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The detection of frauds in credit card transactions is a major topic in financial research, of profound economic implications.
While this has hitherto been tackled through data analysis techniques, the resemblances between this and other problems, like
the design of recommendation systems and of diagnostic/prognostic medical tools, suggest that a complex network approach may
yield important benefits. In this paper we present a first hybrid datamining/complex network classification algorithm, able to detect
illegal instances in a real card transaction data set. It is based on a recently proposed network reconstruction algorithm that allows
creating representations of the deviation of one instance from a reference group. We show how the inclusion of features extracted
from the network data representation improves the score obtained by a standard, neural network-based classification algorithm and
additionally how this combined approach can outperform a commercial fraud detection system in specific operation niches. Beyond
these specific results, this contribution represents a new example on how complex networks and data mining can be integrated as
complementary tools, with the former providing a view to data beyond the capabilities of the latter.

1. Introduction

Credit card fraud, a concept included in the wider notion
of financial frauds [1, 2], is a topic attracting an increasing
attention from the scientific community. This is due, on the
one hand, to the rising costs that they generate for the system,
reaching billions of dollars in yearly losses and a percentage
loss of revenues equal to the 1.4% of on-line payments [3].
On the other hand, credit card frauds have important social
consequences and ramifications, as they support organized
crime, terrorism funding, and international narcotics traf-
ficking; see [4] for a complete review.

Detecting unauthorized credit card transactions is an
extremely complex problem, as features are seldom useful
if taken individually. To illustrate, a large transaction is not
prima facie suspicious, unless it is performed at usual times

(e.g., at night) or in an unusual store (i.e., a store never visited
before by the card owner, located in a different city, etc.).
When different features have to be combined in non-trivial
ways, the customary solution is to resort to data mining,
a subfield of computer science dealing with the automatic
discovery of patterns in data sets [5–7]. While data mining
algorithms are able to detect hidden patterns in data, they
usually lack the capacity of synthesizing metrics describing
the global structure created by the interactions between
the different features. In recent years, the use of complex
networks theory has been proposed as a way of overcoming
this limitation. Complex networks are a statistical-mechanics
understanding of the classical graph theory, aimed at describ-
ing and characterizing the structure of complex systems
[8–10]. The interaction between network theory and data
mining is bidirectional: the former can be used to synthesize
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high-level features to be fed into a classification problem,
while the latter can endow networks with an objective way
of validating results; see [11] for a complete review.

More specifically, complex networks and data mining can
be integrated as complementary tools in order to extract,
synthesize, and create new representations of a data source,
with the aim of, for instance, discover new hidden patterns in
a complex structure. The appropriate integration of complex
network metrics can result in improved classification rates
with respect to classical data mining algorithms and, recip-
rocally, there are many situations in which data mining can
be used to solve important issues in complex network theory
and applications [11].

In this contribution we explore the possibility of using
complex networks as a way of improving credit card fraud
detection. Specifically, networks are used to synthesize com-
plex features representing card transactions, relying on the
recently proposed approach of parenclitic networks (Sec-
tion 3). Afterwards, their relevance is evaluated by means of
a large dataset of real transactions, by comparing the yielded
increase in the classification score when compared to the use
of a standard ANN algorithm (Section 4). We additionally
show that the combined data mining/complex networks
approach is able to outperform a commercial system in some
specific situations.

2. State of the Art in Credit Card
Frauds Detection

Due to the high importance, both economic and social, of
the problem of detecting frauds in credit card transaction,
it is not surprising that a large body of works can be found
in the literature, especially based on the analysis of past
transaction data. While a complete review is out of the scope
of this contribution, in this sectionwe review some important
techniques; the interested reader may refer to [32–34] for
more comprehensive reviews.

