formal sentences �ϕ and ϕ have a fixed denotation. The
propositions these sentences denote do not vary, even when we evaluate
the sentences at other worlds. The denotation function stands outside
the model, and even if if one prefers to regard it as part of the interpre-
tation/model complex, it is a unary function, not relativized to worlds.
To use a well-known, vivid notion, the sentences of L are ‘rigid designa-
tors’, albeit in a somewhat vacuous sense. If we apply this analysis to the

It does not help to explain the ‘hyperintensional’ belief contexts; for example, why

x can believe that Mark Twain is an author without believing that Samuel Clemens

is an author. Here, the sentences ‘Mark Twain is an author’ and ‘Samuel Clemens

is an author’ would seem to be term-equivalent. In Zalta [1983], (Chapter VI) and

[1988a] (Chapters 9 – 12), there is an analysis of these cases in which the sentences in

question are term-equivalent on the de re reading of the belief reports in which they

are embedded, though not on the de dicto reading of such reports. In the de dicto

readings, the sentences denote different singular propositions, which are distinguished

by the fact that they have different abstract constituents (the distinct abstract objects

that serve as the senses of ‘Twain’ and ‘Clemens’, respectively). Substitution of term-

equivalent sentences inside de dicto belief contexts remains valid.
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pure modal contexts of natural language, then it seems that the sentences
embedded in these contexts should be regarded as ‘rigid designators’ as
well.

Modal contexts even pass the classic pretheoretic test, failure of which
identifies a context as intensional. On this classic test, a context of natu-
ral language is intensional if the substitution of ‘coreferential terms’ inside
that context fails. But the modal contexts of ML pass the formal counter-
part of this test. The term-equivalent sentences of ML are ‘coreferential’
terms, since such sentences constitute terms that denote the same propo-
sition. Yet they may be validly substituted inside modal contexts. This
is established by the following theorem:

Theorem: If M |= [�ϕ]I, and [ϕ]I and [ψ]I are term-equivalent, then
M |= [�ψ]I.

To simplify the proof, let us drop the subscripts that relativize everything
to interpretation I. Thus, we drop the subscripts on formulas in the defi-
nitions of truth in a model and term-equivalence, as well as the subscript
on the denotation function, it being understood that we shall be arguing
with respect to a fixed interpretation I. Then:

Proof : For an arbitrarily chosen M, suppose that M |= �ϕ. Sup-
pose also that ϕ and ψ are term-equivalent. We want to show:
M |= �ψ. By the definition of truth-in-M for sentences, we know
that M |= δ(�ϕ). By the definition of δ, δ(�ϕ) = NEC(δ(ϕ)).
But from the fact that ϕ and ψ are term-equivalent, we know that
δ(ϕ) = δ(ψ). So NEC(δ(ϕ)) = NEC(δ(ψ)). But NEC(δ(ψ))
= δ(�ψ). So, by transitivity of identity, δ(�ϕ) = δ(�ψ). Thus,
M |= δ(�ψ), i.e., M |= �ψ.

So substitution of term-equivalent sentences inside the modal contexts of
ML preserves truth.14 Thus, if the modal contexts of ML provide a correct
analysis of the modal contexts of natural language, the latter contexts are
not intensional.

So according to the classic definitions and tests for intensionality,
modal contexts are not inherently intensional. Moreover, the fact that
the modal contexts of ML are non-truth-functional does not entail that

14Of course, this is just a special case of a broader principle that allows us to sub-

stitute term-equivalent sentences in any context in ML.
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they are intensional. The fact that modal contexts are non-truth-func-
tional is established by the fact that [�ϕ]I and [ϕ↔ ψ]I do not logically
imply [�ψ]I (it is straightforward to construct models that demonstrate
this). But, again, this doesn’t mean that modal contexts are intensional—
they do not involve ‘multiple reference’ or ‘shift in denotation’. So the
present conception separates non-truth-functionality and intensionality.

Of course, there remains a sense in which modal propositions are non-
extensional, namely, that extw(NEC(ϕ)) doesn’t depend on extw(ϕ).
So, there is a derivative sense in which the modal contexts of language
are nonextensional, namely, the truth of modal claim �ϕ doesn’t depend
on the extension of the proposition denoted by ϕ. But it is important
to distinguish this sense of ‘nonextensional’ from the classic tests used to
identify a context as intensional. The present conception discriminates
among grades of nonextensionality. The simple modal contexts of lan-
guage exhibit nonextensionality without exhibiting intensionality of the
sort defined by the classic definitions and tests.15 This is a consequence
of the more fine-grained analysis of language and modality.

15The quantified modal contexts of natural language that contain definite descrip-

tions do attain the higher grade of nonextensionality—they are genuinely intensional.

