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Chapter 1. Introduction 

1.1. Contextual-guided visual search  

The Nobel peace laureate Albert Schweitzer once said, “Just as the wave cannot exist 

for itself, but is ever a part of the heaving surface of the ocean, so must I never live my life for 

itself, but always in the experience which is going on around me”. In our everyday activities, 

no object appears in isolation, but rather exists within a rich environment that contains both 

neighbouring objects and surrounding foreground/background contexts. To efficiently 

identify a target in an environment with an overwhelming amount of visual information, we 

have to select relevant while ignoring non-relevant information based on contextual analysis. 

For example, searching for a pedestrian in a picture would be more efficient if relevant 

regions of the picture (e.g., the roads) can be first quickly identified.  

The ability to efficiently locate an object in a complex environment has been 

extensively studied over the last decades (e.g., Müller, Heller, & Ziegler, 1995b; Müller & 

Humphreys, 2003; Treisman, 1985; Treisman & Gormican, 1988; Wolfe, 2003b), and many 

factors concerning bottom-up and top-down processing of visual search have been identified: 

for instance, the bottom-up processing is driven by basic features and dimensions (e.g., color, 

motion, various depths cues, etc.), and the top-down processing is a goal-driven process that 

can be affected by various task requirements and prior knowledge (Wolfe, 1994a).  

It is worth noting that, although filled with exhaustive visual information our visual 

world is often highly structured and stable over time. The learning and usage of these 

invariant relationships between different visual information - spatial context- can serve as an 

important factor to facilitate visual search (Chun, 2000). By using the spatial context of 

unchanged regularities in an environment, human and other animals can easily find an object 
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placed in that environment. Take a basic task of searching for a book as an example, assuming 

a librarian knows well about the books in a library, it would be fairly straightforward for 

him/her to find a particular book that a user requested. As a regular worker in the library, the 

librarian has built a spatial map of the book order in his/her mind, thus helping him/her to 

quickly locate the book. But sometimes such helpful guidance may fail when the book is 

accidentally misplaced in a new location. In other words, the learned spatial regularities, such 

as the spatial relationship among bookshelf and surrounding books which are associated with 

the target (here the searched book), can be a useful spatial cue in helping the librarian’s book 

search, when the spatial context remains unchanged.  

The facilitation of invariant context in visual search, captured in the contextual cueing 

paradigm, has been investigated first by Chun and his colleague (Chun & Jiang, 1998) and 

then by a number of follow-up studies (e.g., Chun, 2000; Chun & Jiang, 1999; Conci, Müller, 

& von Mühlenen, 2013; Kunar, Watson, Cole, & Cox, 2013; Ogawa & Watanabe, 2010; 

Tseng & Lleras, 2013). In a standard contextual cueing paradigm (e.g., Chun & Jiang, 1998; 

Chun & Jiang, 1999), participants are asked to search for a target letter “T” and discriminate 

its orientation among a number of distractors “L”s ( see Figure 1.1). Unbeknownst to the 

participants, half of the trials have the same spatial configurations among the search items that 

are repeated once per block during the experiments (hereafter we referred to it as “old” 

context), while the other half have randomly reconfigured new spatial configurations among 

the search items, and are never repeated during the experiments (hereafter referred to as 

“new” context). As participants performed the task, a general learning facilitation is often 

observed over trials for both old and new configurations, characterized by a progressive 

reduction of search time. More importantly, the target discrimination is usually quicker when 

it appeared in the invariant context than in the new context (Figure 1.1). The response 

facilitation induced by the repeated context is referred to as the “contextual cueing effect” 
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(Chun, 2000; Chun & Jiang, 1998; Chun & Jiang, 1999; Chun & Jiang, 2003; Chun & 

Nakayama, 2000). Interestingly, this kind of facilitation is not explicitly known to 

participants, in other words, participants learned the spatial regularities of the old contexts 

incidentally. But nevertheless, the implicit context can guide participants’ attention efficiently 

to the target locations as compared to the new contexts. Note the contextual cueing effect is 

not tied to individual identities, but rather to spatial configuration. In a further experiment 

(experiment 2), Chun and Jiang (1998) demonstrated that changing the characteristics of the 

individual items (e.g., from “ ” to “ ”) while maintaining spatial configuration among search 

items did not affect the learned context facilitation. This suggests that contextual cueing is 

established not by learning the features of the stimuli, but by learning the spatial context.  

