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Abstract

Mathematical pluralism can take one of three forms: (1) every
consistent mathematical theory consists of truths about its own do-
main of individuals and relations; (2) every mathematical theory,
consistent or inconsistent, consists of truths about its own (possibly
uninteresting) domain of individuals and relations; and (3) the prin-
cipal philosophies of mathematics are each based upon an insight or
truth about the nature of mathematics that can be validated. (1) in-
cludes the multiverse approach to set theory. (2) helps us to under-
stand the significance of the distinguished non-logical individual
and relation terms of even inconsistent theories. (3) is a metaphilo-
sophical form of mathematical pluralism and hasn’t been discussed
in the literature. In what follows, I show how the analysis of theoret-
ical mathematics in object theory exhibits all three forms of mathe-
matical pluralism.
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1 Introduction

In the 20th century, one of the main strategies for the philosophical ana-
lysis of mathematics was foundationalism, the view that all of mathemat-
ics is reducible to some foundational mathematical theory (set theory,
category theory, etc.). This view reduces the problem of analyzing the
content, and our knowledge, of different mathematical theories to that
of a single theory. As a proponent, Quine committed himself to sets, on
the grounds that our best scientific theories ineliminably quantify over
set-theoretically-reducible mathematical objects (1948 [1980], 1970); see
also Colyvan 2001). Quine then argued that the epistemology of mathe-
matics reduces to that of natural science.

But Quine’s strategy offers no account of unapplied mathematics and
justifies only the weakest set-theoretic axioms needed for the mathemat-
ics of our best physical theories. Moreover, philosophers since Benacer-
raf (1965) have questioned theory reduction in mathematics. In general,
the fact that mathematical theory T can be reduced to theory T ′ doesn’t
imply that the quantifiers of T range over the same domain as the quan-
tifiers of T ′ .

An alternative account of mathematics, with roots in Hilbert and Car-
nap, has gathered momentum in recent years, namely, mathematical plu-
ralism. The first and most common form of mathematical pluralism is
the view that every consistent mathematical theory consists of truths
about its own domain of individuals and relations. The early Hilbert
is a pluralist in virtue of his claim that if a mathematical theory T is
consistent, then the objects systematized by T exist.1 Carnap was also
a mathematical pluralist, since he took each linguistic framework to
be about the objects and relations represented by its primitive notions
(1950 [1956]).2 But Carnap declined to answer any ‘external’ questions
about the existence of the objects and relations of a framework – such
‘pseudo-questions’ should instead be understood as questions about the
expediency of adopting one framework rather than another.

1A letter from Hilbert to Frege, dated 29 December 1899, captures the position:

. . . if the arbitrarily given axioms do not contradict one another with all their
consequences, then they are true and the things defined by the axioms exist.

See Gabriel et al. (eds.) 1980 (39). However, see Detlefsen 1993, Sieg 2014, and Dean 2021
for nuanced discussions about the evolution of Hilbert’s views.

2See Kissel (forthcoming) for a discussion of the question of whether Carnap was a
logical pluralist.



3 Mathematical Pluralism

In what follows, this first form of mathematical pluralism is con-
strued in complete generality, as the suggestion that every consistent
mathematical theory is true. Adherents are unmoved by the criticism
(originally directed at deductivism in Resnik 1980, 132) that the view
legitimizes the study of random axiom combinations, such as set theory
without pairing. A pluralist leaves the determination of what is inter-
esting to mathematical practice.3 After all, set theory without pairing is
still mathematics, and who is to say that it won’t one day prove useful in
the development of a natural science?

This first form of mathematical pluralism has been taken seriously by
a number of recent authors. Despite his reservations about deductivism,
Resnik later (1989) suggests that each mathematical theory ‘postulates’
or ‘posits’ the relevant mathematical objects. Field (1994, 392, 420–422)
and Balaguer (1995, 1998a,b) have argued that platonists should adopt
a plenitude principle on which every possible mathematical object ex-
ists, so that each mathematical theory describes some part of mathemat-
ical reality. Linsky & Zalta (1995) argued that the non-logical expres-
sions of arbitrary mathematical theories can be interpreted in terms of
well-defined descriptions that denote abstract objects and abstract rela-
tions governed by an unrestricted comprehension principle. Structural-
ists (Shapiro 1997, Resnik 1997) may be seen as pluralists in so far as
they take arbitrary mathematical theories to be about structures (Nodel-
man & Zalta 2014 explicitly do so). Inferentialists (Wittgenstein 1956;
Sellars 1953 [1980], 1974) are pluralists as well, in so far as they take the
meaning of the terms of arbitrary mathematical theories to be captured
by their inferential roles. We may also count the multiverse approach to
set theory (Hamkins 2012) as pluralist. Hamkins claims (216) that “there
are diverse distinct concepts of set, each instantiated in a corresponding
set-theoretic universe, which exhibit diverse set-theoretic truths”. These
views will be discussed in some detail in Section 2. Though, for rea-
sons discussed in Section 4.2, we shall not count modal structuralism (or
deductivism generally) as a kind of mathematical pluralism, notwith-
standing the argument in Hellman & Bell 2006.

This first form of mathematical pluralism includes classical, con-
structive, intuitionistic, finitist, and other types of consistent mathemat-

3Bueno (2011, 555–558) explains why relativism in mathematics doesn’t imply that
there are no constraints on mathematical practice or that ‘anything goes’; for example,
not every theory is equally fruitful. His considerations apply to pluralism.
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ical theories. For example, Davies (2005, 253) argues for the ‘validity’ of
both classical and constructive mathematics (253) and suggests that the
debate about the ‘right’ way to do mathematics is ‘sterile’ and ‘counter-
productive’. He adopts the view that mathematical statements are not
true simpliciter but only relative to a theory.4

The second form of mathematical pluralism extends the first form
to ‘inconsistent’ mathematical theories. Beall (1999) argues that every
mathematical theory—consistent and inconsistent alike—truly describes
some part of the mathematical realm. To ensure that ‘Real Full Blooded
Platonism’ (RFBP) doesn’t degenerate into triviality, he assumes para-
consistent logic as a background for inconsistent theories such as those
investigated by Mortensen (1995, 2009). Such theories are not trivial;
some of the sentences expressible in the language of the theory are the-
orems and others are not.5 Bueno’s (2011) mathematical relativism is
closely related to this second form of mathematical pluralism, though
without any commitment to the existence of mathematical objects and
relations. Friend (2013, 2014) argues explicitly for the second form of
mathematical pluralism. Warren defends an unrestricted inferentialism
(2015, 1353ff; 2020, 55ff) on which (a) the rules that implicitly define
an expression are automatically valid and (b) any collection of rules can
be used to implicitly specify a meaning for an expression. This leads to
a logical pluralism that results in an inferentialist version of the second
form of mathematical pluralism (2020, 199ff), on which mathematical
theories consist of conventional truths. Priest (2019, §11) also explicitly
defends the second form of mathematical pluralism.

4Davies (2005, 257) writes:

When talking about mathematics, as opposed to the philosophy of mathe-
matics, one does not have to discuss truth, epistemology, transcendence, etc.
A mathematician might say that ‘a theorem X is true’, but this means exactly
the same as ‘X is a theorem’ as defined above, and does not refer to any the-
ory of truth . . . . When mathematicians say as mathematicians that they do
not know whether Goldbach’s conjecture is true, they mean exactly the same
as when they say that nobody has yet found a proof of Goldbach’s conjecture.

I suspect this captures the sentiments of a significant cross-section of mathematicians.
5Beall concludes (1999, 325):

. . . if we really are going to expand platonic heaven in an effort to ensure our
epistemic footing, then we need to explore the option of expanding heaven
to its nontrivial limits. If this option is to be rejected, then we need good
reason for rejecting it.[5] For now, no such reason seems to exist.
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This second form of mathematical pluralism can be extended to clas-
sically inconsistent mathematics. For suppose one could formulate a
consistent theory of ‘impossible’ objects, some of which are trivial (i.e.,
‘have’, in some sense, every property) and some of which are ‘mathe-
matically trivial’ but not ‘trivial simpliciter’ (i.e., ‘have’, in some sense,
every property expressible in the language of some mathematical the-
ory but don’t have every property whatsoever). I’ll describe a theory of
this kind in Section 3. Note that such a theory would allow us to extend
the second form of mathematical pluralism to classically inconsistent
mathematical theories. For then one could claim that such mathemati-
cal theories are about impossible objects that are mathematically trivial
(and thus relatively uninteresting) without being simply trivial. Such a
view has one thing going for it: we do in fact understand the language
and ‘proofs’ of Frege’s Grundgesetze (1893/1903). Its formal sentences
have content, indeed content Frege used to derive propositions from the
axioms. This could be explained by (a) analyzing the denotation of the
terms in Grundgesetze as mathematically trivial objects and relations and
(b) regarding the sense of those mathematical terms, relative to any per-
son unaware of the paradox, as objects that don’t involve incompatible
properties. In any case, this second form of mathematical pluralism, in
the limit, is the view that every mathematical theory, whether consistent
or classically inconsistent, is about its own domain of individuals and
relations.

The third form of mathematical pluralism is the view that each of
the main philosophies of mathematics is based upon a valid insight. Of
course, most philosophers don’t subscribe to this metaphilosophical view.
Most believe that if platonism is true, nominalism and fictionalism are
false, or vice versa. Similarly, many would claim that only one of struc-
turalism and inferentialism is true; either the terms of mathematical
language refer to elements of an abstract structure or their content is
constituted by their inferential role within a theory, but not both. The
standard view is that structuralism is ‘realist’ and referential, whereas
inferentialism is ‘anti-realist’ and non-referential.

