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1. Introduction

In this article, we canvass a few of the interesting topics that philosophers

can pursue as part of the simultaneous study of logic and metaphysics.

To keep the discussion to a manageable length, we limit our survey to

deductive, as opposed to inductive, logic. Though most of this article

will focus on the ways in which logic can be deployed in the study of

metaphysics, we begin with a few remarks about how metaphysics might

be needed to understand what logic is.

When we ask the question, “What is logic and what is its subject mat-

ter?”, there is no obvious answer. There have been so many different kinds

of studies that have gone by the name ‘logic’ that it is difficult to give an

answer that applies to them all. But there are some basic commonalities.

Most philosophers would agree that logic presupposes (1) the existence

of a language for expressing thoughts or meanings, (2) certain analytic

connections between the thoughts that ground and legitimize the infer-

ential relations among them, and (3) that the analytic connections and

inferential relations can be studied systematically by investigating (often

formally) the logical words and sentences used to express the thoughts so

connected and related. For example, analytic connections give rise to var-
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ious patterns of inferences expressed by certain logical words and phrases

like ‘not’, ‘if-then’, ‘and’, ‘every’, ‘most’, ‘the’, ‘equals’, etc., or expressed

by predicates like ‘red’ and ‘colored’, or expressed by modal words such

as ‘necessarily’, ‘possibly’, and actually’, or expressed in the subjunctive

mood or with tenses, etc.

If we proceed from this rough outline of what logic is to a more spe-

cific statement of the patterns and laws that a logician might recognize

and formulate, respectively, we start to do metaphysics. For example,

consider the pattern of inference, or logical law, that might be expressed

as follows: the thought expressed by the sentence ‘P and Q’ logically

implies the thought expressed by the sentence ‘P ’. We might express this

law somewhat differently by saying that the proposition that P and Q

logically implies the proposition that P . However we express it, the law

in question doesn’t merely relate uninterpreted pieces of syntax. It is a

law in virtue of the thoughts or propositions expressed by the sentences

involved, i.e., in virtue of the meanings of those sentences. Thoughts,

propositions, and meanings are objects of study in metaphysics. More-

over, it is often said that by systematizing a body of inferences in terms

of laws like the one just described, logic becomes the study of the logical

consequence relation.1 Not only does saying this much posit an abstract

relation, but a moment’s reflection suggests that logical consequence re-

lates thoughts, propositions, or sentence meanings, etc., not uninterpreted

sentences. One important part of metaphysics involves formulating the-

ories of these abstracta, taking them as objects of study in their own

right.

Of course, a logician might eschew talk of thoughts and propositions

and formulate the example law by saying: the sentence ‘P and Q’ logically

implies the sentence ‘P ’. But this doesn’t help them avoid doing meta-

physics, for this reformulated version of the law is not about the particular

physical inscriptions of the expressions ‘P ’, ‘Q’ and ‘and ’ now printed in

the book before you (or being presented electronically in the display be-

fore you). Rather, it is a generalization about the types of expressions

that the particular physical tokens before you are instances of: symbol

types, types of sounds, letter types, word types, sentence types, etc. Ex-

pression types, in contrast to expression tokens, are abstract objects, and

once we invoke types to help us describe the subject matter of logic, we

1See Etchemendy 1990 and Hanson 1997 for studies of the concept of logical con-

sequence.
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are again in the domain of metaphysics. (For an excellent study of the

type-token distinction and its ubiquity, see Wetzel 2009.) Moreover, it

seems reasonable to suppose (a) that each of the subsentential parts of

the sentence ‘P and Q’ has a semantic significance, or meaning, which

combine with the meanings of the other subsentential parts to produce

the meaning of the whole sentence, and (b) that neither the expression

types, nor the meanings, of the subsentential expressions referenced in

the analysis of the meaning of the whole sentence are particular physical

objects or obviously isolatable parts of the physical world.

Consequently, though logicians are frequently fond of supposing that

the principles of logic themselves should not imply the existence of any-

thing, the attempt to say what logic is may reveal that it presupposes

the existence of one or more of the following: thoughts (or propositions),

meanings (sentential and subsentential), the logical consequence relation

(or other relations), truth-values, expression types, symbol types, and pos-

sibly other logical objects. This is a fruitful area of research for philoso-

phers interested in the metaphysical underpinnings of logic.

It might be thought that the foregoing remarks are to be understood

as a discussion of how metaphysics might be needed in the philosophy

of logic, as opposed to logic itself. Let’s then turn specifically to how

metaphysics might be needed for logic itself. One crux of the interaction

between the two is in the concept of predication. In the linguistic, formal

mode, we might say that a predication is a sentence in which a predicate

is asserted to hold of some subject. But in the more metaphysical ma-

terial mode, we might say that a predication is a statement to the effect

that an object exemplifies a property (or instantiates a universal, or has

an attribute, or falls under a concept). More generally, a predication is a

statement to the effect that n objects exemplify, or stand in, an n-place

relation (properties are henceforth treated as 1-place relations). Predi-

cations form the basis of thought and without atomic thoughts (or, as

we shall say, atomic propositions), we wouldn’t have a basis either for the

logical consequence relation or for the principles of propositional logic and

first-order logic. In the remainder of this introductory section, we focus

on the metaphysics of predication and logic.

Some logicians and mathematicians believe that no special metaphysics

is required for the analysis of predication. At the beginning of the mod-

ern era of logic, Frege (1891) used mathematical functions to analyze both

predication in natural language and the structure of our thoughts. Frege’s
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analysis of the simple predication ‘John is happy’ treated the predicate ‘is

happy’ as signifying a function that maps all happy objects to the truth-

value The True and everything else to the truth-value The False (Frege

called functions whose values are truth-values ‘concepts’). So when the

object denoted by ‘John’ is mapped by the concept signified by ‘is happy’

to The True, Frege suggested that the whole sentence ‘John is happy’ be-

comes a name of The True. He introduced general rules of inference that

ensured that the sentence ‘John is happy’ is derivable from the sentence

‘Something is happy’ (the latter being analyzed as the result of apply-

ing the second-level concept ‘something’, which is also a function, to the

first-level concept ‘happy’, which is the argument of the function).

