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Abstract. When dealing with a certain class of physical systems, the mathematical 

characterization of a generic system aims to describe the phase portrait of all its possible 

states. Because they are defined only up to isomorphism, the mathematical objects 

involved are “schematic structures”. If one imposes the condition that these mathematical 

definitions completely capture the physical information of a given system, one is led to a 

strong requirement of individuation for physical states. However, we show there are not 

enough qualitatively distinct properties in an abstract Hilbert space to fulfill such a 

requirement. It thus appears there is a fundamental tension between the physicist’s 

purpose in providing a mathematical definition of a mechanical system and a feature of 

the basic formalism used in the theory. We will show how group theory provides tools to 

overcome this tension and to define physical properties.  
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1. Introduction 

 

The progressive mathematization of both Classical and Quantum Mechanics 

witnessed over more than a century has provided increasingly abstract ways of thinking 

of physical systems. It has become the norm amongst theoretical and mathematical 

physicists to characterize a generic physical system by appeal to some specific class of 

mathematical objects. For example, in Carlo Rovelli’s book on Quantum Gravity, one 

finds that “a [classical, non-relativistic] dynamical system is determined by a triple (Γ0, 

ω0, H0), where Γ0 is a manifold, ω0 is a symplectic two-form and H0 is a function on Γ0” 

(Rovelli 2004, p. 100) whereas “a given quantum [non-relativistic] system is defined by a 

family (generally an algebra) of operators Ai, including H0 [the Hamiltonian], defined 

over an Hilbert space H 0” (Rovelli 2004, p. 165). Statements of the sort can be found in 

almost any book that introduces the mathematical formalisms of Classical and Quantum 

Mechanics.  

This form of discourse, that “defines”, “determines” or “characterizes” physical 

systems by the specification of some abstract mathematical object, offers a particularly 

nice setting where to study the relation between the ontology of Physics and that of 

Mathematics. On a first reading, defining a system as e.g. a symplectic manifold seems a 

markedly stronger claim than simply characterizing it by appeal to the notion of 

symplectic manifold. The former can be read as an ontological claim about the actual 

nature of physical systems, whereas the latter seems to involve only a (sophisticated) way 

of making reference to a given system. Adopting the former reading of “definition” in the 

context of mathematical physics seems to imply the radical claim that there is no 

ontological distinction between mathematical and physical objects. And—it is known—

this position leads to difficult epistemological problems (see Resnik 1990 for a review of 

these). However, I consider that any attempt to draw metaphysical conclusions from the 

formalism of Mechanics should be preceded by a careful study of the mechanisms 

enabling mathematical objects to refer to physical ones. Thus, it seems to me a more 

prudent attitude, at least at the outset and tentatively, to consider “definition”, 

“determination” and “characterization”, as these occur in modern texts, as intended 

synonyms.  

In considering the mathematical descriptions of physical systems, prior to the 

ontological question “Are physical systems really mathematical objects?”,  I hence 
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want to pose the epistemic question “Can a physical system be fully and unambiguously 

characterized by some mathematical object? And for the answer to this question to be 

yes, which properties is this mathematical object required to have?”  

It is to the investigation of this last question, particularly in the context of 

Mechanics, that this work is devoted. Hopefully, from the perspective of a philosopher, 

this should lead to a better appreciation of what is involved in the mathematical 

characterization of physical systems, insight that cannot but benefit those trying to adopt 

an ontological understanding of these characterizations. In particular those defending a 

realistic interpretation of the wave function in Quantum Mechanics could be led by such 

an analysis to a better grasp of their commitments.  

The remainder of this paper has two main parts. The first, more general one, 

attempts further to clarify the question I posed above. In Section 2.1., I compare the 

expectations of different theoretical physicists regarding the descriptive power of the 

mathematical characterizations of mechanical systems. In Section 2.2., mathematical 

structuralism enters into the picture by the crucial observation that most often definitions 

in mathematical physics are stated “up to isomorphism”.  In Section 2.3., I propose a 

precise requirement for the individuation of physical states of a system which any 

mathematical object must meet in order to be a candidate for the description of that 

system. Then, the second part of the paper is restricted to Quantum Mechanics and aims 

to study some techniques used to implement this requirement for the individuation of 

states. Section 3.1 is a quick introduction to three different approaches to this problem—

algebraic, group-theoretic and geometric. Section 3.2 studies how individuating 

properties may emerge from the introduction of groups and Section 3.3. presents in some 

detail the example of the group SO(3). I conclude with some remarks in Section 4.  

 

2. Requirement of individuation for physical states 

 

2.1. The descriptive power of mathematical definitions of physical systems 

In modern treatments of theoretical physics, a definition of a physical system is 

typically a statement of the following form: 

Definition: A physical system S is given by {A1, …, An} such that … 

Here {A1, …, An} is a set of mathematical objects verifying some particular 
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conditions.  In Mechanics, definitions of this sort are not intended to apply to all physical 

systems but just to a restricted class—say, non-relativistic, classical, holonomic systems 

with a finite number of degrees of freedom. However, inside this class, these definitions 

do apply to any system and it is in this sense that I say they are definitions of a generic 

physical system.  

