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Abstract

This paper motivates and introduces a new method of interpret-
ing complex relation terms in a second-order quantified modal lan-
guage. The new method of interpreting these terms establishes an
interesting connection between λ and ε calculi, and the resulting
semantics provides a precise understanding of the theory of rela-
tions. In addition to motivating the new method generally, several
research problems in connection with previous, algebraic methods
for interpreting complex relation terms are discussed and solved.

Relations are not sets and predication is not set membership. To as-
sert that John loves Mary or that 1 < 2 is to assert that John bears a certain
(two-place) relation, loves, to Mary and that 1 bears a certain (two-place)
relation, less than, to 2. It is not to assert that 〈John,Mary〉 or 〈1,2〉 is
an element of some set. Similarly, to assert that John is happy or that
2 is prime is to assert that John or 2 has (or exemplifies or instantiates) a
certain property (i.e., one-place relation), namely, being happy or being
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prime. It is not to assert that John or 2 is an element of some set. Yet
atomic predications of the form Fnx1 . . .xn (e.g., Rxy or P x) in predicate
calculi are standardly modeled and interpreted as claims solely about set
membership: n-place predicates of the predicate calculus are standardly
interpreted as denoting or signifying sets of n-tuples and the n-place
predicates of the modal predicate calculus are standardly interpreted
as denoting or signifying functions that map each possible world to a
set of n-tuples. Although this standard interpretation allows us to in-
vestigate the metatheoretical properties of these calculi in set-theoretic
terms, such an interpretation is nevertheless philosophically incorrect.
In a philosophically proper interpretation, predicates denote or signify
relations, not sets or functions from worlds to sets, and if we want to use
set theory to represent or model the truth conditions of exemplification
claims, relations should play some role in those truth conditions.

In Section 1, I rehearse the prima facie case for this last claim and
thereby provide general motivation for developing an intensional inter-
pretation of the modal predicate calculus in which the predicates denote
relations. Although such intensional interpretations have been proposed
before, they give rise to a number of research problems. These are de-
scribed in Section 2 and the discussion there motivates specific features
of the system presented in the main sections of the paper, namely, Sec-
tions 3 – 5. This system achieves the research goals implicitly defined
by the discussion in Sections 1 and 2, and one of its distinguishing fea-
tures is that an ε-calculus in the metalanguage is used to interpret the
λ-calculus in the object language. The system not only provides a better
conception of the predications expressed by primitive atomic formulas
of the (modal) predicate calculus, but also provides us with a formalism
for asserting a precise theory of relations conceived as genuine entities
in their own right and not some other thing.

1 General Motivation

To focus our attention, consider a second-order modal language with
definite descriptions (i.e., complex individual terms, interpreted rigidly
for simplicity) and λ-expressions interpreted relationally rather than
functionally (thereby construing them as complex predicates or n-place
relation terms). In the traditional interpretation of this language, rela-
tions are assumed to be functions from possible worlds to sets of indi-
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viduals and so the latter are assigned as the semantic values of the sim-
ple predicates and λ-expressions. Though this traditional interpretation
suffices for the study of the metatheoretical properties of this language,
it fails to offer a philosophically proper understanding of the language
as a whole, for the following reasons:

• The interpretation represents relations and predication purely in
terms of sets and set membership, and so doesn’t acknowledge the
fact that relations aren’t sets and that predication involves those
relations.

• The interpretation turns the second-order comprehension princi-
ple into a comprehension principle for sets or functions rather than
for relations.

• The interpretation doesn’t allow us to assert that there are neces-
sarily equivalent but distinct relations.

• The interpretation allows one to mistakenly suppose that the truth
value of a sentence changes from world-to-world because the mean-
ing of the sentence changes from world-to-world. This would be a
misconception of modal language.

• Relations and predication have 0-place cases (a 0-place relation is
a proposition and the 0-place case of predication is just truth). But
sets and set membership, and functional application, don’t have a
0-place case.

We discuss these in turn.

1.1 Relations are not Sets

The reason that relations are not sets and predication is neither set mem-
bership nor functional application is that a relation characterizes its argu-
ments, whereas a set merely collects its members and a function merely
correlates its arguments and values. There is a important difference be-
tween characterization, collection, and correlation.1 When one asserts:

1In the following remarks, one might substitute the notions of classify and classification
for collect and collection. However, in some literatures, classification is based on one or more
shared common characertistics and so already presupposes the notion of characterization.
The notions of collect and collection don’t carry this presupposition and so better capture
the essential difference between a set and its members.
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• Bill is human.

• 3 is prime.

one is predicating properties (i.e., 1-place relations) of objects. That is
why the logical form of both sentences is P x. One is characterizing Bill
and the number 3 as being a certain way, and the expressions “being hu-
man” and “being prime” are used to indicate the characterizations. We’re
not merely collecting Bill and the number 3 into certain sets because, as
a mere collection, no set characterizes its members in the way that proper-
ties characterize the objects of which they’re truly predicated. Of course,
one can specify a set with the help of predication. When one specifies
the set of humans, one is appealing to the property of being human and
relying on predications/characterizations of the form “x is human” (‘Hx’)
to identify the members of the set. Without that predication, the set of
humans is just a container whose members could be specified with a list.
Similarly, the core idea of a function is that of a mapping. But to map
one thing to another is not to predicate anything of the first thing. In
the above, bulleted predications, one is not merely using the property of
being human to map Bill to The True, nor merely using the property of
being prime to map the number 3 to the True. Such a mapping is a mere
correlation. In mapping (associating) a to b, there is no predication going
on, only a connection. By contrast, a property characterizes an object in
a way that a function does not.

Similar considerations about characterization, collection and corre-
lation apply when we move from one-place atomic predications of the
form P x to two-place atomic predications of the form Rxy. Indeed, pred-
icational statements of the form Fnx1 . . .xn (of which Rxy is a 2-place in-
stance) are more fundamental than functional application statements of
the form f (x1, . . . ,xn−1) = xn. The relational form Rxy correctly analyzes
predications of the form:

• John loves Mary.

• Russell thought about the number 1.

• 3 < π.

Frege analyzed these sentences in terms of functional application, which
he took as basic. Set theorists have, in turn, analyzed functional applica-
tion and, subsequently, relational predications, in terms of membership



5 Relations, Complex Terms, and λ and ε Calculi

and sets of ordered pairs or sets of n-tuples. But functional application
and set membership are only mathematical models of predication and
they lose information precisely because neither correlation or collection
fully represent characterization, as suggested above. Thus, representing
predication by functional application or set membership doesn’t capture
everything that is asserted when we predicate properties and relations of
things.

Indeed, predication is so fundamental that it cannot be analyzed in
terms of any other notion; instead, we have to take it as primitive and
develop a theory of relations and exemplification, just as in set theory we
develop a theory of sets and set membership. Unfortunately, philoso-
phers haven’t been as quick as set theorists to supply precise, axiomatic
theories of relations. But such an axiomatic theory will be used in what
follows to ground the intensional interpretation of the predicate calcu-
lus described in subsequent sections, in the same way that axiomatic set
theory grounds extensional interpretations of the calculus, indeed, in
the same way that axiomatic set theory grounds the interpretation of the
language of set theory.

Note that it is precisely because the predicate calculus is so funda-
mental in character that we use it to formalize mathematics. In the
canonical formulation of set theory, a membership relation is denoted by
relation term, so that x ∈ y is infix notation for a statement of the form
Rxy. And though it is often thought that we can either (a) take functions
(or sets) as basic and define relations (as Frege did) or (b) take relations
as basic and define functions (as Russell did), evidence has emerged re-
cently that suggests relations are more fundamental than functions; re-
lational type theory, at least, can capture some forms of reasoning that
functional type theory can’t capture (Oppenheimer & Zalta 2011). Thus,
time and energy should be spent investigating an interpretation of the
predicate calculus in which relations are taken as primitive semantic el-
ements.

The above considerations don’t require us to eliminate sets and set
membership altogether from the semantics. Rather, it means that we
should, at the very least, (a) assign the predicate ‘R’ a denotation, d(R), in
a primitive domain of relations, (b) assign each relation r in the domain
of relations an extension exw(r), that varies from world to world, and
(c) assign truth conditions to the formula ‘Rab’ with respect to a world
w as follows: 〈d(a),d(b)〉 ∈ exw(d(R)).
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1.2 Comprehension Conditions

The standard comprehension schema for relations expressible in a second-
order modal language is formulated as:

∃Fn�∀x1 . . .∀xn(Fnx1 . . .xn ≡ ϕ), where ϕ has no free Fns.

We can accept this schema as asserting existence conditions compre-
hending the domain of relations, the instances of which constitute true
statements asserting the existence of relations; e.g., where G and S are
free variables:

• ∃F�∀x(Fx ≡ ¬Gx)

• ∃R�∀x∀y(Rxy ≡ Syx)

• etc.

Note that under the traditional interpretation of the modal predicate cal-
culus, the schema asserts existence conditions comprehending a domain
consisting of sets or functions. But no one would accept the above com-
prehension schema as a correct theory of sets or functions; we have much
better theories about the existence conditions of those entities, such as
the existence axioms of Zermelo-Fraenkel set theory.

Thus, in a proper interpretation of the language in which the com-
prehension schema for relations is couched, the quantifier ∃Fn in the
schema should range over a domain of relations, conceived as primitive
entities in their own right. But that is only a start. Interpretations with a
domain of primitive relations don’t yet offer any obvious means of inter-
preting the complex predicates (i.e., the λ-expressions) except by way of
the set-theoretic satisfaction conditions of the matrix ϕ occurring in the
expression [λx1 . . .xn ϕ]. For how are we to relate the primitive property
denoted by [λxP x&Qx] to the primitive properties denoted by the pred-
icates P and Q if not by using set theory to represent the extension of
the complex predicate in terms of the extension of the simple ones? This
question brings us to the next reason why the traditional interpretation
isn’t a philosophically correct interpretation.

1.3 Identity Conditions

A philosophically proper theory of relations should allow us to assert
that certain necessarily equivalent relations are distinct. To demonstrate
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this in terms of a canonical example, let’s formally represent the follow-
ing expressions from natural language in the following manner:2

• being red and not red: [λx Rx&¬Rx]

• being a barber who shaves all and only those who don’t shave them-
selves: [λx Bx&∀y(Sxy ≡ ¬Syy)]

Necessarily, nothing exemplifes either property and so it follows that:

�∀z([λx Rx&¬Rx]z ≡ [λx Bx&∀y(Sxy ≡ ¬Syy)]z)

Moreover, we know that the following equation is true:

{x |Rx&¬Rx } = {x |Bx&∀y(Sxy ≡ ¬Syy) }

since both sets are the empty set. Hence, the function that maps every
possible world to {x | Rx & ¬Rx } is identical to the function that maps
every possible world to {x |Bx&∀y(Sxy ≡ ¬Syy) }.

Clearly, then, we can’t use sets or functions from worlds to sets to
represent properties and consistently assert the following inequality:

[λx Rx&¬Rx] , [λx Bx&∀y(Sxy ≡ ¬Syy)]

But it is reasonable to assert the above inequality, for the following rea-
sons:

• Someone (e.g., someone who hasn’t thought through the logical im-
plications) could believe that there is a barber who shaves all and
only those who don’t shave themselves, i.e., believe

∃z([λx Bx&∀y(Sxy ≡ ¬Syy)]z)

without believing that there is a something that both exemplifies
and fails to exemplify being red, i.e., without believing:

∃z([λx Rx&¬Rx]z)

• The argument to the conclusion that some object, say a, fails to ex-
emplify [λx Bx & ∀y(Sxy ≡ ¬Syy)] is very different from the ar-
gument to the conclusion that a fails to exemplify [λx Rx& ¬Rx];

2Note that in what follows, λ-expressions will be completely contained within square
brackets, so that, where ϕ is any formula, [λxϕ] is a 1-place relation term and [λx1 . . .xnϕ]
is an n-place relation term.

Edward N. Zalta 8

the former argument involves claims about the B property and S
relation, while the latter involves claims about the R property and
doesn’t appeal to any claims about relations. The radical difference
in logical roles can be considered evidence that the properties are
different.

• One can tell a story about a barber who shaves all and only those
who don’t shave themselves without telling a story about some-
thing which both is and isn’t red.

No doubt, one may find all of these reasons controversial, either on the
grounds that the data are controversial or on the grounds that the data
don’t inevitably lead one to the conclusion. The point is only they these
reasons provide a prima facie case for putting time and energy into devel-
oping interpretations of the predicate calculus and relational λ-calculus
which don’t collapse equivalent relations.

1.4 Avoiding a Misconception

It is a truism that the truth of the sentence ‘Snow is white’ depends both
on the fact that it means that snow is white and on the fact that the sub-
stance snow has the property of being white, for the sentence ‘Snow is
white’ would have been false: (a) if our language had been different (e.g.,
if ‘snow is white’ had meant that grass is purple), or (b) if our world had
been different (e.g., if the substance snow had had the property of be-
ing green). When we express ourselves using modal language, we are
concerned with the second rather than the first alternative. For example,
when we ask, “Might snow have failed to be white?”, we are not asking
about whether the sentence ‘Snow is white’ could have expressed a false-
hood, but rather whether snow might have been some other color. But
the traditional interpretations of modal propositional and predicate cal-
culi do not distinguish these two alternatives. The V (valuation) function
of traditional interpretations maps the atomic sentences of the language
to a truth value at each world, and maps each predicate to some set at
each world. The V function doesn’t exclude the suggestion that the rea-
son that V(p,w1) = T and V(p,w2) = F is that the proposition letter ‘p’
means one thing in w1 and means something else in w2, and moreover,
what it means in w1 is true at w1 and what it means in w2 is false at
w2. But what an interpretation should do is make it clear that ‘p’ has the
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same meaning in both w1 and w2 and that what it means is true at w1
and false at w2.

This is what our V function will do in the interpretation developed
in Sections 3 – 5, for the 0-place relation term ‘p’ will simply denote a
proposition (i.e., a 0-place relation). The denotation of p is not relative to
a world; ‘p’ simply has a denotation, where the denotation function, rel-
ative to an interpretation and assignment to the variables, is not a binary
function (with the first argument being a term and the second a possi-
ble world) but rather a unary function on terms. In the first instance,
relations, not relation terms, will be assigned extensions at each world.
Thus, the extension of a proposition (i.e., 0-place relation) at each world
w is a truth value. A sentence or other 0-place relation term acquires
a truth value at each world in virtue of denoting a proposition that has
a truth value at each world. So in the interpretations developed below,
a change of meaning is not the reason why the truth value of ‘p’ can
vary from world to world: the sentence letter ‘p’ has only one meaning,
namely, the proposition it denotes.

Similarly, traditional interpretations don’t exclude the suggestion that
the reason why w1 |= P a and w2 6|= P a is that both (a) the predicate ‘P ’
means one thing in w1 and means something else in w2, and (b) given
what ‘P ’ means in w1, the formula ‘P a’ is true at w1 and, given what ‘P ’
means in w2, the formula ‘P a’ fails to be true at w2. But what an inter-
pretation should do is make it clear that: (a) ‘P ’ has the same meaning in
both w1 and w2, (b) that its meaning is a certain property, say r1, and
(c) the reason ‘P a’ has different truth values at w1 and w2 is that a is in
the extension of the property r1 at w1 but fails to be in the extension of
r1 at w2. This will be a feature of the interpretation developed in Sec-
tions 3 – 5, for the 1-place relation term ‘P ’ will simply denote a 1-place
relation r1 and the extension of this property will vary from world to
world. A change of meaning cannot be the reason why ‘P a’ changes its
truth-value from world to world.3

1.5 Propositions and Truth

The final problem with traditional interpretations is that they don’t nat-
urally accommodate the fact that the 0-place case of the predicational
form ‘Fnx1 . . .xn’ is simply the 0-place relation term ‘F0’ and the 0-place

3For a fuller discussion of the issue discussed in this subsection, see Zalta 1993.
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case of exemplification is therefore truth. Hereafter, we use ‘p’ as short-
hand for ‘F0’. A 0-place relation term denotes a 0-place relation, i.e., a
proposition. The 0-place term ‘p’ is therefore both a term and a formula.
It is possible to have both expressions of the form ‘p = p’, in which ‘p’ is
functioning as a term, as well as expressions of the form ‘p ≡ p’, in which
in which ‘p’ is functioning as a formula. When ‘p’ functions as a formula,
we read it as “p is true”, and so we read ‘p ≡ p’ as: p is true if and only
if p is true. That is, just as we use ‘exemplification’ to read ‘Fnx1 . . .xn’ as
x1 . . .xn exemplifies Fn (when n ≥ 1), we use truth (i.e., the 0-place case of
exemplification) to read the formula ‘p’.

Now these facts show the inadequacy of the traditional interpreta-
tions of the (modal) second-order predicate calculus, for the traditional
interpretation of ‘Fnx1 . . .xn’ (n ≥ 1) doesn’t generalize in a simple way
to the interpretation of ‘p’ (i.e., F0). Neither set membership nor func-
tional application has a 0-place case. In the traditional interpretation, to
generalize the predicate calculus so as to include 0-place relation terms,
one has to interpret these terms by introducing a different element into
the semantics, namely, a truth-value. For, as we’ve seen, the predicate
‘F’ in the formula ‘Fx’ is typically interpreted as a function from worlds
to sets. But how should we interpret ‘p’? There is no 0-place case of the
membership relation x ∈ y corresponding to the 0-place case of exempli-
fication. Nor is there a 0-place case of functional application; a function
must have an argument and a value; otherwise, there is no mapping. So
one has to interpret ‘p’ as a function from worlds to truth values. This
introduces a new semantic value into the semantics. It does no good to
suggest that the 0-place case of a function is a constant. A constant is
a symbol and is the wrong kind of thing to serve as the denotation of
the proposition symbol ‘p’. Our goal is to interpret p in a domain of
appropriate entities, such as sets, functions or propositions. The logi-
cian’s trick of modeling 0-place functions as constants doesn’t achieve
this goal; a constant doesn’t represent a proposition.

Contrast the above with an interpretation in which the predicates Fn

are interpreted as denoting relations. For one simply includes a domain
of 0-place relations along with all the other domains of n-place relations
for n ≥ 1. We don’t need a different kind of entity to serve as values for
the proposition terms. We don’t have to add truth values as entities to be
denoted or signified by any term of the language.