Logicians and mathematicians following Frege recognized that (a) func-

tions could in turn be analyzed as sets of ordered pairs, (b) that functions

which map their arguments to a truth-value could be replaced by the set

of the objects which are mapped by the function to The True, and (c)

any residual role that might require ‘truth values’ could be played by the

numbers 1 and 0 (which themselves could be given a set-theoretic defini-

tion). Thus, by working within the mathematical framework of set theory,

one could develop an analysis on which the natural language predication

‘John is happy’ is true just in case the object denoted by ‘John’ is an

element of the set of things denoted by ‘is happy’. This analysis general-

ized to relations, by treating n-place relations as sets of ordered n-tuples.

For example, ‘John loves Mary’ becomes analyzed as: 〈John,Mary〉 is an

element of the set of pairs denoted by ‘loves’. By applying set theory

in this way, and independently developing a mathematically-based proof

theory for studying inferential relations, researchers could pose and solve

interesting questions in logic without doing any metaphysics. Thus, logic

became like the other sciences—only mathematics is needed for its study.

A more philosophically-informed tradition, however, has recognized

that metaphysics is still quite relevant to this task. Statements about

set membership, of the form x ∈ y, are themselves particular predica-

tions of the form Rxy and set theory itself is formulable within first-order

predicate logic, the simplest system for studying predication. Indeed, set

membership is less general than predication, since it is only one of many

examples of relations that can be used in a predication. Though it does

prove useful, for some purposes, to model relations and predication us-

ing sets and set membership, the latter can’t be all there is to a theory

of relations and predication. The concepts of relation and predication
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have features that would be lost if we were to suppose that they were

completely reducible to sets and set membership: (1) whereas sets sim-

ply contain, or at best classify , their members, relations and properties

characterize the objects of which they are truly predicated (i.e., relations

and properties provide the characteristic the objects exhibit in virtue of

which they may be classified together), and (2) whereas sets are regarded

as identical when they have the same members, relations are not (Quine

1951). These features may become more vivid with an example involving

a property: (1) the property of being a creature with a heart characterizes

an object x in a way that is not captured by saying that the set of crea-

tures with a heart contains or classifies x (indeed, one might wonder how

the set in question can be specified without somehow appealing to the

property that characterizes the members of the set), and (2) the property

of being a creature with a heart is not identical to the property of having

a circulatory system, though if we were to reduce these properties to sets,

they would collapse, since they would contain the same members (let us

suppose).

Frege’s analysis of predication in terms of functional application also

fails with respect to (1) and (2): (1) functions simply map their argu-

ments to values, and don’t characterize their arguments in any way, and

(2) even though Frege wouldn’t identify functions with sets, he would

have identified extensionally-equivalent functions, i.e., ones that map the

same arguments to the same values, thereby collapsing the functions be-

ing a creature with a heart and being a creature with a circulatory system.

Moreover, Frege’s background logic is not metaphysics free; it not only

postulates functions (i.e., ‘unsaturated’ entities that Frege thought were

distinct from sets), but also postulates the two truth-values to represent

truth and falsity. These are entities that can’t be arbitrarily identified

with the numbers 0 and 1, for otherwise they wouldn’t have the meta-

physical significance that truth and falsity have. Though Whitehead and

Russell (1910–1913) analyzed predication in terms of propositional func-

tions, their notion of propositional function is more like our concept of a

relation, since a proposition can be considered a 0-place relation, some-

thing which results when an n-place relation (propositional function) is

predicated of n arguments. Consequently, the logic of their famous trea-

tise (1910–1913) is based on certain metaphysical notions (Linsky 1999).

With this brief review of how metaphysics is needed to understand

(the subject matter of) logic, we may turn to the ways in which logic
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itself can be useful in the study of metaphysics. We examine three topics

in greater depth in Section 2, 3, and 4, and conclude with a section that

provides more breadth through an overview of a variety of other topics.

In our first example, we see how logic can be used in the study of the

metaphysics of predication, which as we’ve seen, is a concept that plays

a role in our understanding of logic itself.

2. Logic for Properties and Relations

Once a philosopher has mastered the basics of propositional logic and

first-order predicate logic (with identity, function terms, and definite de-

scriptions), it is natural to extend the quantification theory couched in

first-order logic so as to be able to quantify over relations. Leibniz’s Law

of the identity of indiscernibles makes use of such a quantification. It as-

serts: if for every property F , x exemplifies F if and only if y exemplifies

F , then x and y are identical. In the language of second-order logic, this

would be expressed: ∀F (Fx ≡ Fy)→ x=y. This introduction of a quan-

tifier over properties can be traced to the legitimacy of an inference that

has its roots in Plato’s One-Over-Many Principle: from the facts that x

exemplifies F and y exemplifies F , it follows that there is something that

x and y both exemplify.2 There is a body of data that is constituted by (1)

statements that quantify over, or refer to, properties and relations, and

(2) the facts about the logical consequences of such statements. A real

question arises about the meaning, or semantic significance, of gerundive

expressions like being so and so that are so ubiquitous in natural language

and in the sciences. It is perfectly natural in mathematics, for example,

to discuss and formulate principles or theorems about the relationship

between properties of numbers, e.g., theorems about the relationship be-

tween the property of being prime and greater than 2 and the property of

being odd. The simplest logical analysis of such data involves the use of

terms that denote, and quantifiers that range over, relations and proper-

ties.

As an example of quantifying over complex relations, consider all the

objects x and y which are such that (a) x is odd, (b) y is even, and (c)

x > y. It would be natural to speak generally about a relation that holds

between all and only those objects x and y for which all three conditions

2The nominalistic tradition in philosophy denies this is a valid inference, but we

shall be focusing only on the tradition that accepts the inference.



7 Logic and Metaphysics

hold. In the language of second-order logic, we might assert that there

exists such a relation as follows:

∃R∀x∀y(Rxy ≡ Ox& Ey & x > y)

Such a claim asserts the existence of a complex relation R that relates,

for example, the numbers 3 and 2, 5 and 2, 5 and 4, etc., but not the

numbers 3 and 1, 4 and 3, etc. One can ask the question, is this com-

plex relation reflexive, symmetrical, or transitive?3 The existence claim

displayed above might form part of the metaphysics of relations, and it

is straightforward to state such a theory using second-order logic. (For a

good general overview of second-order logic, see Enderton 2009.)