It does not seem too risky to say that most physicists would agree on this point. 

Starting from here, there are two major aspects where they may disagree. First, obviously, 

they may not agree on the content of the definition, but it cannot be the aim of this paper 

to decide which content is “the correct one”. Instead, we will simply try to establish, by 

means of general considerations, some criteria of what it means for a mathematical 

definition of a system to be acceptable. Thus, we need to know which is the purpose of 

these definitions; it is here that we encounter a second, subtler source of disagreement.  

There are two principal contrasting attitudes one can adopt here. On the one hand, 

one can follow a “formalist perspective” and consider these definitions simply as a 

device to detect the minimal framework necessary to develop most of the (mathematical) 

techniques used in the study of physical systems. For example, as soon as one has a 

manifold Γ equipped with a symplectic structure ω and a preferred function H, one can 

write Hamilton’s equations of motion. In other words, the equations of motions do not 

provide any supplementary information that is not already contained in the triple {Γ, ω, 

H}. Here, mathematical definitions point to the theoretical locus where all the 

information about a system is stored; but there is a fundamental gap between the 

mathematical description and the physical interpretation. To actually refer to a given, 

particular physical system, it is not enough to have the formal, abstract description of it: 

one needs to add external information that conveys to it its physical interpretation. An 

explicit example of this viewpoint is found in Strocchi’s book on Quantum Mechanics: 

In the mathematical literature, given a C*-algebra A, any normalized positive linear 

functional on it is by definition a state; here we allow the possibility that the set S of 

states with physical interpretation (briefly called physical states) is […] smaller than 

the set of all the normalized positive linear functionals on A. (Strocchi 2005, pp. 22-

23, my emphasis) 

There is a sharp contrast between what is declared by definition in Mathematics and what 

is to be interpreted in Physics.  

On the other hand, one can pursue a “descriptive perspective”, and consider that 
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the abstract mathematical characterization of a physical system encapsulates all the 

information about the system without the need of any further external interpretation. 

Whereas the formalist perspective downplays the descriptive role of the mathematical 

definition of a physical system by demanding that a physical interpretation be also given, 

this other contrasting perspective confers full descriptive power on the mathematical 

formalism. On this viewpoint, one considers that if a physicist is given the abstract 

description of a given physical system and nothing more, she will nonetheless be able to 

recognize which physical system is being described. For example, if she studies the 

classical mechanical system defined by the triple {Γ, ω, H}, where (Γ, ω) = T*R 

equipped with its canonical symplectic form and H(q,p) = p2/2m, one expects her to 

recognize a free massive (non-relativistic) particle moving in a one-dimensional space. 

To me, this is what Rovelli has in mind when he declares: “a dynamical system is 

completely defined by a presymplectic space (Σ, ω)” (Rovelli 2004, p. 101, my 

emphasis). It is also the perspective adopted by Landsman when he criticizes the use of 

Hilbert spaces in Quantum Mechanics:  

“all Hilbert spaces of a given dimension are isomorphic, so that one cannot 

characterize a physical system by saying that ‘its Hilbert space of (pure) states is 

L2(R3)’.” (Landsman 1998, p.6),  

For it is only when expecting full descriptive power to flow from the mathematical 

characterization of a physical system that worries about the fact there is only one infinite-

dimensional Hilbert space arise. From the formalist perspective, there is no reason why 

the fact that all Hilbert spaces are isomorphic should be seen as supplying the motivation 

to build an alternative, possibly more sophisticated, formalism for Quantum Mechanics. 

Indeed, from that point of view one should never expect to fully characterize a physical 

system just by “saying that ‘its Hilbert space of (pure) states is L2(R3)’”, since an 

additional physical interpretation, that transcends the formal language, is needed. 

 The difference between both perspectives can be rendered precise using the 

elementary language of type theory as follows3. Consider first two different types: the 

“Physics type” Tphys whose tokens are the mechanical systems, and the “Mathematics 

type” Tmath whose tokens are the mathematical objects used to describe the systems under 

consideration. The mathematical definition of a physical system may be seen as a map 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 For our purposes, type theory is very similar to set theory: the type/token relation is the analogue of the 
set/element relation. The reason why I choose the language of type theory rather than of set theory will 
become clear in the next section. 
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from Tphys to Tmath that, to every physical system S, associates the mathematical object 

D(S) describing it. Now, the properties ascribed to this map are what fundamentally 

distinguish the two perspectives. Indeed, the main claim of the descriptive perspective, as 

I understand it, is the injectivity of this map: 

Faithfulness requirement (descriptive perspective): consider two physical 

systems S and S’ defined by the mathematical objects D(S) and D(S’).  We 

have D(S) =M D(S’) if and only if S =P S’. 