Generally speaking, credit card frauds detection ap-
proaches can be classified in two main families, which cor-
respond to the two families of machine learning algorithms:
supervised and unsupervised ones. In the former family, past
transactions are labeled as legal or illegal, for instance, based
on expert judgement or customer’s claims; the algorithms
then learn over these data, to create a model that is applied
to new instances appearing in the system. On the other hand,
unsupervised techniques are based on the automatic detec-
tion of patterns that are considered “normal” for a given user,
for then detecting transactions that are not coherent with
such patterns, as illegal users are expected to depart from the
owner’s behaviors. Both families have their own advantages
and disadvantages, and in general supervised approaches are
more effective in detecting illegal transactions, although they
require a large initial training set (which in some cases may
not be available).

Table 1 reports some relevant works, organized by the
machine learning technique used. Most of the data mining
models to detect credit card frauds are based on artificial
neural networks (ANNs), a model inspired on the structural

Table 1: List of relevant references in credit card frauds detection,
based on data analysis and machine learning, organised according
to the algorithm used.

Algorithm Type References
Artificial Neural Networks Supervised [12–18]
Self-Organising Maps Unsupervised [19, 20]
Genetic Algorithm Supervised [21–23]
Support Vector Machines Supervised [24–27]
Bayesian networks Supervised [15]

aspects of biological neural networks, and in which a set
of nodes process the input signal by interacting between
them [35, 36]. The preference of this algorithm is based on
the fact that ANNs are able to extract complex nonlinear
patterns from data, with almost no hypotheses on the under-
lying structure; they are thus a natural choice, albeit with
some limitations, including a high computational cost, and
the fact of being “black-boxes”. Other relevant supervised
algorithms include genetic algorithms (GA), in which a
set (or a population) of solutions are evolved using rules
inspired on genetic natural selection [37, 38]; support vector
machines (SVMs), a classification algorithm based on finding
the hyper-plane in the feature hyper-space able to divide
instances according to their classes [39, 40]; and Bayesian
networks, probabilistic models representing relationships
between features and classes through directed acyclic graphs
[41, 42]. As for unsupervised algorithms, it is worth citing
self-organizing maps (SOM), a type of ANN whose output
is tuned to be a low-dimensional representation of the input
features [43].

In spite of the large number of publications focusing on
the problem of detecting illegal transactions, the research
community still faces some important problems. First, there
are no public and creditable data sets against which algo-
rithms can be tested and benchmarked. This, of course, is a
major obstacle towards reaching high levels of reproducibil-
ity, but, on the other hand, the privacy concerns about credit
card data are a barrier difficult to overcome; see [44] for
a discussion. Second, there is no accepted and common
way of measuring the effectiveness of a classification model,
with previous works heterogeneously relying on accuracy,
precision, area under the ROC curve [45], or F1-measures.

3. Methods

In this section we present the main tools that are going
to be used for the classification of credit card transactions
between licit and illicit. Given a credit card transaction 𝑡𝑖 with
features 𝑓𝑖1, . . . , 𝑓𝑖𝑘, the problem entails detecting if it is illicit
or not from its features and the knowledge obtained from
a historical training dataset, what is known as a supervised
learning problem. From a mathematical point of view, we
have to model a function 𝐻 : R𝑘 → R and find 𝛿 > 0 such
that if |𝐻(𝑓𝑖1, . . . , 𝑓𝑖𝑘)| ≤ 𝛿, then 𝑡𝑖 is not illicit. Note that
while there are multiple types of illicit patterns, such aspect
is here not considered, in that any suspicious transaction is
considered as a potential fraudulent one.
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We firstly introduce the concept of parenclitic networks in
Section 3.1, a network reconstruction technique that allows
highlighting the differences between one instance and a set of
standard (i.e., baseline, or in this case licit) instances [46, 47].
We subsequently describe the real data set used for validation
(Section 3.2), including the available raw features (Table 3);
and the global classification model (Section 3.3).

