
A ‘Natural Logic’ inference system using the
Lambek calculus

Anna Zamansky, Nissim Francez, Yoad Winter

Abstract

This paper develops an inference system for natural language within the
‘Natural Logic’ paradigm as advocated by Van Benthem [11], Sánchez [10]
and others. The system that we propose is based on the Lambek calculus
and works directly on the Curry-Howard counterparts for syntactic repre-
sentations of natural language, with no intermediate translation to logical
formulae. The Lambek-based system we propose extends the system by
Fyodorov et al. [3], which is based on the Ajdukiewicz/Bar-Hillel (AB) cal-
culus ([6]). This enables the system to deal with new kinds of inferences,
involving relative clauses, non-constituent coordination, and meaning pos-
tulates that involve complex expressions. Basing the system on the Lam-
bek calculus leads to problems with non-normalized proof terms, which are
treated by using normalization axioms.

Keywords: natural logic, inference, lambek calculus, normalization

1 Introduction

Model-theoretic semantics of natural language involves partially ordered domains,
so that meanings of expressions of the same semantic type are naturally compa-
rable. Formal semantics treats order relations between denotations of complex
expressions as compositionally derived from order relations between denotations
of their subexpressions, described using a given grammar and semantic proper-
ties of lexical items. For instance, under standard assumptions about the mean-
ing of the adjectivetall, the meaning of nominal expressions liketall student is
“smaller” than the meaning of the nounstudent. This ordering, together with the
“order reversing” meaning of the determinerno, is responsible for the fact that the
meaning of the noun phraseno tall student is “greater” than the meaning of the

1

noun phraseno student. Such order relations between constituents often result in
an ordering of meanings of natural language sentences. In an adequate semantic
theory, this ordering between sentence meanings corresponds to intuitively valid
entailment relations. For instance, the above mentioned order relations, together
with the other elements in the sentence, are responsible for the valid entailment
John saw no student ⇒ John saw no tall student.

In modeltheoretic semantics, appealing to models makes it hard to derive in-
ferences in a computationally feasible way. On the other hand, working with
proof systems for first order logic (FOL) for natural language, as proposed in
many works (see, e.g. [9]) also has its weaknesses. First of all, not all NL con-
structs are expressible in FOL. For instance, in the valid entailment:John is very
tall ⇒ John is tall, the restrictive modifier ‘very’ is not expressible in FOL. Fur-
thermore, using FOL proof systems for computing natural language entailments
requires complex mappings from syntactic structures to FOL formulae. These
mappings are motivated mainly by the particular choice of syntax, and not by
independent linguistic considerations. This paper follows previous work in aim-
ing to develop an inference system that is based on insights from model-theoretic
semantics, but using only syntactic representations of natural language, with no
direct appeal to models. The close relationship between syntactic structure and
meaning in model-theoretic semantics eliminates the need for translating the syn-
tactic representations into intermediate logical levels of representation, such as
first order logic.

This initial conception ofNatural Logic was introduced in [11]. Different
versions of Natural Logic were proposed by [10], [1], [3] and others. Sánchez
[10] proposes a mechanism that decorates categorial grammar proofs of natural
language expressions using signs that indicate themonotonicityproperties of the
denotations of these expressions. Bernardi [1] follows Sánchez and introduces
a system for monotonicity reasoning that is based on a more complex categorial
type logic than Śanchez’ work. Bernardi concentrates on monotonicity reasoning
as capturing thesyntactic distributionof negative polarity items. Neither Sánchez
nor Bernardi provide a formal calculus for computing inferences. The situation
was partially amended in [3]. Fyodorov et al. define anOrder Calculusbased
on similar annotations decorating syntactic derivations of the Ajdukiewicz/Bar-
Hillel (AB) calculus, a simple version of categorial grammar that only contains
slash elimination rules. Fyodorov et al.’s calculus allows a rather straightforward
derivation of inferences with monotone and some non-monotone quantifiers and
cross-categorial conjunctions and disjunctions. However, despite the value of Fy-
odorov et al.’s proposal for demonstrating a novel technique of inference in natural

2

language, it fails to derive many inferences, even ones that are strictly based on
simple semantic order relations between expressions (see some examples below).
One of the reasons for this weakness comes from the limitations of the AB calcu-
lus as a categorial grammar.

In this paper we show that Fyodorov et al.’s system can be improved by bas-
ing the inference mechanism on the Lambek calculus (L, see [7, 8]), which also
contains slash introduction rules in addition to the elimination rules of the AB
calculus. We propose anL-based Order Calculus (L-OC) as an intermediate
step towards a more general system that would support various kinds of infer-
ences in natural language in a more expressive syntactic framework. As in the
previous works that were mentioned, the items on which the inferential system
works are syntactic terms, representing structural derivations of natural language
expressions. These derivations now also include deductions using hypothetical
reasoning produced by the introduction rule of the Lambek calculus, and not only
function-argument constructions as in the AB-based order calculus of Fyodorov
et al. Despite the more general syntactic formalism we employ, the manipulation
of semantically-motivated annotations is still done at the level of the syntactic rep-
resentation. In this sense, we believe that our proposal is within the realm of what
previous works calledNatural Logic.

We extend the system of Fyodorov et al. in a number of aspects:

1. The inferences are computed using proof terms representing syntactic deriva-
tions via the Curry-Howard correspondence, as opposed to the manipulation
in [3] of the syntactic derivations directly.

2. We add an inference rule calledAbstraction, which works on proof terms
in L with free variables, corresponding to undischarged assumptions. This
rule enables the Order Calculus to deal with inferences involving sentences
with extraction. Consider for example the following entailments, which are
now derivable in our system (using additional axioms, as will be shown in
the sequel):

(a) Every student whom Mary touched smiled ⇒ Every student
whom Mary kissed smiled

(b) Some boy, the brother of whom Mary loves, walked ⇒ Some
boy walked

3. We addβ/η-normalization axioms, based onβ/η-reduction of proof terms,
which resolve complications caused by proof terms inL that are not in

3

normal form. The normalization axioms enable the system to compute more
entailments, like, for instance, entailments that involve “non-constituent”
conjunctions as in the following example:

John does and Mary doesn’t move ⇒ Mary doesn’t walk

4. Extending the system of [3] toL also enables us to formulate non-logical
axioms about complex expressions. For example, it is possible to express
the fact that the relation denoted bypassionately love (though not neces-
sarily thelove relation itself) contains in every model the relation denoted
by adore. This is made possible due to the derivability of function compo-
sition inL.

As in [3], we concentrate on entailments between natural language sentences that
are syntactically disambiguated. For the sake of simplicity, we do not assume any
ambiguity at a semantic level. A proof search procedure forL-OC, which is an
extension of the proposal by [3] including treatment of abstraction, is formulated
in [15].

The structure of this paper is as follows. Section 2 provides definitions of some
basic notions from model-theoretic semantics, and introducesdecorated semantic
typesto be used inL-OC. Section 3 describesL derivations and their correspond-
ing proof terms with decorated semantic types. Section 4 defines the Order Calcu-
lusL-OC and its semantics. Section 5 demonstrates howL-OC can be applied for
deriving natural language inferences. Section 6 focuses on the problem of normal-
ization, explaining how the non-normalized proof terms are created inL-OC, why
they pose a problem and how the problem is solved using normalization. Section
8 presents conclusions and directions for further research.

2 Semantic types and order relations

The main objective of the Natural Logic systems, as introduced by Van Benthem,
Sánchez, and Fyodorov et al., is to use the boolean regularities in natural language
(cf. [2]) as a key for an inference system that works directly on syntactic represen-
tations. In this section we review the basic boolean semantic notions that will be
employed in this work, and introduce the way they are used for decorating types
by semantic features.

4

2.1 Basic semantic notions

Model-theoretic semantic theories associate natural language expressions with
syntactic categories, and their denotations with (closely related)semantic types.
Furthermore, most expressions denote objects in partially ordered (PO) domains,
so that meanings of equi-typed expressions are naturally comparable. Thus in the
finite set ofprimitive types(denoted byT 0), we distinguish the subset ofpar-
tially ordered primitive types, denoted byT 0

po, which are interpreted over partially
ordered domains.

Formally, the set oftypesis defined as the smallest setT so thatT 0 ⊆ T and
if τ ∈ T andσ ∈ T then also(τσ) ∈ T . The set ofPO typesis the smallest
setTpo ⊆ T s.t. T 0

po ⊆ Tpo and if τ ∈ T andσ ∈ Tpo then also(τσ) ∈ Tpo.
Standardly, typese (for entities) andt (for truth values) are among the primitive
types, wheret is among the PO primitive types.

For each primitive typeτ ∈ T 0, let Dτ be a non-empty domain, assuming
that the domains for primitive types are mutually disjoint. We also assume that
the domainDσ of any primitive PO typeσ is endowed with a given partial order
relation≤σ. For each non-primitive typeτσ, the domainDτσ is the set of all
functions fromDτ to Dσ. The partial order≤τσ for complex PO types is defined
pointwise: ifσ is a PO type with partial order≤σ over the domainDσ, then for
anyd1, d2 ∈ Dτσ: d1 ≤τσ d2 iff for every d′ ∈ Dτ d1(d

′) ≤σ d2(d
′).

Next, we review some semantic properties of functions over these typed do-
mains, which will be useful in the rest of this paper. First, we refer to types of the
form ττ asmodifier types. Whenτ is a PO type, a functionf ∈ Dττ of the mod-
ifier typeττ is calledrestrictive iff for every d ∈ Dτ : f(d) ≤τ d. For example,
the denotations of adjectives liketall, pretty and adverbs likeslowly, happily are
commonly analyzed as restrictive functions of type(et)(et). Thus, it is assumed
that the denotation of an expression liketall boy is “smaller” or equal to the deno-
tation of the expressionboy, and that the denotation ofslowly move is “smaller”
or equal to the denotation ofmove. Order relations produced by restrictive mod-
ifiers are one of the simplest ways for generating order relations between natural
language expressions in the order calculus.