To give a metaphysical theory of relations, one must, at a minimum,

state (i) the conditions under which such (complex) relations can be said

to exist, and (ii) the conditions under which relations Fn and Gn are to

be identified. While philosophers have come to some agreement about

(i), few philosophers have a good theory concerning (ii). A well-known

principle that achieves (i) is the cornerstone for the theory of relations,

from a logical point of view, namely, the comprehension principle for

relations:

CPn ∃Rn∀x1 . . . ∀xn(Rx1 . . . xn ≡ φ), where n ≥ 1 and φ has no free

occurrences of the variable Rn.

Since the expression φ in CPn is a metavariable ranging over formulas of

the language of second-order logic, CPn is an axiom schema: whenever φ

is a formula with no free occurrences of the variable Rn, one can formulate

an instance of this schema and each such instance is then considered an

axiom of the theory of relations. We’ve seen an instance of CP2 in the

second paragraph of this section, and here are some examples of CP3 and

CP2 (where R is a 3-place relation variable in the first instance, and a

2-place relation variable in the last two instances):

3A relation R is reflexive iff ∀xRxx. R is symmetrical iff ∀x∀y(Rxy → Ryx). R

is transitive iff ∀x∀y∀z(Rxy & Ryz → Rxz). The relation asserted to exist in the

displayed sentence fails to be reflexive (since no number x is odd, even, and greater

than itself). It also fails to be symmetric (since if Ox & Ey & x > y, then it fails to

be the case that Oy & Ex & y > x). It proves to be trivially transitive, however, since

the conjuncts in the antecedent of the definition of transitivity (Rxy & Ryz) never

simultaneously hold for arbitrary numbers (if x is odd, y is even, and x > y then there

is no number z such that y is odd, z is even, and y > z). If the antecedent of the

definition of transitivity is always false, the entire condition required for transitivity is

trivially true.
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∃R∀x∀y∀z(Rxyz ≡ ¬Qxyz)

∃R∀x∀y(Rxy ≡ ∃zTxyz)

∃R∀x∀y(Rxy ≡ Sxy ∨ Wxy)

The first axiom asserts the existence of a relation that objects x, y and

z stand in just in case they fail to stand in the 3-place relation Q. The

second asserts the existence of a relation R that objects x and y exemplify

just in case they stand in the 3-place T relation to something. The third

asserts the existence of a relation that x and y exemplify just in case they

either exemplify the relation S or the relation W .

Similarly, CP1 yields existence conditions for properties. Here is a

variety of such instances, each of which is taken as an axiom:

∃F∀x(Fx ≡ ¬Gx)

∃F∀x(Fx ≡ Gx&Hx)

∃F∀x(Fx ≡ Gx ∨ Hx)

∃F∀x(Fx ≡ ∀yRxy)

The first asserts the existence of a property that objects exemplify when

they fail to exemplify G; the second the existence of a property that

objects exemplify when they exemplify both G and H; the third the

existence of a property that objects exemplify when they exemplify either

G or H, and the fourth the existence of a property that an object x

exemplifies whenever x bears R to everything.

Once we lay down the comprehension principle for relations as the

cornerstone of a theory of relations and properties, it becomes important

to find a principle that captures the conditions under which properties

and relations are to be identified. Everyone agrees that the following

principles are not correct:

Rn =Sn ≡ ∀x1 . . . ∀xn(Rnx1 . . . xn ≡ Snx1 . . . xn)

P =Q ≡ ∀x(Px ≡ Qx)

We can now put Quine’s (1951) observation in logical terms in the case

of properties: the identity claim immediately above will fail in the right-

to-left direction when P is being a creature with a heart and Q is being a
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creature with a circulatory system, since P and Q in this case are exem-

plified by all and only the same objects but are not identical properties.

Indeed, since the suggested identity principle identifies P and Q whenever

they are extensionally equivalent, it turns our budding property theory

into one on which little would be lost by modeling (a) P and Q as sets

and (b) predication as set membership. The conclusion to draw is that,

at present, our second-order language doesn’t yet offer enough expressive

power for stating correct identity conditions for properties and relations.

One important avenue of metaphysical investigation is to study the ques-

tion: what facts about the nature of properties can be systematized, pos-

sibly by adding expressive power to the language of second-order logic, so

as to find an identity principle that is materially adequate to the data?

Putting aside the question of identity, metaphysicians with an interest

in logic should also become familiar with the relational version of the λ-

calculus, the functional version of which was the subject of Church 1941.

The relational λ-calculus is a system that allows us to name complex

relations by systematically using the gerundive expression ‘being such

that’. Its cornerstone principle, λ-conversion (discussed below) is slightly

stronger than the comprehension principle for relations. To follow up on

an example mentioned earlier: a mathematician might ask whether there

is anything special about the property being prime and greater than 2,

which we might represent using a λ-expression as: [λx Px & x > 2].

Logicians have applied these gerundive expressions more generally, and

allow the following expressions, in which G and H can be any property

whatsoever, and R any relation:

failing to be G

being both G and H

being either G or H

bearing R to everything

The following formal expressions, in which the symbol λx stands for the

phrase ‘being an x such that’, are used to represent the above English

phrases:

[λx ¬Gx], [λx Gx&Hx], [λx Gx ∨ Hx], [λx ∀yRxy]

Here are examples that correspond to the relations we introduced previ-

ously:
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[λxyz ¬Qxyz], [λxy ∃zTxyz], [λxy Sxy ∨ Wxy]

The first may be read: being objects x, y, and z that fail to exemplify

(in that order) the 3-place relation Q; the second: being objects x and

y such that x and y bear the relation T to something; the third: being

objects x and y such that either x bears S to y or x bears W to y.