3.1. Parenclitic Networks Reconstruction. As initially pro-
posed in [46], one may hypothesise that the right classifica-
tion of an observation does not only come from its features,
but also comes from the structure of correlations between
them. Following the mathematical formalism introduced
before, if we consider the set

𝐿 = {(𝑥1, . . . , 𝑥𝑘) ∈ R
𝑘; 󵄨󵄨󵄨󵄨𝐻 (𝑥1, . . . , 𝑥𝑘)

󵄨󵄨󵄨󵄨 ≤ 𝛿} ⊆ R
𝑘, (1)

then 𝐿 is a manifold in R𝑘 such that if we take a (new)
transaction 𝑡 with features 𝑡1, . . . , 𝑡𝑘 such that (𝑡1, . . . , 𝑡𝑘) ∉ 𝐿;
then 𝑡 is considered as an illicit transaction. In general it is
computationally impossible to obtain the set 𝐿 directly from
the training dataset, since it is a high dimensional problem.As
an alternative, the parenclitic approach analyzes the family of
projections of 𝐿 into 2-dimensional spaces corresponding to
couples of features (𝑥𝑖, 𝑥𝑗) with 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑘. Hence, if we
consider a training dataset with 𝑛 ∈ N transactions, each of
them described by 𝑘 ∈ N (numeric) features, we can analyze
up to ( 𝑘2 ) = 𝑘(𝑘 − 1)/2 two-dimensional projections of pairs
of different features, each of themwith up to 𝑛 points inR2. In
order to quantify the correlation between pairs of features, the
parenclitic approach proposes associating a network to each
transaction with 𝑘 nodes (as many as features considered)
and the links measure the correlation between features [47].
Hence the following preprocessing must be completed: for
every two-dimensional projection of 𝐿 given by a couple of
features (𝑓𝑖, 𝑓𝑗) with 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑘, the correlation for
the licit transactions in the training dataset is measured (by
means of, for instance, a linear regression or other curve
fitting techniques). For the sake of simplicity, we have here
considered a linear regression, such that every pair of features
(𝑓𝑖, 𝑓𝑗) with 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑘 yields a linear fitting between
𝑓𝑖 and 𝑓𝑗 for the licit transactions in the training dataset.
Mathematically, this is represented by a linear equation of the
form

𝑟𝑖𝑗 : 𝑥𝑗 = 𝑎𝑖𝑗𝑥𝑖 + 𝑏𝑖𝑗. (2)

Once these ( 𝑘2 ) linear regression lines are computed, a
threshold 𝛼 > 0 is fixed. Given a new (i.e., not included in the
training set) transaction 𝑡 with features 𝑡1, . . . , 𝑡𝑘, a network
𝐺 = 𝐺(𝑡) is associated with 𝑡 as follows:

(i) 𝐺 has 𝑘 nodes 1, . . . , 𝑘,
(ii) For every pair of nodes 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑘 we compute

𝑤𝑖𝑗 ≥ 0 as the (Euclidian) distance from (𝑡𝑖, 𝑡𝑗) to the
line 𝑟𝑖𝑗 in R2, i.e.,

𝑤𝑖𝑗 = 𝑑 ((𝑡𝑖, 𝑡𝑗) , 𝑟𝑖𝑗) . (3)

As an alternative, the Euclidian distance could be
replaced by any pseudo-distance function in R2. For
the sake of simplicity, the Euclidian distance will be
used in this paper, but similar results can be obtained
for other pseudo-distance functions.

(iii) For every pair of nodes 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑘, the (undirected)
link (𝑖, 𝑗) is in graph 𝐺 if and only if 𝑤𝑖𝑗 ≥ 𝛼.

Note that the parenclitic network 𝐺(𝑡) summarizes the
couples of features whose correlation strongly differs from
a typical licit transaction; the structure of this network thus
contains valuable information about the (abnormal) corre-
lation of features in the credit card transaction. Once this
parenclitic network is computed, it is necessary to transform
it in a set of features compatible with a datamining algorithm.
Towards this end, several structural measures have been
extracted and will be considered as new features associated
with the transaction (see next section for details).