These facts are reinforced by considerations from type theory: a re-
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lational type theory can get by with just a single type i (individuals) and
a complex type 〈t1, . . . , tn〉. (In the modal case, one often sees an addi-
tional primitive type for possible worlds, but we may put this aside for
now.) Propositions can then be represented in relational type theory by
the empty type 〈 〉, in which n = 0. But in functional type theory, to rep-
resent propositions type-theoretically, one needs to add a new primitive
type for propositions or truth-values!4 For example, Church (1940, 56)
uses ι (individuals) and o (truth values) as primitive types and (αβ) as a
complex functional type. Montague (1974, 256) uses e (individuals) and
t (truth-values) as primitive types, and both 〈α,β〉 and 〈s,α〉 as complex
functional types (here ‘s’ is the type of a possible world). In relational
type theory, however, one doesn’t need Church’s type o or Montague’s
type t, since the type for propositions comes for free as the 0-place case
of the complex type!

This offers another reason why relations are in some sense more fun-
damental than sets or functions and, hence, why an intensional interpre-
tation of the modal predicate calculus, in which n-place relations (n ≥ 0)
are taken as primitive, deserves investigation.

2 Problems to Solve

Now that we have reasons for developing an interpretation that doesn’t
misconceive the predications expressed by the atomic formulas of the
predicate calculus, it would serve well to examine the problems with
relatively recent attempts to build such intensional interpretations. The
principal method that has been developed for building intensional in-
terpretations that also interpret the λ-calculus relationally is that of al-
gebraic semantics. After explaining this method (Section 2.1), we go on
to outline its the research problems it presents (Section 2.2), and these
serve to motivate the new method for building intensional interpreta-
tions that we develop in subsequent sections.

2.1 Previous Method: Algebraic Semantics

Philosophical logicians have previously developed intensional, relational
interpretations for the predicate calculus with λ-expressions by employ-
ing algebraic semantics. Algebraic logical functions, modeled on the

4For a full discussion of this issue, see Oppenheimer & Zalta 2011.
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predicate functors in Quine 1960 but transferred to the semantics, har-
ness simple properties, relations and propositions into complex ones.
Quine (1960) focused only on a simple predicate calculus without com-
plex terms, and showed how the variables might be eliminated. In that
paper, for example, Quine introduces (1960, 344) a derelativization oper-
ator ‘Der’ on predicates. Quoting Quine: if ‘B’ is the 2-place predicate
‘bites’, then ‘Der B’ is a 1-place predicate of ‘biting something’. Gener-
ally, Quine defines, (Der P )x1 . . .xn−1 iff there is something xn such that
P x1 . . .xn. So the sentence ‘Der Der B’ asserts that something bites some-
thing, and this eliminates the variables and variable-binding operators
in the formula ∃x∃yBxy. Quine goes on to introduce a variety of other
unary predicate-operators: Inv (major inversion), inv (minor inversion),
Ref (reflection), and Neg (negation), as well as the binary predicate-
operator × (Cartesian multiplication — to handle conjunctions).

By contrast, Bealer 1979, McMichael and Zalta 1980, Bealer 1982,
Zalta 1983, and Menzel 1986 recast Quine’s predicate functors into the
semantics of a language containing complex terms, and in particular,
containing λ-expressions interpreted relationally. Instead of Quine’s de-
relativization operator Der on predicates, these authors would introduce
into the semantics a projection operator on relations, PROJi (1 ≤ i ≤ n),
that maps an n-place relation to an n−1-place relation. For example,
PROJ2 maps the 2-place relation of biting to the property (1-place rela-
tion) of biting something, while PROJ1 maps biting to the 1-place relation
of being bitten by something. Thus the numerical index on PROJi doesn’t
indicate arity but rather indicates the place of the relation being pro-
jected onto some object in the domain. Then, the two λ-expressions:

• [λx ∃yBxy]: being an x such that x bites something

• [λx ∃yByx]: being an x such that something bites x

can be assigned, respectively, a denotation on the basis of the denotation
of the 2-place predicate B, as follows. Where d is a denotation function
with suppressed relativizations to some interpretation I of the language
and assignment f to the variables:

d([λx ∃yBxy]) = PROJ2(d(B))

d([λx ∃yByx]) = PROJ1(d(B))

A constraint is then placed on the extension of the complex relation at
every possible world by introducing a semantic function, exw, that maps
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an n-place relation and world w to a set of n-tuples of objects that stand
in the relation at that world. In the above examples, the constraint would
require:

exw(PROJ2(d(B))) = {o | ∃o′(〈o,o′〉 ∈ exw(d(B)))}

exw(PROJ1(d(B))) = {o | ∃o′(〈o′ ,o〉 ∈ exw(d(B)))}

The first of these stipulates that the extension at world w of the prop-
erty denoted by [λx ∃yBxy] is the set of all objects o such that for some
object o′ , the ordered pair 〈o,o′〉 is in the extension at w of the property
denoted by B. The second stipulates something analogous for the case
where the first place of the relation is projected.

The constraint can be formulated generally for 1 ≤ i ≤ n:

exw(PROJi(d(Rn))) =
{〈o1, . . . ,oi−1,oi+1, . . .on〉 | ∃oi(〈o1, . . .oi−1,oi ,oi+1,on〉 ∈ exw(d(R)))}

Clearly, when an n-place relation is projected in its i-th place, the result
is an n−1-place relation.

As the previously cited works show, a group of algebraic operations
along these lines can be defined; which ones are defined depend on the
primitives of the language, of course. In what follows, we’ll assume that
our language uses negation, conditionals (rather than conjunctions), and
the universal quantifier (instead of the existential quantifier) as basic.
So, an algebraic interpretation of such a language would include such
algebraic logical functions as: NEG (negation), COND (conditionaliza-
tion), REFLi,j (reflection or reflexivization), CONVi,j (conversion), and
UNIVi (universalization). These are, roughly, the semantic counterparts
to the Quinean syntactic operators. Moreover, such an algebraic inter-
pretation would include:

• PLUGi , to handle λ-expressions with singular terms such as con-
stants or free variables. Thus, d([λx Rxa]) is the 1-place property
PLUG2(d(R),d(a)), with the constraint, when r is a 2-place relation:

exw(PLUG2(r,o)) = {o′ | 〈o′ ,o〉 ∈ exw(r)}.

Note that Quine had no need of a PLUG operation on predicates
since the point of his paper (1960) was to eliminate singular terms.
Quine supposed that a constant could be replaced by a definite
description, and that definite descriptions could, in turn, be elimi-
nated in favor of existence and uniqueness claims.
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• NEC, to handle modality. For example, d([λx �P x]) is the 1-place
property NEC(d(P )), with the constraint, when r is a 1-place rela-
tion, that

exw(NEC(r)) = {o | ∀w′(o ∈ exw′ (r))}.

Quine had no need of a NEC operator for predicates either, since
he was skeptical of the meaningfulness of modal language and
thought it had no place in a proper science.

• VACi , to handle variables vacuously bound by the λ. For example,
d([λx P a]) is the 1-place property VAC1(PLUG1(d(P ),d(a))), with
the constraint, when r is a 0-place relation (i.e., a proposition), that

exw(VAC1(r)) = {o | exw(r) = True}.

Notice how the constraint placed on the world-relative extension
of the property VAC1(r) is vacuous. Quine didn’t introduce a sim-
ilar predicate functor since he wasn’t attempting to interpret λ-
expressions (which might have vacuously bound variables), but
only the sentences of first-order logic without complex terms and
without vacuously bound variables.

With this sketch then, we shall henceforth presume familiarity with this
previous strand of research, namely, the algebraic technique for giving
an intensional interpretation to the (complex) relation terms in a second-
order, quantified modal language. It should be clear that such an alge-
braic interpretation distinguishes the relations from their extensions at
a world, and so allows one to assert that necessarily equivalent relations
are distinct. Readers interested in more detail can consult the works
cited above.

2.2 The Issues

A group of interesting issues arise in connection with the algebraic in-
terpretations just sketched. In what follows, let ν1, . . . ,νn be any distinct
object variables. and call the formula ϕ in the λ-expression [λν1 . . .νn ϕ]
the matrix formula.

Issue 1: Is there a way to interpret an impredicative λ-expression,
i.e., a λ-expression whose matrix formula contains quantifiers bind-
ing relation variables?
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For example, there is no obvious way to use the algebraic functions de-
scribed so far to interpret such expressions as [λx ∃FFx], [λxy ∀F(Fx ≡
Fy)], etc. The reason is that the algebraic functions for producing com-
plex relations all operate on the argument places of the original relations,
and the constraints on the new relations govern how their extensions
among the objects match up with the extensions of the original rela-
tions. It is not obvious how to define algebraic functions that allow for
quantification over the relations themselves. If we go back to Quine’s
original syntactic operations, there has been work on eliminating the re-
lation variables in second-order logic (e.g., Došen 1988), and such work
might be adaptable to the interpretation of impredicative λ-expressions
in a second-order quantified modal logic. But the technique below offers
an alternative that is a much simpler way of doing this, and eliminates
the algebraic functions altogether.

A second issue is:

Issue 2: What should one do about the fact that the algebraic log-
ical operations overgenerate relations? How does one define a de-
notation for a given λ-expression when there are many appropri-
ate relations to choose from? Indeed, what does the algebra consist
of: do the algebraic logical operations generate the relations them-
selves or generate formal objects that represent relations?

To take a simple example, the 0-place term [λ ∃x∃yBxy] could denote
either PROJ1(PROJ2(d(B))) or PROJ1(PROJ1(d(B))), i.e., either (a) the
relation produced by first projecting the 2nd-place of the B relation and
then the 1st-place of the resulting relation, or (b) the relation produced
by first projecting the 1st-place of the B relation and then the 1st-place
of the resulting relation. Indeed, given that we have two perfectly good
semantic descriptions of the relation denoted by [λ∃x∃yBxy], should we
consider these semantic descriptions as directly describing two differ-
ent relations or as describing two formal objects that represent the same
relation? The answer is not obvious.

To see how the possibilities ramify, consider the following example.
Suppose the language contains the constant a, the 1-place predicate P ,
and a 2-place predicate S. Suppose further that the denotation function
d, relative to some interpretation I and variable assignment f , assigns to
these primitive expressions the values d(a), d(P ), and d(S), respectively
(again, suppressing the indices to I and f ). Then the algebraic logical
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functions described or referenced in the previous subsection would gen-
erate the following relations in the domain of relations:

REFL1,2(COND(d(P ),PLUG1(d(S),d(a))))
PLUG2(REFL1,3(COND(d(P ),d(S))),d(a))
REFL1,2(PLUG2(COND(d(P ),d(S)),d(a)))

Now consider the expression [λy P y→ Say]. The question arises: which
of the above relations should be assigned as its denotation? The con-
straints on the world-relative extensions of the algebraic functions PLUGi ,
REFLi,j , and COND combine to ensure that each of the above relations
can serve as the denotation of [λy P y→ Say]. That is, the constraints on
their world-relative extension functions will ensure each of the above re-
lations has an extension at each possible world that guarantees the truth
of λ-conversion:

�∀x([λy P y→ Say]x ≡ P x→ Sax).

So how does one assign a denotation to the λ-expression when there
are several algebraically-described relations to choose from? Indeed, are
we to consider the algebraic descriptions displayed above as directly de-
scribing different, but equivalent, relations or as describing several dif-
ferent formal objects that represent the same relation?

A final issue is:

Issue 3: If definite descriptions are included as primitive terms
in the language, then since a λ-expression may contain descrip-
tions that fail to denote, what should the denotation of such a λ-
expression be?

Suppose, for example, nothing at the distinguished actual world of an
interpretation is uniquely P , so that the description ızP z denotes nothing
(recall we are interpreting descriptions rigidly—if they fail to denote at
the distinguished actual world, they simply have no denotation). Then
the denotation of the expression [λy RyızP z] could be assigned in one of
two ways: it can be undefined (i.e., denotationless), on the grounds that
no appropriate relation can be contructed algebraically if one of the parts
of the λ-expression fails to denote, or it could be assigned a necessarily
empty property, on the basis of the fact that at each possible world, no
object satisfies the formula RyızP z.
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In Zalta 1983, 1988a, and elswhere, these three issues were addressed
within an algebraic framework as follows. With regard to Issue 1, im-
predicative complex terms were banished from the language; only pred-
icative complex terms were allowed. With regard to Issue 2, the λ-
expressions were partitioned into exhaustive and mutually exclusive syn-
tactic classes.5 Consider how this partition works in connection with
the more complicated example we discussed in connection with this is-
sue. The expression [λyP y→ Say] is syntactically categorized as the 1,2-
reflection of the expression [λyz P y→ Saz], which in turn is categorized
as the conditionalization of the two expressions [λyP y] and [λzSaz]. The
first of these latter is elementary and so denotes d(P ), and the second is
categorized as the 1st-plugging of the elementary expression [λyz Syz]
(which denotes d(S)) by the term a (which denotes d(a)). Consequently,
the denotation function assigns

REFL1,2(COND(d(P ),PLUG1(d(S),d(a))))

to [λy P y→ Say]. In this way, the denotation function can, for each com-
plex relation term, single out a unique element of the domain for it to
denote. The question, whether the various candidates for the denotation
of the λ-expression algebraic description directly describe several differ-
ent relations or describe several different formal objects that represent
the same relation, was left unanswered.

With regard to Issue 3, the assumption was made that if a descrip-
tion doesn’t denote, then neither does any complex term containing the
description. The logic was appropriately adjusted so that a free logic ap-
plied to any formula containing either a description or a λ-expression
containing a description, since both kinds of terms might fail to denote.

In the present paper, however, we develop a different approach to
all three issues. (1) Impredicative λ-expressions will be allowed and a
new approach to the interpretation of both predicative and impredica-
tive λ-expressions.6 (2) We will not use algebraic logical functions to
build complex relations, and so no question arises as to whether the al-
gebraic descriptions of complex relations directly describe different rela-
tions or describe different formal objects that represent a single relation.

5Bealer developed a similar partition in his 1979 and 1982. The partition in Zalta 1983
was developed with the help of Alan McMichael. See also the partition in Menzel 1986.

6Impredicative λ-expressions have proven extremely useful in object theory; e.g., Zalta
1999.
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Moreover, we don’t partition the λ-expressions into classes of expres-
sions having similar logical forms but instead into classes of expressions
that differ in logically insignificant ways. (3) We won’t assume that λ-
expressions containing non-denoting descriptions fail to denote.

To present our new approach to the three issues, we formulate a
second-order language with complex terms and then formulate a seman-
tics. The semantics has the interesting feature that it draws a connec-
tion between the λ-calculus (Church 1932), interpreted relationally, and
the ε-calculus (Hilbert 1922, Ackermann 1924). The key differences be-
tween the algebraic approach and the new approach developed here are
these:

• On the algebraic approach, the algebraic logical functions basi-
cally introduce complex formal objects that help us to represent
complex relations. But on the new approach presented below, no
such formal objects are used; the domain of relations consists sim-
ply of primitive relations, without any special formal structural
representations of those relations. Instead, the relations will be
described semantically using ε-terms, and a precise theory of re-
lations, statable in the object language, is used to axiomatize the
primitive relations.

• On the algebraic method, a unique member of the domain of rela-
tions is singled out for a λ-expression to denote. However, on the
method presented below, it suffices to identify some appropriate
element of the domain of relations to serve as the denotation of the
λ-expression. In other words, in order to give a precise technical
account of the meaning of the λ-expression, we shall suppose that
it suffices to assign it an appropriate meaning.

• On the algebraic approach, during the simultaneous definition of
denotation and truth, the denotation of the description ıνϕ (where
ν is any object variable) is assigned on the basis of the truth con-
ditions of ϕ, while the denotation of the λ-expression [λν1 . . .νn ϕ]
(n ≥ 0) is assigned on the basis of the logical form of the matrix
ϕ, not on the basis of ϕ’s truth conditions. Thus, on the algebraic
approach, although λν1 . . .νn and ıν are both are term-forming op-
erators that combine with formulas ϕ to produce terms, they are
assigned denotations in very different ways. However, on the new
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approach presented here, both the denotation of ıνϕ and the de-
notation of [λν1 . . .νn ϕ] are assigned on the basis of the (simulta-
neously defined) truth conditions of the matrix formula ϕ.

• Our new technique has the added advantage that if a λ-expression
contains a non-denoting description, it still denotes a relation. Since
the truth conditions for the matrix formula ϕ will be well-defined
even ifϕ contains a non-denoting description, the denotation func-
tion will successfully identify a denotation, given certain constraints
on interpretations. So one need not deploy a free logic to govern
the complex terms containing descriptions; a free logic is needed
only for the descriptions themselves.

To summarize, then, the new method (1) will assign denotations even to
impredicative λ-expressions, (2) will require no algebraic logical oper-
ators but rather a partition of the λ-expressions into classes the mem-
bers of which differ in logically insignificant ways from each other, and
(3) will assign denotations to λ-expressions containing non-denoting de-
scriptions.

We emphasize, finally, that our goal in what follows is simply to give a
new formal interpretation of the complex terms of a second-order quan-
tified modal language. It is not an attempt to build a model of any axiom
set. It is already known that second-order logic is consistent, that it can
be consistently extended by the λ-calculus, and that primitive descrip-
tions can be consistently incorporated into such a logic. So the goal is not
to build a model of second-order logic extended by the axioms for the re-
lational λ-calculus and Russell’s axiom for descriptions. The goal is to
provide a precise intensional interpretation of a second-order quantified
modal language with complex terms that both addresses issues (1) – (3)
and achieves the implicit goals defined by the discussion in Section 1.

3 The Grammar: A BNF Definition

We may precisely define our target language using Backus-Naur-Form
(BNF). In the BNF definition, we use the following metavariables.
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δ individual constants
ν individual variables
Σn n-place relation constants (n ≥ 0)
Ωn n-place relation variables (n ≥ 0)
α variables (i.e., individual or n-place relation variables)
κ individual terms
Πn n-place relation terms (n ≥ 0)
ϕ formulas
τ terms

The BNF grammar for our language is:

(n ≥ 0)
δ ::= a0, a1, . . .
ν ::= x0,x1, . . .

Σn ::= P n0 , P
n
1 , . . .

