Skip to main content
Log in

Natural Numbers and Natural Cardinals as Abstract Objects: A Partial Reconstruction of Frege"s Grundgesetze in Object Theory

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

In this paper, the author derives the Dedekind–Peano axioms for number theory from a consistent and general metaphysical theory of abstract objects. The derivation makes no appeal to primitive mathematical notions, implicit definitions, or a principle of infinity. The theorems proved constitute an important subset of the numbered propositions found in Frege"s Grundgesetze. The proofs of the theorems reconstruct Frege"s derivations, with the exception of the claim that every number has a successor, which is derived from a modal axiom that (philosophical) logicians implicitly accept. In the final section of the paper, there is a brief philosophical discussion of how the present theory relates to the work of other philosophers attempting to reconstruct Frege"s conception of numbers and logical objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Anderson, C. A. (1993). Zalta's intensional logic, Philos. Stud. 69(2-3): 221–229.

    Google Scholar 

  • Boolos, G. (1998). Logic, Logic, and Logic, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Boolos, G. (1987). The consistency of Frege's 'Foundations of Arithmetic', in J. Thomson (ed.), On Being and Saying, MIT Press, Cambridge, MA; reprinted in Boolos (1998, pp. 183-201). [Page references are given as 'n/m', where n is a page number (range) in the original and m is the corresponding page number (range) in the reprint.]

    Google Scholar 

  • Boolos, G. (1986). Saving Frege from contradiction, Proc. Aristotelian Soc. 87 (1986/1987): 137–151; reprinted in Boolos (1998, pp. 171-182). [Page references are given as 'n/m', where n is a page number (range) in the original and m is the corresponding page number (range) in the reprint.]

    Google Scholar 

  • Burgess, J. (forthcoming). On a consistent subsystem of Frege's Grundgesetze, Notre Dame J. Formal Logic.

  • Burgess, J. (1984). Review of Crispin Wright's 'Frege's Conception of Numbers as Objects', The Philosophical Review 93/4: 638–640.

    Google Scholar 

  • Clark, R. (1978). Not every object of thought has being: A paradox in naive predication theory, Nous 12: 181–188.

    Google Scholar 

  • Demopoulos, W. (1995). Frege's Philosophy of Mathematics, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Fine, K. (1994). The limits of abstraction, Unpublished monograph.

  • Frege, Gottlob, (1884). The Foundations of Arithmetic, translated by J. L. Austin, Blackwell, Oxford; 1974 (second revised edition).

    Google Scholar 

  • Frege, Gottlob, (1893). Grundgesetze der Arithmetik, Band I, Verlag Hermann Pohle, Jena; reprinted in Hildesheim: Georg Olms Verlagsbuchhandlung, 1962.

    Google Scholar 

  • Frege, Gottlob, (1903). Grundgesetze der Arithmetik, Band II, Verlag Hermann Pohle, Jena; reprinted in Hildesheim: Georg Olms Verlagsbuchhandlung, 1962.

    Google Scholar 

  • Hale, B. (1987). Abstract Objects, Blackwell, Oxford.

    Google Scholar 

  • Hazen, A. (1985). Review of Crispin wright's 'Frege's Conception of Numbers as Objects', Australas. J. Philos. 63(2): 251–254.

    Google Scholar 

  • Heck, R. (1993). The development of arithmetic in Frege's 'Grundgesetze der Arithmetik', J. Symbolic Logic 58(2): 579–601.

    Google Scholar 

  • Hodes, H. (1990). Where do natural numbers come from?, Synthese 84: 347–407.

    Google Scholar 

  • Hodes, H. (1984). Logicism and the ontological commitments of arithmetic, J. Philos. 81(3): 123–149.

    Google Scholar 

  • Linsky, B. and Zalta, E. (1994). In defense of the simplest quantified modal logic, in J. Tomberlin (ed.), Philosophical Perspectives 8: Logic and Language, Ridgeview, Atascadero.

    Google Scholar 

  • Linsky, B. and Zalta, E. (1995). Naturalized Platonism vs. Platonized naturalism, J. Philos., XCII(10): 525–555.

    Google Scholar 

  • Mally, E. (1912). Gegenstandstheoretische Grundlagen der Logik und Logistik, Barth, Leipzig.

    Google Scholar 

  • McMichael, A. and Zalta, E. (1980). An alternative theory of nonexistent objects, J. Philos. Logic 9: 297–313.

    Google Scholar 

  • Parsons, C. (1965). Frege's theory of number, Philosophy in America, M. Black (ed.), Cornell University Press, Ithaca, pp. 180–203; reprinted with Postscript in Demopoulos (1995), pp. 182-210.

    Google Scholar 

  • Parsons, T. (1987). The consistency of the first-order portion of Frege's logical system, Notre Dame J. Formal Logic 28: 161–68.

    Google Scholar 

  • Rapaport, W. (1978). Meinongian theories and a Russellian paradox, Nous 12: 153–180.

    Google Scholar 

  • Rosen, G. (1995). The refutation of nominalism(?), Philos. Topics 21(2) (Fall 1993): 149–186.

    Google Scholar 

  • Russell, B. and Whitehead, A. (1910, 1912, 1913). Principia Mathematica, 3 volumes, Cambridge University Press, Cambridge.

    Google Scholar 

  • Wright, C. (1983). Frege's Conception of Numbers as Objects, Aberdeen University Press, Aberdeen, Scotland.

    Google Scholar 

  • Zalta, E. (forthcoming). Neologicism? An ontological reduction of mathematics to metaphysics, Erkenntnis.

  • Zalta, E. (1997). The modal object calculus and its interpretation, in M. de Rijke (ed.), Advances in Intensional Logic, Kluwer Academic Publishers, Dordrecht, pp. 249–279.

    Google Scholar 

  • Zalta, E. (1993a). Twenty-five basic theorems in situation and world theory, J. Philos. Logic 22: 385–428.

    Google Scholar 

  • Zalta, E. (1993b). Replies to the critics, Philos. Stud. 69(2-3): 231–243.

    Google Scholar 

  • Zalta, E. (1988a). Intensional Logic and the Metaphysics of Intentionality, MIT/Bradford, Cambridge, MA.

    Google Scholar 

  • Zalta, E. (1988b). Logical and analytic truths that are not necessary, J. Philos. 85(2): 57–74.

    Google Scholar 

  • Zalta, E. (1983). Abstract Objects: An Introduction to Axiomatic Metaphysics, D. Reidel, Dordrecht.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zalta, E.N. Natural Numbers and Natural Cardinals as Abstract Objects: A Partial Reconstruction of Frege"s Grundgesetze in Object Theory. Journal of Philosophical Logic 28, 617–658 (1999). https://doi.org/10.1023/A:1004330128910

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004330128910

Navigation