Another important source for order relations are expressions of thecoordina-
tion types– types of the formτ(ττ). Functions of this type in natural language
are often interpreted asgreatest lower boundor least upper boundoperators. A
function f ∈ D(τ(ττ)), whereτ is a PO type, is called agreatest lower bound
(g.l.b.) function iff for alld1, d2, d3 ∈ Dτ the following two conditions hold:

1. (f(d1))(d2) ≤τ d1 and(f(d1))(d2) ≤τ d2;

5

2. if d3 ≤τ d1 andd3 ≤τ d2 thend3 ≤τ (f(d1))(d2).

The first requirement requires thatf be restrictive, or returns a lower bound, on
both of its arguments; the second requirement ensures thatf returns agreatest
lower bound on both of its arguments.

A dual notion is the notion ofleast upper bound(l.u.b.) functions: a function
f ∈ Dτ(ττ) of the coordination typeτ(ττ), whereτ is a PO type, is called al.u.b.
function iff for all d1, d2, d3 ∈ Dτ the following two conditions hold:

1. d1 ≤τ (f(d1))(d2) andd2 ≤τ (f(d1))(d2);

2. if d1 ≤τ d3 andd2 ≤τ d3 then(f(d1))(d2) ≤τ d3.

In natural language there are at least three kinds of g.l.b. functions:

1. Conjunctions: the standardly assumed meaning of conjunctions such as
dance and smile, Mary danced and John smiled, andevery teacher
and some student is the g.l.b. of the meanings of the conjuncts.

2. Relative clauses: a ‘subject oriented’ relative clause such aschild who
sneezed is treated as a g.l.b. of the noun (child) denotation and the verb
phrase (sneezed) denotation. Similarly, an ‘object oriented’ relative clause
such aschild whom Mary saw is treated as a g.l.b. of the noun (child) de-
notation and the denotation of the “gapped” verb phrase (Mary saw), which
is interpreted as the set of objects seen by Mary.

3. Intersective adjectives: adjectives such asblue andpregnant when viewed
as modifiers are often assumed to denote ‘intersective functions’: functions
of type ((et)(et)) that intersect their argument with an implicit argument
of type (et). For instance, the nominalblue car is synonymous with the
nominalcar that is blue, which is formed using a g.l.b. relative.

One l.u.b. function in natural language is the disjunctionor: the standardly
assumed meaning of disjunctions such asdance or smile, Mary danced or John
smiled, andevery teacher or some student is the l.u.b. of the meanings of the
disjuncts.

Another useful property of functions in natural language ismonotonicity, namely,
order preservation/reversal. Letσ1 andσ2 be PO types. A functionf ∈ D(σ1σ2)

is:
• upward monotoneiff for all d1, d2 ∈ Dσ1: d1 ≤σ1 d2 ⇒ f(d1) ≤σ2 f(d2);

6

• downward monotoneiff for all d1, d2 ∈ Dσ1: d1 ≤σ1 d2 ⇒ f(d1) ≥σ2

f(d2).
For example, the denotation of the determinerevery is analyzed as a function
of type ((et)((et)t)) that is downward monotone w.r.t. its first argument and up-
ward monotone w.r.t. its second argument. In this way we capture the following
entailments:

• Every student ran ⇒ Every tall student ran (assumingtall student ≤
student)

• Every student ran ⇒ Every student moved (assumingran ≤ moved)

2.2 Decoration of types

In order to use the semantic properties that were reviewed above in a calculus, we
follow [3] and use semantic decorations of types of linguistic expressions as an
abstractionof their full denotations. In this way the decorated type of an expres-
sionE can be used to derive order relations between more complex expressions
containingE, and ultimately entailment relations with sentences containingE.

We first define the set ofsemantic featuresthat decorate types according to the
semantic properties discussed above.

Definition 2.2.1 (Semantic features)The set of semantic featuresFeat = {+,−, R, C, D}.
Henceforth we use the meta-variablesF, F ′ to range over subsets ofFeat.
The intended use of these marks is as follows:

• ‘+’/‘-’ marks upward/downward monotonicity of functional typesτσ, where
bothτ andσ are PO types.

• ‘R’ marks restrictivity of modifier typesττ , whereτ is a PO type.
• ‘C’/‘D’ marks g.l.b./l.u.b. behavior of coordination typesτ(ττ), whereτ is

a PO type.

Definition 2.2.2 (Decorated types and decorated PO types)Let T 0 be a set of
primitive types andT 0

PO a set of primitive PO types, such thatT 0
PO ⊆ T 0. The

sets of decorated types and PO decorated types are the smallest setsTdec, T
PO
dec so

that:
• T 0 ⊆ Tdec, T 0

PO ⊆ T PO
dec (null decoration)

• if τ ∈ Tdec, σ ∈ Tdec andρ ∈ T PO
dec then(τF σ) ∈ Tdec, (τ

F ρ) ∈ T PO
dec for

anyF ⊆ Feat satisfying the following conditions:

1. If F 6= ∅, thenτ, σ ∈ T PO
dec .

7

2. If R ∈ F thenτ = σ.

3. If C or D ∈ F then (i) Ifτ = (τ1
F ′τ2) thenF ′ = ∅ and (ii) σ = (τ ∅τ).

Condition 1 guarantees that only functional types(τF σ), where bothτ andσ are
PO decorated types can be marked withF 6= ∅. Condition 2 guarantees that only
modifier types are marked with ‘R’. Condition 3 guarantees that an expression of
a type marked with ‘C’ or ‘D’ is treated as denoting a binary function and all its
markings are specified on the functor type.

Definition 2.2.3 Let τ be a decorated type inTdec. The (non-decorated) type
τ ◦ ∈ Tdec corresponding toτ is defined by:

1. If τ is primitive thenτ ◦ = τ .

2. If τ = (αF β) thenτ ◦ = (α◦β◦).

After defining the decorated types, the corresponding domains are naturally de-
fined as follows.

Definition 2.2.4 (Domains of decorated types)For each non-primitive decorated
typeτF σ ∈ Tdec\T 0, the domainDτF σ ⊆ Dτσ is the set of functions inDτσ that
have the semantic properties denoted by the semantic features inF .

For example,D(σ+τ) is the set of upward monotone functions fromDσ to Dτ .

3 The calculusL

In the proposed system, entailments between natural language sentences are com-
puted based on lambda terms with decorated types, representing the syntactic
derivations of these sentences. The Lambek calculus is an appealing formalism
to be used in such framework because of the built-in interface between the syn-
tactic structure of natural language expressions and their compositional semantics
due to the Curry-Howard correspondence between proofs1 and lambda terms. We
use the product-free associative Lambek calculus (in its Natural Deduction for-
mulation, see [8]) and extend it to the calculusL defined below enriched with
decorations of semantic types. The set of syntactic categoriesCAT is the small-
est set, such that a finite set of primitive categoriesCAT 0 (standardly containing
s) is included in it, and for everyA, B ∈ CAT : (A/B), (A\B) ∈ CAT . Let

1By ‘proofs’ we mean here derivation from assumptions.

8

type0 : CAT 0 → T be a typing function for primitive categories, such that
type0(s) = t. This function is extended to the functiontype : CAT → T as
follows2: type(A/B) = type(A\B) = (type(A)type(B)).

In our original presentation ofL-OC ([14, 15]) we presented the system using
directedlinear lambda terms, as only such terms materialize the Curry-Howard
correspondence with L as 1-1. However, directionality is not essential for con-
veying the main ideas of L-OC, and here we simplify the presentation by using
ordinary linear lambda terms (see [12]).Free(ψ), the set of free variables of a
linear termψ, is defined standardly. For any termγ such that no free variables of
γ occur bound inα, the termα[x/γ] is obtained fromα by substituting all free
occurrences ofx by γ.
Our term language contains also a setConst of constants, that are in a 1-1 corre-
spondence with the set of natural language words. The NL words are displayed in
san-serif font, and the constants in italic font. Thus, the constantgirl corresponds
to the wordgirl. Most importantly, the constants are typed, carrying the decorated
types driving the inferences.
Similarly to [3], we say that two decorated typesτ, σ areformally equivalent, and
denote it byτ ≡f σ, if τ andσ are identical up to their decoration.

Definition 3.1 (The calculusL) Let Γ, Γ1, Γ2 range over finite non-empty se-
quences of pairsA : ψτ , whereA is a syntactic category andψτ a term of a
(decorated) typeτ . The notationΓ . A : ψτ means that the sequenceΓ is re-
ducible toA : ψτ . The rules ofL are as follows :

(axiom)A : xτ . A : xτ , where xτ ∈ VAR ∪Const and type(A) = τ◦

(/E)
Γ1 . (A/B) : ψ(τ1F τ2) Γ2 . B : ϕτ ′1

Γ1Γ2 . A : (ψ(τ1F τ2)(ϕτ ′1))τ2

, (\E)
Γ2 . B : ϕτ ′1 Γ1 . (A\B) : ψ(τ1F τ2)

Γ2Γ1 . A : (ψ(τ1F τ2)(ϕτ ′1))τ2

where τ ≡f τ ′1, type(A) = τ◦2 , type(B) = τ◦1

(/I)
Γ1, B : xτ1 . A : ψτ2

Γ1 . (A/B) : (λxτ1 .ψτ2)(τ1τ2)
(\I)

B : xτ1 , Γ1 . A : ψτ2

Γ1 . (A\B) : (λxτ1 .ψτ2)(τ1τ2)

for Γ1 not empty, type(A) = τ◦2 , type(B) = τ◦1

2Note that the functiontype returns a non-decorated type.