This is of course tantamount to saying that any difference between two physical systems 

should be reflected in their respective mathematical descriptions—a requirement which is 

not imposed in the formalist perspective. 

One might argue that the descriptive perspective is too naïve and that it is in 

principle impossible for an abstract, formal, mathematical description to capture “all 

there is” about a real, concrete, physical system. However, in common with other moves 

that attempt to undermine a research program by appeal to such extremely general 

arguments, I find this position sterile. Rather I believe that adopting the descriptive 

perspective as a working hypothesis and seeking to push it to its limits can yield 

interesting insights in theoretical physics, even if we are eventually led to reject the 

hypothesis. As Catren beautifully said of a different though not altogether unrelated topic: 

“It is necessary to be programmatically ambitious in order to fail in a productive way” 

(Catren 2009, p. 470). 

 Thus, we will try to travel as far as possible along the road that the descriptive 

perspective suggests. As it will become progressively clearer, the faithfulness 

requirement imposes some strong conditions on the mathematical formalisms to be used 

for Mechanics. One of the main points of this paper is to show how some of the technical 

developments in the mathematical foundations of Mechanics arise as attempts to meet 

these conditions. 

 

2.2. Mathematical objects as structures 

It is fundamental to remark that the faithfulness requirement, imposed by the 

descriptive perspective, presupposes two underlying notions of identity: a first one 

between mathematical objects (denoted by =M), and another independent notion of 

identity between physical systems (denoted by =P). There is not an absolute notion of 
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identity and every given type has its own criteria of identification4. To incorporate this 

requirement into Mechanics, it is of crucial importance to know when we can say, for two 

mathematical objects A and A’, that we have A =M A’. When pursued to its furthest 

reaches and ramifications, this simple question about identity in Mathematics raises very 

far-reaching issues connected to the development of n-categories and homotopy type 

theory, while in the Philosophy of Mathematics it leads to perennial questions about the 

ontology of Mathematics. Since our concern here is with the mathematics of theoretical 

Mechanics, we do not dare to address these questions in their full generality but confine 

ourselves to those aspects relevant to the practice of theoretical physics. 

Von Neumann’s proof of the mathematical equivalence of Heisenberg’s ‘matrix 

mechanics’ and Schrödinger’s ‘wave mechanics’ was a celebrated landmark in the 

development of Quantum Mechanics. Then, the Stone-von Neumann theorem secured 

that indeed a certain quantum system was uniquely defined by the requirement of being 

an irreducible representation of (Weyl’s form of) the canonical commutation relations: 

the formalisms of Heisenberg (using the abstract Hilbert space of infinite complex 

matrices), Schrödinger (using the Hilbert space L2(R)) and Fock (using the Hilbert space 

ℓ2(N) of all square-summable sequences) appeared as three equivalent realizations of one 

and the same mathematical object describing one and the same physical system5.   

The important point is that the founders of the quantum theory considered the 

physical system to be uniquely described because they considered equivalent 

representations as identical. Otherwise stated, two abstract descriptions of a quantum 

system had to be considered identical if isomorphic6. Thus, the above example shows 

how it clearly emerged, from the historical development of the theory, that for the 

purposes of Physics, the relevant notion of identity for mathematical objects was in fact 

isomorphism:  

D(S) =M D(S’) ⇔	  D(S) ≃ D(S’) 

As is well explained in Rodin (2011), in dealing with mathematical objects defined up to 

isomorphism one enters into the realm of mathematical structuralism. In fact, this 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 This point on identity is precisely one of the deepest differences between type theory (contextual identity) 
and set theory (absolute identity). It is because of this difference that the language of type theory seems 
better adapted to our discussion. 
5 For an explicit treatment of these formalisms, see for example (Gazeau 2009, pp. 13-18). 
6 Indeed, when working in the category of all representations (of a given C*-algebra) “equivalence of 
representations” is just another name for the general concept of “isomorphism”. 
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move—of extending the notion of equality to that of isomorphism—has been recently 

dubbed the “Principle of Structuralism” (Awodey 2013). One is thereby forced to 

endorse the Principle of Structuralism in the mathematical foundations of Quantum 

Mechanics.  

It is striking that consciousness of this development—of always having to read the 

abstract mathematical definitions of physical systems ‘up to isomorphism’—has not so 

clearly being carried over from Quantum to Classical Mechanics. In the latter context, it 

is for example rare to consider the phase space of a system to be given by a symplectic 

manifold ‘up to symplectomorphism’7. Instead, one generally has the impression of 

working with a particular symplectic manifold and sticking to it, without considering any 

‘change of representation’—think of the free massive non-relativistic particle: one will 

almost universally work in the cotangent bundle T*R3. However, a brief reflection shows 

this is not the case, and that one is in fact working up to isomorphism. Indeed, continuing 

with the same example, one can instead decide to work in the space R3×R3 and impose ω  

= dqi ∧ dpi as an ad hoc definition; the physical system ought to be the same, but this 

symplectic space is identical to the cotangent bundle only insofar as it is 

symplectomorphic to it8. Thus, the Principle of Structuralism is also apparent in the 

Classical theory. But there, it seems to be less explicitly recognized than in the Quantum 

case. It seems to me that one reason for this oversight is that in Classical Mechanics it is 

much easier to adopt a directly realist reading of the mathematical formalism—the 

configuration space R3 ‘really is the Euclidean space out there’. Contrary to what 

happens in Quantum Mechanics, the Classical Realm typically does not force us into 

higher levels of abstraction and one can still retain the impression of the ‘materiality’ of 

the mathematical constructions involved. But it is an impression we must abandon.  