Ωn ::= Fn0 ,F
n
1 , . . .

α ::= ν | Ωn

κ ::= δ | ν | ıνϕ
Πn ::= Σn | Ωn | [λν1 . . .νn ϕ]
ϕ ::= Πnκ1 . . .κn | ¬ϕ | (ϕ→ ϕ) | ∀αϕ | �ϕ
τ ::= κ | Πn

Thus, if one defines an instance of our language by listing a finite vo-
cabulary of simple terms and giving a limiting value to n, the sentences
of the resulting grammar can be parsed by any appropriately-configured
off-the-shelf parsing engine. Note that terms of the form [λ ϕ] (i.e., 0-
place λ-expressions) also become defined as formulas, since they are 0-
place relation terms and the base clause for formulas ϕ stipulates that 0-
place relation terms are formulas (i.e., when n = 0, the formula Πnκ1 . . .κn
consists solely of the 0-place relation term Π0).7

In what follows, we sometimes, for readability, substitute simpler-
style variables. For example, we’ll write the atomic formulas F2

1x1x2 and
P 2

1 a1a2 as Fxy and Rab, respectively. Also, instead of F0
1 ,F

0
2 , . . ., we’ll use

the variables p,q, . . . .

7Note that our language is typed: no relation term can appear in argument position.
Thus, the λ-expressions can’t be predicated of other λ-expressions. These facts, coupled
with the fact that there are no mechanisms of self-reference, ensure that no Russell- or
Curry-style paradox can be formulated.
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4 The Semantics

To keep the semantics as simple as possible, we both: (a) use a fixed-
domain interpretation of modal logic without an accessibility relation
(thereby assuming S5), and (b) interpret the definite description ıνϕ as
rigidly denoting the object, if there is one, that is uniquely ϕ at the dis-
tinguished actual world, and nothing otherwise.8 With (b), we avoid
the need for a world-relative denotation function. The key idea in what
follows is to use an ε-calculus in the metalanguage to interpret the λ-
calculus in our object language.

4.1 Interpretations

A formal semantic interpretation I for our second-order quantified modal
language with complex terms is a 6-tuple: 〈D,R,W,w0,ex,V〉, defined as
follows:

• A nonempty domain of individuals D.

• A nonempty domain of relations R, where R =
⋃
n≥0 Rn, i.e., R is

the general union of a sequence of nonempty subdomains Rn for
n ≥ 0.

• A nonempty domain of possible worlds, W.

• A distinguished element of W, w0, known as the actual world.

• A binary function, ex, that assigns each n-place relation rn in R
(n ≥ 0) an exemplification extension at each possible world w as
follows:

– for n ≥ 1, ex assigns to each pair consisting of a relation rn in
R and possible world w in W, a set of n-tuples whose members
are in D; i.e., ex : Rn ×W→ ℘(Dn).

– for n = 0, ex assigns, to each pair consisting of a relation r0

in R and possible world w in W, one of the two truth-values
True or False; i.e., ex : R0 ×W→ {True,False}.

8Thus, if one were to develop a logic for such a language, the Russell axiom governing
primitive descriptions would be a contingent axiom (Zalta 1988b), and the Rule of Neces-
sitation would have to be configured so as to be applicable only to lines of a proof that
don’t depend on a contingent axiom or theorem.
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(We henceforth index ex to its second argument.) The idea here
is that (a) for n ≥ 1, the n-tuples in the set exw(rn) represents the
various ordered sets of individuals that exemplify rn at w, and (b)
for n = 0, exw(r0) is the truth-value of r0 at w.

• An interpretation function V that assigns a meaning to the (primi-
tive) constants of our language:

– where τ is any individual constant, V(τ) is an element of D,

– where τ is any n-place relation constant (n ≥ 0), then V(τ) is
an element of Rn, and so an element of R.

4.2 Variable Assignments

Given any interpretation I , we let an assignment function to the variables
be a function fI that maps each individual variable to an element of D
and maps each n-place relation variable (n ≥ 0) to an element of Rn.
Henceforth, we shall suppress the subscript on fI , though the reader
should remember that all such assignment functions are defined relative
to a given interpretation. For any variable α and entity e in the domain
over which α ranges, we may define f [α/e] to be the variable assignment
just like f except that it assigns to the variable α the entity e.9 Since
we have two kinds of variables, we shall see this definition used in two
contexts.

Context 1: α is an individual variable, and the domain over which
α ranges is D. If we are discussing an actual formula in the object-
language in which the variable x appears, we use f [x/o] to refer to
the assignment just like f except that it assigns to x the object o;
if we are using the metavariable ν, which ranges over individual
variables, to discuss a class of formulas involving ν, we use f [ν/o]

9 This can be defined formally in the usual way, where an assignment function f is
represented as a set of ordered pairs, α is a variable, and e is an entity from the domain
over which α ranges:

f [α/e] = (f ∼ 〈α,f (α)〉)∪ {〈α,e〉}

Or, we can define f [α/e] functionally, where β is a variable ranging over the same domain
as α, as:

f [α/e](β) =

f (β), if β , α

e, if β = α
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to refer to the assignment just like f except that it assigns to ν the
object o.

Context 2: α is an n-place relation variable, and the domain over
which α ranges is Rn. Here we typically discuss formulas in the
object-language that involve the variable Fn, and so we use f [Fn/rn]
to refer to the assignment just like f except that it assigns the n-
place relation rn (in Rn) to Fn.

Note that we sometimes generalize f [α/e] as follows: when discussing
a class of formulas in which the variables α1, . . . ,αn may or may not be
free, then when the entities e1, . . . ,en are, respectively, in the domain of
α1, . . . ,αn, we use f [α1/e1, . . .αn/en] to refer to the assignment just like
f except that it assigns to α1 the object e1 and ... and assigns to αn the
object en. We henceforth abbreviate f [α1/e1, . . .αn/en] as f [αi /ei]. We
leave it to the reader to extend the formal definition of f [α/e] given in
footnote 9 to this more general notion.

4.3 Simultaneous Definition of Denotation and World-
Relative Truth

The simultaneous definition of denotation and world-relative truth in
this section has some distinguishing features that require some prelimi-
nary discussion.

First, we deploy a special class of ε-terms in our semantic metalan-
guage in the recursive clauses D5 and D6 below. We call these ε̄-terms
(“epsilon-bar terms”). The first principles of the metalinguistic calculus
of ε̄-terms are those of the ε-calculus:

• ε̄-terms have the form ε̄rn(. . .rn . . .), where rn is a variable ranging
over the domain Rn of n-place relations (n ≥ 0) and . . .rn . . . is a
semantic condition expressible in our metalanguage. ε̄-terms are
denoting terms that pick out some chosen member of the domain
Rn that meets the condition . . .rn . . ., if there is one. ε̄-terms have no
existential presuppositions: if nothing meets the condition . . .rn . . .,
then ε̄rn(. . .rn . . .) denotes nothing.

• ε̄-terms obey the two principles:

– ε̄-Existence: If ∃r(. . .r . . .), then ∃s(s = ε̄r(. . .r . . .))

Edward N. Zalta 24

– ε̄-Conversion: If s = ε̄r(. . .r . . .), then . . .s . . .

• We do not assume a principle of extensionality for ε̄-terms, i.e.,
we do not assume that if . . .rn . . . and --- rn--- are extensionally
equivalent conditions on rn, then ε̄rn(. . .rn . . .) = ε̄rn(--- rn---).

We’ll place some further, natural constraints on ε̄-terms after we’ve de-
veloped our semantic definitions of truth and denotation, but for now,
the above principles suffice.

Second, the two recursive clauses D5 and D6 in the definition below
are formulated in terms of three other notions, namely, alphabetically-
variant, η-variant, and η-irreducible λ-expressions. Alphabetic variance
is well-known, and a full definition need not be developed here. Intu-
itively the idea is that λ-expressions are alphabetic variants if some se-
quence of uniform replacements of the bound variables transforms one
expression to the other without any variables getting captured by any
replacement. Thus, the following pairs of λ-expressions are alphabetic
variants:

• [λx Fx] and [λy Fy]

• [λx ∀yMyx] and [λy ∀zMzy]

In the second pair, the replacement sequence y→ z,x→ y transforms
the first member into the second. In clauses D5 and D6 below, a λ-
expression and its alphabetic variants are assigned the same denotation.

The notion of η-variant λ-expressions may be unfamiliar in the con-
text of a relational λ-calculus. To define η-variant and η-irreducible ex-
pressions, we first say that an n-place λ-expression (n ≥ 1) is elementary
iff it has the form [λν1 . . .νnΠ

nν1 . . .νn], where the matrix formula is an
atomic formula of the form Πnν1 . . .νn in which the arguments to the re-
lation term Πn are the distinct variables ν1, . . . ,νn all of which are bound
by the λ and none of which are free in Πn. (Thus, no λ-expressions of
the form [λϕ] are considered elementary.) We say further that the ele-
mentary λ-expression [λν1 . . .νnΠ

nν1 . . .νn] is an η-expansion of the term
Πn (n ≥ 1). So, for example,

• [λxyz F3xyz] is an η-expansion of F3

• [λxy [λuv �∀F(Fu ≡ Fv)]xy] is an η-expansion of
[λuv �∀F(Fu ≡ Fv)]
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Now we say, for n ≥ 0, that [λν1 . . .νn ϕ
′] is an immediate η-variant of

[λν1 . . .νn ϕ] just in case ϕ′ is the result of replacing one n-place rela-
tion term Πn in ϕ by an η-expansion [λν1

′ . . .νn
′ Πnν1

′ . . .νn
′]. So, for

example,

• [λy [λz P z]y→ Say] is an immediate η-variant of [λy P y→ Say]

• [λy P y→ [λuv Suv]ay] is an immediate η-variant of [λy P y→ Say]

• [λy [λz P z]y→ [λuv Suv]ay] is an immediate η-variant of both
[λy [λz P z]y→ Say] and [λy P y→ [λuv Suv]ay]

• [λ [λz P z]y] is an immediate η-variant of [λ P y]

and so on. Now, letting ρ range over n-place λ-expressions (n ≥ 0), we
say that ρ′ is an η-variant of ρ if there is a sequence of λ-expressions
ρ1, . . . ,ρm (m ≥ 1) with ρ = ρ1 and ρ′ = ρm such that every member of
the sequence is an immediate η-variant of the preceding member of the
sequence. So, for example, the sequence

[λy P y→ Say]
[λy [λz P z]y→ Say]
[λy [λz P z]y→ [λuv Suv]ay]

establishes that the third is an η-variant of the first.
We may now say that the λ-expression [λν1 . . .νn ϕ] (n ≥ 0) is η-

irreducible just in case it is not an η-variant of any other λ-expression.
The concepts of η-variant and η-irreducible appear in D5 and D6: non-
elementary, η-irreducible λ-expressions and their η-variants will be as-
signed the same denotation. This completes our preliminary discussion
of the special features of our definition, which now proceeds as follows.

If given an interpretation I and an assignment function f , we simul-
taneously define:

• dI ,f (τ), i.e., the denotation of term τ relative to I and f , and

• w |=I ,f ϕ, i.e., ϕ is true at possible world w under I and f ,

for all of the terms τ and all of the formulas ϕ of the language.
The definition has six clauses for denotation D1–D6 and six clauses

for truth T1–T6, the base clauses being D1, D2, T1, and T2:

D1. If τ is a constant, then dI ,f (τ) = V(τ).
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D2. If τ is a variable, then dI ,f (τ) = f (τ).

T1. If ϕ is a formula of the form Πnκ1 . . .κn (n ≥ 1), then w |=I ,f ϕ if
and only if ∃rn∃o1 . . .∃on(rn = dI ,f (Πn) & o1 = dI ,f (κ1)

& . . . & on = dI ,f (κn) & 〈o1, . . . ,on〉 ∈ exw(rn)).

T2. If ϕ is a formula of the form Π0, then w |=I ,f ϕ if and only if
∃r0(r0 = dI ,f (Π0) & exw(r0) = True).

T3. If ϕ is a formula of the form ¬ψ, then w |=I ,f ϕ if and only if it is
not the case that w |=I ,f ψ, i.e., iff w 6|=I ,f ψ.

T4. If ϕ is a formula of the form ψ → χ, then w |=I ,f ϕ if and only
either w 6|=I ,f ψ or w |=I ,f χ, i.e., iff w 6|=I ,f ψ ∨ w |=I ,f χ.

T5. If ϕ is a formula of the form ∀αψ, then w |=I ,f ϕ if and only if for
every entity e in the domain over which α ranges, ψ is true at w
under I and f [α/e], i.e., iff ∀e ∈ dom(α)(w |=I ,f [α/e] ψ).

T6. If ϕ is a formula of the form �ψ, then w |=I ,f ϕ if and only if for
every possible world w′ , w′ |=I ,f ψ, i.e., iff ∀w′(w′ |=I ,f ψ).

D3. If τ is a description of the form ıνϕ, then

dI ,f (τ) =

o, if w0 |=I ,f [ν/o] ϕ & ∀o′(w0 |=I ,f [ν/o′] ϕ→ o′=o)

undefined, otherwise

D4. If τ is an elementary λ-expression [λν1 . . .νnΠ
nν1 . . .νn], where n ≥ 1,

then:

dI ,f (τ) =

dI ,f (Πn), if dI ,f (Πn) is defined

undefined, otherwise

D5. If τ is a non-elementary, η-irreducible λ-expression [λν1 . . .νn ϕ]
(n ≥ 1) and τ ′ is any λ-expression that is either an alphabetic vari-
ant or an η-variant of τ , then:

dI ,f (τ) = dI ,f (τ ′) =
ε̄rn∀w∀o1 . . .∀on(〈o1, . . . ,on〉 ∈ exw(rn) ≡ w |=I ,f [νi /oi ] ϕ),

if there is one

undefined, otherwise
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D6. If τ is an η-irreducible 0-place λ-expression [λϕ] and τ ′ is any λ-
expression that is either an alphabetic variant or an η-variant of τ ,
then:

dI ,f (τ) = dI ,f (τ ′) =


ε̄r0∀w(exw(r0)=True ≡ w |=I ,f ϕ),

if there is one

undefined, otherwise

Several remarks about these clauses are in order.
Given an interpretation I and assignment f , D1 says that the deno-

tation of a primitive constant is what V assigns that constant, and D2
says that the denotation of a variable is what f assigns to that variable.
T1 tells us that an exemplification formula is true at world w iff all of
the terms in the formula denote and the n-tuple of individuals denoted
by the individual terms is an element of the exemplification extension
at w of the relation denoted by the relation term. T2 tells us that a for-
mula consisting of a 0-place relation term is true at w iff the term de-
notes a proposition and the exemplification extension at w of the propo-
sition denoted is the truth-value True. T3–T6 are all standard. Speaking
loosely, in terms of of an object o satisfyingI ,f a formula ϕ at w,10 D3
identifies the denotationI ,f of ıνϕ as an object o if o uniquely satisfiesI ,f
ϕ at w0, and is undefined otherwise. D4 identifies the denotationI ,f of
an elementary λ-expression as the relation denoted by the relation term,
if there is one, and undefined otherwise. Speaking loosely, in terms of
n-tuples of objects satisfyingI ,f a formula ϕ at w,11 we may regard D5
as identifying the denotationI ,f of a non-elementary, η-irreducible λ-
expression [λν1 . . .νn ϕ] (n ≥ 1) as some chosen relation rn (if there is
one) that, in every world w, has an exemplification extension at w that
consists of precisely those n-tuples of objects that satisfyI ,f ϕ at w. Fi-
nally, D6 identifies the denotationI ,f of a non-elementary, η-irreducible
0-place λ-expression [λϕ] as some chosen proposition r0 (if there is one)
that has True as its exemplification extension at w iff ϕ is true at w.

It is also important to note the following about this definition. First,
T1 assigns well-defined, binary truth conditions to atomic formulas even

10We may define this precisely for ϕ in which ν may or may not be free: an object o

satisfiesI ,f ϕ at world w just in case w |=I ,f [ν/o]ϕ. An object o uniquely satisfiesI ,f ϕ just
in case it satisfiesI ,f ϕ at w and any other object that satisfiesI ,f ϕ at w is identical to o.

11We can extend the definition in the previous footnote forϕ where ν1, . . . ,νn may or may
not be free: an n-tuple 〈o1, . . . ,on〉 satisfiesI ,f ϕ at world w just in case w |=I ,f [νi /oi ]ϕ.
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if the formula happens to contain a non-denoting term (in such a case,
the atomic formula is false). Given T1–T6, even if an atomic formula
with a non-denoting term appears as a subformula of ϕ in [λν1 . . .νn ϕ],
the whole formula ϕ has binary truth conditions. Thus, D5 and D6 may
assign to a λ-expression a denotation picked out by a semantic ε̄-term
even if the matrix formula ϕ contains a definite description that denotes
nothing. To guarantee that there is a relation picked out by the ε̄-term,
we need to add one further constraint to our definition of an interpreta-
tion. We will do this in Section 4.5. Second, D4 governs not only those
cases of elementary λ-expression such as [λxP x], where the relation term
Πn is a simple term, but also governs cases of elementary expressions
such as [λx [λy ϕ]x], where the relation term Πn is [λy ϕ] and hence
complex. Third, in D5 and D6, we’ve deployed Hilbert-style ε̄-terms
to interpret the λ-expressions and this forges an interesting connection
between λ and ε̄ calculi. Finally, note that in D3, D5, and D6, dI ,f (τ)
recursively calls w |=I ,f ϕ, and so the method of assigning denotations
to the two types of complex terms, descriptions and λ-expressions, is
uniform.