The identification of the best set of measures to describe
the network representation of a system is not a trivial nor a
closed problem. Researchers usually resort to two different
strategies: define a set of metrics, according to the structural
aspects they describe and to the known properties of the
system under study or relying in an external optimization
phase, for instance, by including a large set of metrics,
and by applying a feature selection algorithm on them [11,
48]. In this contribution we choose the first option, as
(i) it minimizes the probability of overfitting, and (ii) the
expected structure of the parenclitic networks has already
been studied. Regarding the last point, it has been shown
that the networks corresponding to abnormal (in the sense
of different from the average) instances have a star-like
structure, usually characterized by high clustering coefficient
(number of triangles), high efficiency, and low Information
Content [46, 47]. By using this initial information, a set
of relevant features have been selected among all possible
structuralmeasures that could be computed (see, for example,
[28] and references therein), as summarized in Table 2.

3.2. Data Set Description. The data set here considered
includes all credit and debit card transactions of clients of
the Spanish bank BBVA, from January 2011 to December
2012. Each month, an average of 15 million operations
were realized by 7 million cards, for a total of 250GB of
information.

Transactions are automatically screened by an algorithm
designed to detect suspected transactions, and returning a
score from 0 (no suspect) to 100 (potentially illegal). After-
wards, transactions are classified in two categories, i.e., legal
and illegal, as a result of a manual classification performed
by the bank’s legal personnel, using both information of the
automatic algorithm and customers’ complaints. This allows
us to detect which transactions were positively detected as
frauds by the automatic algorithm, and which were false
negatives.

Available fields included a time stamp of the operation,
the quantity (both in Euro and in the original currency, if dif-
ferent), and the origin (the card) and destination (the store) of
the operation; the two latter fields were anonymized, so that
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Table 2: List of topological metrics used to describe the structure of parenclitic networks.

Name Description

Maximum node degree [28] Maximum degree of all nodes in the network. It is calculated as𝑀𝑘 = max𝑖 𝑘𝑖, 𝑘𝑖
being the degree of nodes 𝑖

Entropy of the degree distribution [29] Shannon entropy of the distribution of nodes degrees. It is given by
𝐸 = −∑𝑀𝑘𝑖=0 𝑝𝑖 log𝑝𝑖, 𝑝𝑖 being the probability of finding a node of degree 𝑖.

Assortativity [28] Pearson’s correlation coefficient between the degree of connected nodes.

Clustering coefficient [28]
Measure of the presence of triangles in the network. It is defined as the number of
triangles (groups of three fully-connected nodes) over the number of connected

triplets (groups of three nodes connected by at least two links).
Geodesic distance [28] Average length of the shortest path connecting pairs of nodes.
Efficiency [30] Inverse of the harmonic mean of the length of all shortest distances.
Information Content [31] Metric assessing the presence of meso-scale structures in the network.

Table 3: Features composing the credit card transactions dataset.

Name Type Description
Transaction size Integer Size, in Euro, of the transaction under analysis.
Time since last transaction Integer Time, in seconds, since the last transaction of the same card.
Last transaction size Integer Size, in Euro, of the previous transaction executed by the same card.
Average transaction size Float Average size, in Euro, of the transactions executed by the card in the last month.
Average time between transactions Float Average time, in seconds, between consecutive transactions of the same card.

Same shop Boolean 1 is the shop corresponds to the one of the last transaction of the same card, 0
otherwise.

Hour of the day Integer Hour (from 1 to 24) at which the operation was realized.
Fraud rate Float Average rate of illegal operations, for all cards, in the last 50.000 transactions.

Fraud suspicion Integer
Number representing the likelihood for the transaction to be illicit, according to the

bank automatic fraud detection algorithm. Values range between 0 (no fraud
suspected) to 100 (certain fraud).