Precisely, the whole point of mathematical structuralism is to insist that, beyond 

certain explicitly stated properties, the specific nature of the elements in a structure—i.e., 

the ‘materiality’ I just referred to—is completely irrelevant: 

…there is a certain degree of ‘analysis’ or specificity required […], and beyond that, 

it does not matter what the structures are supposed to be or to ‘consist of’— the 

elements […] are simply undetermined. (Awodey 2004, p. 59) 

Von Neumann himself also stressed this point from the outset: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 A ‘symplectomorphism’ is an isomorphism in the category of symplectic manifolds. 
8 As sets, these two spaces are different. Whence, sensu stricto, they are not identical. 
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…a unified theory, independent of the accidents of the formal framework selected at 

the time, and exhibiting only the really essential elements of quantum mechanics, 

will then be achieved if we […] investigate the intrinsic properties (common to 

L2(R) and ℓ2(N)) […], and choose these properties as a starting point (von Neumann 

1955, p. 33, my emphasis). 

As long as the canonical commutation relations are implemented, it does not matter 

whether the Hilbert space describing the quantum particle is made of functions over a 

space, infinite sequences of complex numbers, or sections of a certain fiber bundle. It 

does not matter either whether the points of the space describing the classical particle are 

points of a cotangent bundle, of a Cartesian space or of the dual of a Lie algebroid. This 

is why Awodey calls them “schematic structures” (Awodey 2004, p. 62).  The 

mathematical objects involved in the definitions of mechanical objects are schematic 

structures.  

 

2.3. The requirement of individuation for physical states 

We have already seen how Landsman expresses his dissatisfaction with the use of 

Hilbert spaces as the mathematical basis for the characterization of physical systems. Of 

course, many others share this view: it is at the root of von Neumann’s motivation in 

studying rings of operators and in introducing the so-called von Neumann algebras 

(Rédei 1997). We are now in a position to understand, in very simple terms, the source of 

this dissatisfaction. For, if you combine the seemingly inescapable—at least for the 

mathematics of Mechanics—Principle of Structuralism with the faithfulness requirement 

of the descriptive perspective, the fact that there is only one infinite-dimensional Hilbert 

space (up to isomorphism) shows that either there is only one unique Quantum system; or 

that Hilbert spaces do not provide enough descriptive resources for the characterization of 

mechanical systems. 

The classical analogue of this is Darboux’s theorem: any two symplectic manifolds 

of the same dimension are locally isomorphic. For a given dimension, we thus get 

infinitely many non-isomorphic symplectic manifolds, but their differences are only of a 

topological nature. Whereas Hilbert spaces evidently fall short of accounting for the 

diversity of the Quantum realm and hence cannot be taken as an acceptable 

characterization of physical systems, it is not so clear whether the same conclusion can 

be drawn about the use of symplectic manifolds in Classical Mechanics.  Undoubtedly, 
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we are missing here further criteria that would allow us to decide when a type of structure 

is “descriptive enough” to be an acceptable candidate for characterizing physical systems. 

The existence of numerically many non-isomorphic structures of a given type is surely 

one criterion, but it cannot be the only one. 

In all situations considered so far, there was a two-fold move in order to 

mathematically capture all the physical information: first, the system was said to be 

characterized by the set of all its possible states; second, it was this set that was meant to 

be described by some mathematical space. At the end, one gets the so-called “phase 

portrait” of the system (Abraham and Marsden 1978, p. xviii). A state was intended to be 

described by a point of the symplectic manifold Γ in the classical Hamiltonian formalism, 

and by a ray of the Hilbert space H in the standard quantum formalism9. Now, recall that 

in the descriptive perspective, one expects the theoretical physicist to be able to extract, 

simply from the given abstract mathematical structure describing the system, all the 

relevant physical information. In particular, given an element of this structure—a point of 

the symplectic manifold or a ray of the Hilbert space—one expects her to be capable of 

recognizing the specific state of the system. But, for this to be possible, the mathematical 

structure describing a physical system must be such that its different elements can be 

properly distinguished. In other words, if the mathematical definition is all there is to 

know in order to completely determine a physical system, one is confronted with the 

following requirement: 

Requirement of individuation for physical states: it must be possible, in 

practice, to qualitatively identify any specific physical state within the 

mathematical structure used to define the system. 