In what follows, I plan to show how the basic insights from these and
other philosophies of mathematics can be preserved. Specifically, I argue
that the analysis of mathematics in object theory validates all three forms
of mathematical pluralism. Object theory (‘OT’) exhibits the first form of
mathematical pluralism because its methodology specifies, for any con-
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sistent mathematical theory T , the denotations of the terms and the truth
conditions of the theorems of T ; each theory T is about its own domain
of mathematical individuals and relations. This includes non-classical
mathematics, such as constructivism, intuitionism, finitism, etc. OT ex-
hibits the second form of mathematical pluralism since its analysis can
be extended to inconsistent mathematical theories, expressed either in
paraconsistent logic or classical logic. The terms and sentences of these
mathematical theories can also be assigned a precise meaning, as we’ll
see in Section 3. Finally, OT exhibits the third kind of mathematical plu-
ralism: it is couched in a formalism having a number of different inter-
pretations, each of which captures a central element in one of the main
philosophies of mathematics. We’ll demonstrate this, and the unity it
brings, in Section 4.

2 The First Form of Mathematical Pluralism

In this section I review OT and its analysis of classical mathematics (Sec-
tion 2.1), extend the analysis to the multiverse conception of sets and
to consistent but non-classical mathematics (Section 2.2), and conclude
with a discussion of how OT supplies theoretical components that are
missing from other attempts to develop this form of mathematical plu-
ralism (Section 2.3).

2.1 OT and Its Analysis of Classical Mathematics

Since OT has been presented in a number of publications over the years,
we leave a summary of it first principles, as expressed in a 2nd-order
quantified modal language, to a footnote.6 For the analysis of mathemat-

6We extend 2nd-order quantified modal logic without identity by adding atomic formu-
las of the form xF, which represent a new mode of predication (read: x encodes F), where
F is a 1-place relation (i.e., property) variable. OT includes primitive definite descriptions
of the form ıxϕ for any ϕ, and primitive n-place relation terms of the form [λx1 . . .xn ϕ]
when ϕ has no encoding subformulas.

Using a primitive 1-place relation term E! for being concrete, ordinary objects (O!x) are
defined as objects x that are possibly concrete (^E!x), and abstract objects (A!x) as objects
x that couldn’t be concrete (¬^E!x). Ordinary objects necessarily fail to encode proper-
ties, though abstract objects can both exemplify and encode properties. Moreover, if x
encodes a property, it necessarily does so (xF → �xF). The central, comprehension prin-
ciple for abstract objects asserts, for any condition ϕ in which x doesn’t occur free, that
∃x(A!x&∀F(xF ≡ ϕ)). Various works on OT explain how this principle can be applied.
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ical theories, we use the type-theoretic version of OT, based on simple
type theory. Simple type theory utilizes one primitive type i for individ-
uals, and derived types of the form 〈t1, . . . , tn〉 for n-place relations, where
t1, . . . , tn are any types, n ≥ 0.7 When the language and axioms of OT are
all typed according to this scheme, the comprehension principle asserts
the existence of abstract entities at each type t. Where ‘x’ is a variable of
any given type t, ‘A!’ denotes the property of being abstract having type
〈t〉, and ‘F’ is a variable of type 〈t〉, the comprehension schema of typed
OT is:

∃x(A!x&∀F(xF ≡ ϕ)), (1)
where ϕ is any condition in which x doesn’t occur free.

This asserts that there is an abstract object of type t that encodes just the
properties F such that ϕ.8 As we’ll see below, mathematical individu-
als will be identified as abstracta of type i and mathematical properties
and relations will be identified as abstracta of type 〈i〉, 〈i, i〉, 〈i, i, i〉, etc.
Note that principle (1) is an unrestricted comprehension principle and, as
such, is a plenitude principle – no matter what properties are used to de-
fine an abstract object of some type t, the principle guarantees that there
is an object of type t that encodes just those properties and no others.

Moreover, identity is defined at each type, so that x = y just in case
either x and y are both ordinary objects of type t and necessarily exem-
plify the same properties, or x and y are both abstract objects of type t
and necessarily encode the same properties. Given the 2nd disjunct of
this definiens for x= y, each instance of (1) yields a unique abstract ob-
ject that encodes just the properties such that ϕ – there couldn’t be two
distinct abstract objects that encode exactly the properties such that ϕ,
since distinct abstract objects have to differ by one of their encoded prop-
erties. Thus, descriptions of the form ıx(A!x&∀F(xF ≡ ϕ)) are canonical
– the description is well-defined (has a denotation) for each ϕ (with no
free occurrences of x).

7Thus, 〈i〉 is the type for properties of individuals, while 〈i, i〉 is the type for 2-place
relations among individuals. 〈〈i〉〉 is the type for properties of properties of individuals,
and 〈〈i, i〉〉 are properties of relations among individuals. When n=0, the empty type 〈 〉 is
the type for propositions, i.e., 0-place relations.

8When x is a variable of type i, F is a variable of type 〈i〉, andϕ is supplied, the principle
(1) asserts the existence of an abstract individual that encodes just the properties F such
that ϕ. When x is a variable of type 〈i, i〉, F is a variable of type 〈〈i, i〉〉, and ϕ is supplied,
(1) asserts that there is an abstract relation that encodes just the properties of relations
among individuals such that ϕ. And so on.
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To analyze mathematics, OT distinguishes natural mathematics and
theoretical mathematics. Natural mathematical objects are referenced in
everyday language, such as when we say “the number of planets is eight”,
“the class of insects is larger than the class of humans”, “lines a and b
have the same direction” or “figures a and b have the same shape”. The
natural mathematical objects referenced in these sentences are analyzed
directly in OT without appealing to any mathematical theories.9

By contrast, theoretical mathematical objects and relations assume
distinctive mathematical principles. These are often, but not always,
expressed in the form of axioms that govern distinctive mathematical
primitives. OT exhibits the first form of mathematical pluralism by us-
ing the canonical descriptions just discussed to analyze the objects and
relations described by arbitrary mathematical theories. The analysis pro-
ceeds by assigning, for each mathematical theory T , (i) a unique deno-
tation to the distinguished non-logical terms (individual terms and rela-
tion terms) of T and (ii) truth conditions to the theorems of T .10

To assign denotations to the terms of mathematical theories, we first
extend the notion of encoding by saying that an abstract object x encodes
a proposition p just in case x[λyp], i.e., just in case x encodes the property
[λy p] (“being a y such that p”). The definiens x[λy p] has the form xF,
where [λy p] has been substituted for F. Then we analyze mathematical
theories as abstract individuals that encode propositions. We say that
a proposition p is true in theory T (‘T |= p’) just in case T encodes p.
Formally, this definition is stated as:

T |= p ≡df T [λy p] (2)

We may also read T |= p as: In theory T , p.
We next consider any classical mathematical theory T and formalize

it in a non-modal, higher-order logic without function terms (or definite
descriptions) but with (closed) relational λ-expressions. The λ-expres-
sions allow one to represent complex properties; for example, in 2nd-
order Peano Arithmetic (henceforth ‘PA’), we use [λx P x& x<4]3 to rep-
resent the claim that 3 exemplifies the property being prime and less than

9See Zalta 1999 for the analysis of the natural numbers, and Anderson & Zalta 2004 for
the analysis of (logically conceived) sets and classes, directions, shapes, etc.

10OT’s analysis of theoretical mathematics has been refined over the years, and so more
recent presentations of the analysis (e.g., Nodelman & Zalta 2014) are more up-to-date
than older ones (e.g., Linsky & Zalta 2006; Zalta 2006, 2000a, and 1983, 147–153).
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4. Then (a) for each non-logical term τ (constant or predicate) of T , we
add τT to OT, and (b) whenever ϕ is any closed theorem of T , we add
to OT the analytic truth T |= ϕ∗, where ϕ∗ is just like ϕ except that ev-
ery non-logical term τ in ϕ has been replaced by τT . For example, “0
is a number” is asserted in PA and so becomes imported into OT as the
claim PA |=NPA0PA. This formal claim was defined in the previous para-
graph and can be read as the analytic truth “In PA, 0PA exemplifies being
a PA-number”. We then begin our analysis by identifying a mathemat-
ical theory T as an abstract object that encodes all of the truths of T .11

In general, for theories presented axiomatically, facts of the form T ` ϕ
become imported as facts of the form T |= ϕ∗. But if, for example, one
were to identify a theory (i.e., a body of truths) non-axiomatically, then
we can introduce a proper name, say ‘T’, for that body of truths and ex-
tend object theory with analytic truths of the form T |= ϕ∗ for each such
truth ϕ in T.

To complete the assignment of denotations to the terms of T , we iden-
tify the denotation of each well-defined individual constant κ of T by
using the following definite description, where x is a variable of type i
and the other expressions are appropriately typed:

κT = ıx(A!x&∀F(xF ≡ T |= FκT )) (3)

In other words, (3) identifies the individual κ of theory T as the abstract
individual that encodes exactly the properties F exemplified by κ in T .
This is not a definition of κT (since ‘κT ’ occurs on both the left and right
side of the identity symbol) but rather a principle asserting an identity
that forms part of the analysis of mathematics in OT. The principle gets
it purchase from, and is grounded in, data of the form T |= FκT .

For example, let T be Zermelo-Fraenkel set theory (ZF) and consider
the term ‘∅’ in ZF. Then the following is an instance of (3):

∅ZF = ıx(A!x&∀F(xF ≡ ZF |= F∅ZF)) (4)

This same analysis can be generalized to the relation terms of a math-
ematical theory. Suppose Π is a 2-place relation term of T . We may

11That is, when we judge pretheoretically that T is a mathematical theory and import T
into object theory as described above, we assert that the following identity holds:

T = ıx(A!x&∀F(xF ≡ ∃p(T |=p & F=[λy p])))

I.e., T is the abstract object that encodes all and only the properties F of the form [λy p]
when p is some proposition true in T . This is not a definition, but rather a principle that
identifies mathematical theories in OT.
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identify the relation that Π denotes relative to T by using the following
definite description, where x is now a variable of type 〈i, i〉, and A! and
F have type 〈〈i, i〉〉:

ΠT = ıx(A!x&∀F(xF ≡ T |= FΠT )) (5)

(5) identifies the relation Π of theory T as the abstract relation that en-
codes exactly the properties of relations exemplified by Π in T . The
following is an example of (5):

∈ZF = ıx(A!x&∀F(xF ≡ ZF |= F∈ZF)) (6)

That is, the membership relation ∈ of ZF is the abstract relation that
encodes exactly the properties of relations exemplified by ∈ZF in ZF. For
example, this abstract relation encodes the property being a relation R
such that the empty set bears R to the unit set of the empty set, a property
that we can represent using the λ-expression [λR ∅R{∅}], where indices
have been suppressed for readability and R is in infix notation.