4.4 Truth and Validity

In the usual way, we say ϕ is true under I and f just in case ϕ is true at
the distinguished actual world w0 under I and f . Formally:

|=I ,f ϕ =df w0 |=I ,f ϕ

We say ϕ is true under I just in case for every f , ϕ is true under I and f .
Formally:

|=I ϕ =df ∀f (|=I ,f ϕ)

We say ϕ is satisfiable if and only if there is some interpretation I and
assignment f such that ϕ is trueI ,f , i.e., iff ∃I ∃f (|=I ,f ϕ). We say ϕ is
valid or logically true if and only if ϕ is true under every interpretation
I . Formally:

|=ϕ =df ∀I (|=I ϕ)

The other semantics definitions, of logical consequence, logical equiva-
lence, etc., like the foregoing ones, are all standard.12

12Thus, in the usual way, ϕ logically impliesψ (ϕ |= ψ) just in case, for every interpretation
I and assignment f , if ϕ is trueI ,f , then ψ is trueI ,f . Also, in the usual way, ϕ and ψ are
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4.5 A Special Class of Semantic Structures

Our semantics now consists of the following, defined notions:

• interpretations I
• assignments f
• primitive ε̄-terms of the form ε̄rn(. . .rn . . .)
• the denotation of τ with respect to I and f
• formula ϕ is true at w under I and f
• ϕ is true under I and f
• ϕ is true under I
• ϕ is valid

With these definitions in place, we conclude our model-theoretic seman-
tics for complex terms by placing constraints on interpretations, assign-
ments, ε̄-terms, denotation functions and truth conditions. These con-
straints are, in effect, are semantic axioms that force these semantic no-
tions to have the structure needed to interpret our λ-expressions. The
constraints on the ε̄-terms requires them to make certain choices in cer-
tain well-defined situations, and forces them to behave in nice logical
ways that the classical ε-terms of the ε-calculus wouldn’t otherwise be-
have:

Constraint (1)
Interpretations, Assignments, and Truth.
(.1) For any formula ϕ and assignment f :

∃rn∀w∀o1 . . .∀on(〈o1, . . . ,on〉 ∈ exw(rn) ≡ w |=I ,f ϕ) (n ≥ 1)

(.2) For any formula ϕ and assignment f :

∃r0∀w(exw(r0) = True ≡ w |=I ,f ϕ)

Constraint (2)
Interpretations, Assignments, ε̄-terms, Denotations and Truth:
(.1) For any non-elementary λ-expression [λν1 . . .νn ϕ] (n ≥ 1), if
assignments f and g agree on all the variables free in [λν1 . . .νnϕ],
then:

logically equivalent just in case both ϕ |= ψ and ψ |= ϕ. Finally, ϕ is a logical consequence of a
set of formulas Γ just in case, for every interpretation I and assignment f , if every member
of Γ is trueI ,f , then ϕ is trueI ,f .
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ε̄rn∀w∀o1 . . .∀on(〈o1, . . . ,on〉 ∈ exw(rn) ≡w |=I ,f [νi /oi ] ϕ) =
ε̄rn∀w∀o1 . . .∀on(〈o1, . . . ,on〉 ∈ exw(rn) ≡w |=I ,g[νi /oi ] ϕ)

and hence, by D5:

dI ,f ([λν1 . . .νn ϕ]) = dI ,g ([λν1 . . .νn ϕ])

(.2) For any λ-expression [λϕ], if assignments f and g agree on all
the variables free in [λϕ], then:

ε̄r0∀w(exw(r0) = True ≡w |=I ,f ϕ) =
ε̄r0∀w(exw(r0) = True ≡w |=I ,g ϕ)

and hence, by D6:

dI ,f ([λϕ]) = dI ,g ([λϕ])

Constraint (3)
Interpretations, Assignments, ε̄-terms, Denotations and Truth:
(.1) For any non-elementary λ-expression [λν1 . . .νn ϕ] (n ≥ 1), if
τ1, . . . , τm are, respectively, substitutable for α1, . . . ,αm in [λν1 . . .νnϕ]
and dI ,f (τ1) = e1 and . . . and dI ,f (τm) = em, where e1, . . . ,em are en-
tities in the domain of α1, . . . ,αm, respectively, then:

ε̄rn∀w∀o1 . . .∀on(〈o1, . . . ,on〉 ∈ exw(rn) ≡w |=I ,f [νi /oi ] ϕ
τ1,...τm
α1,...αm )

=
ε̄r0∀w∀o1 . . .∀on(〈o1, . . . ,on〉 ∈ exw(rn) ≡w |=I ,f [αi /ei ][νi /oi ] ϕ)

and hence, by D5:

dI ,f ([λν1 . . .νn ϕ
τ1,...τm
α1,...αm ]) = dI ,f [αi /ei ]([λν1 . . .νn ϕ])

(.2) For any λ-expression [λϕ], if τ1, . . . , τm are, respectively, substi-
tutable for α1, . . . ,αm in [λϕ] and dI ,f (τ1) = e1 and . . . and dI ,f (τm)
= em, where e1, . . . ,em are entities in the domain of α1, . . . ,αm, re-
spectively, then:

ε̄r0∀w(exw(r0) = True ≡w |=I ,f ϕ
τ1,...τm
α1,...αm ) =

ε̄r0∀w(exw(r0) = True ≡w |=I ,f [αi /ei ] ϕ)

and hence, by D6:

dI ,f ([λϕτ1,...τm
α1,...αm ]) = dI ,f [αi /ei ]([λϕ])
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We explain these constraints in turn.
Clearly, interpretations and assignments that obey Constraints (1.1)

and (1.2) validate the following Comprehension Schema for Relations
(n ≥ 0):

Comprehension Schema for Relations (RC):
∃Fn�∀x1 . . .∀xn(Fnx1 . . .xn ≡ ϕ), where n ≥ 0 and Fn is not free in ϕ

So by restricting our attention to those interpretations that satisfy these
Constraints (1.1) and (1.2), we are assured that each non-elementary λ-
expression has a denotation.13 For by the properties of ε̄-terms and D5,
if the term:

ε̄rn∀w∀o1 . . .∀on(〈o1, . . . ,on〉 ∈ exw(rn) ≡ w |=I ,f [νi /oi ] ϕ)

is to pick out a relation for the non-elementary λ-expression [λν1 . . .νnϕ]
(n ≥ 1) to denote, then it must be the case that:

(ϑ) ∃rn∀w∀o1 . . .∀on(〈o1, . . . ,on〉 ∈ exw(rn) ≡ w |=I ,f [νi /oi ] ϕ)

But (ϑ) is true in interpretations satisfying Constraint (1.1), since we can
instantiate f to f [νi /oi].14 Similarly, by the properties of ε̄-terms and
D6, if the term:

ε̄r0∀w(exw(r0)=True ≡ w |=I ,f ϕ)

is to pick out a proposition for the non-elementary λ-expression [λϕ] to
denote, then it must be the case that:

(ζ) ∃r0∀w(exw(r0)=True ≡ w |=I ,f ϕ)

But (ζ) just is Constraint (1.2).
Constraints (2.1) and (2.2) constitute a restricted principle of exten-

sionality for ε̄-terms.15 Semantic structures that obey these constraints
13Elementary λ-expressions will then be guaranteed to have denotations by D4, no mat-

ter whether the relation term Πn in [λν1 . . .νn Πnν1 . . .νn] is simple or complex, and if
complex, elementary or non-elementary.

14Note how Constraints (1.1) and the body of the ε̄-term in clause D5 resemble one
another. Constraint (1.1) uses an existential quantifier to assert the existence of relations
meeting certain conditions, for every assignment f ; clause D5 uses a ε̄-term to pick out
a relation that meets those same conditions relative to an assignment that applies to the
variables bound by the λ.

15In the classical ε-calculus, the principle of extensionality takes the form: ∀x(ϕ ≡ ψ)→
εxϕ=εxψ (Avigad and Zach 2013). This asserts that if ϕ and ψ are materially equivalent,
then εxϕ = εxψ (when ϕ,ψ are empty, the ε-terms denote the single junk element). Con-
straints (2.1) and (2.2) don’t quite take this form, but they do assert an ε̄-identity whenever
a kind of equivalence holds, namely, when f (α) = g(α) for every free α in [λν1 . . .νn ϕ].
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have a nice property: when the clauses D5 and D6 pick out a denotation
for the expression [λν1 . . .νn ϕ] (n ≥ 0) with respect to a variable assign-
ment f , then the same denotation is picked out with respect to any vari-
able assignment g that agrees with f on the free variables in [λν1 . . .νnϕ].
The ε̄-terms in D5 and D6 are thus required to choose the same relation
as the denotation of [λν1 . . .νn ϕ] with respect to both f and g.16 So, for
example, consider the λ-expression [λx Rxy] (= τ). If f and g both as-
sign to the variable y the object o, then dI ,f (τ) = dI ,g (τ). To give another
example in connection these assignments f and g, the denotation of 0-
place expression [λP y] with respect to f and g is now required to be the
same. This is one way in which our ε̄-terms behave with less freedom
than classical ε-terms.

Constraints (3.1) and (3.2) also constitute a restricted principle of ex-
tensionality for ε̄-terms, and like (2.1) and (2.2), identify the relations
picked out by ε̄-terms only when logically irrelevant conditions obtain.
Semantic structures that obey these two constraints have a further nice
property, which we can see by way of example. Consider the two λ-
expressions [λx Rxa] and [λx Rxy]. Suppose that dI ,f (a) = o. Then Con-
straint (3.1) requires, for the assignments f and f [y/o], that:

dI ,f ([λx Rxa]) = dI ,f [y/o]([λx Rxy])

This is a second way in which our ε̄-terms behave with less freedom
than classical ε-terms. Note, however, that our ε̄-terms are still free to
choose different denotations for logically equivalent expressions such as
[λx Rx&¬Rx] and [λx Bx& ∀y(Sxy ≡ ¬Syy)] (that is, in absence of any
axioms in the object language that might assert the identity or distinct-
ness of such properties). Semantic structures that obey Constraints (3.1)
and (3.2) in addition to Constraints (2.1) and (2.2) are ones for which the
classical Substitution Lemma holds not only for formulas but also for all
terms.17

16The Assignment Agreement Lemma, which asserts that if f and g agree on all the free
variables in formula ϕ that w |=I ,f ϕ iff w |=I ,g ϕ, can be proved without this constraint.
However, without the constraint, the Corollary to the Assignment Agreement Lemma,
which asserts that if f and g agree on all the free variables in term τ that dI ,f (τ) = dI ,g (τ),
won’t be derivable for λ-expressions. Since this Corollary is needed at various points in
the proof of the Substitution Lemma, Constraint (2) is included so as to guarantee that
the Corollary holds for all terms. The proof of the Assignment Agreement Lemma and its
Corollary appear in the Appendix.

17The Substitution Lemma asserts:
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4.6 Returning to Our Examples

We can now see how the problematic issues and examples in Section 2.2
fare under our new semantics. Consider [λx ∃FFx], an example used to
illustrate Issue 1. D5 yields that:

dI ,f ([λx∃FFx]) =


ε̄r1∀w∀o(o ∈ exw(r1) ≡ w |=I ,f [x/o] ∃FFx),

if there is one

undefined, otherwise

Since there are no descriptions involved in the formula and our con-
straints on interpretations guarantee that there is such a relation, we may
work through the semantics definitions to conclude: the denotationI ,f of
[λx ∃FFx] is a 1-place relation r1 whose exemplification extension at a
world w consists of all and only those objects o such that o satisfiesI ,f
∃FFx at w, i.e., such that some 1-place relation s1 is such that o ∈
exw(s1). Thus, we’ve interpreted the impredicative λ-expression with-
out having to formulate special algebraic logical functions.

Consider the more complex of the two examples used to illustrate
Issue 2. D5 yields that:

dI ,f ([λxP x→ Sax]) =


ε̄r1∀w∀o(o ∈ exw(r1) ≡ w |=I ,f [x/o] P x→ Sax)),

if there is one

undefined, otherwise

Again, since there are no descriptions involved in the formula and our
constraints on interpretations guarantee that there is such a relation, we
may conclude that the denotation is a relation r1 whose exemplification
extension at a world w consists of all and only those objects o such that
either o is not in the extensionw of dI ,f (P ) or the pair 〈dI ,f (a),o〉 is in the
extensionw of dI ,f (S). Thus, we’ve interpreted expressions like [λxP x→
Sax] without having to partition the λ-expressions into syntactic classes
that correspond to the logical components of their syntax. Instead, we
partition them only with respect to logically-insignificant variations (i.e.,
we collapse all the alphabetic- and η-variants).

Consider, finally, the example used to illustrate Issue 3, [λx RxıyP y],
in an interpretation in which ıyP y fails to denote. D5 yields that:

If τ is substitutable for α in ϕ and dI ,f (τ) = e, where e is an entity in the domain
of the variable α, then w |=I ,f ϕτα if and only if w |=I ,f [α/e] ϕ.

The proof of this Lemma also appears in the Appendix.
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dI ,f ([λxRxıyP y]) =


ε̄r1∀w∀o(o ∈ exw(r1) ≡ w |=I ,f [x/o] RxıyP y),

if there is one

undefined, otherwise

Again, our constraints on interpretations guarantee that there is such
a relation, so the above picks out a relation r1 whose exemplification
extension at a world w consists of all and only those objects o such
that (i) there are objects and properties that are denoted by R, x, and
ıyP y, and (ii) the ordered pair consisting of o and dI ,f [x/o](ıyP y) is in
the extensionw of dI ,f [x/o](R). Since there is no object denoted by ıyP y,
no object satisifies condition (i), and hence no objects satisfies (i) and
(ii). So we’ve specified a relation r1 whose exemplification extension is
empty at every world w. [λx RxıyP y], therefore, denotes a necessarily
unexemplified relation.

In light of this last example, we leave it as an exercise to show that
our definitions do indeed imply the following with respect to two other
λ-expressions containing the non-denoting description ıyP y: (a) the de-
notation of [λx¬RxıyP y] is a necessarily exemplified relation, and (b) the
denotation of [λxRxıyP y∨Qx] is a relation that is necessarily equivalent
to the denotation of Q.

5 Observations and Further Developments

Our semantics for complex relation terms using metalinguistic ε̄-terms
therefore addresses Issues (1) – (3). It gives us an interpretation for im-
predicative λ-expressions; it requires only a partition of the λ-expres-
sions into classes of expressions that differ in logically-insignificant ways;
and it assigns denotations to λ-expressions containing non-denoting de-
scriptions.18 The price of admission is only that we have to place three
constraints on our semantic definitions and primitive ε̄-terms.

18Notice that none of the issues discussed in Hazen 2012 (60–62), in connection with
the σ choice functions used to model counterpart functions, arise in connection with our
metalinguistic ε̄-terms: we deploy those terms in a highly circumscribed and controlled
environment, namely, a flat domain of relations. By contrast, the σ -terms discussed by
Hazen are deployed throughout the ZF hierarchy of sets and, as such, have to be inter-
preted in terms of class functions.
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5.1 β-Conversion and Descriptions

The principle of β-Conversion in the relational λ-calculus is formulated
as follows:19

β-Conversion:
[λy1 . . . yn ϕ]x1 . . .xn ≡ ϕ

x1,...,xn
y1,...,yn , provided x1, . . . ,xn are substitutable,

respectively, for y1, . . . , yn in ϕ

Note that this applies even to λ-expressions in which the matrix for-
mula is impredicative or contains descriptions (we’ll discuss the latter
below).20

One additional advantage of the new semantic method is that we no
longer have to add as axioms the special instances of RC involving de-
scriptions. To see why, note that under the algebraic interpretation, β-
Conversion has to be restricted. The restriction that is needed in the
algebraic approach is that ϕ must be free of descriptions. For otherwise,
we would have the following instance:

[λy ¬RyızP z]x ≡ ¬RxızP z

This would be false in any interpretation in which ızP z fails to denote,
since at any world you pick and for any object x you pick, the left side of
the biconditional is false at that world (given that it is an atomic formula
with a non-denoting λ-expression) while the right side is true at that
world (given that the atomic formula RxızP z is false at that world, mak-
ing ¬RxızP z true there). But on the algebraic approach, the following
instance of RC is valid:

∃F�∀x(Fx ≡ ¬RxızP z)

As one can see from the above considerations, in any interpretation, any
necessarily exemplified property F will be a witness to this claim, since
for any world you pick, every object x is such that ¬RxızP z there, given
that the description fails to denote.

19The use of ‘β’ in ‘β-Conversion’ derives from Curry (1963, 117), but this principle first
appears in Church 1932 (355, Rule of Procedure II).

20For a proof that β-Conversion is valid in those interpretations that satisfy the con-
straints described in Section 4.5, see the Appendix. The proof is preceded by proofs of
some of the other, preliminary lemmas mentioned previously, such as the Assignment
Agreement Lemma, Corollary to the Assignment Agreement Lemma, Substitution Lemma,
and the Generalized Substitution Lemma.
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But, normally, the existence claim would be inferred from the in-
stance of β-Conversion, as follows:

1. [λy ¬RyızP z]x ≡ ¬RxızP z Instance
2. ∀x([λy ¬RyızP z]x ≡ ¬RxızP z) GEN, 1
3. �∀x([λy ¬RyızP z]x ≡ ¬RxızP z) RN, 2
4. ∃F�∀x(Fx ≡ ¬RxızP z) ∃I, 3

In the algebraic interpretation, this derivation is blocked, given that (1)
isn’t an instance of β-Conversion, for the reasons stated above. Indeed,
generally, one can’t derive RC from β-Conversion in full generality in the
algebraic interpretation (following the above derivation scheme) since
no instances of β-Conversion with descriptions are allowed. Instead,
one can only derive, in the algebraic interpretation, a version of RC that
has the same restriction that was placed on β-Conversion. Thus, all of
the valid instances of RC containing descriptions have to be added as
axioms, such as ∃F�∀x(Fx ≡ ¬RxızP z), ∃F�∀x(Fx ≡ QxızP z→ QxızP z),
etc. Indeed, it isn’t even clear how to formulate axioms that would assert
all such validities on the algebraic approach! These claims may have to
be asserted piecemeal.

But on the present approach, no restrictions on β-Conversion are nec-
essary. The instances of β-Conversion involving descriptions are valid,
since some relation or other is always denoted by every λ-expression,
given D5, D6 and our constraints on interpretations. So the existence
of relations involving descriptions is guaranteed and RC can be derived
from β-Conversion in full generality. No special axioms have to be added.