 

Figure 1.1 Schematic of spatial contextual cueing. a) A sample search array. The task was to search for 

a rotate T target amongst L distractors. b) Search performance as a function of epoch was faster for 

targets appearing in old configurations versus targets appearing in new configuration [This figure is 

reproduced from (Chun, 2000)].  
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Following the seminal work of Chun and Jiang (1998), an ample amount of studies 

have been conducted to better understand the underlying mechanisms of the contextual cueing 

effect. To name just a few, studies have investigated various factors that may influence the 

contextual facilitation in visual search, such as object and scene contexts (e.g., Rosenbaum & 

Jiang, 2013; Van Asselen, Sampaio, Pina, & Castelo-Branco, 2011), awareness of contextual 

learning (e.g., Schlagbauer, Müller, Michael, & Thomas, 2012; Smyth & Shanks, 2008), 

neural correlates (e.g., Manginelli, Baumgartner, & Pollmann, 2013; Westerberg, Miller, 

Reber, Cohen, & Paller, 2011), and eye movements behaviour during the contextual-guided 

visual search (e.g., Geringswald, Baumgartner, & Pollmann, 2012; Tseng & Li, 2004; Zhao et 

al., 2012). In particular, the effects of various types of contexts, such as the global structure, 

local spatial configuration, and background features, have been widely investigated (Brady & 

Chun, 2007; Brockmole, Castelhano, & Henderson, 2006; Brooks, Rasmussen, & 

Hollingworth, 2010; Geringswald et al., 2012; Kunar, Flusberg, & Wolfe, 2006; Kunar, John, 

& Sweetman, 2013; Olson & Chun, 2002; Song & Jiang, 2005; Van Asselen & Castelo-

Branco, 2009). However, the findings of these studies are inconclusive, and sometimes 

contradict each other. For example, a recent study (e.g., Brockmole et al., 2006) found that the 

well-established contextual cueing was maintained when global context was kept constant 

(local context varied), but not when local context was kept constant (global context varied), 

thus suggesting that the learning of global context is more important for contextual cueing . 

On the contrary other studies found that local context is more important for the maintenance 

of contextual cueing (e.g., Brady & Chun, 2007; Olson & Chun, 2002; Song & Jiang, 2005). 

To date, however, the interaction between different contexts, such as global-local interaction, 

or background-foreground interaction has been rarely examined (see Section 1.2). Given that 

the local, global and background, foreground contexts usually coexist in a visual scene, it is 
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crucial to explore their interactions for better understanding of the mechanisms supporting 

contextual cueing. 

On this ground, the present thesis was designed to clarify the roles of different 

contexts, namely the local, global, background, and foreground contexts, as well as their 

interactions in contextual cueing. Specifically, the present thesis aims to answer the following 

questions: 1) Can the contextual learning and retrieval be solely based on the local foveal 

context without any aid of peripheral information? Is the peripheral information necessary in 

the contextual retrieval? 2) To what degree can the contextual cueing be transferred from the 

learned context to the novel display? 3) How do the local, global and foreground/background 

contexts interact with each other in the contextual learning?  

In the following sections (Sections 1.2-1.5), I will provide a more elaborate summary 

of the effect of the global, local, and background contexts observed in the contextual cueing, 

summarize the related open issues concerning contextual cueing (Section 1.6), and presented 

the research topics of the current thesis (Section 1.7).  

1.2. Roles of global versus local context in contextual-guided 

visual search 

It is generally agreed that global and local visual information is processed differently 

(Brockmole et al., 2006; Hochstein & Ahissar, 2002; Murphy, Torralba, Eaton, & Freeman, 

2006; Navon, 1977). Global information often accesses our consciousness quicker than the 

local information (Hochstein & Ahissar, 2002; Navon, 1977; Schyns & Aude, 1994). Take the 

classic Navon figure (Navon, 1977) for example, a large recognizable shape (e.g., a letter 

“H”) that is composed of copies of a smaller different shape (e.g., letter “S”), demonstrates 

that information processing is prioritized from the global to local manner analogically 

expressed by Navon as “forest before trees”. This is also true for scene interpretation 
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(Biederman, Mezzanotte, & Rabinowitz, 1982; Schyns & Aude, 1994; Torralba, Oliva, & 