And principles analogous to (5) hold when Π is an n-place relation
term of T for n , 2. For example, ‘being a number’ (‘N ’) is a 1-place
relation term of PA and would be subject to an identification similar to
(6), though expressed using the identity principle for 1-place mathemat-
ical relations. This analysis makes it clear that OT’s pluralism extends to
both the individual and relation terms of a theory T ; few mathematical
pluralists identify mathematical relations as well as individuals.

We can now state the truth conditions for a mathematical theorem via
the denotations of its terms. The data (i.e., the theory-relative sentences)
are parsed just as one might expect. For example, the truth conditions
for:

In ZF, no set is a member of the null set. (7)

can be represented as follows:

ZF |= ¬∃x(SZFx& x ∈ZF ∅ZF), i.e., (8)
ZF encodes (the proposition): nothing that exemplifies the prop-
erty of being a ZF-set bears the ZF-membership relation to the ZF-
emptyset.

This states the truth conditions of the target sentence in terms of objects
and relations that have been antecedently identified as abstract entities
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within the background ontology of OT. This analysis applies to any the-
ory T and its theorems.

But now remove the ‘In ZF’ operator from (7) to obtain the bare (‘un-
prefixed’) mathematical sentence “No set is a member of the null set”.
OT treats this sentence, stated in some context, as ambiguous; it has both
true and false readings. If we take the context to be ZF, then the false
reading is the pure exemplification formula ¬∃x(Sx & x ∈ ∅), in which
the index on ‘0’, ‘S’, and ‘∈’ to ZF has been suppressed. OT stipulates
that such unprefixed exemplification readings of theoretical mathematics
are not true – this is a key to OT’s form of pluralism.12

By contrast, the true reading of “No set is a member of the empty set”,
in the context of ZF, can be captured as a conjunction of the following
facts about ∅ZF, SZF, and ∈ZF (suppressing indices for readability):13

• ∅[λz¬∃x(Sx& x ∈ z)], i.e., (9)
∅ encodes the property: being an individual z such that no set is a
member of z.

• S[λF ¬∃x(Fx& x ∈ ∅)], i.e., (10)
S encodes the property: being a property F such that nothing ex-
emplifying F is a member of ∅.

• ∈[λR¬∃x(Sx& xR∅)], i.e., (11)
∈ encodes the property: being a relation R such that no set bears R
to ∅.

These readings are provable in OT. For example, (9) follows from (4) and
the result of importing the proof-theoretic fact ZF ` [λz¬∃x(Sx&x ∈ z)]∅.

12This is to be contrasted with the unprefixed statements of natural mathematics made
in the context of non-technical, natural language. We mentioned previously that OT an-
alyzes “the number of planets is eight”, or “the class of insects is larger than the class of
humans”, etc., by applying its subtheory of natural mathematical objects, which doesn’t
assume any theoretical mathematical principles. As such, OT analyzes such statements dif-
ferently and regards them as true. See the works on the analysis of natural mathematics in
OT mentioned earlier.

13Strictly speaking, the λ-expressions in the following representations should be indexed
to ZF; we’ve suppressed the index here as well. The indexed λ-expressions denote abstract
properties. For example, where t is any type and α a variable of type t, the expression
[λαtϕ]ZF denotes the abstract property of type 〈t〉 that encodes just the higher-order prop-
erties F (i.e., having type 〈〈t〉〉) such that in ZF, [λαt ϕ]ZF exemplifies F. The formalization
is straightforward, but again it should be remembered that this is not a definition but a
principle of identity that is part of the OT analysis of mathematics.
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(11) follows from (6) and the result of importing the proof-theoretic fact
that ZF ` [λR¬∃x(Sx& xR∅)]∈. So the conjunction of (9) – (11) is deriv-
able, and if we use the conjunction to define a single, tertiary encoding
claim, then we have fully represented the true reading of the unprefixed
claim “No set is a member of the null set” when considered relative to
ZF.14

2.2 The Multiverse and Non-Classical Mathematics

The foregoing analysis of theoretical mathematics in OT easily extends
to the multiverse conception of set theory and to non-classical mathe-
matical theories. For the multiverse conception, consider the terms of
ZFC rather than ZF; the following are instances of (3) and (5):

∅ZFC = ıx(A!x&∀F(xF ≡ ZFC |= F∅ZFC)) (12)

∈ZFC= ıx(A!x&∀F(xF ≡ ZFC |= F∈ZFC)) (13)

Clearly, ∈ZFC is different from ∈ZF; the former supports the truth of the
Axiom of Choice while the latter does not.

Thus, each distinct set theory yields a distinct universe of sets and a
distinct membership relation. As long as set theories T and T ′ have dif-
ferent theorems (and aren’t mere alphabetic variants), the notion of ‘set’
each implicitly defines is different. There isn’t one Urconcept of mem-
bership systematized by the one true set theory. Rather, each set theory
defines a different conception of ‘set’ and ‘membership’.15

This captures the multiverse view in Hamkins (2012, 416) quoted
earlier. Hamkins contrasts his view with the ‘universe’ view, on which
there is a single conception of set and a single set-theoretic universe in
which every set-theoretic assertion has a definite truth-value (416). He

14Consider the higher-order property [λzFR¬∃x(Fx& xRz)] and use the conjunction of
(9) – (11) as the definiens of the following ternary encoding claim asserting that ∅, S, and
∈ encode this property:

∅S∈[λzFR¬∃x(Fx& xRz)]

Current research into OT takes these n-ary encoding claims as primitive and axiomatizes
them, so that n-ary encoding predications can be directly used to represent the data.

15Again, the exception to this is the natural or logical conception of set, which can ab-
stracted without mathematical primitives: εG (‘the class of Gs’) is the abstract object that
encodes all and only the properties F materially equivalent to G. One can then define y ∈ x
as: ∃G(x = εG & Gy). Thus, from ‘Socrates is a human’ (‘Hs’), it follows that s ∈ εH . A
consistent but ‘flat’ theory of classes can then be derived (Anderson & Zalta 2004).
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then argues that, on his multiverse view, each set-theoretic universe “ex-
ists independently in the same Platonic sense that proponents of the uni-
verse view regard their universe to exist” (416–17). But our analysis also
makes it clear that the distinct universes embody distinct conceptions of
‘membership’.

There are, of course, points of difference between the present view
and Hamkins’ multiverse view. Some are minor differences, while others
are more significant. Hamkins regards the multiverse view as a ‘higher-
order realism’ and a platonism about universes (417), though clearly the
OT analysis extends this to realism and platonism about abstract objects
generally, at least in the interpretation of the formalism we’ve assumed
thus far for the purposes of exposition. A more significant difference
concerns Hamkins’ view that “the clearest way to refer to a set concept is
to describe the universe of sets in which it is instantiated, and ... identify
a set concept with the model of set theory to which it gives rise” (417).
OT does identify set concepts by description but not with models of set
theory. Model theory already assumes set theory and so the statements of
model theory constitutes part of the data OT attempts to explain. We’ll
return to this issue in Section 2.3, where we investigate whether one can,
as Hamkins suggests, identify a set concept with the model of set theory
to which it gives rise.16

It is now easy to extend OT’s analysis to constructive, intuitionis-
tic, finitistic, etc., mathematical theories. Some of these theories (e.g.,
finitist theories) are expressed in classical logic but with axioms that
are weaker than classical mathematical theories, while others (e.g., in-
tuitionistic, constructive theories) use non-classical logic. In the former
case, we use the analysis described above. In the latter case, we consider
the deductive system as a whole, i.e., the system that results by combin-
ing the non-logical axioms and the logic. Some non-classical theories use
the same non-logical axioms as classical theories but are just formulated
within a non-classical logic. So, for example, Heyting Arithmetic (HA)
uses the same language and non-logical axioms as PA but asserts the lat-
ter in the context of intuitionistic predicate logic (IQC). So, although we
could regard the proof-theoretic claim HA ` ϕ as having the form T `L ϕ,
where T = PA and L = IQC, we can equally well regard HA as a single

16See Ternullo m.s., for a related method of capturing the multiverse view in OT; his
method focuses on the model-theoretic expression of Hamkins’ view, on which the set-
theoretic multiverse consists of the different models of set theory.
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deductive system comprising the logical axioms and rules of IQC and
the non-logical axioms of PA. So the claim HA ` ϕ becomes a claim of
the form TL ` ϕ. Then we can use the methods outlined above to analyze
the terms and truth conditions of HA. And if the consistent theory T in
question asserts non-classical axioms within a non-classical logic L, we
again consider the theory to be the body of theorems as a whole system
TL and use the same method to analyze sentences ϕ such that TL ` ϕ.