Fraud Boolean 1 if the transaction has been recognized as a fraud, 0 otherwise.

the exact card number and the name of the store could not
be recovered. Some additional features have been synthesized
from the previous ones, e.g., the average transaction size of
a given user. A full list of the available fields is reported
in Table 3. Additionally, a full statistical characterization of
the features can be found in [49], including the temporal
evolution of the structure of the transactions network.

3.3. Classification Models. As previously introduced, in this
contribution we are going to explore two different ways
of detecting illicit credit card transactions: a classical data
mining approach, and the introduction of features extracted
from a network representation. In both cases, the process
must follow some common steps: it is first necessary to extract
the expected behavior, i.e., a set of features representing the
typical legal and illegal transaction; by using such features, a
mathematical model will be constructed in order to learn the
differences between legal and illegal transactions. Once this
mathematical model is fitted, new transactions not studied
previously could be classified.

Figure 1 depicts an overview of the whole process. It starts
from the original data set, fromwhich a set of raw features are
extracted, as described in Section 3.2 and listed in Table 3.The
features corresponding to the licit transactions are then used

Original 
dataset Raw 

features

Parenclitic 
networks

Topological 
features

MLP

Expected 
behaviours

MLP Learning

Model 
parameters

Classification

Figure 1: Schematic representation of the classification model. See
main text for details.

to recover the normal relations, as described in Section 3.1,
and to reconstruct the parenclitic networks of all transactions.
These networks are then binarized; i.e., links with weight
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Figure 2: (a) Classification error as a function of the link density of the parenclitic networks. Black squares, black circles, and blue triangles,
respectively, represent the error for the classification for the original raw features, for the classification using parenclitic features alone, and
for the classification with all features. (b) Error reduction, in percentage, when using only parenclitic features (black circles) and the full set
of features (blue triangles), with respect to the use of the raw data set.

below a given threshold are deleted, and a set of topological
metrics are extracted; see Table 2 for a complete list. Note that,
at the end of this analysis, all transactions are described by 15
features: 8 coming from the raw data, and 7 from the network
analysis.

Artificial Neural Networks (ANNs), and specifically
Multi-Layer Perceptrons (MLP), have been chosen as the
finalmodel for classifying new transactions.They are inspired
by the structural aspects of biological neural networks and
are represented by a set of connected nodes in which each
connection has a weight associated with it, and the network
learns the classification function adjusting the node weights
[36, 50]. The output of each artificial neuron 𝑗 is defined by

𝑓 (𝑊𝑇, 𝑥𝑗) =
𝑛

∑
𝑖=1

𝑊𝑖𝑥𝑖 + 𝑏, (4)

𝑊 being the vector of weights and 𝑓 the sigmoid activation
function:

𝑓 (𝑥) = 1
1 + exp (−𝑥)

. (5)

Following the standard configuration, neuronswere orga-
nized in three layers: an input one, with a number of neurons
equal to the input features; an intermediate, or hidden one,
with ten neurons; and a final output layer comprising just
one computational element.The training has been performed
with the standard back-propagation algorithm [51]. Finally,
the reconstruction of the MLP models has been performed
using the KNIME software [52].

The evaluation of the classification efficiency has been
performed using both sensitivity (also known as True Positive
Rate (TPR)) and Receiver Operating Characteristic (ROC)
curves [45]. These curves are created by plotting the True
Positive Rate (TPR) against the False Positive Rate (FPR) at
various threshold settings. ROC plots present the important
advantage of showing the performance of the classification
model for different sensitivity values. This is relevant for the

problem at hand, as false positives are extremely expensive,
e.g., in terms of the negative commercial image of the bank;
conservative solutions are therefore usually preferred. All
results here presented correspond to a cross-validation, in
which data of the first year (approximatively half of the
instances) are used for training, and those of the second year
for evaluation only. This, together with the high number of
available instances, minimizes the risk of model overfitting
[53].