The famous puzzles about modal contexts involving such descriptions such as ‘the

morning star’, ‘the number of planets’, and ‘the teacher of Plato’ (Quine [1961] and

Kripke [1972]) are indeed cases where coreferential terms are not always intersubsti-

tutable. In Zalta [1983] (pp. 99–106) and [1988a] (pp. 223–30), I treat such puzzles

in a manner that is consistent with the present perspective. Though I agree with van

Benthem that the best explanation of these contexts requires a shift in the denotation

of the terms involved (i.e., I agree that they are genuine intensional contexts, accord-

ing to his definition), I may disagree with him about the nature of the denotational

shift. I do not suppose that the denotation of terms and sentences changes from world

to world, but rather, since denotation is a unary notion not relativized to worlds, I

postulate a shift in denotation simpliciter . In these genuine intensional contexts, defi-

nite descriptions receive an alternative denotation (an objectified individual concept),

which play a role in a second interpretation of the sentence. Thus, I treat these de-

scriptions, not as non-rigid designators that change their denotation from world to

world, but rather as rigid designators which, inside certain modal contexts, shift from

denoting one thing rigidly to denoting something else rigidly. In such modal contexts,

they contribute something other than their ordinary denotation to the truth conditions

of the sentence.

The belief contexts described in footnote 13 are also genuine cases of intensionality.

Their analysis requires that we postulate a shift in denotation to account for the de

dicto readings of the English sentences, for which substitution of coreferential names

appears to fail.
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Finally, there is a sense in which propositions, whether they are modal
or not, are nonextensional, namely, that extensional equivalence (in the
sense of either material or necessary equivalence) doesn’t guarantee iden-
tity. Because of this, propositions are often referred to in the literature as
‘intensional entities’. Consequently, a modal logic of propositions may be
considered a logic of intensional entities, and to that extent, qualifies as
an intensional logic. But then, ordinary non-modal propositional logic,
if defined along the lines of the present philosophical conception, would
constitute an intensional logic in that sense as well.16

I would like to conclude with two observations. The first concerns
how the present conception of propositional modal logic differs from that
developed in Bealer [1982], Menzel [1986] and [1990], and Zalta [1983]
and [1988]. In these works, the authors construct languages and models
for their intensional logics in which the domain of structured propositions
forms a part of the models. In essence, we are given a language L and a
model of the form 〈P,W,wα,R, ext, δ〉; the domain of propositions does
not form an independent structure, and instead of assigning sentences
denotations in the separate domain of propositions, the denotation func-
tion δ links the language directly into another part of the model. This
still allows sentences to denote distinct, but equivalent, propositions, but
notice that one may vary the model simply by varying either the domain
of propositions or the denotation function.

However, when we try to develop the definitions of logical truth for
interpreted sentences on this approach, a problem arises. To discuss in-
terpreted sentences, we need to fix the domain of propositions P in the
model and the denotation function that assigns every sentence a propo-
sition. But for an interpreted sentence be logically true, we must be able
to quantify over all models, since logical truth is truth in all models. The
problem is that in addition to all the models that differ solely with respect
to W, R, and ext function, there are all those models that have different
domains P and different denotation functions δ. How then can we define
logical truth for an interpreted sentence, i.e., for a sentence that requires
us to fix the domain of propositions and the denotation function? The

16For those readers familiar with our background theory of propositions, we should

mention that the identity of propositions p and q depends on the necessary equivalence

of the encoding extension of the properties [λyp] and [λyq]. That is, on our background

theory of propositions, p and q are identical just in case [λyp] and [λyq] are necessarily

encoded by the same objects. So there is still a sense in which extensionally equivalent

propositions are identical. See footnote 5.
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idea of an interpreted sentence requires us to hold part of the model fixed,
but the definition of logical truth forces us to vary the models. Of course,
a special and no doubt confusing indexing scheme could be developed
to avoid this problem, I suppose, but the problem is avoided altogether
under the present conception. By taking the domain of structured propo-
sitions and the denotation function out of the models, treating the former
as a separate domain and the latter as the interpretation function, we can
define interpreted sentences without fixing the models in any way.

The second and final observation is this. When it comes time to apply
propositional modal logic for certain philosophical purposes, say, in the
interpretation of modality in natural language or in the assertion of non-
logical metaphysical principles, we may wish to pull other elements out
of the models and add them as part of the fixed structure of propositions.
For example, if for certain philosophical purposes we want to fix the size of
W, fix the properties of the accessibility relation, and explore non-logical
principles that assume this modal structure, then it would be useful to
take the domain of worlds, the actual world, and the accessibility relation
out of the models and add additional structure to the domain of propo-
sitions. That is, for certain philosophical purposes, it would be useful to
distinguish: the language L, a structure 〈P,W,wα,R〉, and models M
that consist solely of an ext function. In this way, models would vary only
by the way each ext function maps out the space of possibilities. This
may help capture the idea that it doesn’t make sense to wonder whether
there might have been more or fewer possible worlds than there in fact
are.
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