2.3 What’s Missing From Other Accounts of Pluralism

What’s distinctive about OT as a form of mathematical pluralism is its
comprehension principle labeled (1) above. Hilbert’s early view is an in-
formal conditional (roughly, “if the theory is consistent, its objects and
relations exist”). (1) explains why Hilbert’s conditional is true and also
tells us about the nature of mathematical objects and relations that exist.
Given Carnap’s interest in semantics, one might expect his work (1950
[1956]) to contain an explicit statement of the principle that guarantees
the internal existence of the appropriate objects for each logical frame-
work. (1) is such a principle; without it, we lack a semantic interpreta-
tion of the terms for arbitrary frameworks and can’t therefore say why the
answer to the internal question, ‘Do Xs exist?’, for arbitrary frameworks,
is always ‘yes’. Resnik’s postulational view isn’t unrelated to Carnap’s
view, since a mathematical language is needed to posit the objects in
question. But Resnik admits that his view “raises many questions con-
cerning how positing can generate knowledge about preexisting entities
– especially how it can do this when the entities are mathematical ones”
(1989, 8). Principle (1) connects postulation with existence and provides
denotations for mathematical terms; it addresses the open problem of
‘aboutness’ stated at the end of Resnik’s 1989 paper (26).17

Field and Balaguer both agree that mathematical platonism needs an
explicit plenitude principle, and Balaguer (1998a, 7) attempts to formu-
late one. His ‘full-blooded platonism’ (FBP) is the thesis that every math-

17Resnik asks (1989, 26):

A more subtle problem concerns the aboutness of our mathematical beliefs.
What makes them about mathematical objects? And in what sense are they
about them? . . . A related problem concerns the apparent lack of “epistemic
contact” with mathematical objects which positing does not seem to provide.

These are all questions and problems answered in the previous section.
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ematical object that could possibly exist does exist. So FBP is clearly
pluralistic. But the FBP plenitude principle faces the ‘non-uniqueness
problem’, namely, it doesn’t provide unique denotations to the individ-
ual constants and relation terms of a mathematical theory. Since FBP
invokes possible mathematical objects but not objects that are ‘partial’
(e.g., in the sense of encoding only the properties attributed them in a
theory), it is subject to questions such as: what does the symbol ‘∅’ of ZF
denote? Does it denote (a) an empty set such that AC is true or such that
AC is false, or (b) an empty set such that CH is true or such that CH is
false, . . . ?

The non-uniqueness problem becomes even more important when
we consider the truth conditions Balaguer offers for unprefixed mathe-
matical claims. He says (1998a, 89–90):

In order for it to be the case that ‘3 is prime’ is true, it needs to be
the case that (a) there is at least one object that satisfies all of the
desiderata for being 3, and (b) all the objects that satisfy all of these
desiderata are prime. Or more simply, it needs to be the case that
(a) there is at least one standard model of arithmetic, and (b) ‘3 is
prime’ is true in all of the standard models of arithmetic.

This immediately raises the questions, what does ‘3’ contribute to the
expression ‘being 3’ and how could ‘being 3’ denote a unique prop-
erty if ‘3’ doesn’t uniquely denote. In a paper directly addressing the
non-uniqueness problem (1998b), the proffered truth conditions change
slightly (80):

In order for ‘3 is prime’ to be true, it needs to be the case that there
is an object that (a) satisfies all of the desiderata for being 3 and (b)
is prime. This, of course, is virtually identical to what traditional U-
platonists would say about the truth conditions of ‘3 is prime’. The
only difference is that FBP-NUP-ists allow that it may be that there
are numerous objects here that make ’3 is prime’ true.

Here, the ‘U-platonists’ are those who claim that mathematical theo-
ries describe unique collections of abstract mathematical objects and the
‘FBP-NUP-ists’ are full-blooded platonists who adopt non-uniqueness
platonism. But the suggested truth conditions are not virtually identical
to the compositional ones a U-platonist would give for ‘3 is prime’. The
contrast with OT is clear – assuming the background theory of numbers
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PA, OT analyzes the denotation of ‘3’ as the abstract individual 3PA, an-
alyzes the denotation of ‘is prime’ (‘P ’) as the abstract property PPA, and
resolves the ambiguous predication in terms of two truth conditions, one
on which 3PA exemplifies PPA (false) and one on which 3PA encodes PPA
(true). Moreover, the OT analysis doesn’t invoke a quantifier “there is an
object such that” that doesn’t appear in the target sentence ‘3 is prime’,
nor property expressions like ‘being 3’ or ‘desiderata for being 3’. And
OT treats ‘is prime’ in the same way as ‘3’ – as denoting something ab-
stract. Balaguer has to abandon the idea of de re truth conditions and
de re knowledge of mathematical claims. Jonas (2023, §4.2.2) notes that
such a result leaves it unclear as to “which one of the countless copies of
the numbers 13 and 17 are involved in scientific explanation”.

This brings us to the final missing component of FBP, namely, the the-
oretical treatment of mathematical relations. Here we have a dilemma.
Either FBP extends to the claim “Every possible mathematical relation
that could exist does exist” or it does not.

• If FBP does extend to this claim, then the non-uniqueness problem
arises for every mathematical relation term in every mathematical
theory. Consider ZF: there are just too many possible relations hav-
ing the properties of relations attributed to ∈ in ZF. If there is no
dimension like encoding on which such entities can be identified
in terms of a partial group of higher-order properties, then we can’t
suppose that ∈ in ZF characterizes a unique relation. So it isn’t at
all clear what FBP takes the content of the relation symbol ‘∈’ in
ZF (or any other set theory) to be.18 A defender of FBP can’t say
that it is a ‘distinguished’ non-logical relation symbol.

• If FBP doesn’t extend to this claim, then how could the very same
18For example, it is not clear why Balaguer can say (1995, 315):

This might be expressed by saying that ZFC describes the universe of sets1,
while ZF+not-C describes the universe of sets2, where sets1 and sets2 are dif-
ferent kinds of things.

Cf. Balaguer 1998a, 59. This seems to imply that both ZFC and ZF+not-C respectively
describe uniquely distinctive bodies of sets. Adding an index on ‘set’ to produce set1,
set2, etc., suggests that these indexed terms pick out unique domains. If that is what is
meant, then indexing isn’t justified even on this extended version of FBP, for there are
many possible set properties for ‘set1’ to uniquely denote. (Does set1 pick out a property
whose instances are such that CH is true or whose instances are such that CH is false?)
By contrast, the property terms like SZFC (being a setZFC), ∈ZFC, etc., that we introduced
above into OT are well-defined.
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mathematical relation ∈ support the truth of the theorems of ZFC
as well as the theorems of ZF+not-C, both of which are accepted
by FBP? Moreover, without a plenitude principle for mathematical
relations, FBP would no longer offer the epistemological virtues it
claims: we would have to suppose that there is a single, mathe-
matical relation ∈ that is somehow ‘out there’, independent of our
theories about it. How would we obtain knowledge of such a rela-
tion?

This dilemma also applies to the discussion of platonism based on a
plenitude found in Field 1994 (420–422) and Field 1998 (293).

To see how OT supplies components missing from both structuralist
and inferentialist accounts of mathematics, we begin with structural-
ism, i.e., the view that mathematics is about structures (Hellman 1989,
vii; Parsons 1990, 303; Shapiro 1997, 5). If a structuralist philosophy of
mathematics is to be free of ‘ontological danglers’, then it must supply
a mathematics-free theory of both structures and the elements of struc-
tures. We cannot rest with set theory or category theory as our back-
ground theory of structures, as that simply turns mathematical plural-
ism into mathematical foundationalism and leaves us with the question,
what is our philosophical account of the foundational theory?19 So, what
are structures? Nodelman & Zalta (2014, 49–53) answer: (a) intuitively,
structures are defined by a partial body of propositions that assert which
mathematical objects stand in which mathematical relations, and (b) in
OT, the structure T can be identified as T itself, since T encodes the par-
tial group of propositions that are true in T . This analysis of structures
is mathematics-free.

Moreover, OT has something to say about what the ‘indeterminate
elements’ of structures are supposed to be (Dedekind 1888 [1963, 68];
Benacerraf 1965, 70; Shapiro 1997, 5–6).20 The abstract objects of OT

19The structuralists themselves recognize the problem; Hellman (1989, 7) says “it is dif-
ficult to see in structuralism any genuine alternative to objects-platonism. This is most
obvious when the structures are taken as set-theoretic models, i.e. when the structuralist
theory is just set theory (perhaps with urelements), or as members of a category (the theory
being category theory, taken literally as quantifying over abstract objects called categories).
But this worry also pertains to other attempts (e.g. mathematics as a science of “patterns”,
where these are taken as platonic entities in their own right).”

20Dedekind (1888 [1963, 68]) says “we entirely neglect the special character of the ele-
ments, simply retaining their distinguishability and taking into account only the relations
to one another.” Benacerraf (1965, 70) asserts that the elements of an abstract structure
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that serve as mathematical individuals and relations encode only mathe-
matical properties. Since every mathematical entity is thereby identified
entirely by its encoded properties, its ‘special character’, as given by its
exemplified properties, is ‘entirely ignored’. The classical structuralist
philosophies of mathematics lack an alternative theory of such elements
(or places) in a structure.

OT supplies a missing component of inferentialism by its exact speci-
fication of the inferential role of the non-logical mathematical terms and
predicates of a theory T . To see what is needed, consider Warren’s ex-
ample of the Peano rules (2015, 1354; 2020, 200), i.e., the Peano axioms
reformulated as rules of inference.21 He draws a metasemantic conclu-
sion (1355) about them:

The arithmetical inferentialist/conventionalist will want to say that
the Peano Rules are meaning constituting rules for our arithmetical
vocabulary (the number predicate [N ], the zero constant [0̂], and
the successor function [s(x)]). . . . This allows us to use these rules
to explain the truth of any arithmetical sentence that follows from
these rules, e.g., consider the truth of ‘two is a number’ or, in our
formal toy model: ‘Ns(s(0̂))’ (two is a number).

Clearly an inferentialist can use these rules to explain the truth of any
arithmetical sentence that follows from them. And the rules do indi-
cate what role the non-logical expressions have in the transition from
premises to conclusion. However, if Warren’s metasemantic claim im-
plies that in a semantics for the language of number theory, each of these
distinct non-logical expressions could be assigned a distinct, theoretical-
ly-describable inferential role, then the Peano rules don’t yet accomplish
this. The rules don’t provide distinct, meaning-constituting rules for
each distinct non-logical symbol; for example, the rules don’t specify, in

“have no properties other than those relating them to other ‘elements’ of the same struc-
ture.” Shapiro (1997, 5–6) claims “There is no more to being the natural number 2 than
being the successor of the successor of 0, the predecessor of 3, the first prime, and so on.”