9

If a sequentΓ . A : ψ has a proof inL, we denote it bỳ L Γ . A : ψ.

Definition 3.2 (Type-Logical Categorial Grammar)A type-logical categorial gram-
mar is a tupleG = 〈Σ,CAT0, A0, α〉3, where:

• Σ is the alphabet.
• CAT0 is the set of basic syntactic categories.
• A0 is the target category.
• α : Σ → 2CAT×Const is an assignment of finite sets of (abstracted)

signs, pairs of categories and constants, to lexical items, such that for every
〈A,w τ 〉 ∈ α(w): τ ◦ = type(A). We will refer to an assignmentα as a
lexicon.

• Theabstracted languageL[G] is defined as:

L[G] = {〈w,Mt〉 | ∃Γ ∈ α(w), s.t. `L Γ . s : Mt}

Note thatM , which usually specifies the semanticdenotationof w, is used
here to carry the abstracted type of the denotation. In a similar way, we
defineL[G,A], the expressions of categoryA, so thatL[G] = L[G, s].

4 TheL-based Order Calculus

In this section we introduce the main part of the proposed system – theL-based
Order Calculus (L-OC).L-OC manipulates ordered pairs of proof terms that rep-
resentL derivations of natural language expressions. These pairs, which are re-
ferred to asorder statements, are so defined to specify semantic order relations
between denotations of proof terms. Similarly to [3], however, order statements
are purely syntactic objects with no direct appeal to models (as opposed to the
works of [10, 1]). The soundness proof in [13] implies that the denotations of
terms in aL-OC-provable order statement indeed satisfy the ordering in every
model.

4.1 L-OC

Order statements – the items that are manipulated byL-OC– are defined to be
of the formϕτ ≤τ◦ ψτ ′ , whereϕ andψ are directed lambda terms of formally
equivalent typesτ andτ ′, andτ ◦ is the non-decorated type derived by recursively
erasing the decorations fromτ (or equivalently, fromτ ′).

3Standardly,A0 is taken to bes, the category designated for sentences in natural language.

10

The definition ofL-OC contains, similarly to the system of [3], rules of the
following three kinds:

1. Structural rules of reflexivity (REFL) and transitivity (TRANS) for the order
relation≤τ .

2. Rules that describe the order behavior of monotonic expressions (MON+
and MON-), restrictive modifiers (RMOD), conjunctions (C1-2) and dis-
junctions (D1-2).

3. A rule of “function replacement” (FR), which captures the pointwise behav-
ior of the order relation.

In addition to the rules of the Order Calculus of [3],L-OC also includes an ab-
straction (Ab) rule and standardβ andη normalization axioms. The abstraction
rule of L-OC is used for deriving order statements between terms that are ob-
tained using the introduction rule of theL calculus. The normalization axioms
solve some problems that appear due to possible loss of semantic features when
derivations of order relations contain non-normalized terms.

Definition 4.1.1 (L-OC:)

For τ ≡f τ ′ ≡f τ̂ ≡f τ̃ , ρ ≡f ρ′ ≡f ρ̂ 4:

(REFL)
∅

ατ ≤τ◦ ατ ′
(TRANS)

ατ ≤τ◦ δτ ′ δτ ′ ≤τ◦ γτ̂

ατ ≤τ◦ γτ̂

(MON+)
ατ ≤τ◦ δτ ′

γ(τ̂+ρ)(ατ) ≤ρ◦ γ(τ̂+ρ) (δτ ′)
(MON-)

δτ ′ ≤τ◦ ατ

γ(τ̂−ρ)(ατ) ≤ρ◦ γ(τ̂−ρ) (δτ ′)

(FR)
α(τF ρ) ≤(τρ)◦ ψ

(τ ′F ′ρ′) γτ̂ ≡τ◦ δτ̃

α(τF ρ) (γτ̂) ≤ρ◦ ψ
(τ ′F ′ρ′) (δτ̃)

(RMOD)
∅

α(τRτ ′) (γτ̂) ≤τ◦ γτ̂

(Ab)
αρ ≤ρ◦ γρ′

λxτ .αρ ≤(τρ)◦ λxτ ′ .γρ

λx.α, λx.γ are linear terms

4Note thatτ◦ is equal toτ without any semantic decorations, thusτ◦ ≡f τ ≡f τ ′ ≡f τ̂ ≡f τ̃
and≤τ◦ is compatible with≤τ , ≤τ ′ , ≤τ̂ and≤τ̃ . The case forρ◦ is similar.

11

(C1)
∅

(δ(τC(ττ))(γτ ′))(ψτ̂) ≤τ◦ Ω
(C2)

ατ̃ ≤τ◦ ψτ ′ ατ̃ ≤τ◦ γτ̂

ατ̃ ≤τ◦ (δ(τC(ττ))(γτ̂))(ψτ ′)

Ω = ψτ̂ or Ω = γτ ′

(D1)
∅

Ω ≤τ◦ (δ(τD(ττ))(γτ ′))(ψτ̂)
(D2)

ψτ ′ ≤τ◦ ατ̂ γτ̃ ≤τ◦ ατ̂

(δ(τD(ττ))(γτ̃))(ψτ) ≤τ◦ ατ̂

Ω = ψτ ′ or Ω = γτ̃

Normalization axioms:

(β)
∅

(φτ [yρ/γρ′])τ ≡τ◦ (λyρ.φτ)(ρτ)(γρ′)
(η)

∅
ψ(τF ρ) ≡(τρ)◦ (λxτ .ψ(τF ρ)(xτ))(τρ)

xτ 6∈ Free(ψ)

The Abstraction (Ab) rule captures the discharge of an assumption in aL-
derivation. Given a premiseϕ1 ≤ ϕ2, where bothϕ1 andϕ1 represent derivation
trees with a free variablex occurring exactly once, the order statementλx.ϕ1 ≤
λx.ϕ2 is derived. The normalization axioms(β) and(η) captureβ andη reduc-
tions of proof terms. The application of these axioms is discussed in detail in
section 6. For explanation of the rest of the rules, the reader is referred to [3].

4.2 The semantics ofL-OC

ThesemanticsofL-OC is naturally defined using standard models (i.e., full Henkin
models, see [5]) for the extensional fragment of Montague’s IL [4] and the point-
wise definition of semantic order relations. A modelM is a set of (non-empty)
domainsDτ for every primitive typeτ ∈ T 0

dec. For each non-primitive type
σ = (τF ρ), D(σ) is the domain of all functions fromDτ to Dρ, satisfying the
semantic conditions specified byF . Every proof termϕρ is associated with a
denotation[[ϕρ]]M,g relative to a modelM and an assignment functiong, which
assigns to any variable of decorated typeρ some element ofDρ.

Definition 4.2.1 (Denotations of proof terms)Let M be a model andg an as-
signment function. For a given proof termψτ , the denotation[[ψτ]]M,g is defined
as follows:

• If ψτ ∈ VAR, then[[ψτ]]M,g = g(ψτ).

12

• If ψτ = ϕ(σF τ)(φσ), then[[ψτ]]M,g = [[ϕ(σF τ)]]M,g
([[φσ]]M,g).

• If ψτ = λxσ.ϕρ, then[[ψτ]]M,g is that functionh ∈ Dτ s.t. for all d ∈ Dσ:
h(d) = [[ϕρ]]M,g[x:=d], whereg[x := d] is an assignment function similar to
g, except that it assignsdσ to xσ.

Definition 4.2.2 (Semantics of order statements)Let ϕ1, ϕ2 be terms of (deco-
rated) typeτ and g an assignment function.

1. M, g |= ϕ1 ≤τ ϕ2 iff [[ϕ1]]M,g ≤τ [[ϕ2]]M,g

2. M |= ϕ1 ≤τ ϕ2 iff ∀g : M, g |= ϕ1 ≤τ ϕ2.

In [13] it is shown thatL-OC is strongly sound relative to this semantics, that is:

`L−OC α ≤ γ ⇒ ∀M, g : [[α]]M,g ≤ [[γ]]M,g

5 L-OC-based inference system for natural language

This section illustrates howL-OC can be used for deriving inferences in natural
language. We first introduce a toy lexicon which is used for defining a small frag-
ment of English. Then we define a way to represent natural language assertions
asL-OC order statements. In addition, we extend the postulate introduced by [3]
for universal quantification in order to expand the range of inferences derived by
the system. We also introduce some non-logical axioms for complex expressions.
Finally, we present examples of deriving inferences with sentences involving rel-
ative clauses and pied piping, as well as inferences using the extended postulate
for universal quantification.

To keep the relation between terms (derivations) and natural language expres-
sions clear, we sometimes denote a termϕ(ψ) by [ψ]ϕ, thus restoring the dis-
tinction between the rightward and leftward slash elimination rules. For instance,
the (normalized)L-derivation ofadores and loves is represented by the directed
term([adores]and)(loves), rather than the non-directed term(and(adores))(loves).