As we now show, this requirement imposes, on the structures that can in principle 

characterize mechanical systems, much stronger conditions than the previous faithfulness 

requirement. To see this, let us unpack what the requirement of individuation is actually 

saying. Firstly, it is important to understand the difference between “being able to identify 

a physical state” and “being able to distinguish between two physical states”. In a short 

paper from 1976, Quine introduced three different ways of distinguishing two objects. 

According to him, two objects are (in decreasing order of discernibility)  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 A ray of a Hilbert space is a one-dimensional subspace. 
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• absolutely discernible if there exists a one-place predicate that is true of one 

object but not of the other (e.g. two spheres of different color), 

• relatively discernible if there exists a two-place relation that is true of them in 

one order but not in the other (e.g. two spheres of the same color but different 

size), 

• weakly discernible if there exists a two-place irreflexive relation that is true of 

them (e.g. two qualitatively identical spheres, as considered in (Black 

1952)).10 

One important motivation for introducing this distinction was reconciling Leibniz’s 

Principle of Indiscernibles with the existence of some highly homogeneous mathematical 

objects—such as the Euclidean plane, where all points seem indiscernible from each 

other. The (somewhat irritating) question was then: “Since any predicate true of one 

given point of the Euclidean plane will also be true of any other point, how can you 

possibly know there is more than just one point in this plane?” Weak discernibility was 

meant to provide a rigorous answer to this: it allows you to determine how many identical 

iron spheres there are in Black’s otherwise empty universe. However, a physicist dealing 

with a particular system will not only want to describe the number of different possible 

states. He will also need to make objective reference to a certain, particular state in such a 

way that any other physicist will understand which state he is referring to.  

I say an element in a structure can be identified (or individuated) if there exists a 

one-place predicate that allows absolute discernibility from any other element. In this 

way, paraphrasing Weyl, we find “a conceptual fixation [of the element] that would 

enable one to reconstruct [it] when it has been lost”11.  

Secondly, this identification needs to be “qualitative”. As Dieks (2014) rightly 

points out, Quine’s whole distinction implicitly depends on the kind of predicates 

allowed. For, if among the accepted predicates are included “referential devices as proper 

names, proper adjectives and verbs”, then any two objects possessing a thisness will 

automatically become absolutely discernible, and the grades of discriminability become 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10 In (Quine 1960), the author introduced the distinction between absolute and relative discernibility. The 
third term was introduced in (Quine 1976), but there he changed “relative discernibility” into “moderate 
discernibility”. However, I follow the terminology that has been adopted in the philosophy of physics 
literature (Saunders 2006, Dieks 2014). 
11 In the original, Weyl writes:  “A conceptual fixation of points by labels […] that would enable one to 
reconstruct any point when it has been lost, is here possible only in relation to a coordinate system, or frame 
of reference, that has to be exhibited by an individual demonstrative act.” (Weyl 1949, p. 75) 
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useless12. Therefore, a criterion, for what Dieks calls the “scientific respectability of 

relations [and predicates]”, has to be introduced. Fortunately, since we are here dealing 

with mathematical objects that are schematic structures, we know precisely which 

predicates are “scientifically respectable” in this context. As Esfeld and Lam stress,  

It goes without saying that there is in [structuralism] no question of identity 

conditions for an object independently of other objects. But this does not mean that 

relations cannot provide identity conditions. Which relations make up for identity 

conditions for which types of objects depends obviously on the case under 

consideration. (Esfeld and Lam 2009, p. 8) 

More precisely, to insure the relations —and predicates built from relations—do not 

depend on the superfluous nature of the elements in the structure, the allowed, respectable 

properties have to be invariant under any isomorphism. These properties are called 

“structural” by Awodey (2013, p.5) and “objective” by Weyl (1949, p. 73).  

Thus, if a mathematical structure is to fulfill the requirement of individuation, 

physical states have to be individuated by ‘objective’ or ‘structural’ properties. In 

particular, these properties have to be invariant under any automorphism. This simple 

remark is actually very fruitful, for it furnishes a practical tool to detect the “amount of 

individuation” that can be provided within a given mathematical structure. Indeed, by the 

above definitions, it follows that two elements related by such an automorphism cannot 

be absolutely distinguished—and hence cannot be individuated either. In fact, the orbits 

of the group of automorphisms are the smallest subsets of the structure that can be 

identified or individuated13. The (internal) descriptive power of a structure is thus 

encapsulated in the action of its group of automorphisms, and we arrive at the following 

consequence: if a physical system is to be completely characterized by a mathematical 

structure S (that constitutes its phase portrait), then its possible physical states ought to 

be described by the orbits of the automorphism group Aut(S).  