5.2 Identity

There is one element missing from our account. As it stands, identity is
not a primitive in our target language and so we can’t even express stan-
dard identities among λ-expressions, such as α- and η-conversion, or
other kinds of identities. Of course, this is easily remedied: we are free
to add identity as a primitive and start asserting identities among rela-
tions. Our BNF definition of the language is easily modified to allow for
the formation of identity statements among individual terms and among
relation terms. Once modified appropriately, we would be free to assert,
for example:

• [λx¬Fx] = [λy ¬Fy]
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• [λx Fx] = F

• [λx P x&Qx] = [λxQx& P x]

• [λx Rx&¬Rx] , [λx Bx&∀y(Sxy ≡ ¬Syy)]

Given such assertions, interpretations of our language would have to be-
have in certain ways if they are to make the above true, and in particular,
such assertions would force our ε̄-terms to pick relations in certain ways.

Although we certainly want to be able to allow for the assertion of
the above equalities and inequalities, the approach to identity just out-
lined is still not adequate, for a completely general theory of relations
should include not just a statement of existence conditions for relations
but also a statement of identity conditions for relations. We can take RC
as our background comprehension condition for the existence of rela-
tions, but if we are to avoid Quine’s charge that properties (including
relations and propositions) are “creatures of darkness” (1956, 180), we
must give mathematically precise identity conditions for our intensional
relations. Such identity conditions should be consistent with different
intuitions about difficult cases of relation identity: such identity condi-
tions should tell us generally what as to be the case when we assert that
relations are or are not identical.

So our plan in what follows is this: instead of taking identity as a
primitive and adding axioms for identity, we shall define general condi-
tions for the identity of properties, relations and propositions. Moreover,
we plan to state these identity conditions for relations entirely in our ob-
ject language. We won’t need the any notions from the metalanguage,
such as its background language of set theory, to state a theory of iden-
tity for relations. This is important given the assumption I made at the
outset describing my starting point, namely, that relations are more fun-
damental than sets. If the first- and second-order (modal) predicate cal-
culus is more fundamental than set theory, as I have suggested, then our
question becomes, what identity conditions for relations can be stated
using only the resources of predication found in the predicate calculus?
Such a statement will then allow us to place final constraints on inter-
pretations, so as to validate the theory of relations.

The statement of identity conditions for relations can be given by ex-
tending our target language to the language of object theory, as described
in Zalta 1983, 1988a, 1999, and elsewhere. The language of object the-
ory differs from the language considered above by having a second kind
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of atomic formula, namely, formulas of the form xF1 (‘x encodes F1’).
These encoding formulas can be used to form complex formulas and de-
scriptions, but they may not appear as subformulas of the matrix ϕ in
λ-expressions.21 Consequently, object theory singles out a subclass of
formulas, namely the propositional formulas which are free of encoding
subformulas, and requires that λ-expressions be built only from matrix
formulas that are propositional. Thus, the class of λ-expressions in the
language of object theory is identical to the class of λ-expressions of our
target language defined in Section 3.22

Indeed, the semantics developed above adapts to the language of ob-
ject theory with very little additional structure. We need only an en-
coding extension function, en, that maps each 1-place relation in R1
to a subset of D, so that the truth conditions of ‘xF1’ can be stated as
d(x) ∈ en(d(F1)) (ignoring the relativization to I and f ).23 Note that the
truth conditions of xF1 make no reference to possible worlds: the encod-
ing extension of a property doesn’t vary from world to world. So for any
interpretation I , assignment f , and world w, if xF1 is trueI ,f , then so is
�xF1.

We’ve now sufficiently developed and described this extension of our
target language for our purposes in what follows. Our extended target
language allows us to formulate general identity conditions for relations.
Readers familiar with object theory already know how, but for those who
don’t, identity conditions for properties are:24

21This proscription provides a solution to the paradoxes of encoding. But we shall not
discuss these here as this will take us too far afield. See some of the referenced publications
on object theory.

22Actually, this is not quite accurate, but near enough for our present purposes. If a
formula ϕ contains a description, ıx(. . .xF . . .), in which an encoding formula such as xF
appears, then xF is not considered a subformula of ϕ. So if we say that such formulas
contain description-embedded encoding formulas, it is possible to have propositional formu-
las that have description-embedded encoding formulas. Thus, in full object theory, we
permit λ-expressions whose matrix formula is a propositional formula with description-
embedded encoding formulas. But those behave no differently from the λ-expressions
described in our original target language in Section 3, and so for our purposes below, they
can be ignored.

23Strictly speaking, the condition has to allow for descriptions that might fail to denote,
and should read: ∃r1∃o(r1 = d(F1) &o = d(x) &o ∈ en(r1)).

24Given that encoding predications are necessary if true, one might wonder why I in-
clude the modal operator in the following definition. The reason is that I take identity to
be a modal notion. I want the definition to expressly say that for F and G to be identical, it
is necessary that they are encoded by by the same objects.
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Property Identity (PI):
F1 =G1 =df �∀x(xF1 ≡ xG1)

Now, in terms of this definition, we define both identity for propositions
and for n-place relations (n ≥ 2). Identity for propositions is defined as
follows:25

Proposition Identity:
p=q =df [λy p]=[λy q]

Identity for n-place relations (n ≥ 2) is defined as:

Relation Identity:
Fn=Gn =df (where n ≥ 2)

∀x1 . . . ∀xn−1([λy Fnyx1 . . .xn−1]=[λy Gnyx1 . . .xn−1] &
[λy Fnx1yx2 . . .xn−1]=[λy Gnx1yx2 . . .xn−1] & . . .&
[λy Fnx1 . . .xn−1y]=[λy Gnx1 . . .xn−1y])

These two definitions reduce the identity of non-monadic relations to
the identity of properties. They are central to object theory’s theory of
identity, and they offer extensional conditions for the identity of inten-
sional entities (notwithstanding the modal operator in the definition of
property identity). Quine’s complaint, therefore, is undermined. Our
theory tells us, in theoretical terms, what it is we know when we prethe-
oretically judge, assert, assume, etc., that relations F and G are identical
or distinct.

Finally, then, we require that interpretations of the language of object
theory obey additional constraints, so as to ensure that when the defini-
entia of these definitions obtain, interpretations semantically identify the
relations in question. Thus, in the case of properties, we require that an
interpretation I of the language of object theory be such that:26

∀r,s ∈ R1[∀o ∈D(o ∈ en(r) ≡ o ∈ en(s))→ r = s]

25Cf. Myhill 1963, where a definition like this first appeared.
26Note that in order to ensure that PI correctly identifies relations no matter what the

interpretation, we need not preface the antecedent of the following condition with a univer-
sal quantifier over possible worlds, since such a quantifier would be vacuous: the encoding
extension of a property doesn’t vary from world to world, and so if the encoding extensions
of two properties are the same, they are the same with respect to every world.
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Something similar can be done in the case of relations and proposi-
tions.27 So we shall assume in what follows that the principle of substi-
tution of identicals is valid, even though the antecedents of its instances
are defined identity statements. Consequently, RC and the above defini-
tions for identity jointly embody a precise and general theory of relations
by providing existence and identity conditions for them.

5.3 Asserting Inequalities

Clearly, the semantics we’ve developed does not require that necessarily
equivalent relations be identical. We may consistently assert, using the
notions of identity just defined, that some necessarily equivalent rela-
tions are distinct. Under the intensional conception of relations, there
can be open propositional formulas ϕ(x) and ψ(x) such that at every
world w, exactly the same objects satisfy both ϕ(x) and ψ(x); yet ϕ and
ψ can be used to construct terms that denote different relations. The
examples we used in the introduction were:

• x is red and not red:
Rx&¬Rx

• x is a barber who shaves all and only those who don’t shave them-
selves:
Bx&∀y(Sxy ≡ ¬Syy)

The corresponding λ-expressions are:

• [λx Rx&¬Rx]

• [λx Bx&∀y(Sxy ≡ ¬Syy)]

Focusing on this particular case, note that the domain R1 in interpre-
tations I is guaranteed to have at least one or more properties whose

27For n-place relations (n ≥ 2) and propositions (n = 0), one has to add more structure to
interpretations I to ensure that when the definientia obtain, the interpretations identify
the relations and propositions. For example, in the case of propositions, we have to en-
sure that whenever two properties are the vacuous expansions of distinct propositions, the
properties have distinct encoding extensions. In the case of relations, we have to ensure
that when we plug up distinct n-place relations by n− 1 objects (plugging the objects into
the corresponding argument places of the two relations), the properties that result have
distinct encoding extensions. But we leave this for another occasion, as this would take us
too far afield of the present paper.
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exemplification extensions are empty at every world, since the formulas
used in the above λ-expressions can be used to form valid instances of
RC. To a first approximation, any such property is suitable as a deno-
tation for the above two λ-expressions. Clause D5 picks one for each
term. All we have to do to ensure that the two λ-expressions don’t de-
note the same property is assert, in the object language (using the notion
of identity defined above) that the two properties are distinct:

[λx Rx&¬Rx] , [λx Bx&∀y(Sxy ≡ ¬Syy)].

Such an assertion, when the defined notion of identity is expanded, guar-
antees that at some possible world, there is an object that encodes the
property denoted by one of the two expressions without encoding the
property denoted by the other. This couldn’t happen if the properties
denoted by the λ-expressions were semantically identified.28 The above
inequality is consistent, given our semantics, with the claim that the two
properties are necessarily exemplified by the same objects. So our se-
mantic method allows us to assert that some necessarily equivalent rela-
tions are distinct. We are free to do this as the occasion and need arises.

5.4 α- and η- Conversion

Note that we can use our system extended with the defined notions of
relation identity to enquire into the status of the two other axioms of the
classical λ-calculus:

• α-Conversion: [λν1 . . .νn ϕ] = [λν′1 . . .ν
′
n ϕ
′],

where [λν1 . . .νn ϕ] and [λν′1 . . .ν
′
n ϕ
′] are alphabetic variants.

• η-Conversion: [λx1 . . .xn F
nx1 . . .xn] = Fn

In these axioms, the identity sign is not a primitive, but defined in our
system extended with the addition of encoding formulas. But, as we

28In the semantics, we get for free that

∀r,s ∈ R1[r = s→∀o ∈D(o ∈ en(r) ≡ o ∈ en(s))]

This follows by the logic of identity that is operative in the semantics. So, the converse
asserts: if the encoding extensions of r and s differ, then r and s are different properties.
That is why, the defined claim that F , G in the object language, once expanded in terms
of the definition of property identity, semantically requires that the encoding extensions
of the properties denoted by F and G are different properties.
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shall now show, given our semantic stipulations in Section 4, the formu-
las that result by expanding the defined identity symbol are valid.

Consider α-Conversion first. Given our definitions for identity, we
have the following three general classes of instances of α-Conversion:

• [λν1 ϕ] = [λν′1 ϕ
′] (n = 1)

• [λϕ] = [λϕ′] (n = 0)

• [λν1 . . .νn ϕ] = [λν′1 . . .ν
′
n ϕ
′] (n ≥ 2)

In each case, when you expand the defined identity sign, the λ-expres-
sions flanking the identity sign become part of formulas flanking a bi-
conditional. D5 and D6 require that alphabetically variant λ-expressions
have the same denotation, and so these particular expanded formulas are
valid, since the λ-expressions in the formulas flanking a biconditional
will denote the same relations.

So, for example, in the 1-place case:

[λy ¬Fy] = [λz¬Fz]

expands to:

�∀x(x[λy ¬Fy] ≡ x[λz¬Fz])

given the definition Property Identity. Since D5 stipulates that [λy ¬Fy]
and [λz ¬Fz] denote the same property in any interpretation, it takes
very little reasoning to show that the above formula is valid.

A similar argument applies to η-Conversion, but before we consider
it, notice the simple way in which η-Conversion was presented. The
left-hand side of the equation in η-Conversion is a specific elementary
λ-expression involving the atomic formula Fnx1 . . .xn in which the n-
place relation variable Fn has a free occurrence and the distinct variables
x1, . . . ,xn are all bound by the λ.29 Given that Fn is free, we can univer-
sally generalize on the Fn and then instantiate the generalization to any
n-place relation term Πn substitutable for Fn, to get:

[λx1 . . .xnΠ
nx1 . . .xn] = Πn, where x1, . . . ,xn aren’t free in Πn

29Compare the statement of η-Conversion with following statement by Curry & Feys
1958 (92) and Hindley & Seldin 1986 (73): λxMx = M, where x is not free in M. Here M
is clearly a metavariable that ranges over (complex) expressions. By contrast, we’ve stated
η-Conversion using variables of the object language.
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And given that alphabetic variants are identical, we can replace xi by νi
for any other variable ν we may be informally using. Thus, η-Conversion
yields:

η-Conversion Theorem Schema 1:
[λν1 . . .νnΠ

nν1 . . .νn] = Πn, for any elementary λ-expression30

Moreover, it doesn’t take too much work to show that the following the-
orem schema is also derivable:

η-Conversion Theorem Schema 2
[λν1 . . .νn ϕ] = [λν1 . . .νn ϕ

′],
where [λν1 . . .νn ϕ

′] is any η-variant of [λν1 . . .νn ϕ]

Although we haven’t specified a deductive system of axioms and rules,
it is easy to see that instances of this schema would be derivable from
our simple formulation of η-Conversion, given standard formulations of
axioms and rules. As an example, we derive:

[λy P y→ Say] = [λy [λz P z]y→ [λuv Suv]ay]

by the following argument, where ηC abbreviates η-Conversion:31

1. [λz P z] = P instance, ηC
2. [λuv Suv] = S instance, ηC
3. [λy P y→ Say] = [λy P y→ Say] instance, =I
4. [λy P y→ Say] = [λy [λz P z]y→ Say] =E, 1, 3
5. [λy P y→ Say] = [λy [λz P z]y→ [λuv Suv]ay] =E, 2, 4

With this example in mind, we now appeal to η-Conversion Theo-
rem Schema 1 in an extended argument that generalizes the above ar-
gument to any η-variants, and thereby show that η-Conversion Theorem
Schema 2 is derivable generally. First we establish:

Lemma: η-Conversion on Immediate Variants:
If [λν1 . . .νn ϕ

′] is an immediate η-variant of [λν1 . . .νn ϕ], then
[λν1 . . .νn ϕ] = [λν1 . . .νn ϕ

′]

30Recall that we’ve defined elementary λ-expressions so that in the elementary expres-
sion [λν1 . . .νnΠ

nν1 . . .νn], none of the νi are free in Πn.
31 Line (3) of the proof that follows in the text cites =I, i.e., Identity Introduction. This

abbreviates the following chain of reasoning. Clearly, we can derive F1 = F1, for by the
definition of Property Identity, we have to show �∀x(xF ≡ xF), which is easily derivable as
a theorem of logic. So we can universally generalize to establish ∀F1(F1 = F1). Then we
can instantiate F1 to the term [λy P y→ Say], producing line (3) in the text.

Edward N. Zalta 44

Proof : Suppose [λν1 . . .νnϕ
′] is an immediate η-variant of [λν1 . . .νnϕ].

Then, by definition of immediate variant, let Πn be the relation
term in the latter whose η-expansion, [λν1

′ . . .νn
′ Πnν1

′ . . .νn
′], ap-

pears in the former. By the relevant instance of η-Conversion The-
orem Schema 1, i.e.,

[λν1
′ . . .νn

′Πnν1
′ . . .νn

′] = Πn

we may substitute [λν1
′ . . .νn

′ Πnν1
′ . . .νn

′] for Πn into the right-
side occurrence of ϕ in the following instance of the reflexivity of
identity:32

[λν1 . . .νn ϕ] = [λν1 . . .νn ϕ]

The result, by =E, is:

[λν1 . . .νn ϕ] = [λν1 . . .νn ϕ
′] ./

The proof of η-Conversion Theorem Schema 2 now is at hand, for when-
ever ρ′ is an η-variant of ρ, there is a finite sequence of λ-expressions
such that each member of the sequence is an immediate η-variant of the
preceding member of the sequence. So by a finite number of applica-
tions of the above Lemma, we can prove ρ = ρ′ , where ρ′ is an η-variant
of ρ.

Finally, as to the validity of η-Conversion. Given the three cases for
defining the identity symbol, the three cases of η-Conversion are:

• [λx F1x] = F1

• [λp] = p

• [λx1 . . .xn F
nx1 . . .xn] = Fn (n ≥ 2)

Clearly, for each case, if we expand the formula so as to eliminate the
defined identity symbol, the result is something easily, if sometimes te-
diously, established as valid. In each case, the resulting formulas con-
tain a pair of η-variant λ-expressions flanking a biconditional (or flank-
ing the biconditionals in a conjunction of biconditonals). Our semantic

32Reflexivity of identity was derived for 1-place relations in footnote 31. Given that n-
place relation identity (n ≥ 2) is defined in terms of 1-place relation identity, the argument
easily generalizes to yield Fn = Fn (n ≥ 2) as a theorem.
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rules T1–T6 and D1–D6, and subsequent constraints, combine to guar-
antee the truth of those formulas in every interpretation.33

5.5 η-Conversion and Extensionality

Finally, it may come as a surprise to those who are more familiar with
the functional λ-calculus that our extended system validates η-Conver-
sion without endorsing any objectionable form of extensionality. It is
sometimes thought that η-Conversion is an axiom that imposes exten-
sionality on the λ-calculus (see below). But, clearly, our system doesn’t
endorse either of the following objectionable forms of extensionality:

• ∀x1 . . .∀xn(Fnx1 . . .xn ≡ Gnx1 . . .xn)→ Fn = Gn (n ≥ 0)

• �∀x1 . . .∀xn(Fnx1 . . .xn ≡ Gnx1 . . .xn)→ Fn = Gn (n ≥ 0)

The reason these forms are objectionable was explained in Section 1.3: in
many cases, we want to be able to assert that relations are distinct even
if materially or necessarily equivalent.

33The 1-place case η-Conversion is trivial. The expanded formula is: �∀y(y[λxFx] ≡ yF),
and since [λxFx] is elementary, D4 guarantees that F and [λxFx] denote the same property.
So the properties denoted by [λx Fx] and F have the same encoding extension, and hence
∀y(y[λxFx] ≡ yF) is true in every interpretation. Since the encoding extension of properties
doesn’t vary from world to world, the formula �∀y(y[λx Fx] ≡ yF) is also true in every
interpretation. So η-Conversion is valid for 1-place relations.