Castelhano, 2006), in which scene is first identified by low spatial frequency blobs and multi-

scale orientation filters, and then at high detail edges. Global feature, such as low spatial 

frequency blobs, can be efficiently detected in a very short exposure (Schyns & Aude, 1994), 

suggesting recognition process relies on coarse scene (blobs) information at the very first 

stage, but on fine (edges) information at later stages. One purpose of prioritizing global 

processing is to quickly compute a salient map of the scene, which can be used for bottom-up 

attentional guidance (Itti, Koch, & Niebur, 1998). 

The global-to-local processing for scene recognition poses an interesting question 

regarding contextual-guided visual search: Are context learning and retrieval subject to a 

global-to-local processing? How does global- and local-context information contribute to the 

contextual cueing effect? While a number of studies have shown that the global invariant 

context is crucial to develop contextual cueing (e.g., Brockmole et al., 2006; Kunar et al., 

2006), equal number of other studies have pointed out a dominant role of the local invariant 

context that plays a key role in contextual learning and retrieval (e.g., Brady & Chun, 2007; 

Olson & Chun, 2002; Song & Jiang, 2005). For example, Brockmole et al. (2006) 

demonstrated that participants tended to associate the global context to the target’s location 

when they were asked to search for a target letter embedded in a computer rendered virtual 

scene, such as indoor library room. When the global predictive context (e.g., surrounded 

objects) was changed, the learned contextual facilitation disappeared. However, when the 

local background (e.g., the table on which the target is located) was altered, the learned 

contextual facilitation was not affected. Their findings thus support the global preference in 

the contextual learning. Similarly, Kunar et al. (2006) showed that global non-spatial 

attributes, such as background colour or line patterns, can be used as a predictive context for 

facilitating visual search. Note that the effectiveness of global predictive context in 
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developing contextual cueing does not rule out the role of the local context. For example, 

Olson and Chun (2002) demonstrated that contextual cueing associated more strongly to the 

local context near the target than the context far from the target. Moreover, Brady and Chun 

(2007) showed that contextual cueing developed even when the repeated context was only a 

part of display, in such a way that the invariant context was limited to the target quadrant. 

In summary, a number of studies have shown that both global and local contexts 

contribute to the contextual cueing effect. Arguably, however, owing to the fact that these 

studies mostly examined the influences of global and local context separately, their results 

reveal little about how local and global contexts interact during contextual learning and 

retrieval. Furthermore, in the  studies that found global context to be a predominant factor for 

the contextual learning (Kunar et al., 2006; Rosenbaum & Jiang, 2013), the “global” was 

often referred to as the background colours or scenes that are separable from the search array 

items. By contrast, in those studies supporting the importance of local context (e.g., Brady & 

Chun, 2007; Olson & Chun, 2002; Song & Jiang, 2005), the term “global context” often 

meant  the global structure of the search array, not separated from the local search items. As a 

result, the local and global contexts effects have not been neatly separated on the visual search 

stimuli of the current studies. In order to solve this problem, gaze-contingent technique was 

employed in one of my studies (see Chapter 2). 

1.3. The transfer of contextual cueing after the configuration 

changes 

As reviewed above, contextual cueing is a facilitation effect that mainly comes from 

the implicit learning of the invariant spatial context. And it has been shown that the learned 

context can be maintained for at least one week (Chun & Jiang, 2003; Jiang, Song, & Rigas, 

2005). By contrast, the learned context is sensitive to changes of the spatial configuration, that 
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is, it is relative inflexible to transfer the contextual cueing from an old display to a new 

display (with some variation from the old display). For example, convergent evidence has 

been gained that the learned contextual cueing diminishes when the target, and only the target, 

is re-positioned elsewhere in an old display (Chun & Jiang, 1998; Manginelli & Pollmann, 

2009; Zellin, Conci, Von Mühlenen, & Müller, 2013; Zellin, Von Mühlenen, Müller, & 

Conci, 2014). Brady and Chun (2007) found that the contextual cueing disappeared when the 

old context at the target quadrant was moved to a different quadrant of the display. Similarly, 

Endo and Takeda (2005) found the learned contextual cueing could not be transferred when 

the context in  sub-areas of the display was moved to a new location (e.g., swap the upper and 

lower half panel of the display while keeping the configurations in each half panel constant). 