5.1 Lexicon

A lexicon in a type-logical categorial grammar is a functionα : Σ → 2CAT×Const,
from words to finite sets of pairs of categories and constants with decorated types.
These sets are of course non-empty, and contain more than one pair for any word
that is lexically ambiguous. In Table 1 we introduce a toy lexicon for a fragment of

13

Word Category Type

W T s t
every ((s/(s\np))/n), ((s\(s/np))/n) ((et)−((et)+t))
no ((s/(s\np))/n), ((s\(s/np))/n) ((et)−((et)−t))
some ((s/(s\np))/n), ((s\(s/np))/n) ((et)+((et)+t))
student,boy n (et)
walk,walked,smile, smiled, move, moved (s\np) (et)
touched, loved ((s\np)/np) (e(et))

tall, nice, smart, intelligent, creative (n/n) (et)R(et)
Mary, John (s/(s\np)), (s\(s/np)) ((et)+t)
does ((s\np)/(s\np)) (et)+(et)
doesn’t ((s\np)/(s\np)) (et)−(et)

whom ((n\n)/(s/np)) (et)C((et)(et))

the-brother-of-whom ((n\n)/(s/np)) (et)C((et)(et))

and ((s\s)/s), (((s\np)\(s\np))/(s\np)) (tC(tt)), ((et)C((et)(et))),

Table 1: Lexicon

English, including the decorated types that are assigned to the decorated syntactic
categories.

Some remarks on this lexicon are in place:

1. Following [3], we use a fictitious sentenceW T that is assigned the con-
stant proof term wT

t . This proof term is used in the representation of a
natural language assertionS as the order statementwT

t ≤t ψS
t , whereψS

t

is a proof term representing anL-derivation ofS. This representation of
assertions makes it easy to treat natural language sentences using order re-
lations, wherewT

t is understood as a sentential “top-element” term, with a
denotation that is constantlytrue.

2. Determiners and proper names are assigned two categories, which allow
them to appear in both subject and object positions. The semantic markings
of their types, as in [3], captures their monotonicity properties. For in-
stance, the determinereveryis marked as downward monotone on its noun
argument, and upward monotone on its verb argument.

5.2 Natural Logic inferences

In general, we represent Natural Logic inferences inL-OC as follows.

Definition 5.2.1 (`NatLog) LetG be some type-logical grammar. LetS, S1, ..., Sn

be non-ambiguous sentences inL[G] (i.e., having only one reading) and let
αS

t , αS1
t , ..., αSn

t be any proof terms representingL-derivation trees ofS, S1, ..., Sn

14

Input: SentencesS, S1, ..., Sn ⇒ Find L proof terms ψS , ψS1
t , ..., ψSn

t for S, S1, ..., Sn ⇒

Prove`L−OC wT ≤ ψS from `L−OC wT ≤ ψS1 , ...,`L−OC wT ≤ ψSn

Figure 1: DerivingS1, ..., Sn `NatLog S in the system

respectively. We say thatS1, ..., Sn `NatLog S if `L−OC wT
t ≤ αS1

t , ...,`L−OC

wT
t ≤ αSn

t implies`L−OC wT
t ≤ αS

t .

In order to proveS1 `NatLog S2, it is enough to shoẁ L−OC α1 ≤ α2, where
α1, α2 are proof terms representing derivations ofS1, S2 resp., and the rest fol-
lows from transitivity. We do so in all the following examples to shorten up the
presentation.
The general process of derivingS1, ..., Sn `NatLog S is summarized in Figure 1.
In this paper we only handle the case ofn = 1.

5.3 Non-logical axioms and the‘every’ postulate

Non-logical axioms are order statements that reflect possible meaning assump-
tions on the denotations of natural language expressions. For example, in the
models that we would like to consider, a student is also a person, and a walking
object is a moving object. It is also natural to assume that in the relevant models a
creative intelligent Xis asmart X, for any nominalX. Similarly, we may assume
thatpassionately lovingsomex entailsadoring x, for any entityx. The following
non-logical axioms ofL-OC, which correspond to these intuitions, will be useful
in the examples ofL-OC proofs that are introduced below.

∅
walked(et) ≤ moved(et)

a1
∅

walk(et) ≤ move(et)

a2

∅
kissed(et) ≤ touched(et)

a3
∅

student(et) ≤ person(et)

a4

∅
λx(et).creative((et)R(et))(intelligent((et)R(et))(x(et))) ≤ smart((et)R(et))

a5

∅
λxe.passionately((et)R(et))(loves(e(et))(xe)) ≤ adores(e(et))

a6

15

OurL-based system, as opposed to the AB-based system of [3], makes it possible
to define non-logical axioms involving complex proof terms. For example, one of
the terms involved ina4 is a composition of two functional termscreative((et)R(et))

andintelligent((et)R(et)), which can not be derived in the less powerful AB calcu-
lus.

Another advantage ofL is that it allows us to use the ad hoc postulate that [3]
defines for the determiner‘every’ also for other positions beside subject position.
The determiner‘every’ is treated by inducing an order statement between its two
arguments. For example, from the order statement

wT
t ≤ (every(et)−((et)+t) (student)) (smiled)

[3] induce the order statementstudent(et) ≤ smiled(et). However, [3] cannot
handle a similar case when‘every’ is in an object position. For example, the fact
that the order statement

(∗) student(et) ≤ λxe.(Mary((et)+t)(kissed(e(et))(xe)))

should be induced from the order statement

wT
t ≤ [λxe.Mary((et)+t)(kissed(e(et))(xe))](every(et)−((et)+t)(student(et)))

cannot be accounted for by [3]. We define a generalized postulate for‘every’ as
follows:

wT
t ≤ (every(et)−((et)+t) (α(et))) (γ(et))

α(et) ≤ γ(et)
((ev))

Some examples for the use of the postulates above for deriving inferences are
given in the following subsection.

5.4 Examples ofL-OC derivations

In this subsection we show examples ofL-OC derivations of inferences involving
sentences with relative clauses and pied piping, as well as inferences using the
extended‘every’ postulate, which cannot be derived by the AB-based system in
[3]. Instances of the Reflexivity axiom are omitted. Also, when the rule FR is
used with its second premise an identity (not just formal equivalence), the second
premise is omitted for brevity.

16

∅
k
is

se
d

(e
(e

t)
)
≤

to
u
ch

ed
(e

(e
t)

)
(a

3
)

(k
is

se
d

(x
e
))

(e
t)
≤

(t
ou

ch
ed

(x
e
))

(e
t)

F
R

(M
a
ry

((
et

)+
t)

(k
is

se
d

(x
))

) t
≤

(M
a
ry

((
et

)+
t)

(t
ou

ch
ed

(x
))

) t
M

O
N

+

(λ
x
.M

a
ry

(k
is

se
d

(x
))

) (
et

)
≤

(λ
x
.M

a
ry

(t
ou

ch
ed

(x
))

) (
et

)

A
b

(w
h
om

(e
t)

C
((

et
)(

et
))

(λ
x
.M

a
ry

(k
is

se
d

(x
))

))
(e

t)
(e

t)
≤

(w
h
om

(e
t)

C
((

et
)(

et
))

(λ
x
.M

a
ry

(t
ou

ch
ed

(x
))

))
(e

t)
(e

t)

M
O

N
+

([
st

u
d
en

t (
et

)]
(w

h
om

(λ
x
.M

a
ry

(k
is

se
d

(x
))

))
) (

et
)
≤

([
st

u
d
en

t (
et

)]
(w

h
om

(λ
x
.M

a
ry

(t
ou

ch
ed

(x
))

))
) (

et
)

F
R

(e
v
er

y
(e

t−
)(

(e
t)

+
t)

([
st

u
d
en

t]
(w

h
om

(λ
x
.M

a
ry

(t
ou

ch
ed

(x
))

))
))

((
et

)+
t)
≤

((
ev

er
y

(e
t−

)(
(e

t)
+

t)
([
st

u
d
en

t]
(w

h
om

(λ
x
.M

a
ry

(k
is

se
d

(x
))

))
))

((
et

)+
t)

M
O

N
-

((
ev

er
y

([
st

u
d
en

t]
(w

h
om

(λ
x
.M

a
ry

(t
ou

ch
ed

(x
))

))
))

(s
m

il
ed

(e
t)
))

t
≤

((
ev

er
y

([
st

u
d
en

t]
(w

h
om

(λ
x
.M

a
ry

(k
is

se
d

(x
))

))
))

(s
m

il
ed

(e
t)
))

t

F
R

F
ig

ur
e

2:
R

el
at

iv
e

cl
au

se
s:

E
ve

ry
st

ud
en

tw
ho

m
M

ar
y

to
uc

he
d

sm
ile

d
` N

a
tL

o
g
E

ve
ry

st
ud

en
tw

ho
m

M
ar

y
ki

ss
ed

sm
ile

d

17

∅
[b

oy
(e

t)
](
th

e
−

br
ot

he
r
−

of
−

w
ho

m
((

et
)C

((
et

)(
et

)(
λ
x
.M

a
ry

(l
ov

es
(x

))
(e

t)
))

≤
bo

y (
et

)

C
1

so
m

e (
et

)+
((

et
)+

t)
([
bo

y (
et

)]
(t

he
−

br
ot

he
r
−

of
−

w
ho

m
((

et
)C

((
et

)(
et

)(
λ
x
.M

a
ry

(l
ov

es
(x

))
(e

t)
))

)
≤

so
m

e (
et

)+
((

et
)+

t)
(b

oy
)

M
O

N
+

so
m

e (
et

)+
((

et
)+

t)
([
bo

y (
et

)]
(t

he
−

br
ot

he
r
−

of
−

w
ho

m
((

et
)C

((
et

)(
et

)(
(λ

x
.M

a
ry

(l
ov

es
(x

))
) (

et
))

))
(w

a
lk

ed
(e

t)
)

≤
(s

om
e (

et
)+

((
et

)+
t)
(b

oy
))

(w
a
lk

ed
et
)