To conclude this section, notice how this new point of view provides yet another 

way of understanding the lack of descriptive power of Hilbert spaces. Indeed, given an n-

dimensional Hilbert space H, its group of automorphisms is the group U(n) of unitary 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 Adams (1979) introduced a distinction between “thisness” and “suchness”. Intuitively, the thisness (or 
haecceity) is the property of an object that allows one to point at it and say in a meaningful way ‘this 
object’. On the other hand, “suchness” is a synonym of “qualitative property”—and also, in this paper, of 
“objective property” and “structural property”. 
13 Given the left action of a group G on a set E, the orbit Ox of an element x is the subset of elements of E to 
which x can be transformed by some element of G. 
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transformations. Now, a pure state of a quantum system is supposed to be described by a 

ray of this Hilbert space, but the action of U(n) on the set of all rays is transitive: the 

projective Hilbert space is completely homogeneous and no physical state can be 

individuated. Indeed it turns out this property of homogeneity or maximal symmetry can 

even be used to define projective Hilbert spaces (Ashtekar and Schilling 1997, section 

III.B.). 

 

3. Methods for introducing individuality into Quantum Mechanics 

 

Let me briefly summarize what has been said so far. When dealing with a certain 

class of physical systems, the mathematical characterization of a generic system aims to 

describe the phase portrait of all its possible states. The mathematical objects involved 

are defined only up to isomorphism and are thus, in Awodey’s terms, “schematic 

structures”. If, rather than describing the minimal framework, one expects these 

mathematical definitions to completely capture all the physical information of a given 

system—endorsing hence what I called the descriptive perspective—one is led to the 

strong requirement of individuation for physical states. On the other hand, the main 

ingredients of the standard formalisms of both Classical and Quantum Mechanics—

namely, symplectic manifolds and Hilbert spaces—do not meet the latter demand. There 

thus emerges a fundamental tension between the intended purpose of the mathematical 

definitions of mechanical systems and the basic formalism used in the theory.  

The main thesis of the present paper is that this tension has been one of the driving 

forces in the Foundations of (Quantum) Mechanics, in the sense that many of the 

developments in this field can be retrospectively understood as attempts to overcome it. 

The second part of the work is devoted to a brief survey of some of the mathematical 

notions introduced in the quantum formalism in the light of this understanding. 

 

3.1. Three approaches to introducing individuality 

At this point, the essential problem we face in the standard quantum formalism is 

the lack of enough qualitative properties: given only an abstract Hilbert space, it is 

impossible to make unambiguous reference to a specific ray without appealing to any 
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primitive thisness—this is the content of Weyl’s previous citation14. But “science is 

averse to the use of the notion of haecceity, “primitive thisness”, in order to individuate 

objects” (Dieks 2014, p. 43). To avoid this, one option would be to discard Hilbert spaces 

from the outset and start looking for completely new mathematical structures that would 

do the job. However, the use of Hilbert spaces in the practice of Quantum Mechanics is 

so widespread and deep-rooted, that an alternative may be sought—namely, to retain 

Hilbert spaces but enrich them with further structure: i) consider projective Hilbert spaces 

as a sort of homogeneous underlying receptacle involved in the description of any 

physical system; and ii) describe a concrete and specific system with a (slightly) more 

sophisticated mathematical setting, that would somehow break this homogeneity and 

convey to the different physical states qualitative properties sufficient to distinguish 

them. In other words, address the problem of how to transform a mere numerical 

multiplicity into a multiplicity of qualitatively distinct elements15.  

In the standard formalism, the key technical concept needed to implement this idea 

of “adding extra structure” is that of a representation: to describe a system, one should 

not consider a bare Hilbert space but, instead, a Hilbert space only insofar as it is the 

canvas on which some external information is instantiated. There are at least three 

different strategies that have been followed in mathematical Physics. 

i) Physical systems as representations of algebras. First, one can claim the 

crucial information about a physical system lies in the algebraic structure of 

the observables. Thus, a physical system would be described by the 

representation of an abstract C*-algebra A—that is, by a triple (A, H, π) where 

H is a Hilbert space and π is a morphism of C*-algebras from A to B(H), the 

algebra of all bounded operators. This road leads to the algebraic formulation 

of Quantum Mechanics (Strocchi 2005) and the theory of algebraic quantum 

fields (Haag 1996). 

ii) Physical systems as representations of groups. On the other hand, one can try 

to build up the theory by focusing on the notion of group, in which case the 

set of possible states is to be mathematically described by a unitary group 

representation—that is, by a triple (G, H, ρ) where G is now a group and ρ is a 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14 See footnote 9. 
15 By "numerical multiplicity” I mean a multiplicity of elements that are only weakly discernible. A 
mathematical structure is a numerical multiplicity if the action of its group of automorphisms is transitive.  
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morphism of groups from G to U(H), the group of all unitary operators. This 

is the road famously followed by Wigner (1959), Eddington (1939) and 

Souriau (2005), among many others. 

iii) Physical systems as systems of imprimitivity. In Mackey’s approach to 

Quantum Mechanics, the central notion is that of a G-space (i.e. a space X 

equipped with a group action) and an (elementary) quantum system is then 

defined as an (irreducible) representation of a G-space. A representation of a 

G-space is more commonly called a system of imprimitivity16. 

