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Abstract
The Tarski T-Schema has a propositional version. If we use ϕ as
a metavariable for formulas and use terms of the form that-ϕ to
denote propositions, then the propositional version of the T-Schema
is: that-ϕ is true if and only if ϕ. For example, that Cameron is Prime
Minister is true if and only if Cameron is Prime Minister. If that-ϕ is
represented formally as [λϕ], then the T-Schema can be represented
as the 0-place case of λ-Conversion. If we interpret [λ . . .] as a truth-
functional context, then using traditional logical techniques, one can
prove that the propositional version of the T-Schema is a tautology,
literally. Given how well-accepted these logical techniques are, we
conclude that the T-Schema, in at least one of its forms, is a not just
a logical truth but a tautology at that.

In this article, I show that the propositional version of the Tarski T-
Schema (Tarski 1933, 1944) is a tautology in the literal sense of the term
and then make a few observations about this result. By saying that a
schema is a tautology, I mean that all of its instances are tautologies, as
this latter concept has been defined in contemporary logic.

Take any standard language for the second-order predicate calculus,
modified only so as to include complex λ-expressions. Interpret the λ-
expressions relationally rather than functionally. The best-known princi-
ple governing such λ-expressions is:
*This article appeared in Analysis, 74/1 (2014): 5–11.
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λ-Conversion: [λy1 . . . yn ϕ]x1 . . .xn ≡ ϕ
x1,...,xn
y1,...,yn , provided x1, . . . ,xn

are substitutable, respectively, for y1, . . . , yn in ϕ

This asserts:

Objects x1, . . . ,xn exemplify being a y1, . . . , yn such that ϕ if and only
if x1, . . . ,xn are such that ϕ

In this reading, we’ve italicized the nominalized predicate, which de-
notes an n-place relation. λ-Conversion has 0-place instances as well:

Propositional Tarski T-Schema: [λϕ] ≡ ϕ

To see why we call this schema the Propositional Tarski T-Schema, note
several things about the 0-place case of λ-Conversion:

• The expression [λ ϕ] is a 0-place relation term that denotes a 0-
place relation (i.e., a proposition), just as the expression [λxy ϕ] is
a 2-place relation term that denotes a 2-place relation.

• The expression [λϕ], however, is also a formula. That is why it can
stand on the left side of the biconditional sign ≡. The simultaneous
definition of term and formula classifies [λϕ] as both.1

• Since the λ binds no variables in [λ ϕ], the locution we used for
reading the relation term in λ-Conversion, i.e., “being objects ν1, . . . ,
νn such that”, reduces to the locution “that”. So we read the term
[λϕ] as the proposition-denoting noun phrase that-ϕ.

• Since truth is the 0-place case of exemplification, we read the for-
mula [λϕ] (e.g., when it occurs in the 0-place case of λ-Conversion)

1 The definition goes as follows:

– Base clause for terms: Every simple term is a term. (Individual constants and vari-
ables are individual terms and n-place relation constants and variables are n-place
relation terms, for n ≥ 0.)

– Base clause for formulas: Where Πn is any n-place relation term (n ≥ 0), and
κ1, . . . ,κn are any individual terms, Πnκ1 . . .κn is a formula.

– Recursive clause for formulas: . . . (Insert here the usual recursive clauses defining
¬ϕ, ϕ→ ψ, ϕ ≡ ψ, ∀αϕ, etc.)

– Recursive clause for terms: Where ϕ is any formula and ν1, . . . ,νn are any individual
variables (n ≥ 0), [λν1 . . .νn ϕ] is an n-place relation term.

So when n = 0, the recursive clause for terms yields that [λ ϕ] is a 0-place relation term,
and then the base clause for formulas yields that [λϕ] is a formula.
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as “that-ϕ is true” (cf. the reading above of the n-place case of λ-
Conversion).