For propositions, the definition of Proposition Identity applied to [λ p] = p yields
[λy [λ p]] = [λy p]. This in turn can be expanded by the definition of Property Identity
to: �∀x(x[λy [λ p]] ≡ x[λy p]). But [λy p] is a non-elementary, η-irreducible λ-expression,
and [λy [λ p]] is an (immediate!) η-variant of it, So, by D5, they have the same denotation
and the reasoning reduces to that of the previous case. D5’s requirement that η-variant
λ-expressions have the same denotation is crucial, for without it, nothing guarantees that
the properties picked out by ε̄-terms as the denotations of [λy [λ p]] and [λy p] have the
same encoding extension.

When the definition of n-place relation identity (n ≥ 2) is applied to the instance
[λz1 . . . zn Fnz1 . . . zn] = Fn, the result is, for any x1, . . . ,xn−1, a series of conjunctions of bi-
conditionals:

• [λy Fnyx1 . . .xn−1] = [λy [λz1 . . . zn Fnz1 . . . zn]yx1 . . .xn−1]

• . . .

• [λy Fnx1 . . .xn−1y] = [λy [λz1 . . . zn Fnz1 . . . zn]x1 . . .xn−1y]

To see that each conjunct is logically true, note that each asserts a property identity in-
volving non-elementary, η-irreducible λ-expressions and their (immediate) η-variants. As
we’ve seen previously, each expands to a logical truth, for any assignment to x1, . . . ,xn−1.
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But this now raises the question, why do Hindley and Seldin (1986,
74) say:

. . . (η) is usually taken as the ‘canonical’ definition of exten-
sionality in λ-calculus.

The answer is, our semantics doesn’t endorse a principle that corresponds
to a principle they presupposed when they asserted the above, namely,
the Rule (�)ξ:34

From (�)∀x1 . . .∀xn(ϕ ≡ ψ), infer [λx1 . . .xn ϕ] = [λx1 . . .xn ψ]

(I’ve put the � in parenthesis to emphasize that there is a non-modal and
a modal form of Rule ξ.) Clearly, η-Conversion (‘ηC’) and the Rule (�)ξ
jointly imply that necessarily equivalent relations are identical, by the
following argument:35

34I’m indebted to Allen Hazen for noting this point. I’ve also benefited from reading
Alama 2013 as I was sorting through the issues.

35It may not be immediately clear why our version of Rule (�)ξ corresponds to rule
(ξ) found in Curry & Feys 1958 (89) and in Hindley & Seldin 1986 (66). Curry & Feys
formulate the rule (ξ) as: from A = B, infer λxA = λxB; Hindley & Seldin formulate it
as: from M = M′ , infer λx.M = λx.M′ . Both pairs of authors use (ξ) and (η) to derive
extensionality, which is formulated as: Mx = Nx → M = N , by the following argument
(Curry & Feys 1958, 92; Hindley & Seldin 1986, 74):

1. Mx =Nx Assumption
2. λxMx = λxNx (ξ), 1
3. λxMx =M instance of (η)
4. λxNx =N instance of (η)
5. M =N =E, 2, 3, 4
6. Mx =Nx→M =N CP, 1–5

But notice that in this argument, they apply (ξ) to line 1 by taking Mx =Nx as an instance
of M = N , which is the premise to Rule (ξ). But we can’t represent Mx = Nx as Fx = Gx,
since the latter is not well-defined, no matter what terms Π1 we substitute for the variables
F,G. If we represent Mx = Nx as (�)∀x(Fx ≡ Gx), then we can’t regard the latter as an
instance of F = G in the same way that Mx = Nx is regarded as an instance of M = N
(again, no matter what terms we substitute for the variables F,G).

Consequently, to capture the reasoning that shows (ξ) and (η) imply extensionality, I’ve
formulated the premise of Rule (�)ξ so that it directly justifies the move from line 1 to
line 2 in the proof given by Curry & Feys and Hindley & Seldin. So the premise Mx = Nx
has been represented as (�)∀x1 . . .∀xn(ϕ ≡ ψ), and the conclusion λxMx = λxNx has been
represented as [λx1 . . .xn ϕ] = [λx1 . . .xn ψ].
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1. (�)∀x1 . . .∀xn(Fnx1 . . .xn ≡ Gnx1 . . .xn) Assumption
2. [λx1 . . .xn F

nx1 . . .xn] = [λx1 . . .xnG
nx1 . . .xn] (�)ξ, 1

3. [λx1 . . .xn F
nx1 . . .xn] = Fn ηC

4. [λx1 . . .xnG
nx1 . . .xn] = Gn ηC

5. Fn = Gn =E, 2, 3, 4
6. (�)∀x1 . . .∀xn(Fnx1 . . .xn ≡ Gnx1 . . .xn)→ Fn = Gn CP, 1–5

But there is no longer any motivation to endorse either Rule ξ or the
objectionable extensionality principles mentioned above—the classical
desideratum of having an extensional theory of relations is met by the
object-theoretic definitions of relation identity. In light of our semantics,
these provide extensional identity conditions for our intensional enti-
ties without implying either the objectionable forms of extensionality or
endorsing Rule ξ.

6 Appendix: Definitions and Metatheorems

In this Appendix, we state definitions and prove metatheorems for the
language and semantics developed in Sections 3 and 4. We leave the
corresponding definitions and metatheorems for the extended system
discussed in 5 for a another occasion.

6.1 Free Occurrences of Variables

By considering the appropriate clauses in the BNF definition of term and
formula, we recursively define what it is for an occurrence of a variable
α to be free in term τ or formula ϕ, as follows:

(.1) If τ is the variable α, then that occurrence of α in τ is free. (If τ is
a constant or a variable other than α, then there is no occurrence
of α in τ .)

(.2) If ϕ is Πnκ1 . . .κn (n ≥ 0), then an occurrence of α in ϕ is free iff
it is an occurrence of α in one of the terms κ1, . . . ,κn, or Πn that is
free.

(.3) If ϕ is ¬ψ or �ψ, then an occurrence of α in ϕ is free iff it is an
occurrence of α inψ that is free. Ifϕ is (ψ→ χ), then an occurrence
of α in ϕ is free iff it is an occurrence of α in ψ or χ that is free.
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(.4) If ϕ is ∀βψ, then an occurrence of α in ϕ is free iff (i) it is an occur-
rence of α in ψ that is free and (ii) it is not an occurrence of β.

(.5) If τ is ıνψ, then an occurrence of α in τ is free iff (i) it is an occur-
rence of α in ψ that is free and (ii) it is not an occurrence of ν.

(.6) If τ is [λν1 . . .νn ψ
∗] (n ≥ 0), then an occurrence of α in τ is free

iff (i) it is an occurrence of α in ψ∗ that is free and (ii) it is not an
occurrence of ν1, . . . ,νn.

(.7) No occurrence of a variable is free in an expression unless it can be
so demonstrated by the clauses above.

We henceforth say that a variable α occurs free or is free in formula ϕ or
term τ if and only if at least one occurrence in of α in ϕ or τ is free.

6.2 Assignment Agreement Lemma

Lemma. If f and g are any assignment functions that agree on the
free variables (if any) in ϕ, then w |=I ,f ϕ iff w |=I ,g ϕ.

Proof: By induction on the complexity of ϕ and, in the base case, a
secondary induction on the complexity of terms τ occurring in ϕ. As-
sume that f and g are arbitrarily chosen assignments that agree on the
free variables, if any, in ϕ.

Formula Induction: Base Case. ϕ has the form Πnκ1 . . .κn (n ≥ 1) or
the form Π0.

Term Induction: Base Case. All of the individual and relation terms
τ in ϕ are simple (i.e., constants or variables). If term τ in ϕ is a constant
(i.e., an individual constant or n-place relation constant), then by D1,
dI ,f (τ) = V(τ) = dI ,g (τ). If τ is a variable (i.e., an individual variable
or an n-place relation variable), then by D2, dI ,f (τ) = f (τ) and dI ,g (τ)
= g(τ). However, when τ is a variable, then the occurrence of τ is, by
definition, free in ϕ. So, by hypothesis, f (τ) = g(τ). So dI ,f (τ) = dI ,g (τ).
Hence, no matter whether τ in ϕ is a constant or a variable, dI ,f (τ) =
dI ,g (τ). Now, to show w |=I ,f ϕ iff w |=I ,g ϕ, our two cases are:

• Case A. n ≥ 1, ϕ is Πnκ1 . . .κn. By T1, we have to show that:

∃rn∃o1 . . .∃on(rn = dI ,f (Πn) & o1 = dI ,f (κ1) & . . . &
on = dI ,f (κn) & 〈o1, . . . ,on〉 ∈ exw(rn))
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if and only if
∃rn∃o1 . . .∃on(rn = dI ,g (Πn) & o1 = dI ,g (κ1) & . . . &

on = dI ,g (κn) & 〈o1, . . . ,on〉 ∈ exw(rn))

• Case B. n = 0, ϕ is Π0, i.e., a 0-place relation constant or variable.
By T2, we have to show that:

∃r0(r0 = dI ,f (Π0) & exw(r0) = True)
if and only if
∃r0(r0 = dI ,g (Π0) & exw(r0) = True)

But, clearly, in all of these cases, if dI ,f (τ) = dI ,g (τ) for every term τ in ϕ,
then any witnesses to the existential claims in the left-side condition are
witnesses to the existential claims in the right-side condition, and vice
versa.

Term Induction: Inductive Case 1. One or more of the individual
terms κi in ϕ is a definite description. So there is only one case: ϕ is
Πnκ1 . . .κn (n ≥ 1) and one or more of the κi in Πnκ1 . . .κn is a description.
(When ϕ is Π0, n = 0 and there are no κi in Π0.) We may, without loss of
generality, assume that exactly one of the κi , say κ1, is a description. Soϕ
is Πnıνψκ2 . . .κn and all the other terms inϕ are as in the Term Induction
Base Case, i.e., all of the other terms τ inϕ are such that dI ,f (τ) = dI ,g (τ).
So to show w |=I ,f ϕ iff w |=I ,g ϕ, we have to show:

∃rn∃o1 . . .∃on(rn = dI ,f (Πn) & o1 = dI ,f (ıνψ) & o2 = dI ,f (κ2) &
. . . & on = dI ,f (κn) & 〈o1, . . . ,on〉 ∈ exw(rn))
if and only if

∃rn∃o1 . . .∃on(rn = dI ,g (Πn) & o1 = dI ,g (ıνψ) & o2 = dI ,g (κ2) &
. . . & on = dI ,g (κn) & 〈o1, . . . ,on〉 ∈ exw(rn))

(→) For the left-right direction, assume the left-hand condition, and let
Rn,a1, . . . ,an be arbitrarily chosen witnesses to the existential claims. So
a1 = dI ,f (ıνψ). We can reduce this to the previous case if we can show
a1 = dI ,g (ıνψ), since by hypothesis, all the other terms in ϕ are such that
dI ,f (τ) = dI ,g (τ). Now by D3, it follows from the fact that a1 = dI ,f (ıνψ)
that:

(ϑ) w0 |=I ,f [ν/a1] ψ & ∀o′(w0 |=I ,f [ν/o′] ψ→ o′=a1)

Since we want to show a1 = dI ,g (ıνψ), we need to establish:

(ζ) w0 |=I ,g[ν/a1] ψ & ∀o′(w0 |=I ,g[ν/o′] ψ→ o′=a1)
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Our inductive hypothesis is that any assignments f ′ and g ′ that agree on
the free variables of ψ are such that w |=I ,f ′ ψ iffw |=I ,g ′ ψ. But note that
the free variables in ψ include ν and possibly all of the free variables
in ϕ. (The free variables in ϕ may be free in ψ with the exception of
ν.) Since f and g agree on all the free variables of ϕ, f [ν/a1] and g[ν/a1]
agree on all of the free variables in ψ. So our inductive hypothesis yields:

w0 |=I ,f [ν/a1] ψ iff w0 |=I ,g[ν/a1] ψ

The first conjunct of (ζ) now follows from this and the first conjunct of
(ϑ). To show the second conjunct of (ζ) holds, assume w0 |=I ,g[ν/b] ψ,
where b is arbitrary, to show b = a1. By instantiating b into the second
conjunct of (ϑ), we know:

w0 |=I ,f [ν/b] ψ→ b=a1

But again, since f [ν/b] and g[ν/b] agree on all the free variables in ψ,
our inductive hypothesis yields:

w0 |=I ,f [ν/b] ψ iff w0 |=I ,g[ν/b] ψ

This and our assumption that w0 |=I ,g[ν/b] ψ implies w0 |=I ,f [ν/b] ψ, al-
lowing us to conclude b = a1. So we’ve established (ζ), and hence, that
a1 = dI ,g (ıνψ). (←) By analogous reasoning.

Term Induction: Inductive Case 2. The n-place relation term in ϕ is
complex and any individual terms κi are simple. There are two cases:

Case A. For n ≥ 1, when ϕ is Πnκ1 . . .κn and the n-place relation
term Πn is a λ-expression of the form [λν1 . . .νn ψ]

Case B. For n = 0, when ϕ is Π0, and Π0 is a λ-expression of the
form [λψ].

So, to show w |=I ,f ϕ iff w |=I ,g ϕ, we have to show:

Case A. w |=I ,f [λν1 . . .νn ψ]κ1 . . .κn iff w |=I ,g [λν1 . . .νn ψ]κ1 . . .κn

Case B. w |=I ,f [λψ] iff w |=I ,g [λψ]

By expanding Case A using T1 and by expanding Case B using T2, we
have to show, letting oi = dI ,f (κi) abbreviate o1 = dI ,f (κ1) & . . . & on =
dI ,f (κn):
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(ϑ1) Case A.
∃rn∃o1 . . .∃on(rn = dI ,f ([λν1 . . .νnψ]) & oi = dI ,f (κi ) & 〈o1, . . . ,on〉 ∈ exw(rn))

if and only if
∃rn∃o1 . . .∃on(rn = dI ,g ([λν1 . . .νnψ]) & oi = dI ,g (κi ) & 〈o1, . . . ,on〉 ∈ exw(rn))

(ϑ2) Case B.
∃r0(r0 = dI ,f ([λψ]) & exw(r0) = True)

if and only if
∃r0(r0 = dI ,g ([λψ]) & exw(r0) = True)

So we show that the witnesses to the corresponding existential claims can
be identified. In Case A, we know by hypothesis that the κi are simple,
and so by previous reasoning, we know that dI ,f (κi) = dI ,g (κi), for 1 ≤
i ≤ n. So it remains to show:

Case A. dI ,f ([λν1 . . .νn ψ]) = dI ,g ([λν1 . . .νn ψ])

Case B. dI ,f ([λψ]) = dI ,g ([λψ])

But the above follow from Constraints (2.1) and (2.2), respectively, on
our semantics. Thus, both of our cases reduce to the reasoning in the
Term Induction Base Case: in each case, every term τ in ϕ is such that
dI ,f (τ) = dI ,g (τ), and so, for both biconditionals (ϑ1) and (ϑ2), any wit-
nesses to the quantified claims on one side are witnesses to correspond-
ing quantified claims on the other side.

Formula Induction: Inductive Case 1. ϕ is ¬ψ, ψ→ χ, or �ψ. These
cases follow straightforwardly from the inductive hypothesis.

Formula Induction: Inductive Case 2. ϕ is ∀αψ. Then the free vari-
ables ofϕ are those free inψ with the exception of α. So for any arbitarily
chosen entity e in the domain of α, the assignments f [α/e] and g[α/e]
agree on all the free variables in ψ. So, by our inductive hypothesis:

w |=I ,f [α/e] ψ if and only if w |=I ,g[α/e] ψ

But since e was arbitrary, we have:

∀e ∈ dom(α)[w |=I ,f [α/e] ψ if and only if w |=I ,g[α/e] ψ]

But this implies:

[∀e ∈ dom(α)(w |=I ,f [α/e] ψ)] if and only if [∀e ∈ dom(α)(w |=I ,g[α/e] ψ)]

By T5, it follows that:
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w |=I ,f ∀αψ if and only if w |=I ,g ∀αψ

i.e.,

w |=I ,f ϕ if and only if w |=I ,g ϕ ./

6.3 Corollary to the Assignment Agreement Lemma

Corollary. If assignments f and g agree on the free variables in
term τ , then dI ,f (τ) = dI ,g (τ).

Proof. This is established by appealing to, or repurposing, some of
the reasoning in, the Assignment Agreement Lemma. Assume assign-
ments f and g agree on the free variables in τ .

Case A. τ is a constant. This was established in the Term Induction:
Base Case of the Assignment Agreement Lemma.

Case B. τ is a variable. This was established in the Term Induction:
Base Case of the Assignment Agreement Lemma.

Case C. τ is a definite description of the form ıνϕ. We establish this
by adapting the reasoning in Inductive Case 1 of the Term Induction in
the Assignment Agreement Lemma. Assume f and g agree on the free
variables in the term ıνψ. Now by D3, we know:

dI ,f (ıνψ) =

o if w0 |=I ,f [ν/o] ψ & ∀o′(w0 |=I ,f [ν/o′] ψ→ o′=o)

undefined, otherwise

But the free variables in ıνψ are those inψ with the exception of ν. So, for
any object o′′ , the assignments f [ν/o′′] and g[ν/o′′] agree on all the free
variables in ψ. Consequently, by the Assignment Agreement Lemma, it
follows that:

w0 |=I ,f [ν/o] ψ if and only if w0 |=I ,g[ν/o] ψ

It also follows that:

∀o′(w0 |=I ,f [ν/o′] ψ→ o′=o) iff ∀o′(w0 |=I ,g[ν/o′] ψ→ o′=o)

So, we have established:

dI ,f (ıνψ) =

o if w0 |=I ,g[ν/o] ψ & ∀o′(w0 |=I ,g[ν/o′] ψ→ o′=o)

undefined, otherwise

i.e., by D3, that:
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dI ,f (ıνψ) = dI ,g (ıνψ)

Case D. τ is a complex n-place relation term, i.e., a λ-expression of
the form [λν1 . . .νn ϕ], for n ≥ 0. Then our corollary holds in virtue of
Constraints (2.1) and (2.2) on our semantics, from which it follows that
when f and g agree on the free variables in complex n-place relation
term τ , dI ,f (τ) = dI ,g (τ). ./

6.4 Substitutions and Substitutable For

Substitutions

Where τ is any term and α any variable, we use the notation ϕτα and
ρτα , respectively, to stand for the result of substituting the term τ for
every free occurrence of the variable α in formula ϕ and in term ρ. This
notion may be defined recursively based on the complexity of ρ and ϕ as
follows:

• If ρ is a constant or variable other than α, ρτα = ρ.
If ρ is α, ρτα = τ

• If ϕ is Πnκ1 . . .κn (n ≥ 0), then ϕτα = Πnτ
ακ1

τ
α . . .κn

τ
α .