F
R

F
ig

ur
e

3:
P

ie
d

pi
pi

ng
:S

om
e

bo
y,

th
e

br
ot

he
r

of
w

ho
m

M
ar

y
lo

ve
s,

w
al

ke
d
` N

a
tL

o
g
S

om
e

bo
y

w
al

ke
d

w
T t
≤

([
λ
x

e
.M

a
ry

((
et

)+
t)

(k
is

se
d

(e
(e

t)
)
(x

e
))

]
(e

v
er

y
(e

t)
−

((
et

)+
t)

(s
tu

d
en

t (
et

))
))

t

st
u
d
en

t (
et

)
≤

(λ
x
.M

a
ry

(k
is

se
d

(x
))

) (
et

)
(e

v
)

st
u
d
en

t (
et

)
≤

([
st

u
d
en

t (
et

)]
w

h
om

(e
t)

C
(e

t)
(e

t)
(λ

x
.M

a
ry

(k
is

se
d

(x
))

))
(e

t)

C
2

(N
o (

et
)−

((
et

)−
t)

([
st

u
d
en

t]
(w

h
om

(λ
x
.M

a
ry

(k
is

se
d

(x
))

))
))

((
et

)−
t)
≤

(N
o (

et
)−

((
et

)−
t)

(s
tu

d
en

t)
) (

(e
t)
−

t)

M
O

N
-

w
T t
≤

((
N

o
([
st

u
d
en

t]
(w

h
om

(λ
x
.M

a
ry

(k
is

se
d

(x
))

))
))

(w
a
lk

ed
(e

t)
))

t
≤

((
N

o
(s

tu
d
en

t)
)(

w
a
lk

ed
(e

t)
))

t

F
R

w
T t
≤

((
N

o
(s

tu
d
en

t)
)(

w
a
lk

ed
))

t

T
R

A
N

S
×

2

F
ig

ur
e

4:
U

si
ng

th
e

ex
te

nd
ed

no
n-

lo
gi

ca
lp

os
tu

la
te

fo
r

‘e
ve

ry
’:M

ar
y

ki
ss

ed
ev

er
y

st
ud

en
t,

N
o

st
ud

en
t

w
ho

m
M

ar
y

ki
ss

ed
w

al
ke

d
` N

a
tL

o
g

N
o

st
ud

en
tw

al
ke

d

18

Figures 2 and 3 illustrate the derivation of inferences with simple relative
clauses including an object gap. In Figure 2 we see anL-OC derivation, from
which it follows thatEvery student whom Mary touched smiled `NatLogEvery
student whom Mary kissed smiled. In this derivation the Abstraction rule of
L-OC is used to discharge the assumptionxe. In Figure 3 we show aL-OC
derivation, from which we concludeSome boy, the brother of whom Mary
loves, walked `NatLogSome boy walked. For simplicity we assume that the cat-
egory((n\n)/(s/np))(et)C((et)(et)) can be derived for the expressionthe brother
of whom. In Figure 4 the extended‘every’ postulate is used. Figures 5 and 6
illustrate the use ofL-OC for term composition as in the non-logical axiomsa4
anda5.

6 Normalization in L-OC

In this section we focus on normalization5 in L-OC. First of all, we demonstrate
how non-NF proof terms emerge inL-OC. Consider the following example.

∅
λx(et).creative((et)R(et))(intelligent((et)R(et))(x(et))) ≤ smart((et)R(et))

a5

λx.creative(intelligent(x))(boy(et)) ≤ smart(boy(et))
FR

In this example the termλx.creative(intelligent(x))(boy) is not in NF and itβ-
reduces tocreative(intelligent(boy)).
Another example for the creation of non-NF terms is as follows:

∅
happy(et)R(et)(tall(et)R(et)(x(et))) ≤ tall(et)R(et)(x(et))

RMOD

λx.happy(et)R(et)(tall(et)R(et)(x(et))) ≤ λx.tall(et)R(et)(x(et))
Ab

Here, the termλx.tall(x) is not in NF and itη-reduces totall.
In these examples we see two main problematic aspects in the emergence of

non-normalized terms inL-OC. The first problem isabstraction termswith un-
marked semantic types. Basing the system onL allows us to derive order state-
ments that involve non-lexical expressions, and apply composition of terms in
the representation of their derivation. In AB, in contrast, the creation of func-
tional terms that do not originate from the lexicon is impossible due to the lack

5Normalization inL-OC was initially proposed in [15].

19

of introduction rules. InL-OC new functional terms that are created via abstrac-
tion can apply as functions to other terms, creating non-NF terms. Some of the
abstraction terms may denote monotone (restrictive, etc.) functions, but their
types are not respectively marked. For instance, consider the abstraction term
µ = λxτ .ψ(σ+ρ)(φ(τ+σ)(xτ)), which is a composition of the termsφ andψ. Since
their types are marked for upward monotonicity, the denotation of their composi-
tion is an upward monotone function. Thus, given`L−OC γτ ≤τ δτ , we expectL-
OC to derive(λx.ψ(φ(x)))(γ) ≤ρ (λx.ψ(φ(x)))(δ). But the type ofλx.ψ(φ(x))
is not marked for monotonicity, thus we cannot directly use the MON+ rule (or
any otherL-OC rules).

Let us show a more concrete example. Using(a1), MON and FR we can
derive:

`L−OC Mary(doesn′t(move)) ≤ Mary(doesn′t(walk))

Consider, however a similar order statement:

`L−OC [λx.John(does(x))]and(λy.Mary(doesn′t(y)))(move) ≤

λy.Mary(doesn′t(y))(walk)

Since the type ofλy.Mary(doesn′t(y)) is not marked for downward mono-
tonicity, without normalizing it we cannot use the non-logical axiom(a1) in any
way. In Figure 7 we show a derivation of this example usingβ-normalization.
Alternatively, instead of normalization we can add toL-OC a mechanism for dy-
namically marking monotonicity of types, so that markings of lexical expressions
are correctly inherited by complex expressions, also with non-normalized deriva-
tions. Such a method is described in the next section.
Another problematic aspect of non-NF terms inL-OC is effectiveness consider-
ations. In the general architecture of our system (Figure 1), one of the integral
parts is findingL-derivations for the goal sentences. However, finding a non-
normalized derivation of a natural language expression is problematic due to the
lack of the sub-formula property in non-normalized derivations, which in turn cre-
ates an infinite proof search space. Therefore, any realisticL parser would search
for normal form derivations only. Thus, for the purpose of implementation, we
need to express the relation between non-NF terms representingL derivations of
the goal sentences and their normal form equivalents. This technical development
is carried out in [13].

20

∅
([
a
d
or

es
]a

n
d
(λ

x
.p

a
ss

io
n
a
te

ly
(l

ov
es

(x
))

))
≤

λ
x
.p

a
ss

io
n
a
te

ly
(l

ov
es

(x
))

C
1

∅
pa

ss
io

n
a
te

ly
(e

t)
R

(e
t)
(l

ov
es

(x
))
≤

lo
v
es

(x
)

R
M

O
D

λ
x
.p

a
ss

io
n
a
te

ly
(l

ov
es

(x
))
≤

λ
x
.l
ov

es
(x

)
A

b
∅

λ
x
.l
ov

es
(x

)
≡

lo
v
es

η

([
a
d
or

es
]a

n
d
(λ

x
.p

a
ss

io
n
a
te

ly
(l

ov
es

(x
))

))
≤

lo
v
es

T
R

A
N

S

([
a
d
or

es
]a

n
d
(λ

x
.p

a
ss

io
n
a
te

ly
(l

ov
es

(x
))

)(
y
))
≤

lo
v
es

(y
)

F
R

M
a
ry

([
a
d
or

es
]a

n
d
(λ

x
.p

a
ss

io
n
a
te

ly
(l

ov
es

(x
))

)(
y
))
≤

M
a
ry

(l
ov

es
(y

))
M

O
N
+

λ
y
.(
M

a
ry

([
a
d
or

es
]a

n
d
(λ

x
.p

a
ss

io
n
a
te

ly
(l

ov
es

(x
))

)(
y
))

)
≤

λ
y
.M

a
ry

(l
ov

es
(y

))
A

b

[λ
y
.(

[M
a
ry

([
a
d
or

es
]a

n
d
(λ

x
.p

a
ss

io
n
a
te

ly
(l

ov
es

(x
))

)(
y
))

])
]J

oh
n

≤
[λ

y
.M

a
ry

(l
ov

es
(y

))
]J

oh
n

(e
t+

t)

M
O

N
+

F
ig

ur
e

5:
M

ar
y

ad
or

es
an

d
pa

ss
io

na
te

ly
lo

ve
s

Jo
hn
` N

a
tL

o
g

M
ar

y
lo

ve
s

Jo
hn

∅
cr

ea
ti

v
e(

in
te

ll
ig

en
t(

bo
y
))
≡

λ
x
.c

re
a
ti

v
e(

in
te

ll
ig

en
t(

x
))

(b
oy

)

β

∅
λ
x

(e
t)
.c

re
a
ti

v
e (

(e
t)

R
(e

t)
)(

in
te

ll
ig

en
t (

(e
t)

R
(e

t)
)(

x
(e

t)
))
≤

sm
a
rt

(e
t)

(a
5
)

λ
x
.c

re
a
ti

v
e(

in
te

ll
ig

en
t(

x
))

(b
oy

(e
t)
)
≤

sm
a
rt

(b
oy

(e
t)
)

F
R

cr
ea

ti
v
e(

in
te

ll
ig

en
t(

bo
y
))
≤

sm
a
rt

(b
oy

)
T

R
A

N
S

S
om

e (
(e

t)
+

((
et

)+
t)

)(
cr

ea
ti

v
e(

in
te

ll
ig

en
t(

bo
y
))

)
≤

S
om

e (
(e

t)
+

((
et

)+
t)

)(
sm

a
rt

(b
oy

))
M

O
N

S
om

e(
cr

ea
ti

v
e(

in
te

ll
ig

en
t(

bo
y
))

)(
sm

il
ed

)
≤

S
om

e(
sm

a
rt

(b
oy

))
(s

m
il
ed

)
F

R

F
ig

ur
e

6:
S

om
e

cr
ea

tiv
e

in
te

lli
ge

nt
bo

y
sm

ile
d
` N

a
tL

o
g

S
om

e
sm

ar
tb

oy
sm

ile
d,

us
in

g
th

e
no

n-
lo

gi
ca

la
xi

om
(a

5)
.