These formal λ-expressions are governed by the three main principles

of the λ-calculus, known as λ-conversion, η-reduction, and α-conversion:

λ-conversion: ∀y1 . . . ∀yn([λx1 . . . xn φ]y1 . . . yn ≡ φy1,...,yn
x1,...,xn

)

η-reduction: [λx1 . . . xn F
nx1 . . . xn] = Fn

α-conversion: [λx1 . . . xn φ] = [λx′1 . . . x
′
n φ

′],

where φ, φ′ are alphabetic variants in x, x′

The instances of these principles are taken as axioms of the λ-calculus of

relations. Here are two examples of λ-conversion:

∀t∀u∀v([λxyz ¬Qxyz]tuv ≡ ¬Qtuv) (θ)

∀z([λx Px& ∃y(Myx& Sxy)]z ≡ Pz & ∃y(Myz & Szy)) (ϑ)

We may read (θ) as follows: any objects t, u, and v, are such that they

exemplify (the relation) being an x, y, and z that fail to exemplify the

relation Q if and only if t, u, and v fail to exemplify Q. If we suppose

that ‘P ’ denotes the property of being a philosopher, ‘M ’ denotes the

motherhood relation, ‘S’ denotes the supports relation, and z denotes the

person John, then (ϑ) would assert: for any object z, z is a philosopher

who supports his mother if and only if z is a philosopher and something

which is a mother of z is supported by z. This tells us something about the

logic of predication, namely, that an object exemplifies a complex property

just in case the complex logical condition implied by the structure of the

complex property holds true.

As to examples of η-reduction and α-conversion, consider the instance

of the principle of η-reduction that asserts: [λxyRxy] = R. Semantically,

this tells us that the elementary λ-expression ‘[λxyRxy]’ denotes the same

relation as the relation symbol ‘R’. Finally, consider this instance of α-

conversion: [λxy ¬Qxy] = [λyz ¬Qyz]. Semantically, this tells us that

the relation denoted by the λ-expression is independent of the particular

variables bound by the λ; this makes sense since the property denoted

by the λ-expressions isn’t the kind of thing to have variables as part of
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its nature and so it shouldn’t matter which variables we use to denote

it. What is important is how the λ-bound variables and the structure of

the formula constituting the body of the λ-expression jointly signify the

logical structure of the property denoted.

In light of this last remark, a few words about the semantical inter-

pretation of the logical system just described are in order. First, it is

important to recognize that even though the CPn appears to be a very

strong existence principle, in fact it can be true in very small domains. If

there is only one element in the domain of individuals, say object b, then

a domain with only two properties (one property which is exemplified by

b, and one which is not) makes CP1 true. Such a model would identify all

extensionally equivalent properties (i.e., properties that are exemplified

by the same objects), and so might be called an extensional model.

Since it is important that we avoid identifying properties (and n-place

relations generally) with sets of objects (or with sets of n-tuples generally),

we should investigate intensional models of the axioms described, which

don’t identify extensionally equivalent properties and relations. Quine

(1960) inadvertently provided a piece of the puzzle, by applying the com-

binatory logic of Schönfinkel (1924) to eliminate variables from the lan-

guage of first-order logic (see also Curry & Feys 1958). However, work

by McMichael & Zalta (1979), Bealer (1982), Zalta (1983), and Menzel

(1986) showed that the predicate functors Quine used could be recon-

structed so as to apply to properties rather than predicates. In these

works, a λ-expression such as [λx¬Px], for example, is interpreted as de-

noting a new property that can be semantically described as neg(d(P )),

i.e., a complex property the structure of which is the result of apply-

ing the negation operator neg to the property denoted by the predicate

‘P ’. When defining interpretations of our second-order language, we must

stipulate that the domain of relations is closed under all the analogous

logical operations needed to interpret the other logical constants (e.g., &,

∨, →, etc.) that might appear in instances of CPn and λ-conversion. In-

stead of eliminating variables from the syntax of the language (where they

have standardly played an important role, e.g., in mathematics), such a

stipulation eliminates the variables from the semantic representations of

complex properties and relations (where variables have no natural role

to play). A philosophical logician would, at the same time, introduce an

extension function ext that maps each relation to a set constituting its

extension. For example, ext maps neg(d(P )) to the set of objects that
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fail to be in the extension of the property denoted by ‘P ’, or formally,

ext(neg(d(P ))) = {x | x 6∈ ext(d(P ))}.4 Notice how such semantic stip-

ulations distinguish properties, whether simple or complex, from their ex-

tensions.5 This allows one to consistently assert, for example, both P 6=Q

and ∀x(Px ≡ Qx). Of course, a proper, materially adequate analysis of

P =Q remains a promissory note. The reader may find the following use-

ful investigations on the topic: Zalta 1983; Cocchiarella 1986; Chierchia

& Turner 1988; and Swoyer 1996, 1998, 2009.

Finally, it is important to mention that once this logic of properties

and relations is in place, metaphysicians can carry out investigations into

the extent to which it has to be modified to capture Plato’s theory of

predication, participation, and Forms (Pelletier and Zalta 2000), Leibniz’s

calculus of concepts (Zalta 2000a), Frege’s theory of concepts, and other

systematic theories of universals.

3. Logic for Propositions

Propositions are often introduced as the meanings of sentences, the bear-

ers of truth and falsity, the objects of belief, and the denotations of relative

clauses. For the present purpose of studying the interaction of logic and

metaphysics, we might also say that propositions are the entities that are

related by the relation of logical consequence. Philosophers early in the

20th century were concerned about the nature of propositions and their

relationship to facts: whether facts are simply true propositions, whether

this implied there were negative facts (given that there are true negative

propositions) in addition to atomic facts (Russell 1918), whether propo-

sitions (or thoughts, as Frege called them) had ordinary objects or only

concepts as constituents (Russell 1904, Frege 1904), whether we could do

without propositions, say, in favor of states of affairs (e.g., Wittgenstein

1922), etc. In what follows, however, we shall examine how logic can be

used to formulate a simple theory of propositions. This simple theory will

4Here the boldface variable x is a semantic variable ranging over the objects in the

domain.
5The semantics just outlined though leaves open certain questions, such as whether

d(P ) and neg(neg(d(P ))) are distinct. Though these two semantic descriptions of

the property are different, axioms could be laid down so as to identify them. The

metaphysician must do more work to determine whether such properties should be

identified or kept distinct. Note also that though set theory is used to help structure

the semantic representations of relations and their extensions, the sets themselves are

not denoted, or referred to, by the predicates of the language.