• If ϕ is ¬ψ or �ψ, then ϕτα = ¬(ψτα) or �(ψτα), respectively.
If ϕ is ψ→ χ, then ϕτα = ψτα→ χτα .

• Ifϕ is ∀βψ, thenϕτα =

∀βψ, if α = β

∀β(ψτα), if α , β

• If ρ is ıνψ, then ρτα =

ıνψ, if α = ν

ıν(ψτα), if α , ν

• If ρ is [λν1 . . .νn ψ], then

ρτα =

[λν1 . . .νn ψ], if α is one of ν1, . . . ,νn
[λν1 . . .νn ψ

τ
α], if α is none of ν1, . . . ,νn

Substitutable For

We recursively define term τ is substitutable for the variable α in formula
ϕ or in term ρ as follows:

• If ρ is a constant or a variable, then τ is substitutable for α in ρ iff
(i) ρ is α and (ii) τ and α are terms of the same type.

Edward N. Zalta 54

• If ϕ is Πnκ1 . . .κn (n ≥ 0), then τ is substitutable for α in ϕ iff τ is
substitutable for α in one of the terms Πn, or κ1, . . ., or κn.

• If ϕ is ¬ψ or �ψ, then τ is substitutable for α in ϕ iff τ is substi-
tutable for α in ψ; if ϕ is ψ→ χ, then τ is substitutable for α in ϕ
iff τ is substitutable for α in ψ and χ.

• If ϕ is ∀βψ, then τ is substitutable for α in ϕ iff either α does not
occur free in ϕ or both (i) β does not free occur in τ and (ii) τ is
substitutable for α in ψ.

• If ρ is ıνψ, then τ is substitutable for α in ρ iff either α does not
occur free in ρ or both (i) ν does not occur free in τ and (ii) τ is
substitutable for α in ψ.

• If ρ is [λν1 . . .νnψ] (n ≥ 0), then τ is substitutable for α in ρ iff either
α does not occur free in ρ or both (i) ν1, . . . ,νn do not occur free in
τ and (ii) τ is substitutable for α in ψ.

Intuitively, term τ is substitutable for the variable α in formula ϕ (term
ρ) if and only if (a) τ and α are terms of the same type, and (b) every
occurrence of a variable β free in τ remains an occurrence that is free in
ρτα . So when τ is substitutable for the variable α in ϕ (or in ρ), no occur-
rence of a variable β,ν,ν1, . . . ,νn free in τ becomes bound (‘captured’) by
a variable-binding operator such as ∀β, ιν, or λν1 . . .νn in ϕ (or ρ) when
τ is substituted for the free occurrences of α in ϕ (or ρ).

6.5 Substitution Lemma

Lemma. If τ is substitutable for α in ϕ and dI ,f (τ) = e, where e

is an entity in the domain of the variable α, then w |=I ,f ϕτα if and
only if w |=I ,f [α/e] ϕ.

Example. If the constant a is substitutable for the variable x in Fx
(= ϕ) and dI ,f (a) = o, where o is an entity in the domain of the
variable x, then w |=I ,f Fa if and only if w |=I ,f [x/o] Fx.

Proof: By induction on the complexity of ϕ with the proof of the base
case proceeding by a secondary induction on the complexity of terms τ ′

occurring in ϕ. Assume τ is substitutable for α in ϕ and dI ,f (τ) = e,
where e is an entity in the domain of the variable α. Note that by the
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definition of substitutable for and ϕτα , τ is substitutable for α in the edge
case where there are no free occurrences of α in ϕ. But in that case, ϕτα =
ϕ, and so the lemma asserts that w |=I ,f ϕ if and only if w |=I ,f [α/e] ϕ. If
α has no free occurrences in ϕ, then clearly, f and f [α/e] agree on all the
free variables in ϕ, so the lemma follows by the Assignment Agreement
Lemma (Section 6.2). So, in what follows, we presume that α is free in ϕ.

Formula Induction: Base Case. We have two cases:

Case A. ϕ has the form Πnκ1 . . .κn (n ≥ 1)

Case B. ϕ has the form Π0

Term Induction: Base Case. All of the individual and relation terms
τ ′ in ϕ are simple, i.e., constants or variables.
• Case A. Suppose ϕ has the form Πnκ1 . . .κn, and all of the terms are

constants or variables. Since we’ve covered the case where α isn’t free in
ϕ, we may suppose at least one of the terms in the present case is α. So
either (i) α is one or more of the κi and Πn is simple or (ii) α is Πn and
the κi are simple.
• Case A(i). α is one or more of the κi and Πn is simple. Without

loss of generality, suppose α is κ1 and not one of the other κi . Then τ
is an object term and κ1

τ
α = τ . Since α is not any of the other terms in

the formula, we know κi
τ
α = κi , for 2 ≤ i ≤ n, and Πnτ

α = Πn. So ϕτα is
Πnτκ2 . . .κn and ϕ is Πnακ2 . . .κn. Consequently, to show:

w |=I ,f ϕτα if and only if w |=I ,f [α/e] ϕ

we have to show:

w |=I ,f Πnτκ2 . . .κn if and only if w |=I ,f [α/e] Π
nακ2 . . .κn

By T1, this means we have to show:

(ϑ) ∃rn∃o1 . . .∃on(rn = dI ,f (Πn) & o1 = dI ,f (τ) & o2 = dI ,f (κ2) & . . . &
on = dI ,f (κn) & 〈o1, . . . ,on〉 ∈ exw(rn))

if and only if
∃rn∃o1 . . .∃on(rn = dI ,f [α/e](Πn) & o1 = dI ,f [α/e](α) &
o2 = dI ,f [α/e](κ2) & . . . & on = dI ,f [α/e](κn) & 〈o1, . . . ,on〉 ∈ exw(rn))

Since Πn is a constant or a variable other than α, we know (by D1 if Πn

is a constant, or by D2 if Πn is a variable other than α) that dI ,f (Πn)
= dI ,f [α/e](Πn). Similar reasoning applies to the κ2, . . . ,κn: since they
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are constants or variables other than α, it follows by D1 (if they are
constants) or by D2 (if they are variables other than α) that dI ,f (κi) =
dI ,f [α/e](κi), for 2 ≤ i ≤ n. So if we can show dI ,f (τ) = dI ,f [α/e](α), we’re
done, for this would establish that any witnesses to any quantifier on
one side of (ϑ) would be witnesses to the corresponding quantifier on
the other side of (ϑ). But by hypothesis, dI ,f (τ) = e and by definition,
dI ,f [α/e](α) = e.
• Case A(ii). Πn is α and κ1, . . . ,κn are all simple. Then τ is an n-place

relation term and Πnτ
α = τ . Moreover, κi τα = κi , for 1 ≤ i ≤ n. So ϕτα is

τκ1 . . .κn and ϕ is ακ1 . . .κn. Consequently, we have to show:

w |=I ,f τκ1 . . .κn if and only if w |=I ,f [α/e] ακ1 . . .κn

By T1, this means we have to show:

(ζ) ∃rn∃o1 . . .∃on(rn = dI ,f (τ) & oi = dI ,f (κi) & 〈o1, . . . ,on〉 ∈ exw(rn))
if and only if
∃rn∃o1 . . .∃on(rn = dI ,f [α/e](α) & oi = dI ,f [α/e](κi ) & 〈o1, . . . ,on〉 ∈ exw(rn))

But this follows by reasoning analogous to the previous case: we know
both (1) that dI ,f (τ) = (by hypothesis) e = (by definition) dI ,f [α/e](α),
and (2) that since the κi are simple and not α, it follows that dI ,f (κi) =
dI ,f [α/e](κi), for 1 ≤ i ≤ n. So any witnesses to one side of the bicondi-
tional are witnesses to the other side.
• Case B. Suppose ϕ has the form Π0, and Π0 is a constant or a vari-

able. But since α is free in ϕ, Π0 must be α. So we know all of the fol-
lowing: that α is a 0-place relation variable, that τ is a 0-place relation
term, that ϕτα = τ , and that ϕ = α. Consequently, we have to show:

w |=I ,f τ if and only if w |=I ,f [α/e] α

By T2, we have to show:

∃r0(r0 = dI ,f (τ) & exw(r0) = True)
if and only if
∃r0(r0 = dI ,f [α/e](α) & exw(r0) = True)

But by hypothesis, dI ,f (τ) = e and by definition, dI ,f [α/e](α) = e. So any
witness to one side of this biconditional is a witness to the other.

Term Induction: Inductive Case 1. There is only one case: ϕ is
Πnκ1 . . .κn (n ≥ 1), where one or more of the κi is a description of the
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form ıνψ and the remaining terms are all simple. (If ϕ is of the form Π0,
then n = 0 and there are no κi .) Without loss of generality, assume κ1 is
ıνψ, and the other κi and Π1 are simple. So ϕ is Πnıνψκ2 . . .κn and there
are two cases: (A) α isn’t free in ıνψ, and (B) α is free in ıνψ.
• Case A. If α isn’t free in ıνψ, then since we know α is free in ϕ, α

must be either Πn or one or more of κ2, . . . ,κn.
• Case A(i). Suppose α is Πn. Then ϕτα is τıνψκ2 . . .κn and ϕ is

αıνψκ2 . . .κn. Consequently, to show:

w |=I ,f ϕτα if and only if w |=I ,f [α/e] ϕ

we have to show:

w |=I ,f τıνψκ2 . . .κn if and only if w |=I ,f [α/e] αıνψκ2 . . .κn

i.e., by T1, that:

∃rn∃o1 . . .∃on(rn = dI ,f (τ) & o1 = dI ,f (ıνψ) &
o2 = dI ,f (κ2) & . . . & on = dI ,f (κn) & 〈o1, . . . ,on〉 ∈ exw(rn))

if and only if
∃rn∃o1 . . .∃on(rn = dI ,f [α/e](α) & o1 = dI ,f [α/e](ıνψ) &
o2 = dI ,f [α/e](κ2) & . . . & on = dI ,f [α/e](κn) & 〈o1, . . . ,on〉 ∈ exw(rn))

If we can establish that the witnesses to the corresponding existential
claims on both sides of the biconditional are identical, we are done. First,
by previous reasoning, we established that dI ,f (τ) = dI ,f [α/e](α). Second,
since the κi , 2 ≤ i ≤ n, are all simple, previous reasoning has also estab-
lished that dI ,f (κi) = dI ,f [α/e](κi), for 2 ≤ i ≤ n. So it remains to show:
dI ,f (ıνψ) = dI ,f [α/e](ıνψ). However, since α is Πn and α is not free in
ıνψ, we know f and f [α/e] agree on all the free variables in ıνψ. So
by the Corollary to the Assignment Agreement Lemma (Section 6.3), it
follows that dI ,f (ıνψ) = dI ,f [α/e](ıνψ).
• Case A(ii). Suppose α is one or more of κ2, . . . ,κn. Without loss

of generality, suppose α is κ2. Then ϕτα is Πnıνψτκ3 . . .κn and ϕ is
Πnıνψακ3 . . .κn. Consequently, to show:

w |=I ,f ϕτα if and only if w |=I ,f [α/e] ϕ

we have to show:

w |=I ,f Πnıνψτκ3 . . .κn if and only if w |=I ,f [α/e] Π
nıνψακ3 . . .κn

i.e., by T1, that:
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∃rn∃o1 . . .∃on(rn = dI ,f (Πn) & o1 = dI ,f (ıνψ) & o2 = dI ,f (τ) &
o3 = dI ,f (κ3) & . . . & on = dI ,f (κn) & 〈o1, . . . ,on〉 ∈ exw(rn))

if and only if
∃rn∃o1 . . .∃on(rn = dI ,f [α/e](Πn) & o1 = dI ,f [α/e](ıνψ) &
o2 = dI ,f [α/e](α) & o3 = dI ,f [α/e](κ3) & . . . & on = dI ,f [α/e](κn) &
〈o1, . . . ,on〉 ∈ exw(rn))

Again, if we can establish that the witnesses to the corresponding ex-
istential claims on both sides of the biconditional are identical, we are
done. First, since Πn is simple, then by previous reasoning, we know
dI ,f (Πn) = dI ,f [α/e](Πn). Second, by previous reasoning, we established
that dI ,f (τ) = dI ,f [α/e](α). Third, since the κi (3 ≤ i ≤ n) are all sim-
ple, previous reasoning has also established that dI ,f (κi) = dI ,f [α/e](κi),
for 2 ≤ i ≤ n. So again it remains to show: dI ,f (ıνψ) = dI ,f [α/e](ıνψ).
However, since α is κ2 and α is not free in ıνψ, we know f and f [α/e]
agree on all the free variables in ıνψ. So by the Corollary to the As-
signment Agreement Lemma (Section 6.3), it follows that dI ,f (ıνψ) =
dI ,f [α/e](ıνψ).
• Case B. If α is free in ıνψ, then ϕτα is Πnτ

α[ıνψ]τακ2
τ
α . . .κn

τ
α , where we

use the square brackets in [ıνψ]τα to help indicate the result of substitut-
ing τ for every free occurrence of α in ıνψ. Furthermore, since α is free in
ıνψ, α can’t be ν, so that [ıνψ]τα is ıν(ψτα). So ϕτα is Πnτ

αıν(ψτα)κ2
τ
α . . .κn

τ
α .

Consequently, to show:

w |=I ,f ϕτα if and only if w |=I ,f [α/e] ϕ

we have to show:

w |=I ,f Πnτ
αıν(ψτα)κ2

τ
α . . .κn

τ
α if and only if w |=I ,f [α/e] Π

nıνψκ2 . . .κn

i.e., by T1, that:

∃rn∃o1 . . .∃on(rn = dI ,f (Π1τ
α) & o1 = dI ,f (ıν(ψτα)) &

o2 = dI ,f (κ2
τ
α) & . . . & on = dI ,f (κnτα) & 〈o1, . . . ,on〉 ∈ exw(rn))

if and only if
∃rn∃o1 . . .∃on(rn = dI ,f [α/e](Πn) & o1 = dI ,f [α/e](ıνψ) &
o2 = dI ,f [α/e](κ2) & . . . & on = dI ,f [α/e](κn) & 〈o1, . . . ,on〉 ∈ exw(rn))

But Πn is simple and so no matter whether Πn is or isn’t another oc-
currence of α, it follows by D1 (if Πn is a constant), or D2 (if Πn is a
variable other than α), or previous reasoning (if Πn is α) that dI ,f (Π1τ

α)
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= dI ,f [α/e](Π1). Similarly, each κi , where 2 ≤ i ≤ n, is simple and so no
matter whether κi is or isn’t another occurrence of α, it follows by D1
(if κi is a constant), or D2 (if κi is a variable other than α), or previous
reasoning (if κi is α) that dI ,f (κi τα) = dI ,f [α/e](κi). So to show the above
biconditional, it remains to show dI ,f (ıν(ψτα)) = dI ,f [α/e](ıνψ). Now by
D3, we know both:

(ζ1) dI ,f (ıν(ψτα)) =o if w0 |=I ,f [ν/o] ψ
τ
α & ∀o′(w0 |=I ,f [ν/o′] ψ

τ
α→ o′=o)

undefined, otherwise

(ζ2) dI ,f [α/e](ıνψ) =o if w0 |=I ,f [α/e][ν/o] ψ & ∀o′(w0 |=I ,f [α/e][ν/o′] ψ→ o′=o)

undefined, otherwise

So, if we can show that:

(ξ) ∀o′′[w0 |=I ,f [ν/o′′] ψ
τ
α if and only if w0 |=I ,f [α/e][ν/o′′] ψ]

we are done, for this would allow us to transform the right side of the
identity in (ζ1) into the right side of the identity in (ζ2), and vice versa,
thereby establishing dI ,f (ıν(ψτα)) = dI ,f [α/e](ıνψ). Now we can show (ξ)
by picking an arbitrarily chosen object b, and showing:

(ξ ′) w0 |=I ,f [ν/b] ψ
τ
α if and only if w0 |=I ,f [α/e][ν/b] ψ

Now note that our inductive hypothesis is, for any assignment g:

(ϑ) If τ ′ is substitutable for β in ψ and dI ,g (τ ′) = e′ , then w |=I ,g ψτ
′
β if

and only if w |=I ,g[β/e′] ψ

So if we let τ ′ be τ , let β be α, and let e′ be e, and let g be f [ν/b], then
our inductive hypothesis yields that:

(ϑ′) If τ is substitutable for α in ψ and dI ,f [ν/b](τ) = e, then
w |=I ,f [ν/b] ψ

τ
α if and only if w |=I ,f [ν/b][α/e] ψ

To detach the biconditional in the consequent of (ϑ′), note first that, by
hypothesis, τ is substitutable for α in ϕ. Since, in the present case, α
is free in ϕ and α is free in ıνψ, it follows that τ is substitutable for
α in ıνψ. (For otherwise, if a variable free in τ were captured when
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τ is substituted for α in ıνψ, that variable would be captured when τ
is substituted for all the free occurrences of α in ϕ, contradicting τ’s
substitutability for α in ϕ.) So by definition of substitutable for, we know:

τ is substitutable for α in ψ

It also follows from the fact that τ is substitutable for α in ıνψ, when
α is free in ıνψ, that ν isn’t free in τ . So f and f [ν/b] agree on the
free variables in τ , and by the Corollary to the Assignment Agreement
Lemma (Section 6.3), it follows that dI ,f (τ) = dI ,f [ν/b](τ). But now note
second that the other conjunct of our very first hypothesis is that dI ,f (τ) =
e. So it follows that:

dI ,f [ν/b](τ) = e.

So, we may infer from our last two displayed conclusions and (ϑ′) that:

w0 |=I ,f [ν/b] ψ
τ
α if and only if w0 |=I ,f [ν/b][α/e] ψ

But, by definition, f [ν/b][α/e] = f [α/e][ν/b]. So we may transform our
last conclusion into (ξ ′):

(ξ ′) w0 |=I ,f [ν/b] ψ
τ
α if and only if w0 |=I ,f [α/e][ν/b] ψ

And this is what we had to show to prove dI ,f (ıν(ψτα)) = dI ,f [α/e](ıνψ)
and thereby complete the proof of Case B.