21Specifically, Warren reformulates the axioms, stated in terms of the constant ‘0’, the
1-place predicate ‘N ’, and the unary function symbol ‘S’, as the following rules (2020,
200):

(P 1) N0 (P 2) Nα
NSα (P 3) Nα

0,Sα (P 4) Nα Nβ Sα=Sβ
α=β

(P 5) ϕ(0) ∀ξ(ϕ(ξ)→ ϕ(Sξ)) Nβ
ϕ(β)

The final rule, P5, is a rule schema.
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theoretical terms, what the meaning is of the constant symbol ‘0’ or of
the predicate symbol ‘N ’. Of course, one might be able to use set theory
or other forms of mathematics to give a theoretical description of the to-
tal inferential pattern of usage for the symbols ‘0’, ‘N’, etc., but OT gives
a distinct, mathematics-free, description of the inferential role of each
non-logical expression.

In OT, the inferential role of an individual symbol κ of T is precisely
captured as κT , as defined by (3), and the inferential role of a relation
symbol Π of T is captured as ΠT , as defined by (5). (3) and (5) reify
distinct subpatterns existing within the entire body of theorems of T and
so objectify the inferential roles of κ and Π in T . ∅ZF in (4) objectifies the
inferential role of ∅ in ZF, and ∈ZF in (6) objectifies the inferential role
of ∈ in ZF. Without some theoretical description of the inferential role
on a per symbol basis, one can’t give compositional truth conditions for
mathematical theorems. Of course, inferentialism may simply abandon
compositionality given its anti-realist approach to meaning, but OT pre-
serves compositionality: the denotations of the terms in a theorem play a
role in the truth conditions of the theorem. The truth conditions it offers,
in (8) and (9) – (11) for example, yield a content for mathematical theo-
rems that ‘code up’ proof-theoretic facts. They specify truth conditions
that make use of objectified inferential roles.

These theoretical identifications of the inferential roles of the non-
logical symbols of mathematical theories provide a heretofore missing
component of the ‘meaning as use’ doctrine as applied to mathematics.
The classical works on inferentialism in the philosophy of mathematics
(Wittgenstein 1956; Sellars 1953 [1980], 1974; Dummett 1991) do not of-
fer a theoretical account of the meaning of such symbols. And the recent
developments of proof-theoretic semantics are limited to the inferential
role of logical constants.22

Finally, we consider the multiverse view in Hamkins 2012. Hamkins
appears to rely on an existence principle that asserts: different concep-
tions of sets are instantiated in different set-theoretic universes (216). So
how do we apply such a principle to produce truth conditions for the
various axiom systems for set theory? A related concern about the view
is Hamkins’ identification of a set concept with “the model of set theory

22See, for example, the proof-theoretic semantics developed for certain fragments of lan-
guage and logic in Prawitz 1973, 2006; Francez & Dyckhoff 2006; and Schroeder-Heister
2006.
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to which it gives rise” (2012, 417). Assuming this can be made precise, it
raises the question: doesn’t any attempt to specify a model of set theory
presuppose some conception of set? In any case, the appeal to model
theory seems to presuppose more mathematics, the language of which
is precisely what is in question. Interestingly, OT’s analysis seems to be
consistent with Hamkins’ claim (417) that “Often the clearest way to re-
fer to a set concept is to describe the universe of sets in which it is instan-
tiated, . . . .” We’ve seen that in OT, any distinctive body of set-theoretic
truths or theorems describes a set concept and, hence, a universe of sets.
That understanding is incorporated into the OT analysis of mathematics
generally.23

3 The Second Form of Mathematical Pluralism

To discuss the second form of mathematical pluralism, note that OT dis-
tinguishes impossible objects (i.e., those that encode some incompatible
properties) from trivial objects (i.e., those that encode every property).
At each type, there is exactly one trivial object.24 We may then say:

• An abstract object is mathematically impossible but not trivial with
respect to T just in case it encodes some incompatible properties
that are expressible in T but doesn’t encode every property ex-
pressible in T .

23Hamkins’ view has engendered an interesting literature, including objections by Koell-
ner 2009 and a defense by Freire (m.s.). Barton (2016) proposes two ways to under-
stand Hamkins, ontologically and structurally. He argues that the structural interpretation
doesn’t address the Benacerraf (1973) problem of mathematical reference and knowledge,
and the ontological interpretation leads to a referential regress and so requires that one re-
strict one’s pluralism (which Barton calls ‘relativism’). But, from the present perspective,
one can stop the regress Barton describes for the ontological interpretation by not identi-
fying set concepts with models of set theory. OT’s analysis doesn’t make such an identi-
fication and so preserves a multiverse theory that is otherwise consistent with Hamkins’
central view. Moreover, contra Barton, OT has a way of addressing the Benacerraf (1973)
problem for structural interpretations, namely, in terms of reference and knowledge by
theoretical description.

24Let x be a variable of type t, F be a variable of type 〈t〉, and A! denote the property
being abstract with type 〈t〉. Then as an instance of (1), we know that there is an abstract
individual that encodes every property:

∃x(A!x&∀F(xF ≡ F=F))

And such an object is unique, given the identity conditions described for abstract objects
in Section 2.
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• An abstract object is mathematically trivial with respect to T but
not simply trivial iff it encodes every property expressible in T but
doesn’t encode every property whatsoever.

With these distinctions, we can see how OT validates the second form
of mathematical pluralism: the terms of an inconsistent mathematical
theory T formulated in a paraconsistent logic denote mathematically
impossible but not trivial objects with respect to T , whereas the terms
of an inconsistent mathematical theory T formulated in a classical logic
denote objects that are mathematically trivial with respect to T (but not
simply trivial). Here’s how.

3.1 Inconsistent Theories in Paraconsistent Logic

Beall’s (1999) RFBP gives rise to the same problem posed for FBP above,
namely, the inability to assign unique denotations to the non-logical in-
dividual and relation terms of mathematical theories. But the version
of RFBP available in OT is immune. Let L be some paraconsistent logic,
and let T be, say, naive set theory, or one of the theories in discussed in
Mortensen 1995 or 2009. Then we can apply OT as we did for consis-
tent, non-classical mathematics (Section 2.2). We consider the deductive
system TL, i.e., T added to the logic L, and then add TL |= ϕ∗ to OT when-
ever TL ` ϕ. Then we identify the denotation of an individual term κ
in TL with the abstract object that encodes the properties F such that
TL |= Fκ, and identify the denotation of a relation term Π in TL with the
abstract property that encodes the properties of relations attributed to
Π in TL. Given this analysis, the objects of TL are mathematically impos-
sible but not trivial with respect to TL – they encode some incompatible
properties that are expressible in TL but they don’t encode every prop-
erty expressible in TL. And truth conditions for the claims of TL can
be stated in exactly the way described above. Thus, OT overcomes the
non-uniqueness problem for Beall 1999.

It also provides a precise semantic account of mathematical language
that could supplement Bueno 2011, Friend 2013, and Friend 2014. For
example, OT supplements mathematical relativism by recovering a sense
of unrelativized truth; the claim “∅ is a set”, said in the context of ZF, has
a reading on which it is a categorical (and thus, unprefixed and unrela-
tivized) truth about the relativized objects ∅ZF and SZF, namely, that the
former encodes the latter. Moreover, our analysis directly undermines
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Mortensen’s claim (2009, 647):

Certainly, the legitimacy of inconsistency ought to give pause to the
Platonist. It poses the dilemma: either abandon Platonism, or admit
inconsistent objects.

If we take the Quinean interpretation of the quantifiers of OT, then there
is no dilemma; one can be Platonist and admit inconsistent objects.25

3.2 Inconsistent Theories in Classical Logic

This methodology can be taken one step further without triviality. The
pluralism of OT can be applied in the analysis of the denotations and
truth conditions for the terms of inconsistent mathematical theories ex-
pressed in classical logic. For example, an analysis of the language of
Frege’s theory (1893/1903) is needed, since the terms have a content and
we understand the language and the claims it makes. On the OT analy-
sis, the terms denote entities that are mathematically trivial with respect
to Frege’s theory, but not simply trivial entities. To see this, take the
Frege system G to be second-order logic with λ-expressions, extended
with the primitive, non-logical function term εG and the non-logical ax-
iom Basic Law V. Let’s first apply the OT analysis just to the individual
terms of G. Since G ` ψ holds for every closed formula ψ expressible in
the language of G, we import every sentence ψ of G into object theory as
an analytic claim of the form: G |= ψ∗. This yields analytic truths of the
form G |= FκG, for each individual term κG. So the analysis:

κG = ıx(A!x&∀F(xF ≡G |= FκG))

identifies the denotation of every individual term κ of G as the same
abstract object, namely, the one that encodes every property F of indi-
viduals expressible in the language of G. So the non-logical terms of G
denote an object that is mathematically trivial with respect to G, but one
that isn’t simply trivial (κG doesn’t encode every property whatsoever).
Note that OT itself doesn’t become inconsistent in virtue of representing

25Colyvan (2008, 122, footnote 13) cites this passage in Mortensen 2009 when discussing
a possible objection to his [Colyvan’s] argument for inconsistent objects, namely, that they
would constitute a reductio of Quine’s naturalized metaphysics or even of metaphysics
generally. The OT analysis reconciles Platonism and inconsistent objects and forestalls
such an objection. In Section 4 below, we’ll see that the existence of such objects doesn’t
undermine a naturalized metaphysics or metaphysics generally.
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the terms of Frege’s theory this way, nor does it require paraconsistent
logic to make sense of the content of those terms.