21

∅
[λ

x
.J

oh
n
(d

oe
s(

x
))

]a
n
d
(λ

y
.M

a
ry

(d
oe

sn
′ t(

y
))

)
≤

λ
y
.M

a
ry

(d
oe

sn
′ t
(y

))

C
1

[λ
x
.J

oh
n
(d

oe
s(

x
))

]a
n
d
(λ

y
.M

a
ry

(d
oe

sn
′ t(

y
))

)(
m

ov
e)

≤
(λ

y
.M

a
ry

(d
oe

sn
′ t(

y
))

)(
m

ov
e)

F
R

(λ
y
.M

a
ry

(d
oe

sn
′ t(

y
))

)(
m

ov
e)

≡
M

a
ry

(d
oe

sn
′ t
(m

ov
e
))

(β
)

∅
w

a
lk

(e
t)
≤

m
ov

e (
et

)
(a

2
)

d
oe

sn
′ t (

et
)−

(e
t)
(m

ov
e)

≤
d
oe

sn
′ t(

w
a
lk

)

M
O

N
-

M
a
ry

((
et

)+
t)
(d

oe
sn
′ t(

m
ov

e)
)

≤
M

a
ry

((
et

)+
t)
(d

oe
sn
′ t(

w
a
lk

))

M
O

N
+

[λ
x
.J

oh
n
(d

oe
s(

x
))

]a
n
d
(λ

y
.M

a
ry

(d
oe

sn
′ t(

y
))

)(
m

ov
e)
≤

M
a
ry

(d
oe

sn
′ t(

w
a
lk

))
T

R
A

N
S

F
ig

ur
e

7:
T

he
pr

ob
le

m
at

ic
in

fe
re

nc
e

is
de

riv
ab

le
us

in
g

β
-n

or
m

al
iz

at
io

n

22

7 Dynamic marking

In this section we focus on the problem of marking the types ofabstractionterms
created inL-OC derivations. We describe a method of dynamic marking (first
proposed in [14]), which marks the types of abstraction terms for monotonicity.
We show that the proposed method does not in fact increase the expressive power
ofL-OC , in the sense that any derivation using dynamic marking can be simulated
byL-OC.

To implement dynamic marking we use the notion ofpolarity introduced by
[11] and used by [10] and [1].

Definition 7.1 (Polarity of occurrences)Given a termψ and a subtermφ of ψ,
a specified occurrence ofφ in ψ is called positive (negative) according to the
following clauses:

1. φ is positive inφ.

2. If ψ = α(γ) then:

• φ is positive (negative) inψ if φ is positive (negative) inα.
• φ is positive (negative) inψ if φ is positive (negative) inγ and α

denotes an upward monotone function.
• φ is negative (positive) inψ if φ is positive (negative) inγ and α

denotes a downward monotone function.

3. If ψ = λx.µ thenφ is positive (negative) inψ if φ is positive (negative) in
µ.

Fact 7.2 [11] If x is positive (negative) inφ thenλx.φ denotes an upward (down-
ward) monotone function.

Dynamic marking is performed byDDL – an extended version ofL. Instead
of linear lambda terms,DDL usesextendedlinear terms, where variables are
assigned a polarity markingΠ ∈ Pol = {⊕,ª,⊗}, which is anabstraction
of its actual polarity:⊕,ª,⊗ mark positive, negative and unspecified polarity
respectively.

Definition 7.3 (Extended linear terms)Let VE = {yΠ | y ∈ VAR, Π ∈ Pol}.
The setELTerms is the smallest set s.t.:

• VE ∪Const ⊆ ELTerms

23

• If Φ(σF τ), Ψσ ∈ ELTerms, then(Φ(Ψ))τ ∈ ELTerms
• If xρ ∈ VAR, Φτ ∈ ELTerms and for someΠ ∈ Pol: xΠ

ρ occurs inΦτ

exactly once, then(λx.Φ)(ρτ) ∈ ELTerms

The set of free variables (with an assigned polarity marking)Free(Ψ) for Ψ ∈
ELTerms is standardly defined.

Definition 7.4 (Π-strip) For Ψ ∈ ELTerms, its Π-strip linear termΠstrip(Ψ) is
defined as follows:

Πstrip(αΠ) = α, for α ∈ VAR, Π ∈ Pol

Πstrip(Φ(∆)) = Πstrip(Φ)(Πstrip(∆))

Πstrip(λx.Φ) = λx.Πstrip(Φ)

In words,Πstrip(Ψ) is the term obtained fromΨ by deleting the polarity marking
of all of its variables. It is easy to show that given a linear extended termΨ,
representing someDDL derivation, the termΠstrip(Ψ), obtained by deleting all
polarity markings fromΨ, is a linear term representing someL derivation.
Next, we define the functionsFlip : ELTerms → ELTerms and
Anull : ELTerms → ELTerms. Flip(Ψ) is the (extended) term obtained from
Ψ by swapping the polarity marking of the free variables inΨ as follows: ‘ª’ to
‘⊕’, ‘⊕’ to ‘ª’, ‘⊗’ to ‘⊗’. Anull(Ψ) is the (extended) term obtained fromΨ by
setting the polarity marking of all the free variables inΨ to ‘⊗’. We also define
the functionPol2Feat : Pol → 2Feat that decorates the type of abstraction terms
according to the polarity marking of the discharged assumption:

Pol2Feat(⊕) = {+}, Pol2Feat(ª) = {−}, Pol2Feat(⊗) = ∅

Definition 7.5 (DDL) Let Γ, Γ1, Γ2 range over finite non-empty sequences of
pairs A : Ψτ , whereA is a syntactic category andΨ ∈ ELTerms. The nota-
tion Γ .A : Ψτ means that the sequenceΓ isDDL-reducible toA : Ψτ . The rules
ofDDL are as follows :

(axiom1) A : x⊕τ . A : x⊕τ for xτ ∈ VE and type(A) = τ◦

(axiom2) A : wτ . A : wτ for wτ ∈ Const and type(A) = τ◦

for τ1 ≡f τ ′1, type(A) = τ◦2 , type(B) = τ◦1 :

24

Elimination rules:

(/Eª)
Γ1 . (A/B) : Ψ(τ1−τ2) Γ2 . B : Φτ ′1
Γ1Γ2 . A : (Ψ(τ1−τ2)(Flip(Φτ ′1)))τ2

(\Eª)
Γ2 . B : ϕτ ′1 Γ1 . (A\B) : Ψ(τ1−τ2)

Γ2Γ1 . A : (Ψ(τ1−τ2)(Flip(Φτ ′1)))τ2

(/E⊕)
Γ1 . (A/B) : Ψ(τ1+τ2) Γ2 . B : Φτ ′1

Γ1Γ2 . A : (Ψ(τ1+τ2)(Φτ ′1))τ2

, (\E⊕)
Γ2 . B : Φτ ′1 Γ1 . (A\B) : Ψ(τ1+τ2)

Γ2Γ1 . A : (Ψ(τ1+τ2)(Φτ ′1))τ2

ForF 6∈ {{+}, {−}} :

(/E)
Γ1 . (A/B) : Ψ(τ1F τ2) Γ2 . B : Φτ ′1
Γ1Γ2 . A : (Ψ(τ1F τ2)(Anull(Φτ ′1)))τ2

, (\E)
Γ2 . B : Φτ ′1 Γ1 . (A\B) : Ψ(τ1F τ2)

Γ2Γ1 . A : (Ψ(τ1F τ2)(Anull(Φτ ′1)))τ2

Introduction rules:

(/I)
Γ1, B : xΠ

τ1 . A : Ψτ2

Γ1 . (A/B) : (λxτ1 .Ψτ2)(τPol2Feat(Π)
1 τ2)

(\I)
B : xΠ

τ1 , Γ1 . A : Ψτ2

Γ1 . (A\B) : (λxτ1 .Ψτ2)(τPol2Feat(Π)
1 τ2)

for Γ1 not empty, xτ1 ∈ VAR

The Elimination rules update the polarity marking of the variables of the argument
term: a downward monotone function triggers a “flipping” of polarity marking,
an upward monotone function leaves polarity intact, and a function unmarked for
monotonicity nullifies polarity marking. The Introduction rules mark the type of
the dynamically created functional term according to the polarity marking of the
abstracted variable corresponding to the discharged assumption. (The polarity
marking of the bound variables becomes irrelevant.)

The rules of the Order Calculus that is based onDDL (DDL-OC) are very
similar to the rules ofL-OC, except that they manipulate order-statements be-
tween extended linear terms, representingDDL derivations. We do not include
normalization axioms inDDL-OC .