Paraphrasing Castellani, I call these the algebraic, group-theoretical and 

geometrical approaches to the problem of individuation of physical states17. To take an 

example, consider again the description of the non-relativistic spin-zero particle moving 

in a three-dimensional space. This quantum system could not be characterized solely by 

the Hilbert space L2(R3). For an algebraist—who considers properties (observables) to be 

primitive—it is to be determined as an irreducible representation of the Weyl algebra18 

and it is well-defined because of the Stone-von Neumann uniqueness theorem; for a 

group-theorist—who considers symmetries to be primitive—the system is defined as the 

only irreducible unitary representation of the Heisenberg group H7; finally, for a 

geometer—who considers space to be primitive—the system is defined as an irreducible 

representation of the action of translations on the Euclidean space, and the uniqueness of 

the definition is secured through Mackey’s theorem of imprimitivity.  

Despite their differences, there is a clear technical sense in which the definitions are 

equivalent for this particular quantum system (for example, the Weyl algebra is 

isomorphic to the group C*-algebra associated to the Heisenberg group (Strocchi 2005, 

p.60)). Moreover, the three approaches share the same underlying idea: they add 

something to the initial abstract Hilbert space, and, by doing so, they define a new 

structure with a reduced group of automorphisms. In turn, this reduction entails an 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
16 Hence, in this third option, a system is described by a tuple (H, G, X, ρX, ρH, π) where ρX is the action of G 
on X, ρH is the action of G on H  and π is a C*-algebra morphism from C0(X, �) to B(H). For a modern 
introduction to Mackey’s approach, see Landsman 2006 and Varadarajan 2007. 
17 In (Castellani 1998), the author considers the problem of constitution of physical objects: “What kind of 
properties and prescriptions do we need in order to construct an object?”, and then studies “the group-
theoretic approach to the problem […] grounded on the idea of invariance.” (p. 182). 
18 In Strocchi’s words: “The abstract algebra generated by (abstract) elements U(α), V(β),  α, β � R […] 
satisfying U(α) V(β) = V(β) U(α) exp(-iαβ), U(α) U(β) = U(α+β) and V(α) V(β) = V(α+β) is called the Weyl 
algebra.” (Strocchi 2005, pp.58-59) Notice his insistence on the abstract character of this definition. 
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emergence of some qualitative properties: not all rays will be related to each other by an 

automorphism, and a certain amount of individuality has thereby been introduced.  

Nonetheless, the question still remains: Are these new definitions acceptable? Do 

these newly introduced structures provide the means for conferring individuality on 

physical states? To answer this, we need to investigate how structural properties are 

defined and which substructures they allow us to individuate. In the next section, we shall 

explain the mechanism of individuation in the group-theoretical approach, leaving the 

analysis of the other two strategies for future research. 

 

3.2. Properties in the group-theoretical approach 

Let us restate the problem from the group-theoretic viewpoint. Essentially, the 

difficulty encountered with Hilbert spaces is that their group of automorphisms is too big: 

there is only one orbit (the action of Aut(H) is transitive) and it is thus impossible to find 

invariant properties that would differentiate different subspaces of H. To break the 

homogeneity of this given Hilbert space, an abstract group G, external and independent 

to H, is added. This allows to select, among all available transformations of the space 

state (Aut(H)), those that should be considered as meaningful (ρ(G)). More precisely, 

whereas an automorphism of H will not necessarily be an automorphism of H G =(G, H, 

ρ), the elements in ρ(G) will19.  Therefore, in this perspective, abstract groups enter the 

picture, not in order to introduce symmetries, but in order to break them—this is quite 

the opposite of what is usually thought.  

In particular, since structural properties are by definition invariant under 

isomorphisms, they need to be invariant under the action of the abstract group G. Put 

differently, it is possible to individuate a subspace of H only if it is stable under this 

action. Now, recall H G is meant to characterize the phase space of the physical system. 

This means the smallest subspaces of H that can be individuated are to be regarded as 

describing physical states. By the above argument, physical states ought then to be 

described by G-invariant subspaces that contain no smaller invariant subspaces. But this 

is precisely the technical definition of an irreducible representation! Hence, the group-

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
19 To see this, consider an element g of the group G. The unitary representation (G, H, ρ’) defined by 
ρ’(g’)=ρ(g)ρ(g’)ρ(g-1) for any g’ in G is equivalent to (G, H, ρ), and the intertwining operator that achieves 
the isomorphism is precisely ρ(g).  
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theoretical approach to the individuation of physical states leads naturally to the 

following conclusion: 

Description of states and properties: if a specific quantum system is 

(described by) the schematic structure (G, H, ρ), then a state is necessarily an 

irreducible representation and physical properties are indices 20  of these 

representations.  