13 Logic and Metaphysics

regard facts as true propositions, and assumes that facts are not physical

objects (given they have logical structure), so that one won’t be inclined

to ask whether negative facts are physical objects.

Though propositional logic is usually introduced to students before

predicate logic, it is almost always interpreted in such a way that a truth

value serves as the semantic significance of the propositional letters ‘p’, ‘q’,

etc. That is, logic texts almost never interpret these propositional letters

as denoting propositions, since their authors often prefer to remain neutral

on the metaphysical question about the existence of propositions. But

more metaphysically-minded logicians will find it interesting to consider

such an interpretation of propositional logic. The key to the success of

such an interpretation is to have a background theory of propositions

upon which to draw. Such a theory forms a natural extension of the logic

of properties and relations.

Let us define a proposition as a 0-place relation. Intuitively, if we

predicate the 2-place relation loves of two objects a and b, then we have

asserted the proposition that a loves b. Now if we let n go to 0 in the

principle CPn, and abbreviate the 0-place relation symbols P 0, Q0, . . .

by the more familiar propositional letters p, q, . . . , then we may take the

instances of the following schema CP0 (i.e., the 0-place version of CPn)

as axioms for the theory of propositions:

CP0 ∃p(p ≡ φ), where φ has no free p variables.

Here are some examples:

∃p(p ≡ ¬Pa)

∃p(p ≡ Pa&Qb)

∃p(p ≡ ∀yRay)

The first asserts that there exists a proposition which is the negation of the

proposition that Pa (i.e., that is true if and only if a fails to exemplify P );

the second that there exists a (conjunctive) proposition that is true just

in case both Pa and Qb are true; and the third that there is a proposition

that is true if and only a bears R to everything. These examples show

how the existence of propositions is implied by the theory of relations.

Though the simple terms p, q, . . . have been introduced to denote

propositions in our language, we may also introduce complex terms for

denoting them, namely, λ-expressions in which no variables are bound by
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the λ. Thus, we might use the following λ-expressions corresponding to

the three instances of CP0 immediately above:

[λ ¬Pa]

[λ Pa&Qb]

[λ ∀yRay]

We read these, respectively, as: that a fails to exemplify P , that a ex-

emplifies P and b exemplifies Q, and that a bears R to everything. In

other words, where λx formalizes ‘being an x such that’, λ itself without

any variables formalizes the relative-clause operator ‘that’ and produces

a name of a proposition when prefixed to a formula of our language.

These new λ-expressions are well-behaved: λ-conversion still applies

to them. For example, the following is an instance of λ-conversion:

[λ ¬Pa] ≡ ¬Pa

This asserts: (the proposition) that a fails to exemplify P is true if and

only if a fails to exemplify P . Note here that we explicitly use the phrase

‘is true’ in this reading. This treats the concept of truth as the 0-place

case of the n-place concept of exemplification. The λ-expression [λ ¬Pa]

is therefore to be regarded as a formula as well as a complex term! As a

formula, it can stand in isolation on the left hand side of the biconditional

sign ≡, which is defined so that whenever φ and ψ are formulas, so is

φ ≡ ψ.

Moreover, now that our theory of relations has been extended to in-

clude propositions, our logic allows us to form new predicates denoting

properties that objects exemplify in virtue of a proposition’s being true.

For example, the following is now a perfectly well-defined instance of CP1:

∃F∀x(Fx ≡ Pa)

This asserts that there is a property that objects exemplify if and only

if the object a exemplifies the property P . Indeed, we might use the λ-

expression [λxPa] (where the x bound by the λ is not free in the ensuing

formula) to denote the property: being an x such that a exemplifies P .

Such a λ-expression is well-behaved logically, since it obeys the following

instance of λ-conversion:

∀y([λx Pa]y ≡ Pa)
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This asserts that every object y is such that y exemplifies the property

of being an x such that a exemplifies P iff a exemplfies P (thus, if Pa

is true, everything exemplifies [λx Pa], and if it is false, nothing does).

These new λ-expressions of the form [λx φ] are important because even

though we don’t yet have an adequate principle governing the identity

conditions for properties, we may use them to define the identity con-

ditions for propositions in terms of the identity of properties, as follows

(Myhill 1963):

p=q ≡ [λx p]=[λx q]

In other words, the propositions p and q are identical whenever the proper-

ties being such that p and being such that q are identical. Such a definition

allows the metaphysician to consistently assert that propositions p and q

may be distinct even if they are materially equivalent, i.e., to consistently

assert both p 6= q and p ≡ q. This immediately implies that propositions

can’t be identified with truth values.

Of course, the theory of propositions just outlined would benefit from

a semantical model of how equivalent propositions can be distinct. Such a

model can be given by extending the interpretations discussed in the pre-

vious section for the theory of relations. The very same logical operation,

neg, that maps a property to its negation, can also map a proposition p

to its negation neg(p). Similarly, the operation cond would map proposi-

tions p and q to the conditional proposition cond(p,q). In what follows,

let us suppose that p is the denotation of the propositional letter ‘p’ and

q is the denotation of the propositional letter ‘q’. Then the denotation of

the λ-expression [λ¬p] is neg(p), and the denotation of the λ-expression

[λ p → q] is cond(p,q). Moreover, the extension function ext can be

expanded so that in addition to mapping relations to their extensions, it

maps propositions to truth values. Thus, for example, the ext function

would be defined so that the extension of the negative proposition neg(p)

is the truth value The True if and only if the extension of the negated

proposition p is The False. Here is a formal statement of the constraint

on ext in the case of conditional propositions, where T and F are the two

truth values: ext(cond(p,q)) = T if and only if either ext(p) = F or

ext(q) = T. Clearly, on this model, propositions are distinct from their

extensions.

See King (2008) for a description of other theories of structured propo-

sitions, and Fitch (1988) for more on the theory of singular propositions
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(i.e., propositions that have objects themselves, as opposed to concepts of

objects, as constituents). For a different approach to the topic of proposi-

tions, which employs states of affairs and situations, see Barwise & Perry

1983, Perry 1986, Stalnaker 1986, and Zalta 1993.