Given these facts, our 0-place instance of λ-Conversion, [λ ϕ] ≡ ϕ, as-
serts: that-ϕ is true iff ϕ. So, where P stands for the property being Prime
Minister and c for Cameron, the formula [λ P c] ≡ P c would be read: that
Cameron exemplifies being Prime Minister is true if and only if Cameron
exemplifies being Prime Minister.2 Or, using ordinary language: that
Cameron is Prime Minister is true if and only if Cameron is Prime Min-
ister. This explains why we labeled the schema for the 0-place case of
λ-Conversion as the Propositional Tarski T-Schema. Henceforth, I sim-
ply call this the T-Schema.

Now one could define a semantic interpretation for the above lan-
guage and formally show that the T-Schema is logically true (i.e., valid).
The expression [λϕ] would denote a proposition that is assigned, as its
extension, the truth value The True whenever the truth conditions of ϕ
obtain. That would validate the T-Schema. As any first-year student of
logical metatheory soon discovers, however, to say that the T-Schema is
logically true is not to say that it is a tautology. In the predicate calculus,
there are valid formulas that are not tautologies. I now present an argu-
ment concluding that the instances of the T-Schema are not just valid,
but in fact are tautologies. To do this, let me put aside the traditional se-
mantic interpretations and look at how logicians identify tautologies for
the languages of predicate or modal logic.

Take a classic text, say Enderton 1972. If we ignore, for the moment,
the formulas of the form [λ ϕ], we can adapt Enderton’s definition of
tautology to our second-order language. Enderton begins by defining the
prime formulas (106). Intuitively, the prime formulas are treated as the
atomic units, akin to sentence letters in a propositional logic.3 They will
be assigned truth values, and then those assignments will be extended
to all the formulas of the language. So, adapting his definition to our
language, we may say:

ϕ is a prime formula if and only if either (a) ϕ is an atomic formula
of the form Πnκ1 . . .κn (where Πn is any relation term, n ≥ 0, and

2Here I’ve italicized the nominalization that constitutes the subject term of the left con-
dition.

3Chellas 1980 (8–9) similarly introduces the notion of propositionally atomic formulas to
define the notion of tautology in modal logic.
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κ1, . . . ,κn are any object terms) or (b) ϕ is a quantified formula of
the form ∀αψ (where α is any variable).

It is important to remember that since we are temporarily ignoring the
0-place λ-expressions, clause (a) yields that the simple 0-place relation
constants and variables are the only prime formulas of the form Π0.
(For reasons that will become apparent below, we do not want 0-place
λ-expressions to count as prime formulas.) Then we define:

ϕ is a non-prime formula if and only if ϕ has the form ¬ψ or ψ→ χ.

Enderton next defines a truth-functional valuation for any set of prime
formulas Σ:4

A truth-functional valuation for a set of prime formulas Σ is any
function v : Σ→ {T,F}.

Then where Σ is the set of formulas that can be generated from the prime
formulas in Σ using the operations of ¬ and→, Enderton next defines:5

For each truth-functional valuation v for Σ, an extension v of v is
any function with domain Σ and range {T,F} that obeys the follow-
ing conditions for every formula ϕ in Σ:

• if ϕ ∈ Σ, then v(ϕ) = v(ϕ)

• ifϕ = ¬ψ, then v(ϕ) =

T, if v(ψ) = F

F, otherwise

• ifϕ = (ψ→ χ), then v(ϕ) =

F, if v(ψ) = T and v(χ) = F

T, otherwise
4Actually, Enderton doesn’t do this ‘next’. Rather, when he defines the tautologies of

first-order logic, he makes use of definitions constructed much earlier in the book, in the
section on propositional logic. So the definition of ‘valuation’ appears on p. 30, where he
calls them ‘truth assignments’.