4. Results

As explained in Section 3.1, the parenclitic approach usually
requires the definition of a threshold 𝛼, which is used to
binarize the (initially weighted) networks. Instead of using
an a priori approach, i.e., the definition of 𝛼 using expert
judgement, we here tackle the problem indirectly, by follow-
ing the procedure proposed in [48]. Specifically, we optimize
the network reconstruction by finding the link density (and
hence the value of 𝛼) that optimizes the efficacy of the
classification model.

Figure 2(a) presents the evolution of the classification
error (sensitivity or TPR) as a function of the considered link
density, for three different scenarios: the use of only the raw
features, as described in Table 3 (solid black squares); the use
of the features extracted from the parenclitic representation
alone (hollow black circles); and the use of the combined sets
of features (solid blue triangles). Note that, in the former case,
the result is constant, as the original features are not affected
by the binarization process. In order to avoid overfitting,
this classification has been performed on a balanced sub
data set, composed of an equal number of legal and illegal
transactions.

Several conclusions can be drawn from Figure 2. First
of all, the features extracted from the parenclitic networks
are not enough, alone, to reach a low classification error.
This has to be expected: while important information can
be codified in the interaction between raw features, some
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Figure 3: (a) ROC curves of the classification, corresponding to the use of the raw features alone (blue line), of the parenclitic features (green
line), and of the combined sets (black line). (b) ROC curves, obtained through the combined data set, as a function of the transaction sizes.

important clues may be hidden in the latter, e.g., abnormal
transaction sizes or timings. At the same time, the addition
of parenclitic features to the raw data set enhances the
obtained results, with the error dropping from a 19.2% to a
12.23%. This is further illustrated in Figure 2(b), depicting
the reduction in the classification error (in percentage) when
considering only parenclitic features and the whole data set;
note that, in the first case, the reduction is negative as the
error increases. Finally, the best classification suggests that
the optimal link density that should be considered is of 60%,
meaning that the 40% of links with less weight should be
deleted.

If Figure 2 is useful to detect the best link density
for the analysis, it does not convey information about the
real performance of the classification algorithm in an oper-
ational environment. For that, Figure 3(a) presents three
ROC curves, corresponding to the use of raw (blue line),
parenclitic (green line), and combined features (black line)
as before. Note that results here presented correspond to
the optimal link density of 60%, as previously estimated.
As previously discussed, the most interesting operational
configuration is the one minimizing the number of false
positives, as this minimizes the commercial costs of the
organization. The inset of Figure 3 thus shows the bottom
left part of the curves. It can be appreciated that, after an
initial part in which results are comparable, the addition
of the parenclitic features slightly increases the number of
true positives; note how the black line is above the blue
one.

In order to confirm such graphical results, two Areas
Under the ROC Curve (AUC) have been calculated, respec-
tively, corresponding to the whole graph and for ratios
of False Positive below 4% (and thus for the part of the

graph included in the inset). In the first case, results are
0.8365, 0.8392, and 0.8388, respectively, for the combined
set, parenclitic only features, and raw features; while, in the
second case, resulting AUCs are 0.2550, 0.2026, and 0.2407.
If results are roughly comparable in the global behavior, an
interesting increase in the AUC (of a 5.9%) is observed when
one’s objective is the minimization of the number of false
positives.

Even though this may seem a negligible difference, it is
worth noting that any improvement, however small, has a
significant impact due to the large number of transactions
managed by the system. Increasing the fraud detection rate by
1% would allow identifying ≈20.000 new illicit transactions
per year, or ≈2M€ in saved costs.