Though OT’s analysis implies, for example, that all the individual
terms of G denote the same individual, it doesn’t imply that they all
have the same sense. The senses of expressions are also representable in
OT – as abstract objects that encode properties. OT assumes that these
senses vary from person to person and even from time to time (Zalta
1988, Ch. 9–12). The reason Frege didn’t see the contradiction is that
his sense (representation) of ‘0’ and his sense (representation) of ‘1’ were
distinct – his senses of the terms encoded different properties, at least
prior to being informed about the paradox. Had he cognitively associ-
ated the same representations with ‘0’ and ‘1’ and concluded that 0 and
1 were characterized by the same properties, he would have judged that
0 = 1 and that his system led to an absurdity.

This same analysis extends to the primitive predicates of G, such as
the identity predicate. OT analyzes ‘=G’ as the mathematically trivial
relation that encodes all of the properties of identity expressible in (the
OT representation of) G. For example, =G encodes being a binary rela-
tion F that relates 0 and 1, i.e., [λF 0F1] (suppressing indices). Thus, for
any classically inconsistent T (such G), OT predicts that, for each n, the
n-ary relation terms of T all have the same mathematically trivial infer-
ential role – this is, in part, what makes such theories mathematically
uninteresting.

4 The Third Form of Mathematical Pluralism

The third kind of mathematical pluralism that OT exhibits is metaphilo-
sophical – its formalism can be interpreted in ways that preserve the
ideas central to many of the principal philosophies of mathematics. In
Section 4.1, we focus on those philosophies of mathematics that take
mathematical language at face value and attempt to give an account of
that language. In Section 4.2, we examine why the most important el-
ements of deductivism, as embodied by modal structuralism, can’t and
shouldn’t be preserved in OT.
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4.1 Metaphilosophy of Mathematical Language

Linsky & Zalta (1995) explain in some detail how the main principles
of platonism and naturalism are preserved in OT.26 We can extend this
reconciliation a bit here, by first remembering that the quantifier ‘∃α’ in
OT, on this interpretation, is Quinean and implies the existence of the
entities over which α ranges. Then OT becomes committed to the exis-
tence of abstract individuals and abstract relations. While this preserves
the main thesis of Platonism, note that we can apply OT to assert the
existence of theoretical mathematical entities only once a mathematical
theory T is identified and analyzed. That is, the data are truths of the
form “In mathematical theory T , . . . ” that emerge from mathematical
practice. Thus, the existence claims that OT outputs from this data in
some sense depends on natural world patterns that are inherent in math-
ematical practice. Instances of (1) objectify those patterns. This is a form
of naturalism (more on this in footnote 39 below).

Some of the main ideas underlying fictionalism can be sustained as
well. By taking truths of the form “In mathematical theory T , . . . ” as
basic, OT agrees with Field’s view (1989, 3) that “the sense in which
‘2 + 2 = 4’ is true is pretty much the same as the sense in which ‘Oliver
Twist lived in London’ is true”. But we need not agree that “Oliver Twist
lived in London” and ‘2 + 2 = 4’ are true only in the story- or theory-
relative sense, for they can be given true encoding readings. Further-
more, Colyvan & Zalta (1999, 347–348) develop an interpretation of OT
under which one can derive the claim that mathematical objects don’t ex-
ist. Their suggestion is to adopt the Meinongian interpretation of the
quantifier ‘∃α’ as ‘there are’ (not ‘there exist’), as in “there are fictional
characters that inspire us even though they don’t exist”. Then if one
interprets the predicate ‘E!’ as ‘exists’, abstract objects become entities
that couldn’t possibly exist, since the definition is A!x ≡df ¬^E!x. And
since mathematical objects, as identified above, are abstract, it follows a

26They start with the idea that the mind-independence and objectivity of abstract objects
is not to be analogized with the mind-independence and objectivity of objects in the natu-
ral world. Abstract objects are not subject to an appearance-reality distinction, but rather
‘have’ (in the encoding sense) exactly the properties attributed to them in their respective
theories. Nor are they ‘out there’ in a sparse way waiting to be discovered – they consti-
tute a plenitude and so the epistemological principles governing our knowledge of natural
scientific theories don’t apply. Finally, in the case of mathematical objects (and abstract
objects generally), the distinction between knowledge by acquaintance and knowledge by
description just collapses – description suffices for acquaintance.
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fortiori that they don’t exist.
Recall that in addition to offering true readings, OT offers a false

reading for unprefixed mathematical claims such as ‘2 is prime’. It there-
fore validates the intuition that such claims of mathematics are false
(Field 1980 [2016], Leng 2010). So under this interpretation, OT pre-
serves the fictionalist claims (a) that “In PA, 2 + 2 = 4” is true, (b) that
“2 + 2 = 4” is false [at least on one reading], and (c) that none of 2, 4, ∅,
ω, π, etc., exist.27

A variant of the interpretation just described preserves the main idea
of nominalism. Bueno and Zalta (2005) interpret the quantifier ‘∃α’ of
OT not by appealing to the ‘nominalist platonism’ described in Boolos
1985, but by applying the distinctions in Azzouni 2004. The latter uses
an ‘existentially-unloaded’ understanding of ∃ as ‘some’. On this read-
ing, a quantified claim doesn’t even imply the being of anything. Azzouni
distinguishes mere quantifier commitment from ontological commitment,
and if we interpret object theory’s quantifier in terms of mere quantifier
commitment, the theory becomes nominalistic, at least according to some
philosophers. Building on ideas in Routley [Sylvan] (1980), Priest argues
similarly (2005 [2016], vii):

But the main technical trick is just thinking of one’s quantifiers as
existentially neutral. ‘∀’ is understood as ‘for every’; ‘∃’ is under-
stood as ‘for some’. Existential commitment, when required, has to
be provided explicitly, by way of an existence predicate.

Further on, he again suggests that we should read the existential quan-
tifier as some.28 Since this position has been ably defended, apply it to
OT’s formalism and the result is Azzouni-Priest-Routley nominalism.

Indeed, OT helps us to make sense of ideas that, at present, are some-
what metaphorical, namely, that mathematical objects are ‘ultrathin’ (Az-
zouni 2004, 127; Rayo forthcoming) and are objects whose “existence

27Moreover, if one’s fictionalism about mathematics takes on board the views about
make-believe in Walton 1990 (as does Leng 2010), then OT offers a way to make those
views systematic (Zalta 2000b).

28Priest uses G instead of ∃ and writes (2005 [2016], 13):

. . . one must precisely not read GxA(x) as ‘There exists something, x, such
thatA(x)’. Assuming that existence and being are the same thing, one should
not even read it as ‘There is something, x, such that A(x)’. The reading
‘Something, x, is such that A(x)’ will do nicely.
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does not make a substantial demand upon the world” (Linnebo 2018,
4). Azzouni suggests that mathematicians just need to write down ax-
ioms and the resulting ‘posits’ have no epistemic ‘burdens’ (cf. Resnik
1989). And Rayo (forthcoming) develops a conception of ‘ultrathin’ ob-
jects on which they arise in virtue of language-based networks. This no-
tion of thinness is evident in OT, in several ways. The mere statement of
a mathematical theory T triggers OT to articulate a distinctive group of
mathematical objects and relations for T . These objects and relations are
thin along the encoding dimension, for they have only a partial (i.e., not
complete) complement of encoded properties (namely, only the prop-
erties attributed to them in their respective theories). With OT in the
background, no additional ‘demands upon the world’ are needed for the
terms of T to acquire content. Indeed, all one has to do to become ac-
quainted with a mathematical entity such as 0PA, ∅ZF, ∈ZF, or ∈ZFC, etc.,
is to understand its defining description, as given by theoretical identity
claims similar to (4), (6), (12), and (13). We don’t need a special faculty,
or an ‘information pathway’ for acquiring knowledge of abstract objects;
we just need the faculty of the understanding (Linsky & Zalta 1995, 547).

We’ve already seen, in Section 2.3, how OT supplies components
missing from structuralism and inferentialism. Given this discussion,
we can then interpret the OT formalism in a way that preserves the cen-
tral insights of both philosophies of mathematics, starting with struc-
turalism. The OT analysis is that mathematical theories are structures,
where these are identified without any mathematical assumptions other
than analytic truths about mathematical theories. Let me reiterate that
by identifying mathematical individuals and relations as abstracta that
encode only their mathematical properties and no others, OT neglects
their ‘special character’ (i.e., neglects their exemplified properties). And,
as previously noted, this analysis complements the standard (non-modal)
structuralist views, which only discuss ‘places in structures’, but rarely
talk about ‘relational places’, i.e., the places that ‘partial’ or ‘indetermi-
nate’ relations occupy in a structure.

Once we interpret OT as a form of structuralism, a variety of puz-
zles about structuralism become soluble. To take an example, consider
the puzzle Shapiro described for his view (2006, 115): previously he
had claimed (1997) that individual natural numbers do not have non-
structural essential properties, but now he admits that numbers in fact
do seem to have some such properties:
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For example, the number 2 has the property of being an abstract
object, the property of being non-spatio-temporal, and the property
of not entering into causal relations with physical objects. . . . Ab-
stractness is certainly not an accidental property of a number—or is
it? (2006, 116)

After an extended discussion (2006, 117–20), he concludes not only that
abstractness is not a mathematical property but that it isn’t therefore an
essential property of natural numbers. From the point of view of OT, this
conclusion is a consequence of the analysis in Section 2.1. The essential
properties of numbers are just the mathematical properties they encode,
not the properties (such as being abstract, not being a building, having
no causal powers, etc.) they necessarily exemplify.29

Turning now to inferentialism, we again restrict our attention to ax-
iomatic theories, since inferentialism presupposes some sort of deduc-
tive relationships among the truths of T . But with this restriction, we
can be brief, since the discussion in Section 2.3 already provides the es-
sentials. Given any axiomatic theory T , we can interpret the schematic
and specific principles (3) – (6) as picking out the inferential roles of
the non-logical, mathematical terms of T . These principles identify a
specific role for each non-logical term of T .