4. Logic for Possibilia, Contingent Beings, and Worlds

Logic and metaphysics interact in a significant way in the attempt to sys-

tematize our modal beliefs expressed with the sentential operators ‘neces-

sarily’, ‘possibly’, and ‘actually’. In his Monadology and Theodicy, Leibniz

introduced the idea that necessary truths are propositions true in all pos-

sible worlds. This insight was one of the key elements of Kripke’s (1959)

semantics for modal logic.6 He postulated a domain of possible worlds

that included a distinguished actual world w0. He interpreted the prim-

itive operator ‘necessarily’ in the language of modal logic as a quantifier

of the form, ‘in every possible world’. The picture that resulted, based

on the idea that predication becomes world-relative (i.e., that objects ex-

emplify properties with respect to worlds), led philosophers to question

whether the semantics of modal logic rests upon a sound metaphysical

basis. They became interested in the following issues: (1) what are the

fundamental principles governing possible worlds? (e.g., what are their

existence and identity conditions, and what other axioms and definitions

are needed to give a systematic theory of them?); (2) is a statement like

‘Obama might not have been President’ true in virtue of the fact that

Obama himself exists at some other world without being President there

or in virtue of some other fact?; and (3) is a statement like ‘Obama might

have a son’ (i.e., ‘Possibly, Obama has a son’) true because there exists

some nonactual, but possible, object which is Obama’s son at some other

possible world or because some other truth conditions, not involving the

existence of nonactual but possible objects, obtain? Issue (3) has espe-

cially received a lot of attention, for Quine expressed extreme skepticism

6Another key insight was the use of an accessibility relation among the various

possible worlds: where w and w′ are two possible worlds, w′ is accessible from w

just in case whenever a proposition, say necessarily p, is true at w, the proposition

p is true at w′. The validity of statements in modal logic such as the T axiom (‘if

necessarily p, then p’), the 4 axiom (‘if necessarily p, then necessarily, necessarily

p’), the 5 axiom (‘if possibly p, then necessarily possibly p’), etc., is grounded in the

the properties of the accessibility relation. For example, the T axiom is valid if the

accessibility relation is reflexive, the 4 axiom is valid if accessibility is transitive, the 5

axiom is valid if if accessibility is Euclidean, etc.
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about such possible but nonactual objects (Quine 1948).

Probably the most widely endorsed metaphysical view about possible

worlds and possible objects is called actualism, namely, the thesis that

everything there is (i.e., everything that exists) is actual. To develop this

view consistently: (1) possible worlds must be regarded as some sort of

existing abstract object (rather than as a possible object) and, moreover,

one that embodies, in some sense, a maximal (i.e., complete) group of

propositions that might have been true together, and (2) an analysis of

modal claims has to be developed that doesn’t postulate possible but

nonactual objects, like Obama’s possible but nonactual sons. (For an

excellent overview of actualism, see Menzel 2010.) Actualism is often

contrasted with Lewis’s (1968, 1986) view that endorses both possible

but nonactual worlds and possible but nonactual objects like Obama’s

possible sons, possible million carat diamonds, possible talking donkeys,

etc. (On Lewis’s view, though each individual x that exists at our world

exists only at our world, there are possible but nonactual objects that

serve as x’s counterparts at other possible worlds, whose properties at

those worlds ground the modal properties that x has at our world.)

Kripke’s well-known semantics (1963) for quantified modal logic has

been taken to be an actualist stance on these problems. Though Kripke

didn’t axiomatize the notion of possible world or state existence and iden-

tity conditions for them, he did take worlds as primitive in his semantic

metalanguage. What he says about them is consistent with the assump-

tion that they are actual, abstract objects of some kind. Moreover, his

semantics clearly supposes (a) that one and the same object exists in mul-

tiple possible worlds, (b) that contingent objects that exist at our world

fail to exist at other worlds, and (c) that contingent objects that exist at

other worlds fail to exist at our world (though since Kripke restricted the

quantifiers of our language so that they don’t range over those objects,

we can’t validly conclude that there are any nonactual possible objects).

Features (a) – (c) bring us to a discussion of the methods Kripke used to

invalidate certain metaphysically significant theorems about possible ob-

jects that would otherwise be provable when one combines the principles

of classical quantification theory with the principles of classical S5 modal

logic to form the simplest quantified modal logic.7

7The principles of S5 include the K axiom (‘if necessarily if p then q, then if nec-

essarily p then necessarily q’), and the axioms T, 4, and 5 mentioned in a previous

footnote.
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Kripke’s methods focused on the interpretation of the quantifier ∀x
(i.e., ‘every x’) in the language of quantified modal logic. He denied that

this quantifier ranges over everything whatsoever in the domain of dis-

course. Instead of assuming a single, fixed domain of discourse, Kripke

assumed that each possible world should be associated with its own do-

main of objects (intuitively, the objects that exist at that world). He then

he restricted the interpretation of the quantifier ∀x in two ways: (i) if ∀x
stands outside the scope of the modal operator ‘necessarily’ (represented

as 2) in a formula, as in ∀x2φ, then the variable x ranges only over the

objects in the domain at the distinguished actual world w0 (the sentence

∀x2φ is thus true iff every object in the domain of w0 satisfies φ at every

possible world), and (ii) if ∀x stands inside the scope of the modal oper-

ator, as in 2∀xφ, then as you evaluate the truth of ∀xφ at each possible

world w (as part of the process of determining whether ∀xφ is true at all

possible worlds), you consider only whether all the objects in the domain

at w satisfy φ (the sentence 2∀xφ is thus true iff at every possible world

w, all of the objects in the domain at w satisfy φ at w).

Using these techniques, Kripke was able to invalidate the following

three important theorems of the simplest quantified modal logic:

BF ∀x2φ→ 2∀xφ
CBF 2∀xφ→ ∀x2φ
NE ∀x2∃y(y = x)

The first of these, the Barcan Formula BF, asserts that if everything

is necessarily such that φ, then necessarily, everything is such that φ.