As well known in data mining, the result of the compar-
ison of the two models of interest (here, the classification
with the raw data alone, and with the combined data set)
should be done with special care, as the number of features
in both sets is different, respectively 10 and 17. This may
lead to an overfitting of the latter model, and thus to
the obtention of higher-than-real scores [53]. It must be
noted that overfitting is not expected to be an issue here,
firstly because the training and evaluation sets are kept
separated, such that no information about the actual results
is explicitly encoded in the training data; and secondly,
because of the high number fo instances (1.8 ⋅ 108) used
in the evaluation. Additionally, 100 classifications have been
performed on synthetic data sets, composed of the raw
features and of a random permutation of the parenclitic
networks’ metrics. The resulting AUC (0.2387 ± 0.0083)
corresponds to a 𝑍-Score of +1.723, thus indicating that the
obtained result is statistically significant for a significance
level of 0.05.



Complexity 7

Parenclitic model
Commercial system

0 1 2
0

10

20

30

0

50

100
Tr

ue
 P

os
iti

ve
 ra

tio
 (%

)

50 1000
False Positive ratio (%)

(a)

Parenclitic model
Commercial system

0 1 2
0

20

40

50 1000
False Positive ratio (%)

0

50

100

Tr
ue

 P
os

iti
ve

 ra
tio

 (%
)

(b)

Figure 4: (a) ROC curves for the network-based model (black line) and a commercial system (blue line). (b) ROC curves, for the proposed
network-based algorithm and a commercial system, when only on-line (Internet) transactions are considered.

Figure 3(b) further presents four ROC curves calculated
for different transaction sizes: all transactions (black line),
and transactions above 100€ (green line, AUC = 0.3835 for
False Positive ratios between 0% and 5%), 400€ (red line,
AUC = 0.4040), and 1.600€ (blue line, AUC = 0.2989).
Deleting small transactions results in an improvement of the
detection efficiency; note how the green and red lines lay
above the black one. Additionally, the proposed algorithm
fails for large transactions; this does not come as a surprise, as
the larger the size, the fewer the available instances, making
training more challenging.

If what previously presented illustrates that the use of a
network representation can improve a fraud detection algo-
rithm, it does not clarify how it ranks against a commercial
system. As may be expected, the proposed algorithm is less
efficient than the fraud score included in the original data
set; see Figure 4(a) (due to confidentiality issues, the name
and characteristics of the commercial fraud detection system
cannot be included in this publication). Nevertheless, there
are niches in which the opposite happens, themost important
being the analysis of on-line transactions. Figure 4(b) depicts
two ROC curves, respectively, for the algorithm based on
parenclitic networks (black line) and the commercial system
(blue line), when only transactions realized through Internet
are considered. While the commercial system clearly outper-
forms the proposed algorithm, with anAreaUnder the Curve
(AUC) close to 1.0, the latter is slightly better for a low ratio of
False Positive, as previously explained, the plane region most
interesting for real operations.

5. Conclusions

Complex networks and data mining models share more
characteristics than what we could have expected in the first

naive approach, most notably having similar objectives: both
aim at extracting information from (potentially complex)
systems to ultimately generate new compact quantifiable
representations. At the same time, they approach this com-
mon problem from two different approaches: the former
by extracting and quantitatively evaluating the underlying
structure; the latter by creating predictive models based on
historical data [11]. In this paper we test the hypothesis that
complex networks can be used as a way to improve data
mining models, framed within the problem of detecting
fraud instances in credit card transactions, providing a new
example about how complex networks and data mining
may be integrated as complementary tools in a synergistic
manner in order to improve the classification rates obtained
by classical data mining algorithms.

Results confirm that features extracted from a network-
based representation of data, leveraging on a recently pro-
posed parenclitic approach [46, 47], can play an important
role: while not effective in themselves, such features can
improve the score obtained by a standard ANN classification
model.We further show how the resultingmodel is especially
efficient in detecting frauds in some niches of operations, like
medium-sized and on-line transactions. Finally, we illustrate
as in the latter case that the network-based model is able
to yield better results than a commercial fraud detection
system. All results have been obtained with a unique data
set, comprising all transactions managed during two years by
a major Spanish bank and including more than 180 million
operations.
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