Of course, this should recall Wigner’s famous definition of particles as irreducible 

representations of the Poincaré group (Wigner 1939), as well as Weyl’s insight that “[a]ll 

quantum numbers […] are indices characterizing representations of groups” (Weyl 1950, 

p.xxi) (more recently, this has also been at the origin of a careful and ambitious group-

theoretical analysis of Mechanics (Catren 2014)). The strength of this whole approach, 

which rests on an analysis of the theoretical means required to objectively single out 

specific quantum states, is that, not only do we recover Weyl’s observation, but we also 

understand that it could not have been otherwise: quantum numbers must be indices of 

representations simply because they must be structural properties. 

 

3.3. An example: the group S0(3) and angular momentum  states 

To illustrate the procedure of individuation in the group-theoretical setting, 

consider a quantum system whose only property is angular momentum. It can be, for 

example, a free spherical top. It is then customary to take the Hilbert space of states to be 

L2(SO(3)) (Ashtekar and Lewandowski 2004, section IV.A.). In the light of what has been 

said, this actually means that one takes the regular representation of the group SO(3), and 

that L2(SO(3)), equipped with the natural left action of SO(3), is a realization of this 

representation.  

To distinguish the different possible states of the system, one first needs to look for 

the irreducible representations. This is done by the Peter-Weyl theorem: it decomposes 

the (infinite-dimensional) regular representation into the direct sum of all (equivalence 

classes of) finite-dimensional irreducible representations:  

L2(SU(2)) = ⊕ ml Vl  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
20 An ‘index’ is a number that takes different values for different representations.  
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where ml = 2l+1 = dim Vl  is the multiplicity of each irreducible representation Vl. From 

this decomposition emerges the first quantum property—in physics: the total angular 

momentum; in mathematics: the highest weight. It is the index l that allows the 

individuation of the different subspaces Vl.  

But this is not enough, for if we want to capture the states, we also need to 

individuate the one-dimensional subspaces lying inside each Vl. In the mathematical 

theory of Cartan-Weyl, this move corresponds to considering the maximal abelian 

subgroup—in this case, U(1)—and once again breaking the irreducible representations of 

the whole group into irreducible representations of the subgroup: 

Vl = ⊕Vl,m  

In this second stage what emerges is the second quantum property—in physics: the 

magnetic quantum numbers; in mathematics: the weights. It is the index m characterizing 

these one-dimensional irreducible representations of U(1). 

Thus, in this description that only uses Hilbert spaces and groups, there is a basis of 

states that can be discerned using a set of objective properties. Whereas elements of a 

bare projective Hilbert space did not possess any qualitative properties, the introduction 

of an abstract group has brought about an emergence of different qualitative properties 

and successfully transformed the homogeneous canvas of a numerical multiplicity into a 

multiplicity of qualitatively discernible states. 

 

4. Conclusion 

 

Among the most debated issues in the Metaphysics of Quantum Mechanics, the 

interpretation of the wave function occupies a central place (Dorato and Laudisa, 2015). 

In this context, many of the arguments for or against a realist wave function ontology 

seem to rely heavily on the definition of a wave function as a complex-valued function 

over configuration space. But the mathematical developments in the foundations of 

Mechanics clearly show there is no reason to prefer a description of physical states in 

terms of functions over configuration space rather than, for example, in terms of abstract 

square-summable sequences. Therefore, before trying to build an ontology for the theory, 

it seems to me crucial to understand precisely how physical systems are described in the 

mathematical formalism of Mechanics. The aim of the paper was to start investigating 
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this question, and to trace the consequences of taking such formal descriptions seriously. 

The analysis paid special attention to the way (in)discernibility was handled. The results 

can be summarized as follows:  

1. The mathematical objects used in the definitions of physical systems are 

schematic structures, insofar as they are defined only up to isomorphism. The 

precise nature of the elements in the structure is either a meaningless notion or 

an otiose one, and in any case should be irrelevant to any philosophical of the 

formalism of Quantum Mechanics. 

2. Moreover, a quantum system cannot be mathematically characterized by a 

projective Hilbert space, since the elements of such a space are only weakly 

discernible. This is technically captured by the transitive action of the group of 

automorphisms. To introduce individuality and qualitative properties, one 

needs to add extra structure. 

3. In the group-theoretical approach, the emergence of qualitative properties 

conferring individuality to the different states occurs through a mechanism of 

restriction: an abstract group G is introduced, conveying a physical meaning to 

a restricted set of the group of automorphisms. States are described as 

irreducible representations of some group and quantum properties, because of 

their structural nature, are necessarily indices characterizing them.  

Strange as it may sound, this analysis shows there is no clear-cut understanding of 

what a wave function—i.e. a quantum state—actually is. At any rate, any sound 

definition will involve highly abstract entities, such as C*-algebras or the Heisenberg 

group. Therefore, wave function realists seem to be necessarily committed to being realist 

about these abstract schematic structures. They will thus be realist about a big part of 

pure Mathematics, and this is a step they may not want to take.  
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