While this interpretation preserves the basic insight of inferential-
ism, the more interesting fact is how it reconciles the referential and
use-theoretic approaches to the meaning of mathematical language and
renders them consistent (cf. Murzi & Steinberger 2017). The point has
already been made: the objectified inferential roles can serve as the de-
notations of mathematical terms in a compositional semantics. Thus, the

29This is explained in some detail in Zalta 2006 (685–687). To take another example,
Shapiro says (2006, 133) “Presumably, a structuralist cannot accept haecceities for places,
since a haecceity seems to be a non-structural property.” But on one reading, this conclu-
sion is predicted by OT – the theory implies, on cardinality grounds, that not every abstract
object has a haecceity. For suppose we temporarily assume set theory and model abstract
objects as sets of properties. Then if every distinct abstract object had a distinct haecceity,
there would be a 1-1 mapping from the power set of the set of properties into a subset of
the set of properties, in violation of Cantor’s theorem. For a full discussion of this issue see
Section 4.3 (“No Haecceities”) in Nodelman & Zalta 2014, 64–66.

On the other hand, OT does allow one to introduce, for each theory T , a restricted
identity relation, =T , on the individuals of T . Then, OT does assert the existence of
haecceitiesT , i.e., properties of the form [λxx=T y], where y is an object of T . For a full dis-
cussion of this issue, see Section 3.2 (“Elements and Relations of Structures”) in Nodelman
& Zalta 2014, 52–53.
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formalism of OT suggests that the traditional opposition between infer-
entialism, on the one hand, and referential theories such as Platonism
and structuralism, is partly a matter of focus – there is no inherent in-
consistency.

To see how the basic insight of formalism is preserved, let us ignore
many of the differences between Hilbertian formalism,30 term formal-
ism,31 and game formalism.32 That’s because in each case, the essential
idea is that mathematics is about (formula and symbol) types and not to-
kens. That is, on any version of formalism, mathematics is not about any
particular marks on the page or about any particular sound waves em-
anating from the mouths of mathematicians, but rather about the types
that the marks or sound waves are tokens of. The ‘formal rules’ that the
principles of T represent apply to types, not to tokens.

To preserve this insight, we use OT to identify types as abstract ob-
jects that encode properties. A type encodes just the distinctive proper-
ties that the tokens of that type exemplify. For example, a pure symbol
type encodes just the shape and/or sound properties needed to iden-
tify tokens of that type. In the case of a mathematical theory T , the
formal objects denoted by the terms and predicates of T are not pure
symbol types, but symbol types as abstracted from the role they play
in the formulas true in T . Under this interpretation, the individual
terms of mathematics denote individual-symbol types that encode the
abstract property-symbol types denoted by the predicates.33 For exam-

30I’m focusing here on what Hilbert regarded as the ideal part of mathematics, which
deals with infinity. Thus, the formulas of ideal mathematics are uninterpreted and though
they have the syntactic form of sentences (and thereby allow us to apply formal, inferential
rules of thought), they have no semantics (Hilbert 1927 [1967, 475]; Weir 2021, §1). See
Detlefsen 1993 for a careful review of Hilbert’s evolving formalist views. It seems that
earlier, he thought that consistent theories defined forms of existence. Detlefsen (1993,
288) criticizes this view, on the grounds that definitions aren’t creative, but I think Hilbert
was relying on the principle that if a theory is consistent, then it is not only a definition
but a creative one!

31This is the view that the expressions of mathematics, e.g., the singular terms, are re-
ferring expressions, but refer to symbols rather than to mathematical entities distinct from
symbols. See Shapiro 2000 (141); Weir 2021, §2.

32This is the view that the terms in mathematical formulas do not pick out objects and
properties, but instead the formulas are simply elements of a game in which symbol strings
are transformed according to fixed rules. See Shapiro 2000 (144); Weir 2021, §2.

33It is important to remember that OT doesn’t use model theory to define what the individ-
uals and relations of a theory T are, i.e., it doesn’t say that to be an individual or relation of
T is to be the value of a variable x or F used in T . Rather, OT defines the individuals and
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ple, ∅ZF, as identified in (6), becomes a symbol-type that encodes just
those property-symbol types F whenever the formula type “In ZF, F∅”
constitutes part of the data. Since ZF is given axiomatically, this data
comes from sentence types of the form “ZF ` F∅”.

We’ve already discussed how principles (1), (3), and (5) answer the
question of how the constants and predicates of each framework come
to denote the right objects and relations, so that the Carnapian inter-
nal question “Do Xs exist?” is always true, or provably true, within the
framework. This fact about OT suffices to show how it preserves the
basic insight of Carnapianism.

No metaphilosophy of mathematics would be complete without some
discussion of logicism. But my discussion here will be only a sketch,
since this is a topic of ongoing research. Many philosophers now believe
that logicism is a non-starter, since mathematics has strong existence
claims and logic has very weak ones, making any reduction of mathemat-
ics to logic impossible. Indeed, logicism is a non-starter if one’s concep-
tion of logic makes it impossible for strong existence claims to be logical
truths and relative interpretability is the standard of reduction. But if one
(a) develops a conception of logic that allows 2nd-order comprehension
and (1) above to be logically true, and (b) uses an alternative, but equally
precise, standard of reduction (on which each well-defined term is as-
signed a unique denotation and the theorems are assigned readings on
which they are true), then not only can OT be viewed as part of logic but
mathematics becomes reducible to logic plus analytic truths. The key to
this conception of logic is the idea that 2nd-order comprehension and
(1) are required for having logically complex thoughts (including math-
ematical thoughts) and for the validity of complex reasoning (including
mathematical reasoning). Since this is the topic of another paper, we’ll
leave the matter here.34

4.2 Paraphrasing Mathematical Language

OT shares with deductivism the idea that the fundamental truths of a
mathematical theory T are statements under the scope of an operator:
“In T , . . . ” in the case of OT, and “If the conjunction of the axioms

relations of T to be entities that are distinguishable in the formalism of T . For a full dis-
cussion of this issue, see Nodelman & Zalta 2014, §3.2, 52–53 (a definition of the elements
and relations of T ), and §4.4, 66–73 (indiscernibles are not elements of a theory).

34See Leitgeb, Nodelman, & Zalta, m.s., which develops a defense of logicism.
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of T hold, then . . . ” in the case of deductivism.35 But the similarity
ends there, especially when we consider the sophisticated variant of de-
ductivism embodied by modal structuralism (MS). OT doesn’t preserve
the ideas underlying MS because the two theories are attempts to ad-
dress different problems. OT takes mathematical language at face value,
as containing constants and predicates that have a semantic content (at
our world). It attempts to preserve the tradition in which (axiomatic)
mathematical theories are formally represented in a classical, non-modal
predicate calculus extended with (a) the non-logical constants and non-
logical predicates, and (b) non-logical axioms that are categorically stated.
OT, which is based on an ambiguity in predication, assigns these cate-
gorical predications two readings (a true encoding reading and a false
exemplification reading), as outlined above.

But MS doesn’t adopt this methodology; instead it denies that the
constants and predicates of mathematical theories have a semantic con-
tent at our world, and denies that categorical predications and categor-
ical quantified claims serve as the proper analysis of mathematical ax-
ioms. Instead, it replaces each distinguished non-logical constant and
predicate in the language of a mathematical theory T by a distinct vari-
able of the appropriate type, so that the categorical claimsϕ of T become

35This connection makes OT and deductivism subject to the same objection: how to dis-
tinguish mathematics from fiction, since both approaches relativize the basic truths with
respect to these operators. Quine 1936 [1976, 83] argues that deductivism w.r.t. geometry:

. . . reduces merely to an exclusion of geometry from mathematics, a relega-
tion of geometry to the status of sociology or Greek mythology; the labeling
of the ‘theory of deduction of non-mathematical geometry’ as ‘mathematical
geometry’ is a verbal tour de force which is equally applicable to the case of
sociology or Greek mythology.

But even Quine would have to admit there are some common mechanisms between fiction
and math. Just as the properties of Zeus, Sherlock Holmes, etc., and the higher-order
properties of such fictional properties as being a hobbit, being an orc, etc., are tied to a
story, the properties of π, ω, ℵ0, etc., and the higher-order properties of such mathematical
relations as membership, group addition, etc., are tied to mathematical theories. Both
fictions and mathematical objects are examples of ‘partial’ or ‘incomplete’ objects, since
their identities are grounded in incomplete narratives.

Moreover, it doesn’t follow that an analysis based on these similarities somehow disre-
spects mathematics, assigns it a ‘lower’ status, or collapses mathematics and fiction. There
are still a significant number of differences, concerning the rigors of mathematical practice
vs. the freedoms of fictional practice, the applicability of math to science, the interest in
math of the structural properties of relations, etc. See Bueno 2011 for further discussion,
in defense of relativism.



31 Mathematical Pluralism

open formulas of the form ϕ(~x, ~F), where ~x and ~F represent the sequence
of individual and relation variables introduced to replace the non-logical
primitives. Then, since the conjunction of the axioms, ∧T , becomes an
open formula, ∧T (~x, ~F), MS paraphrases the categorical theorems ϕ of T
as logical theorems of the form:

�∀~x ∀~F(∧T (~x, ~F)→ ϕ(~x, ~F))

I.e., necessarily, for any objects ~x and relations ~F, if the conjunction of the
axioms of T holds w.r.t. ~x and ~F, then ϕ(~x, ~F) holds. To complete its anal-
ysis of mathematics, MS then requires an additional group of assertions;
for every theory T , MS asserts or implies:

^∃~x ∃~F(∧T (~x, ~F))

I.e., it is possible that there are objects ~x and relations ~F such that the
conjunction of the axioms of T holds w.r.t. ~x and ~F. Finally, MS encour-
ages the nominalistic interpretation of the second-order quantifiers of
the background formalism.