5Note the difference between Enderton 1972 and Chellas 1980. Chellas defines truth-
functional valuations as functions that assign truth values to all the prime (i.e., proposi-
tionally atomic) formulas of the language. Hence, the extensions of such valuations assign
truth values to every formula of the language. Enderton’s method of defining valuations
relative to arbitrary sets of prime formulas has the virtue that it plays nicely into the con-
struction of an effective procedure for determining whether an arbitrary formula ϕ is a
tautology. A formula ϕ has a finite number n of prime subformulas, and so there will be
only 2n valuations to check when implementing the effective procedure. An effective pro-
cedure based on Chellas’ method, however, requires that one partition all the valuations
into a finite number of equivalence classes, each class containing all the valuations that
agree on the prime formulas of ϕ.
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In other words, an extension v of v must agree with v on the formulas
in Σ, and when ϕ is a formula built up from the formulas in Σ using
the truth-functional connectives ¬ and→, v assigns to ϕ a truth value in
just the way one assigns truth values to such complex formulas in a truth
table. Note that no matter whether you define the biconditional in the
usual way, or take it as primitive and allow Σ to be the set of formulas
that can be generated from the prime formulas in Σ using the operations
of ¬,→ and ≡, the following clause governs the behavior of v:

• ifϕ = (ψ ≡ χ), then v(ϕ) =

T, if v(ψ) = v(χ)

F, otherwise

(And so on for & and ∨.) Note that any formula ϕ can be regenerated
from prime formulas using the connectives ¬ and → (given how the
other connectives can be defined in terms of these two). For example,
if ϕ = P a → (¬∀xQx → P a), then the prime formulas in ϕ are P a and
∀xQx. So we can regenerate ϕ by applying ¬ to ∀xQx to obtain ¬∀xQx,
applying → to the latter and P a to obtain ¬∀xQx → P a, and applying
→ to P a and ¬∀xQx → P a to obtain ϕ. Thus, if v is a truth-functional
valuation for Σ, where Σ is the set of prime formulas in ϕ, then ϕ is a
member of Σ and so will be be assigned a truth value by v.

Enderton then defines: ϕ is a tautology if and only if for every valua-
tion v of the prime formulas in ϕ, v(ϕ) = T.6 Sure enough, one can prove
that classical tautologies satisfy this definition. The reader should try
it on predicate calculus formulas such as ∀xP x→ ∀xP x, ∀xP x∨¬∀xP x,
etc.

Now, I claim, the proper way to extend this classical technique to our
second-order language with 0-place λ-expressions, is to treat the context
[λ . . .] as a truth-functional connective, in the same way that we treat ¬,
→, ≡, etc., as truth-functional connectives. To make this happen, we
redefine:

ϕ is a prime formula iff ϕ is either (a) an atomic formula of the
form Πnκ1 . . .κn (n ≥ 1), or (b) a simple 0-place relation term (i.e., a
0-place relation constant or variable), or (c) a formula of the form
∀αψ.

6Actually, Enderton defines, for an arbitary set Γ of formulas, the concept Γ tautolog-
ically implies ϕ (1972, 33). But the definition of tautological implication reduces to the
definition of tautology just given as the special case where Γ is the null set.
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ϕ is non-prime if and only if ϕ has the form ¬ψ, ψ→ χ, or [λψ].

In the above redefinition of prime, it is important not to collapse clauses
(a) and (b) by allowing n = 0 in clause (a), for that would make the defi-
nitions of prime and non-prime inconsistent: such a collapse would count
any complex 0-place relation term [λψ] as a prime formula, since such
terms are instances of the metavariable Π0 (recall footnote 1). The for-
mula [λψ] is stipulated, along with ¬ψ and ψ→ χ, to be non-prime.

Now if we let valuations v be defined as before, relative to a set of
prime formulas Σ, we need to add only one clause to the definition of an
extension v of v:

• ifϕ = [λ ψ], then v(ϕ) =

T, if v(ψ) = T

F, otherwise

Clearly, this treats [λ . . .] as a truth functional connective: when ϕ is as-
signed the value T, [λϕ] is assigned the value T, and when ϕ is assigned
the value F, [λϕ] is assigned the value F.