Term Induction: Inductive Case 2. There are two cases: (A) ϕ has
the form Πnκ1 . . .κn, where Πn is [λν1 . . .νnψ] and the κi are simple, and
(B) ϕ has the form Π0, where Π0 is [λψ].
• Case A. ϕ has the form Πnκ1 . . .κn, where Πn is [λν1 . . .νn ψ] and

the κi are simple. Then there are two further cases: (i) α isn’t free in
[λν1 . . .νn ψ], and (ii) α is free in [λν1 . . .νn ψ].
• Case A(i). If α isn’t free in [λν1 . . .νn ψ], then α must be one or

more of the κi (since we know α is free in ϕ and the κi are all simple).
Without loss of generality, suppose α is κ1 and all the other κi are con-
stants or variables other than α. Then ϕτα is [λν1 . . .νn ψ]τκ2 . . .κn and ϕ
is [λν1 . . .νn ψ]ακ2 . . .κn. Consequently, to show:

w |=I ,f ϕτα if and only if w |=I ,f [α/e] ϕ

we have to show:
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w |=I ,f [λν1 . . .νn ψ]τκ2 . . .κn
if and only if

w |=I ,f [α/e] [λν1 . . .νn ψ]ακ2 . . .κn

i.e., by T1, that:

∃rn∃o1 . . .∃on(rn = dI ,f ([λν1 . . .νn ψ]) & o1 = dI ,f (τ) &
o2 = dI ,f (κ2) & . . . & on = dI ,f (κn) & 〈o1, . . . ,on〉 ∈ exw(rn))

if and only if
∃rn∃o1 . . .∃on(rn = dI ,f [α/e]([λν1 . . .νn ψ]) & o1 = dI ,f [α/e](α) &
o2 = dI ,f [α/e](κ2) & . . . & on = dI ,f [α/e](κn) & 〈o, . . .on〉 ∈ en(rn))

Now by previous reasoning, we know both that dI ,f (τ) = dI ,f [α/e](α)
and that, for 2 ≤ i ≤ n, dI ,f (κi) = dI ,f [α/e](κi). So our biconditional is
proved if we can show: dI ,f ([λν1 . . .νnψ]) = dI ,f [α/e]([λν1 . . .νnψ]). How-
ever, since α is not free in [λν1 . . .νn ψ], we know f and f [α/e] agree on
all the free variables in [λν1 . . .νn ψ]. So by the Corollary to the Assign-
ment Agreement Lemma (Section 6.3), it follows that dI ,f ([λν1 . . .νn ψ])
= dI ,f [α/e]([λν1 . . .νn ψ]).
• Case A(ii). If α is free in [λν1 . . .νn ψ], then ϕτα is:

[λν1 . . .νn ψ]τακ1
τ
α . . .κn

τ
α .

Furthermore, since α is free in [λν1 . . .νn ψ], α can’t be any of the νi , so
that [λν1 . . .νn ψ]τα is [λν1 . . .νn ψ

τ
α]. So ϕτα is:

[λν1 . . .νn ψ
τ
α]κ1

τ
α . . .κn

τ
α

Consequently, to show:

w |=I ,f ϕτα if and only if w |=I ,f [α/e] ϕ

we have to show:

w |=I ,f [λν1 . . .νn ψ
τ
α]κ1

τ
α . . .κn

τ
α

if and only if
w |=I ,f [α/e] [λν1 . . .νn ψ]κ1 . . .κn

i.e., by T1, that:

(ϑ) ∃rn∃o1 . . .∃on(rn = dI ,f ([λν1 . . .νn ψ
τ
α]) & oi = dI ,f (κi τα) &

〈o1, . . . ,on〉 ∈ exw(rn))
if and only if
∃rn∃o1 . . .∃on(rn = dI ,f [α/e]([λν1 . . .νn ψ]) & oi = dI ,f [α/e](κi) &
〈o1, . . . ,on〉 ∈ exw(rn))
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Since the κi are all simple, then no matter whether κi is a constant, a
variable other than α, or α itself, we know from previous reasoning that
dI ,f (κi τα) = dI ,f [α/e](κi), for 1 ≤ i ≤ n. So it remains to show:

(ζ) dI ,f ([λν1 . . .νn ψ
τ
α]) = dI ,f [α/e]([λν1 . . .νn ψ])

But (ζ) follows from Constraint (3.1) of our semantics (Section 4.5) when
m = 1.
• Case B. ϕ has the form Π0, where Π0 is [λψ]. Since α is free in ϕ,

we know α is free in [λψ]. So ϕτα is [λψ]τα , which in turn, by definition,
is [λψτα]. So, we have to show:

w |=I ,f [λψτα] if and only if w |=I ,f [α/e] [λψ]

i.e., by T2, that:

(ϑ) ∃r0(r0 = dI ,f ([λψτα]) & exw(r0) = True)
if and only if
∃r0(r0 = dI ,f [α/e]([λψ]) & exw(r0) = True)

To establish (ϑ), it remains to show:

(ζ) dI ,f ([λψτα]) = dI ,f [α/e]([λψ])

But (ζ) follows from Constraint (3.2) of our semantics (Section 4.5) when
m = 1.

Formula Induction: Inductive Case 1. ϕ is ¬ψ, ψ→ χ, or �ψ. These
cases follow straightforwardly from the inductive hypothesis.

Formula Induction: Inductive Case 2. ϕ is ∀βψ. There is only one
case, namely, α is free in ϕ. (The case where α is not free in ϕ was
covered at the very outset.) So α , β, and hence ϕτα is ∀β(ψτα). So we
have to show:

(ϑ) w |=I ,f ∀β(ψτα) if and only if w |=I ,f [α/e] ∀βψ

By T5, we know the following about the left condition of (ϑ):

(ζ1) w |=I ,f ∀β(ψτα) if and only if ∀e′ ∈ dom(β)(w |=I ,f [β/e′] ψ
τ
α)

Moreover, by T5, we know the following about the right condition of (ϑ):

(ζ2) w |=I ,f [α/e] ∀βψ if and only if ∀e′ ∈ dom(β)(w |=I ,f [α/e][β/e′] ψ)

So if we can show, for an arbitrary entity b in the domain of β that:
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(ξ) w |=I ,f [β/b] ψ
τ
α if and only if w |=I ,f [α/e][β/b] ψ

we are done, for that would allow us to transform the right condition of
(ζ1) into the right condition of (ζ2), and vice versa, thereby establishing
(ϑ). Note that where e′′ is any entity in the domain of the variable γ and
g any assignment, our inductive hypothesis is:

(H) if τ ′ is substitutable for γ in ψ and dI ,g (τ ′) = e′′ , then w |=I ,g ψτ
′
γ if

and only if w |=I ,g[γ/e′′] ψ.

So if we let τ ′ be τ , g be f [β/b], γ be α, and e′′ be e, our inductive
hypothesis implies:

(H′) if τ is substitutable for α in ψ and dI ,f [β/b](τ) = e, then
w |=I ,f [β/b] ψ

τ
α if and only if w |=I ,f [β/b][α/e] ψ.

If we can detach the biconditional in the consequent of (H′), we’ll be a
step away from proving (ξ). To this end, note first that, by hypothesis,
τ is substitutable for α in ϕ. Since α is free in ϕ, it follows from the
definition of substitutable for that:

τ is substitutable for α in ψ.

It also follows from the fact that τ is substitutable for α in ϕ, when α is
free in ϕ, that β doesn’t occur free in τ . So f and f [β/b] agree on all the
free variables in τ . So by the Corollary to the Assignment Agreement
Lemma, it follows that dI ,f (τ) = dI ,f [β/b](τ). But note second that, by
hypothesis, dI ,f (τ) = e. So it follows that:

dI ,f [β/b](τ) = e.

From the two most recently displayed conclusions and (H′), we may de-
rive the consequent of (H′):

w |=I ,f [β/b] ψ
τ
α if and only if w |=I ,f [β/b][α/e] ψ.

But since f [β/b][α/e] is identical to f [α/e][β/b], this last displayed con-
clusion is equivalent to (ξ), which is what we had to show to complete
the proof of (ϑ). ./

6.6 Generalized Substitution Lemma

Where τ1, . . . , τm are any terms and α1, . . . ,αm are any variables, letϕτ1,...,τm
α1,...,αm

stand for the result of simultaneously substituting the term τi for each
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free occurrence of the corresponding variable αi in ϕ, for each i such
that 1≤ i ≤m. In other words, ϕτ1,...,τm

α1,...,αm is the result of making all of the
following substitutions simultaneously: (a) substituting τ1 for every free
occurrence of α1 in ϕ, (b) substituting τ2 for every free occurrence of α2
in ϕ, etc. Similarly, where τ1, . . . , τm are any terms and α1, . . . ,αm are any
variables, we let ρτ1,...,τm

α1,...,αm stand for the result of simultaneously substitut-
ing the term τi for each free occurrence of the corresponding variable αi
in ρ, for each i such that 1≤ i≤m.36 Then we have:

Lemma. If τ1, . . . , τn are substitutable, respectively, for α1, . . . ,αn
in ϕ and dI ,f (τ1) = e1 and . . . and dI ,f (τn) = en, where the ei ,
respectively, are entities in the domain of the variable αi , then
w |=I ,f ϕ

τ1,...,τn
α1,...,αn if and only if w |=I ,f [αi /ei ] ϕ.

Example. If x1, . . . ,xn are substitutable, respectively, for y1, . . . , yn in
ϕ, and dI ,f (x1) = o1 and . . . and dI ,f (xn) = on, then w |=I ,f ϕ

x1,...,xn
y1,...yn

if and only if w |=I ,f [yi /oi ] ϕ.

Proof : By generalizing the proof of the Substitution Lemma in Sec-
tion 6.5. ./

6.7 β-Conversion is Valid

To prove the validity of β-Conversion in interpretations that satisfy Con-
straints (1) – (3), we show:

|= [λy1 . . . ynϕ]x1 . . .xn ≡ ϕ
x1,...,xn
y1,...,yn , provided x1, . . . ,xn are substitutable,

respectively, for y1, . . . , yn in ϕ

By working through the definitions of |= ψ, |=I ψ, |=I ,f ψ, and w |=I ,f ψ
(and especially T4 of the latter), we have to show, for arbitrary I and f :

36The notions ϕτ1 ,...,τm
α1 ,...,αm and ρτ1 ,...,τm

α1 ,...,αm can be defined more precisely, but the definition is
somewhat tedious. For example, the base case for terms ρ is:

• If ρ is a constant or variable other than α1, . . . ,αm, ρτ1 ,...,τm
α1 ,...,αm = ρ.

If ρ is α1, ρτ1,...,τn
α1 ,...,αn = τ1

...
If ρ is αm, ρτ1 ,...,τm

α1 ,...,αm = τm

The base case for formulas ϕ is even more tedious. Since the various clauses would be
extremely difficult to read but relatively straightforward to understand, we omit the re-
mainder of the definition.
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w0 |=I ,f [λy1 . . . yn ϕ]x1 . . .xn iff w0 |=I ,f ϕ
x1,...,xn
y1,...,yn

Since all of the terms in the left condition have denotations, we can ex-
pand the left condition by T1 and then simplify it, so that we have to
prove:

〈dI ,f (x1), . . . ,dI ,f (xn)〉 ∈ exw0
(dI ,f ([λy1 . . . ynϕ])) iffw0 |=I ,f ϕ

x1,...,xn
y1,...,yn

For the remainder of the proof, we use the following arbitrary names for
the denotations of the xi :

dI ,f (x1) = f (x1) = o1
...

dI ,f (xn) = f (xn) = on

So we have to show:

〈o1, . . . ,on〉 ∈ exw0
(dI ,f ([λy1 . . . yn ϕ])) iff w0 |=I ,f ϕ

x1,...,xn
y1,...,yn

In light of the fact that alphabetic- and η-variants of [λy1 . . . ynϕ] receive
the same denotation, there are only two cases to consider.

Case 1. [λy1 . . . yn ϕ] is elementary, in which case it has the form
[λy1 . . . ynΠ

ny1 . . . yn]. So we have to show:

(ϑ) 〈o1, . . . ,on〉 ∈ exw0
(dI ,f ([λy1 . . . ynΠ

ny1 . . . yn])) iff w0 |= Πnx1 . . .xn

But the left-hand side of (ϑ) reduces, by D4, to

〈o1, . . . ,on〉 ∈ exw0
(dI ,f (Π))

And the right-hand side of (ϑ), by T1, expands to:

〈dI ,f (x1), . . . ,dI ,f (xn)〉 ∈ exw0
(dI ,f (Πn)),

i.e.,

〈o1, . . . ,on〉 ∈ exw0
(dI ,f (Πn)).

So the two sides of the biconditional we had to show are identical condi-
tions.

Case 2. [λy1 . . . yn ϕ] is non-elementary and η-irreducible. Again, we
have to show:

〈o1, . . . ,on〉 ∈ exw0
(dI ,f ([λy1 . . . yn ϕ])) iff w0 |=I ,f ϕ

x1,...,xn
y1,...,yn
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By D5 and Constraint (1.1) on Interpretations, we know:

dI ,f ([λy1 . . . yn ϕ]) =
ε̄rn∀w∀o1

′ . . .∀on′(〈o1
′ , . . . ,on

′〉 ∈ exw(rn) ≡ w |=I ,f [yi /oi ′] ϕ)

Now the ε̄-Conversion principle (Section 4.3) that governs the logic of ε̄-
terms is: if s = ε̄r(. . .r . . .) then (. . .s . . .). So we can substitute dI ,f ([λy1 . . . ynϕ])
for rn to infer:

∀w∀o1
′ . . .∀on′(〈o1

′ , . . . ,on
′〉 ∈ exw(dI ,f ([λy1 . . . ynϕ])) ≡ w |=I ,f [yi /oi ′] ϕ)

If we instantiate ∀w to w0, and instantiate ∀o1
′ . . .∀on′ to o1, . . . ,on, re-

spectively, we derive the following fact:

Fact 1:
〈o1, . . . ,on〉 ∈ exw0

(dI ,f ([λy1 . . . yn ϕ])) ≡ w0 |=I ,f [yi /oi ] ϕ

Now recall that we have to show:

〈o1, . . . ,on〉 ∈ exw0
(dI ,f ([λy1 . . . yn ϕ])) iff w0 |=I ,f ϕ

x1,...,xn
y1,...,yn

(→) For the left-right direction, assume:

〈o1, . . . ,on〉 ∈ exw0
(dI ,f ([λy1 . . . yn ϕ])).

By Fact 1, it follows that:

w0 |=I ,f [yi /oi ] ϕ

But notice that it is a condition on β-Conversion that the xi are substi-
tutable, respectively, for the yi in ϕ. Moreover, by hypothesis, dI ,f (xi) =
oi . So by the Generalized Substitution Lemma (Section 6.6):37

w0 |=I ,f ϕ
x1,...,xn
y1,...,yn if and only if w0 |=I ,f [yi /oi ] ϕ

So:

w0 |=I ,f ϕ
x1,...,xn
y1,...,yn

(←) Now for the right-left direction, assume:

w0 |=I ,f ϕ
x1,...,xn
y1,...,yn

Now by hypothesis we know f (x1) = o1 & . . . & f (xn) = on, i.e.,

37Here is where Constraints (2.1), (2.2) (3.1), and (3.2) are needed, since they are used to
prove the Substitution Lemma, and hence, the Generalized Substitution Lemma.
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f = f [xi /oi]

So we can use the same reasoning that led us to Fact 1 to obtain Fact 2,
which governs the expression [λx1 . . .xn ϕ

x1,...,xn
y1,...,yn ]:

Fact 2:
〈o1, . . . ,on〉 ∈ exw0

(dI ,f ([λx1 . . .xn ϕ
x1,...,xn
y1,...,yn ])) ≡ w0 |=I ,f ϕ

x1,...,xn
y1,...,yn

Given our assumption, we may conclude:

〈o1, . . . ,on〉 ∈ exw0
(dI ,f ([λx1 . . .xn ϕ

x1,...,xn
y1,...,yn ]))

But we also know that:

[λx1 . . .xn ϕ
x1,...,xn
y1,...,yn ] and [λy1 . . . yn ϕ] are alphabetic variants.

So, by D5, it follows that:

dI ,f ([λx1 . . .xn ϕ
x1,...,xn
y1,...,yn ]) = dI ,f ([λy1 . . . yn ϕ])

Hence,

〈o1, . . . ,on〉 ∈ exw0
(dI ,f ([λy1 . . . yn ϕ])),

which is what we had to show. ./

Bibliography

Ackerman, W., 1924, “Begründung des ‘tertium non datur’ mittels der
Hilbertschen Theorie der Widerspruchsfreiheit,” Mathematische An-
nalen, 93: 1–36.

Alama, J., 2013, “The Lambda Calculus,” in the Stanford Encyclopedia
of Philosophy (Summer 2013 Edition), Edward N. Zalta (ed.), URL
= <http://plato.stanford.edu/archives/sum2013/entries/lambda-
calculus/>.

Avigad, J., and R. Zach, 2013, “The Epsilon Calculus,” in the Stanford
Encyclopedia of Philosophy (Spring 2013 Edition), Edward N. Zalta
(ed.), URL = <http://plato.stanford.edu/archives/spr2013/entries/
lambda-calculus/>.

Bealer, G., 1979, “Theories of Properties, Relations, and Propositions,”
The Journal of Philosophy, 76(11): 634–648.

———, 1982, Quality and Concept, Oxford: Clarendon.

Edward N. Zalta 68

Church, A., 1932, “A Set of Postulates for the Foundation of Logic,” The
Annals of Mathematics (2nd Series), 33(2): 346–366.

———, 1940, “A Formulation of the Simple Theory of Types,” The Jour-
nal of Symbolic Logic, 5(2): 56–68.

———, 1941, The Calculi of Lambda-Conversion, Princeton: Princeton
University Press.

Curry, H., 1963, Foundations of Mathematical Logic, New York: McGraw-
Hill; page reference is to the reprint, New York: Dover, 1977.

Curry, H., and R. Feys, 1958, Combinatory Logic (Volume 1), Amster-
dam: North-Holland.
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