Definition 7.6 (DDL-OC :)

For τ ≡f τ ′ ≡f τ̂ ≡f τ̃ , ρ ≡f ρ′ ≡f ρ̂

(REFL)
∅

Ψτ ≤τ◦ Ψτ ′
(TRANS)

Ψτ ≤τ◦ Στ ′ Στ ′ ≤τ◦ Φτ̂

Ψτ ≤τ◦ Φτ̂

(MON+)
Ψτ ≤τ◦ Στ ′

Φ(τ̂+ρ)(Ψτ) ≤ρ◦ Φ(τ̂+ρ) (Στ ′)
(MON-)

Στ ′ ≤τ◦ Ψτ

Φ(τ̂−ρ)(Flip(Ψτ)) ≤ρ◦ Φ(τ̂−ρ) (Flip(Στ ′))

(FR)
Ψ(τF ρ) ≤(τρ)◦ Γ(τ ′F ′ρ′) Φτ̂ ≡τ◦ Στ̃

Ψ(τF ′ρ) (ΛF [Φτ̂]) ≤ρ◦ Γ(τ ′F ′ρ′) (ΛF ′ [Στ̃])

25

where Λ{+} = idELTerms
6,Λ{−} = Flip,ΛF = Anull for F 6∈ {{+}, {−}}

(RMOD)
∅

Σ(τRτ ′) (Πτ̂) ≤τ◦ Πτ̂
(Ab)

Ψρ(xΠ
τ) ≤ρ◦ Φρ′(xΠ′

τ ′)
(λxτ .Ψρ)(τP ol2F eat(Π)ρ) ≤(τρ)◦ (λxτ ′ .Φρ)(τ ′P ol2F eat(Π′)ρ)

λx.Ψ, λx.Φ ∈ ELTerms

(C1)
∅

(Σ(τC(ττ))(Anull(Φτ ′)))(Anull(Γτ̂)) ≤τ◦ Ω
(C2)

Ψτ̃ ≤τ◦ Γτ ′ Ψτ̃ ≤τ◦ Φτ̂

Ψτ̃ ≤τ◦ (Σ(τC(ττ))(Anull(Φτ̂)))(Anull(Γτ ′))

Ω = Γτ̂ or Ω = Φτ ′

(D1)
∅

Ω ≤τ◦ (Σ(τD(ττ))(Anull(Φτ ′)))(Anull(Γτ̂))
(D2)

ψτ ′ ≤τ◦ Ψτ̂ Φτ̃ ≤τ◦ Ψτ̂

(Σ(τD(ττ))(Anull(Φτ̃)))(Anull(Γτ)) ≤τ◦ Ψτ̂

Ω = Γτ ′ or Ω = Φτ̃

Let us now demonstrate the wayDDL-OC works. Consider the following order-
statement between extended terms7:

(1) [λx.John(does(x⊕))]and(λy.Mary(doesn′t(yª)))(move)

≤ λy.Mary(doesn′t(yª))(walk)

First let us note that the extended termλy.Mary(doesn′t(yª)) represents a valid
DDL derivation, where its type is dynamically marked for downward monotonic-
ity:

(s/((s\np))) : Mary(et)+t

((s\np)/(s\np)) : doesn′t(et)−(et) (s\np) : y⊕

(s\np) : doesn′t(yª)
(/Eª)

s : Mary(doesn′t(yª))
(/E⊕)

s/(s\np) : (λy.Mary(doesn′t(yª)))(et)−(et)

(/I)

In Figure 8 we present theDDL-OC derivation of (1). Note that by discarding
all polarity markings from it, we do not necessarily get a validL-OC derivation.
This is because the type ofλy.Mary(doesn′t(y)) cannot be marked for down-
ward monotonicity inL, and so the MON rule cannot be applied. Nevertheless,
we can still show that we can simulate inL-OC any derivation ofDDL-OC . More
precisely, for any order-statementΨ ≤ Φ derivable inDDL-OC (whereΨ, Φ are
extended linear terms),Πstrip(Ψ) ≤ Πstrip(Φ) is derivable inL-OC (where
Πstrip(Ψ), Πstrip(Φ) are the linear terms obtained fromΨ, Φ respectively by
deleting their polarity markings). From this we conclude that basing the Order

6By idELTerms we mean the identity functionid : ELTerms → ELTerms, such that
id(Ψ) = Ψ for every ELTermΨ.

7Note that we specify here the polarity marking of the bound variables.

26

Calculus onDDL instead ofL does not increase its expressive power. Note,
however, that this negative result only holds for the current semantic features. In
general, there need not exist such a bypass, and therefore dynamic marking is a
general solution which should be further investigated.
The following lemma formalizes the relation betweenDDL-OC andL-OC dis-
cussed above:

Lemma 7.7 `DDL−OC Ψ ≤ Φ ⇒ `L−OC Πstrip(Ψ) ≤ Πstrip(Φ).

The full proof of the lemma is deferred to appendix A. Now we exemplify the
lemma by returning to theDDL-OC derivation in Figure 8. According to the
above lemma, we should be able to show the following:

`L−OC [λx.John(does(x))]and(λy.Mary(doesn′t(y)))(move)

≤ λy.Mary(doesn′t(y))(walk)

It was already shown in Figure 7 that:

`L−OC [λx.John(does(x))]and(λy.Mary(doesn′t(y)))(move)

≤ λy.Mary(doesn′t(walk))

Using the(β) axiom:

λy.Mary(doesn′t(walk)) ≡ λy.Mary(doesn′t(y))(walk)

and the TRANS rule, we can indeed construct the desiredL-OC derivation.

8 Conclusions

In this paper we have proposed a Natural Logic inference system that is based onL
and transcends the AB-based system of [3]. Basing the system onL brought about
a complication – non-normalized proof terms, with which we dealt by augment-
ing the system with normalization, or, alternatively, using dynamic monotonicity
marking. We have shown that this allows to derive new kinds of inferences in-
volving sentences with extraction, pied piping and non-logical axioms with com-
plex expressions. Further work is needed to allow inferences with more than one
sentential premise. It is clear, however, thatL is also not the optimal categorial
formalism to underly a Natural Logic inference system, due to its own limitations,

27

mainly overgeneration and incapability of dealing with non-peripheral extraction.
Therefore, we view the proposed inference system only as an intermediate step
towards a more complex one, to be finally based on some decidable fragment of
type-logical grammar. Much work still has to be done in this direction. Further
research should also enlarge the variety of semantic properties used for natural
language inference, beyond the ones employed in current work on Natural Logic.
These reservations notwithstanding, we believe that the present work has shown
some advances in extending the Natural Logic paradigm to a more substantial
system of reasoning in natural language.

28

∅
[λ

x
.J

oh
n
(d

oe
s(

x
⊕
))

]a
n
d
(λ

y
.M

a
ry

(d
oe

sn
′ t
(y
ª
))

)
≤

λ
y
.M

a
ry

(d
oe

sn
′ t
(y
ª
))

C
1

[λ
x
.J

oh
n
(d

oe
s(

x
⊕
))

]a
n
d
(λ

y
.M

a
ry

(d
oe

sn
′ t
(y
ª
))

)(
m

ov
e)

≤
λ
y
.M

a
ry

(d
oe

sn
′ t
(y
ª
))

(e
t)
−

(e
t)
(m

ov
e)

F
R

(a
2
)
w

a
lk
≤

m
ov

e

λ
y
.M

a
ry

(d
oe

sn
′ t
(y
ª
))

(e
t)
−

(e
t)
(m

ov
e)

≤
λ
y
.M

a
ry

(d
oe

sn
′ t
(y
ª
))

(e
t)
−

(e
t)
(w

a
lk

)

M
O

N

[λ
x
.J

oh
n
(d

oe
s(

x
⊕
))

]a
n
d
(λ

y
.M

a
ry

(d
oe

sn
′ t
(y
ª
))

)(
m

ov
e)

≤
λ
y
.M

a
ry

(d
oe

sn
′ t

(y
ª
))

(w
a
lk

)

T
R

A
N

S

F
ig

ur
e

8:
A
DD

L-
O

C
de

riv
at

io
n

29

A Proof of Lemma 7.7

First we prove the following lemma that we will use in the sequel:

Lemma A.1 Let Ψ ∈ ELTermss.t. x ∈ Free(Πstrip(Ψ)) andx is marked8 for
positive (negative) polarity inΨ. Then`L−OC γ ≤σ δ (`L−OC δ ≤σ γ) implies
`L−OC Πstrip(Ψ)[x/γ] ≤τ Πstrip(Ψ)[x/δ].

Proof: by induction on the complexity ofΨ. We prove only for the positive
polarity case; the proof for negative polarity is symmetric.

• Ψ = x⊕. Then Πstrip(Ψ) = x and `L−OC γ ≤σ δ implies `L−OC

x[x/γ] ≤σ x[x/δ].
• Ψ = Θ(ζF ρ)(Λζ). Then (since the terms are linear) only one of the following

holds:x ∈ Free(Πstrip(Θ)) or x ∈ Free(Πstrip(Λ)).
• Supposex ∈ Free(Πstrip(Θ)). If x is marked for positive polarity

in Ψ, thenx is marked for positive polarity also inΘ. By the induc-
tion hypothesis,̀ L−OC γ ≤σ δ implies`L−OC Πstrip(Θ)[x/γ] ≤(ζρ)

Πstrip(Θ)[x/δ]. By applying the FR rule, we can prove

`L−OC (Πstrip(Θ)[x/γ])(Πstrip(Λ))︸ ︷︷ ︸
Πstrip(Θ(Λ))[x/γ]

≤ρ (Πstrip(Θ)[x/δ])(Πstrip(Λ))︸ ︷︷ ︸
Πstrip(Θ(Λ))[x/δ]

• Supposex ∈ Free(Πstrip(Λ)). If x is marked for positive polarity
in Ψ, then (i) either the type ofΘ is marked for upward monotonicity
andx is marked for positive polarity inΛ or (ii) the type ofΘ is
marked for downward monotonicity andx is marked for negative
polarity in Λ. Suppose that (i) holds. By the induction hypothesis,
`L−OC γ ≤σ δ implies`L−OC Πstrip(Λ)[x/γ] ≤ζ Πstrip(Λ)[x/δ].
By applying MON+ rule, we can prove

`L−OC (Πstrip(Θ)(ζ+ρ))(Πstrip(Λ)ζ [x/γ])︸ ︷︷ ︸
Πstrip(Θ(Λ))[x/γ]

≤ρ (Πstrip(Θ))(ζ+ρ)(Πstrip(Λ)[x/δ])︸ ︷︷ ︸
Πstrip(Θ(Λ))[x/δ]

The proof for (ii) is symmetric.
• Ψ = λyζ .Φ, wherey 6= x. Sincex is marked for positive polarity inΨ,

then it is marked for positive polarity inΦ. By the induction hypothe-
sis,`L−OC γ ≤σ δ implies`L−OC Πstrip(Φ)[x/γ] ≤ρ Πstrip(Φ)[x/δ].