Now if we keep the same definition of tautology as the one introduced
above, then (a) we get a new class of tautologies, and (b) the T-Schema be-
comes a tautology. To see (a), let ϕ be an arbitrary formula and consider
[λϕ]→ ϕ, which asserts: if that-ϕ is true, then ϕ. This formula, unlike
ϕ→ ϕ, is not a traditional form for a tautology. To see that it is a tautol-
ogy, pick any valuation v of the prime formulas in [λϕ]→ ϕ and consider
its extension v. No matter what prime formulas are in [λϕ]→ ϕ, we may
reason as follows:

• if v(ϕ) = T, then v([λϕ]→ ϕ) = T, by the constraint on v for con-
ditionals

• if v(ϕ) = F, then v([λϕ]) = F, by the constraint on v for [λ . . .], and
so v([λϕ]→ ϕ) = T, by the constraint on v for conditionals

So no matter whether v(ϕ) is T or F, the truth value assigned to [λϕ]→ ϕ
is T. Since our reasoning started from the assumption that v was arbi-
trary, our conclusion holds for any v, and so [λ ϕ] → ϕ is a tautology.
Since ϕ was arbitrarily chosen, the schema [λϕ]→ ϕ is a tautology.

To see (b), that the T-Schema is a tautology, note that the reasoning
we just gave generalizes to [λϕ] ≡ ϕ, for an arbitrarily chosen ϕ. To see
that this is a tautology, pick any valuation v of the prime formulas in
[λϕ] ≡ ϕ and consider its extension v. No matter what prime formulas
are in [λϕ] ≡ ϕ, we may reason as follows:
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• if v(ϕ) = T, then v([λϕ]) = T, by the constraint on v for [λ . . .], and
so v([λϕ] ≡ ϕ) = T, by the constraint on v for biconditionals

• if v(ϕ) = F, then v([λϕ]) = F, by the constraint on v for [λ . . .], and
so v([λϕ] ≡ ϕ) = F, by the constraint on v for biconditionals

So no matter whether v(ϕ) is T or F, the truth value assigned to [λϕ] ≡ ϕ
is T. Since v was arbitrary, our conclusion holds for every v and so [λϕ] ≡
ϕ is a tautology. Since ϕ was arbitrarily chosen, the schema [λϕ] ≡ ϕ is
a tautology.

So the T-Schema [λ ϕ] ≡ ϕ is literally a tautology. Since tautologies
are valid (i.e., logical truths), but not all logical truths are tautologies,
our conclusion shows that the T-Schema falls within an even narrower
class of logical principles than the logical truths. Now in a famous pas-
sage, Frege said (1918, 61):

It is also worth noticing that the sentence ‘I smell the scent
of violets’ has just the same content as the sentence ‘it is true
that I smell the scent of violets’. So it seems, then, that noth-
ing is added to the thought by my ascribing to it the property
of truth. (1984 translation, 354)

Of course, Frege didn’t have the concept of tautology as we know it today,
though it looks as though Frege might have said that if pthat-ϕ is trueq
and pϕq have identical content, then pthat-ϕ is true iff ϕq is a tautol-
ogy. More recently, some have argued that the sentential version of the
T-Schema is logically true (Priest 2007, 193), while others have argued
that it is not (Cook 2012, 235–236).7 To the best of my knowledge, how-
ever, no one has produced an argument to the conclusion that the Tarski
T-Schema has a reading on which it is a tautology.

7The work in this article is immune to the argument in Cook 2012. His argument
is based on a principle of Logical Substitutivity, which asserts the preservation of log-
ical truth under substitution of non-logical constants. But our λ-operator for forming
terms that denote propositions is a logical constant, given that it is interpreted as a truth-
functional operator. The resulting terms of the form [λ ϕ] are therefore not non-logical
singular terms but rather logical (0-place) general terms. So Cook’s principle of Logical
Substitutivity doesn’t apply. Moreover, as noted, Cook’s argument concerns the senten-
tial version of the T-Schema, which governs a truth-predicate of (names of) sentences, and
doesn’t necessarily apply to the present version, which governs the truth of propositions.
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