This methodology doesn’t attempt to analyze the axioms of T as cate-
gorical predications or universal claims. Indeed, it is consistent with MS
that none of the constants or predicates of T have denotations, much less
denote specifically mathematical objects or relations. Moreover, since
the Barcan Formula (BF) is invalid in the S5 modal logic assumed in
MS (Hellman 1989, 17), one cannot validly infer ∃~x ∃~F^(∧T (~x, ~F)) from
^∃~x ∃~F(∧T (~x, ~F)). So mathematical theories are not about structures or
indeed about anything (such theories are not committed to objects and
relations standing in the right structural relationships), though it is pos-
sible that they are about something.36 In many ways, MS is a form of

36I not sure that Hellman and Bell (2006, 75–76) are justified when they say, near the
end of their paper:

It turns out, however, that there is a way out of this impasse, but at a price.
If we introduce modality and tolerate talk of the possibility of large domains
of discourse—essentially just large numbers of objects—then we have a nat-
ural way of recognizing a plurality of models of set theory, and toposes, liv-
ing side-by-side within these domains, of which there also can be many, but
without ever allowing for any totality of all such domains. . . . Similar meth-
ods yield characterizations of other key mathematical structures such as the
natural numbers, full models of set theory, and various topoi, etc., again,
without ever countenancing classes or relations as objects.

It is not clear how the appeal to modality allows MS to ‘recognize’ or ‘characterize’ partic-
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mathematical eliminativism rather than a form of mathematical pluralism,
since the distinctive primitive notions employed by mathematicians are
all eliminated in favor of variables and modally quantified conditionals.

But supposing OT and MS are comparable theories, it is still difficult
to compare them. Here are some questions that can be raised. One clus-
ter concerns the status of the possibility claims that MS must assert to
complete the analysis of mathematical theories. MS has to add at least
one special axiom of the form ^∃~x ∃~F(∧T (~x, ~F)), for each mathematical
theory T that it analyzes. So, the question is, can one actually state MS
generally? Does MS include the universal claim: ∀T^∃~x ∃~F(∧T (~x, ~F))? Is
MS analyzing T or T + ^∃~x ∃~F(∧T (~x, ~F))? If the latter, then why don’t
we see explicit modal claims in mathematical practice? These questions
may prove to be difficult to answer, especially if the possibility claims
added to MS have to be customized so as to be the weakest claims that
can do the job.37

By contrast, OT doesn’t have to add modal claims for each new math-
ematical theory it analyzes – it just takes the theory-prefaced statements
as the data and the rest falls out from OT comprehension (1), the identi-
fication principles (3) and (5), and the various readings of the unprefixed
mathematical claims that this methodology makes possible.38

A second question concerns the analysis of mathematical constants
and predicates that appear outside purely mathematical contexts. Pre-
sumably, MS can’t accept the following claims at face value:

• π is more well-known than Euler’s number e.

ular structures or domains for set theory, category theory, natural numbers, etc., for there
are no such structures. MS doesn’t even allow talk about entities that are possible structures
or possible domains, given the invalidity of BF. And if they were to accept BF, one could
only instantiate the external quantifiers ∃~x and ∃~F to arbitrary names and predicates. How
would this justify talk about the (structure of the) natural numbers, the standard model of
T , etc., without having incomplete objects and relations of some kind at their disposal?

37See Hellman 1989, pp. 27–30, for the claim needed for PA (concerning the possible
existence of ω-sequences); p. 45, for the claim needed for 2nd-order real analysis (RA)
(concerning the possible existence of complete, ordered, separable continua); and p. 71,
for the claim needed for 2nd-order ZF (concerning the possibility of natural set-theoretic
models). And see Hellman 1996 for the possibility claims needed for other mathematical
theories. Given these discussions, it may that the simplified methodology for MS presented
above obscures the fact that customized, special axioms are needed on a case-by-case basis.

38The fact that the analysis of mathematics in MS requires the addition of possibility
claims also raises a question of whether it can provide an analysis of inconsistent (but not
trivial) mathematical theories. Will MS require a modal logic in which ^ is interpreted as
quantifier over both possible and non-normal worlds?
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• At one time, mathematicians didn’t believe that
√
−1 exists.

• Fraenkel wondered whether the existence of ω+ω could be proved
in Zermelo set theory.

• The number Zero wasn’t always used for counting.

These claims can be analyzed in OT without any special heroics (though
in some cases, it might be best to deploy OT’s approach to natural mathe-
matics rather than its analysis of theoretical mathematics). But I suspect
the same can’t be said for MS – there is no de re knowledge or belief about
mathematical entities of any kind.

5 Final Observations

It is important to mention what hasn’t been attempted in the foregoing.
I’ve said only a little about the epistemology of mathematics (this was
the subject of Linsky & Zalta 1995). I’ve not discussed at any length
how OT analyzes natural mathematics (i.e., the mathematical statements
from ordinary language, which don’t presuppose mathematical princi-
ples). I’ve not tried to give an account of the special uses of language
during the process of theory formation or theory comparison. Nor have
I elaborated on the facts that (a) the modal logic of encoding is captured
by the principle xF → �xF (i.e., encoding claims are necessary if true),
(b) the true readings of unprefixed mathematical statements are encod-
ing claims, but (c) the necessity of the mathematical truths that can be
derived from (a) and (b) rests on contingent analytic truths of the form
“In theory T , p”.39 These issues are all worthy of being discussed, but
haven’t been pursued in any detail here.

39In the first paragraph of Section 4.1 above, it was suggested that OT’s analysis of math-
ematics is naturalistic in the sense that the patterns it objectifies arise from the contingent
practices of mathematicians. The practice of asserting axioms governing primitive con-
stants and predicates gives rise to claims of the form “In theory T , p”, such as (7). When
these analytic claims are represented in OT and asserted as axiomatic, we do not also assert
their necessitations but instead mark them as ‘modally fragile’ (i.e., as resting on a contin-
gency). OT is constructed so that theorems resting on contingencies are not subject to the
Rule of Necessitation (RN). However, when “In theory T , p” is formalized as an encod-
ing claim, we may derive that it is necessary via the modal logic of encoding, not via Rule
RN. So the resulting necessary theorems are flagged as derived from an axiom marked as
modally fragile. For example, the analytic truth (7) becomes represented as the modally
fragile axiom (8). Consequently, when we derive the encoding claims (9) – (11), we can
apply the modal logic of encoding to derive their necessitations. But then, they are flagged
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Let me instead close with two thoughts. The first concerns a real
obstacle to theory acceptance about the nature of mathematics, namely,
the fact that many philosophers of mathematics don’t agree on the data
to be explained. Some (platonists, structuralists, logicists, etc.) think
that the unprefixed theorems of our most well-entrenched mathematical
theories are true; others (fictionalists, nominalists, modal structuralists,
etc.), take these claims to be false; and still others suggest that the claims
are relative or fail to be truth-apt. This lack of agreement about the data
should, and can, be explained. OT does so via the distinction between
exemplification and encoding predications, which attempts to resolve
a subtle ambiguity in predication and thus an ambiguity in the data.
This ambiguity is resolved by formulating both true and false readings
that disambiguate unprefixed mathematical claims. One would expect
disagreement about the data if (a) some philosophers, on the basis of
certain background assumptions, focus on the true readings, (b) other
philosophers, on the basis of different background assumptions, focus
on the false readings, and (c) still other philosophers, in the presence
of arguments by (a) and (b) philosophers, conclude that the data is nei-
ther strictly true nor strictly false (i.e., as not truth-apt or as always rel-
ative). If none of these groups admit to an ambiguity, the various sides
are bound to disagree and talk past each other concerning solutions and
explanations of the data.

This explains the conclusion in Balaguer 1998a. Balaguer lists eight
points on which platonism (as embodied by FBP) and anti-platonism (as
embodied by fictionalism) agree (152–155), and notes that they disagree
only on one point, namely, that “FBP-ists think that mathematical ob-
jects exist and, hence, that our mathematical theories are true, whereas
fictionalists think there are no such things as mathematical objects and,
hence our mathematical theories are fictional” (155). He then draws
a strong epistemic conclusion (namely, that we could never have a co-
gent argument that settles the dispute over mathematical objects), and a
strong metaphysical conclusion (namely, that there is no fact of the matter
as to whether platonism or anti-platonism is true). But, Colyvan & Zalta
(1999, 347) note that these conclusions could be explained by the follow-
ing hypotheses: (a) platonism focuses on the sense in which unprefixed
mathematical claims are true, while fictionalism focuses on the sense in

as necessary truths that are derived from, and rest on, a contingency, as in the deductive
system in Zalta m.s.
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which they are false, (b) both platonism and fictionalism are different,
incompatible interpretations of the same formalism (these interpretations
were described above, in the first two paragraphs of Section 4.1), and
(c) natural language can be equally well regimented in two ways: one
gives rise to the platonist interpretation and the other the fictionalist in-
terpretation. These hypotheses would predict Balaguer’s conclusion that
platonism and fictionalism are on a dialectical par and would explain
why Balaguer comes to the conclusion that there may be no fact of the
matter as to which is true.

The concluding thought is to consider that OT wasn’t developed speci-
fically for the analysis of mathematics. Rather, it was formulated for sys-
tematically analyzing abstract objects generally. It therefore has addi-
tional explanatory power in so far as it provides us with a theory of pos-
sible worlds, concepts, fictions, Platonic forms, Fregean numbers, senses,
etc. The present effort focuses solely on OT’s application to theoretical
mathematics and I would argue that it gives one a better overall perspec-
tive on the subject. If no other theory provides a better understanding
of both the language and objects of mathematics, or better unifies appar-
ently incompatible philosophical accounts of mathematics, then OT is a
conceptual framework to consider seriously until a better overall theory
comes along.
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