8Recall that since we use extended linear terms, every variable occurs at most once, and so we
can speak of the marking ofx and not of its specific occurrence.

30

By applying the Ab rule, we can provèL−OC λy.(Πstrip(Φ)[x/γ]) =
Πstrip(λy.Φ)[x/γ] ≤ρ λy.(Πstrip(Φ)[x/δ]) = Πstrip(λy.Φ)[x/δ], and
so we have:

`L−OC Πstrip(λy.Φ)[x/γ] ≤(ζρ) Πstrip(λy.Φ)[x/δ]

Now we prove lemma 7.7, which states the following:

`DDL−OC Ψ ≤ Φ ⇒ `L−OC Πstrip(Ψ) ≤ Πstrip(Φ)

Suppose that there is a proofΩ1 of Ψ ≤ Φ in DDL-OC. We construct aL-OC
proof Ω2 of Πstrip(Ψ) ≤τ Πstrip(Φ). First we delete all polarity markings
from the variables of the extended terms inΩ1. Then we delete all monotonicity
markings of abstraction terms inΩ1.
If the proof contains no MON rule applications based on dynamic marking of
types of abstraction terms, then it is easy to see that the obtained derivation is a
validL-OC proof ofΠstrip(Ψ) ≤τ Πstrip(Φ).
Otherwise, the resulting invalid applications of the MON rule of the form:

Ω

A
A

¢
¢

Πstrip(Θ) ≤τ Πstrip(∆)

(λxτ .Πstrip(Ψ))(τρ)(Πstrip(Θτ)) ≤ρ (λxτ .Πstrip(Ψ))(τρ)(Πstrip(∆τ))
MON

(1)

where the type ofλxτ .Πstrip(Ψ) is not marked for monotonicity. We choose the
innermost invalid MON instance, that is such that does not have invalid MON
instances inΩ. First of all, due to its being the innermost non-valid instance of
MON, Ω is a validL-OC proof of the order statementΠstrip(Θ) ≤ Πstrip(∆).
Secondly, since the type ofλx.Ψ is marked for upward monotonicity,x must be
marked for positive polarity inΨ. By lemma A.1:

`L−OC Πstrip(Ψ)[x/Πstrip(Θ)] ≤(τρ) Πstrip(Ψ)[x/Πstrip(∆)]

Thus we can replace (1) by the following validL-OC proof:

In this way we can systematically remove all invalid instances of MON.

31

∅
λx.Πstrip(Ψ)(Πstrip(Θ))

≡(τρ) Πstrip(Ψ)[x/Πstrip(Θ)]

β
A

A
¢
¢

Πstrip(Ψ)[x/Πstrip(Θ)]
≤(τρ) Πstrip(Ψ)[x/Πstrip(∆)]

∅
Πstrip(Ψ)[x/Πstrip(∆)]

≡(τρ) λx.Πstrip(Ψ)(τρ)(Πstrip(∆))

β

(λx.Πstrip(Ψ))(Πstrip(Θ)) ≤ (λx.Πstrip(Ψ))(Πstrip(∆))
TRANS

Example: Let us demonstrate the method presented above using theDDL-OC
derivation from Figure 8. First we delete all the polarity markings and monotonic-
ity markings of types of abstraction terms and get the following “derivation”:

∅
[λx.John(does(x))]and(λy.Mary(doesn′t(y)))

≤ λy.Mary(doesn′t(y))

C1

[λx.John(does(x))]and(λy.Mary(doesn′t(y)))(move)
≤ (λy.Mary(doesn′t(y)))(move)

FR
walk ≤ move

λy.Mary(doesn′t(y))(et)(et)(move)
≤ λy.Mary(doesn′t(y))(et)(et)(walk)

MON

[λx.John(does(x))]and(λy.Mary(doesn′t(y)))(move) ≤ λy.Mary(doesn′t(y))(walk)
TRANS

Of course, the underlined application of MON is not valid, since the type of
λy.Mary(doesn′t(y)) is no longer marked for downward monotonicity.
Since the type of abstraction termλy.Mary(doesn′t(y)) was dynamically marked
for ‘-’, it means thaty was marked for ‘ª’ in Mary(doesn′t(yª)). By lemma A.1
and using the non-logical axiomwalk ≤ move:

`L−OC Mary(doesn′t(move)) ≤ Mary(doesn′t(walk))

(see the right side of Figure 7), and usingβ-normalization as described above, we
obtain theL-OC derivation in Figure 9.

32

∅
[λ

x
.J

o
h

n
(d

o
e
s
(x

))
]a

n
d
(λ

y
.M

a
r
y
(d

o
e
s
n
′ t

(y
))

)
≤

λ
y

.M
a

r
y
(d

o
e
s
n
′ t

(y
))

C
1

[λ
x

.J
o
h

n
(d

o
e
s
(x

))
]a

n
d
(λ

y
.M

a
r
y
(d

o
e
s
n
′ t

(y
))

)(
m

o
v
e
)

≤
(λ

y
.M

a
r
y
(d

o
e
s
n
′ t

(y
))

)(
m

o
v
e
)

F
R

(λ
y

.M
a

r
y
(d

o
e
s
n
′ t

(y
))

)(
m

o
v
e
)

≡
M

a
r
y
(d

o
e
s
n
′ t

(m
o
v
e
))

(β
)

∅
w

a
lk

(e
t
)
≤

m
o
v
e
(e

t
)

(a
2
)

d
o
e
s
n
′ t

(e
t
)−

(e
t
)
(m

o
v
e
)

≤
d
o
e
s
n
′ t

(w
a

lk
)

M
O

N
-

M
a

r
y
((

e
t
)+

t
)
(d

o
e
s
n
′ t

(m
o
v
e
))

≤
M

a
r
y
((

e
t
)+

t
)
(d

o
e
s
n
′ t

(w
a

lk
))

M
O

N
+

M
a

r
y
(d

o
e
s
n
′ t

(w
a

lk
))
≡

(λ
y

.M
a

r
y
(d

o
e
s
n
′ t

(y
))

)(
w

a
lk

)
(β

)

[λ
x

.J
o
h

n
(d

o
e
s
(x

))
]a

n
d
(λ

y
.M

a
r
y
(d

o
e
s
n
′ t

(y
))

)(
m

o
v
e
)
≤

λ
y

.M
a

r
y
(d

o
e
s
n
′ t

(y
))

(w
a

lk
)

T
R

A
N

S

F
ig

ur
e

9:
E

xa
m

pl
e

of
ap

pl
yi

ng
le

m
m

a
7.

7:L-
O

C
de

riv
at

io
n

33

References

[1] R. Bernardi,Reasoning with Polarity in Categorial Type Grammar, Ph.D.

thesis, Utrecht University, 2002.

[2] L. Faltz and E. L. Keenan,Boolean Semantics for Natural Language, Reidel,

1985.

[3] Y. Fyodorov, Y. Winter, and N. Francez,Order-Based Inference in Natural

Logic, Logic Journal of the IGPL (2003).

[4] L.T.F Gamut,Logic, Language and Meaning, vol. 2, The University of

Chicago Press, Chicago, 1991.

[5] L. Henkin.,Completeness in the theory of types, Journal of Symbolic Logic

(1950), 81–91.

[6] Y. Bar Hillel, Language and Information, Addison Wesley, Reading MA,

1964.

[7] J. Lambek,The mathematics of sentence structure, vol. 64, Amer. Math.

monthly, Chicago, 1991.

[8] M. Moortgat,Categorial Type Logics, Handbook for Logic and Language,

Johan van Benthem and Alice ter Muelen eds., Elsevier/MIT Press, 1997.

[9] I. Pratt-Hartman,Fragments of Language Quantification, Journal of Logic,

Language and Information13 (2004), 207–223.

[10] V. Sánchez,Studies on Natural Logic and Categorial Grammar, Ph.D. the-

sis, University of Amsterdam, 1991.

34

[11] J. van Benthem,Meaning: interpretation and inference, Synthese73 (1987),

451–470.

[12] H. Wansing,The logic of information structures, Springer Lecture Notes,

Springer-Verlag, Berlin, 1993.

[13] A. Zamansky,A ‘Natural Logic’ inference system based on the Lambek cal-

culus, Master’s thesis, Technion, Haifa, 2004.

[14] A. Zamansky, Y. Winter, and N. Francez,Order-Based Inference using the

Lambek calculus, Proceedings of the 7-th conference on Formal Grammar,

University of Trento (2002).

[15] , A ‘Natural Logic’ inference system using normalization, Proceed-

ings of the 4-th workshop on Inference in Computational Semantics, LORIA,

Nancy, P. Blackburn and J. Bos eds. (2003).

35