Clearly this becomes invalid in Kripke’s semantics, since it doesn’t follow

from the fact, that every object in the domain at the actual world w0

satisfies φ in every possible world, that at every possible world, every

object in the domain there satisfies φ. For consider the scenario where

every object in the domain of w0 satisfies φ at every possible world, but

some object in the domain of some other world w1 (but not in the domain

of w0) fails to satisfy φ at w1. In such a scenario, the antecedent of BF

is true but the consequent false. Similarly, CBF fails to be valid because

it doesn’t follow from the fact, that at every possible world every object

in the domain there satisfies φ there, that every object in the domain of

w0 satisfies φ in every possible world. For consider the scenario where

at every world w, every object in the domain at w satisfies φ, but some

object in the domain of w0 but not in the domain of world w1, say, fails
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to satisfy φ at w1. In such a scenario, the antecedent of CBF is true,

but the consequent is false. Finally, NE becomes invalid because there

are scenarios where an object in the domain at w0, say b, fails to be in

the domain at some other world, say w1. In such a case, the formula

∀x∃y(y = x) fails to be true at w1 (when b is assigned as value to the

variable x), and so fails to be necessary.

Once Kripke had a semantics that invalidated BF, CBF, and NE,

he had to weaken the axioms of quantified modal logic in various ways

(this included the elimination of proper names from the language) so that

instances of these sentences were no longer derivable as theorems. Such

a weakening of quantified modal logic has left many philosophers and

logicians dissatisfied. Moreover, many actualists were dissatisfied with

Kripke’s semantics on metaphysical grounds: (1) unless one provides a

specific theory of possible worlds that shows them to be abstract objects,

the nonactual possible worlds of Kripke’s semantics would seem to vio-

late the principles of actualism; (2) Kripke’s semantics allows objects in

the domain of other possible worlds that don’t appear in the domain of

w0, suggesting that the semantics was committed to nonactual possible

objects (like Obama’s possible sons), again contrary to the spirit of actu-

alism; and (3) Kripke’s semantics allows an object to have a property at

a world w even when the object isn’t in the domain of w (in other worlds,

Kripke semantics assumes that it makes sense to predicate properties of

objects even at worlds where those objects don’t exist), which violates the

principle of serious actualism that many actualists hold, namely, the the-

sis that objects have properties only at worlds where they exist (serious

actualists believe this should be properly reflected in a modal logic).

An extremely interesting literature has developed around these dis-

satisfying features of Kripke’s logic (the literature is summarized nicely

in Menzel 2010). Some philosophers have investigated the principles that

govern possible worlds, thereby taking them as theoretical objects in their

own right rather than as primitive objects (Plantinga 1974, Chisholm

1976, Fine 1977, Lycan & Shapiro 1986, and Zalta 1993); some have de-

veloped systems that avoid weakening quantified modal logic (Fine 1978,

Menzel 1991, Deutsch 1994); some have attempted to avoid the semantic

commitment to nonactual possibles (Plantinga 1976, Prior 1977, Adams

1981, McMichael 1983, and Menzel 1990); and others have investigated

the alternative offered by Lewis’s theory of possible worlds and the meta-

physics of counterpart theory (Hazen 1979, Bricker 1996, 2001). One
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recent trend has been to reconceptualize, along actualistic grounds, the

simplest quantified modal logic, which validates BF, CBF, and NE. If

this logic (S5 modal logic with classical quantification theory) is inter-

preted by a single, fixed domain of objects, and the quantifier ∀x is inter-

preted as ranging over everything in the domain, then one might argue

that this treats every object in the domain on a par, as an actual, existing

object (Cresswell 1991, Linsky & Zalta 1994, 1996, and Williamson 1998,

2000). It is argued that Kripke semantics (with domains that vary from

world to world) are unnecessary and that no metaphysical problems are

created by the validity of BF, CBF, and NE.

5. Other Topics of Interest

5.1 The Logic of Fiction

One of the most fascinating areas requiring the interaction of logic and

metaphysics concerns the meaning of language used in stories and fic-

tion more generally. There is a rich body of data to be explained, in

connection with the inferences we draw involving names and descriptions

that appear to denote fictional characters. It follows from “Dionysus wor-

shipped Zeus” that “Dionysus worshipped something”, and it follows from

“Teams of scientists searched for the Loch Ness monster” that “Teams of

scientists searched for something”. Even more complicated inferences can

be described; the following argument, for example, is valid:

Dionysus worshipped Zeus.

Zeus is a mythical character.

Mythical characters don’t exist.

Therefore, Dionysus worshipped something that doesn’t exist.

It seems hard to understand how these inferences can be valid if the proper

names and definite descriptions fail to denote anything at all.

It used to be commonplace in philosophy to say that Russell’s famous

theory of descriptions (1905) solved the problem of analyzing sentences

about fictions. But many philosophers now agree that Russell’s theory

doesn’t solve this problem, but rather creates a problem. If we eliminate

the description “the fountain of youth” (‘ıxFx’) in the sentence “Ponce

de Leon searched for the fountain of youth” (‘SpıxFx’) by applying Rus-

sell’s theory, then we get the analysis: there exists a unique object that
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exemplifies being a fountain that confers everlasting life and Ponce de

Leon searched for it, i.e.,

∃x(Fx& ∀y(Fy → y=x) & Spx)

But this latter is clearly false, while the original English sentence is true.

No object exemplifies being a fountain that confers everlasting life. For

this same reason, Russell’s theory of descriptions fails to provide a good

analysis of proper names occurring in sentences about fictions, for on

his view, such proper names just abbreviate definite descriptions. Such

an analysis would turn true sentences involving names of fictions into

falsehoods.

Some logicians have suggested that ‘free logic’ (Hailperin 1953, Mor-

scher & Simons 2001, Lambert 2003) is needed for the analysis of fiction.

Free logic is the variant of the classical first-order predicate calculus which

allows for constants that fail to denote and allows for an empty domain.

In such a logic, one may not instantiate a name for an individual, say

‘a’, into a universal claim like ‘∀xPx’ to infer ‘Pa’, since such an infer-

ence could move you from a universal generalization which is true to a

falsehood (‘Pa’ would be false if ‘a’ is a constant that fails to denote).

But free logic suffers from problems similar to those of Russell’s theory of

descriptions. It can’t successfully represent “Dionysus worshipped Zeus”

as true, much less successfully represent the inference from “Dionysus

worshipped Zeus” to “Dionysus worshipped something” or the argument

displayed in the previous paragraph. Nor can it explain why “Zeus is

the most powerful god according to Greek myth” is true while “Zeus is

the god of war according to Greek myth” is false. It offers no theory of

the semantic significance of “Zeus” that might explain why the former

sentence is true while the latter is false.

One of the first systematic treatments of fiction that took seriously the

fact that names like ‘Zeus’ and descriptions like ‘the fountain of youth’

denote fictional objects can be found in Parsons 1980, which is an elegant

combination of metaphysics and logic. Using Meinong’s (1904) theory

of objects as a guide, Parsons developed an axiomatic theory of nonex-

istent objects, couched in a second-order language that was modified so

as to admit two kinds of properties, nuclear and extranuclear proper-

ties. A comprehension principle guarantees that for every condition φ

on nuclear properties, there is an object that exemplifies exactly the nu-

clear properties satisfying the condition. Some of these objects exemplify
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the extranuclear property of existence, while others fail to exemplify this

property. Parsons shows how his system addresses Russell’s famous ob-

jections to Meinong’s naive theory, and then shows how sentences and

inferences involving fictional names and descriptions can be represented

in the logic of his system. Other logics for fiction have been developed

as well (Zalta 2000b, and Woods & Alward 2004). See Sainsbury 2009

for a recent summary of the different theories of fiction that have been

advanced recently.

5.2 Logic, Metaphysics, and Mathematics

Logic has an important role to play in the analysis of the metaphysical

underpinnings of mathematics. Mathematical statements such as “3 > 2”

and “∅ ∈ {∅}” seem to be true and seem to be about numbers and sets, as

well as about abstract relations such as greater than and set membership.

The work we did in Section 2 puts the reader in a position to understand

Frege’s insightful definition of the (immediate) predecessor relation among

natural numbers. It involves the operator # which operates on a property-

denoting term to form a singular term that denotes the number of objects

exemplifying the property denoted:

Precedes(x, y) =df ∃F∃u(Fu& y=#F & x=#[λz Fz & z 6= u])

In other words, x precedes y just in case there is a property F and an

object u such that u exemplifies F , y is the number of F s, and x is the

number of the property being an F-thing other than u. One can see that

this correctly predicts that 1 precedes 2 if we let F be the property being

an author of Principia Mathematica and let u be A.N. Whitehead. Since

Whitehead is an author of Principia Mathematica, 2 is the number of

the property F , and 1 is the number of the property being an author of

Principia other than Whitehead, the definition for Precedes(1,2) holds.

This is an instructive example of how a logician employed quantification

over properties to define a significant mathematical concept. (See Zalta

2010 for a thorough discussion of the results Frege was able to achieve in

terms of this definition.)

Though some philosophers have supposed that the singular terms in

mathematical statements (e.g., ‘3’, ‘∅’, etc.) fail to denote anything (e.g.,

Field 1980, Hellman 1989), these views mostly fail to preserve the logic of

such statements; analyses in which these terms systematically contribute
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a denotation to the truth conditions of, and inferences among, the state-

ments in which they appear, do a better job capturing this logic. One

obvious place where metaphysics and logic combine for the analysis of

mathematics is in the view known as logicism, the idea that mathematics

is reducible to logic alone, i.e., that the concepts of mathematics are defin-

able in terms of logical concepts, and that the axioms of mathematics can

be derived as theorems of logic. If this view were true, the metaphysics

needed for mathematics would simply be that needed for logic. Though

the pursuit of a logicist analysis of mathematics was a goal of philosophers

and logicians in the early 20th century, most philosophers nowadays see

logicism as unachievable. For it clearly fails for mathematical theories

that have strong existence axioms (e.g., axioms that require an infinite

domain if the theory is to be true). Few logicians would accept that the

axioms of logic are strong enough to imply the existence of an infinite

number of objects, and given that logic doesn’t require infinite domains

for the truth of its axioms, it would seem impossible to reduce the axioms

of strong set theories and number theories, which are true only in infinite

domains, to theorems of logic.

Recently, however, philosophers have considered whether some weak-

ened form of logicism might be true. If logicism is the view that math-

ematics is reducible to logic alone, then the view could be weakened,

holding mathematics fixed, by either (1) expanding the scope of what

counts as logic, (2) supplementing logic with analytic truths that express

technical analyses of mathematical concepts, or (3) revising the standard

of reduction. See Hodes 1984 and 1991, and Tennant 2004, for develop-

ments along the lines of (1), Wright 1983, Hale 1987 and 2000, and Boolos

1986 for developments along the lines of (2), and Linsky & Zalta 2000 for

developments along the lines of (3). Fine 2002 and Burgess 2005 offer

interesting technical discussions of the topic.

5.3 Other Noteworthy Connections

We conclude this survey by listing, without much discussion, other fruitful

areas of interaction between logic and metaphysics. The study of tense

logic helps to clarify the metaphysics of time. See Prior 1967, Burgess

1979, and van Benthem 1983. Logical techniques have been brought to

bear in the study of the structure of events in such works as Parsons

1990 and Link 1998. The study of intentionality (the property of the
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mind and mental events that makes them about or directed upon things),

has led to theories of the objects of thought, and in particular, the na-

ture of those objects of thought which turn out to be impossible in some

sense. See Zalta 1988, Paśniczek 1997, and Priest 2007. Fine 1985 offers

an interesting investigation of arbitrary objects, which play an important

role in logical and mathematical reasoning. Finally, a deeper investiga-

tion into the nature of properties has led Yi (2005, 2006) to postulate

plural attributes in his study of the logic of plurals, and Leitgeb (2007)

to examine the extent to which properties might be abstracted or recon-

structed from similarity relations. Finally, the reader may find that the

study of metaphysics computationally using automated reasoning engines

has many interesting benefits, such as the independent derivation of in-

teresting theorems so as to confirm and validate reasoning, the discovery

of countermodels to hypotheses and errors in reasoning, and the discov-

ery of facts about the strength of axioms and premises needed to derive

metaphysical conclusions. See Fitelson & Zalta 2007 and Oppenheimer

& Zalta 2011a, and also Oppenheimer & Zalta 2011b for an idea of how

work in computational metaphysics has led to new perspectives on the

foundations of logic, including the discovery of a limitation on functional

type theory (and automated reasoning engines based on it).
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