The inflexibility of the contextual cueing suggests that the learned context has a 

limited power of visual guidance. When some part of spatial context is changed, the cueing 

effect can be easily destroyed. Other studies have shown that one must preserve some 

predictability to maintain contextual cueing effective when the context is changed, and the 

degree of predictability is positively correlated with the magnitude of the transfer effect of 

contextual cueing (Chua & Chun, 2003; Conci & Müller, 2012; Conci, Sun, & Müller, 2011; 

Song & Jiang, 2005; Zellin, 2012). For example, Chua and Chun (2003) have shown that the 

magnitudes of the contextual cueing is negatively correlated with the degree of angular 

changes of the learned 3D spatial displays. A similar finding was observed by Makovski and 

Jiang (2010), in which the transfer of contextual cueing effect decreased as the target 

appeared further away from its original learned location. Jiang and Wagner (2004) provided 

similar evidence that the contextual cueing effect is not affected by the rescaled- or displaced-

display, as the rescaled or displaced “old” display still preserves the predictive power. Those 

studies thus provide convergent evidence that predictability based on the invariant context is a 
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key factor for maintaining contextual cueing when the learned context is altered to a certain 

degree. 

1.4. Oculomotor behaviors in contextual-guided visual search  

Eye movement is an important signature of visual information processing. For 

example, important features of a scene that are relevant to the on-going task are often fixated 

longer than others. Land, Mennie, and Rusted (1999) have shown that in a series of 

meaningful actions, such as making a cup of tea, almost all fixations that were made were 

directed to the object or objects involved in the current action (e.g., participants tend to fixate 

at the kettle during the action “find the kettle” or “lift the kettle”). Thus oculomotor data, in 

addition to manual responses, would help us to find the important information flow and the 

related mechanisms during cognitive search task, such as the development of contextual 

cueing during the visual search. Indeed, several studies of contextual cueing have shown a 

reduction of number of fixations during search of repeated displays. More interestingly, 

Peterson and Kramer (2001) revealed that in some trials, implicit memory was able to 

precisely guide saccade to the target location immediately after the onset of the repeated 

visual search display. Tseng and Li (2004) took a further look at a number of oculomotor 

parameters that might accompany the learned repeated displays. However, the only different 

oculomotor behaviour for the old display, compared to the new display, was the number of 

saccade and inter saccadic fixation duration. They also found that the visual search involves 

two phases: the initial ineffective and the subsequent effective search phases. During the 

initial ineffective search phase, the eye movements were not monotonically (or consecutively) 

getting closer to the target location, while in the effective search phase, eye movements are 

directly driven towards the target location. In another recent study, Manginelli and Pollmann 

(2009) examined oculomotor behaviour using a “misleading" contextual visual search task. 
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Participants were first trained with a standard contextual search display. A significant 

contextual cueing paired with a reduction of number of fixations for the repeated displays was 

found in the training session. Similar to the findings aforementioned, an effective search 

phase (characterized by earlier onset of a monotonic gaze approach phase towards the target 

location) was observed for repeated displays (e.g., Peterson & Kramer, 2001; Tseng & Li, 

2004). In a subsequent test blocks, the target’s location, but not the locations of distractors, 

was changed. With this non-predictable variation, the learned context could not cue the 

target’s location anymore; instead, it could mislead participants’ attention to the old target 

location, where the target was not there. The change of the target’s location diminishes the 

contextual cueing effect. In addition, the reduction of the number of fixations and the 

effective search phase were gone during the test session (Manginelli & Pollmann, 2009). 

While the reduction of the number of fixations / saccades has been consistently observed in 

repeated displays, whether the repeated context affects the fixation duration is still unclear. 

For example, Van Asselen and Castelo-Branco (2009) found a reduction of the mean fixation 

duration for the old display compared to the new display. However, another recent study 

(Zhao et al, 2012) failed to support the reduction of inter-saccadic fixation duration. 

In summary, a number of recent studies have provided deeper understanding about the 

contextual cueing mechanism by monitoring participants’ eye movement behaviour. In 

general, it has been shown that the learning of repeated context leads to a reduction of the 

number of saccades, possibly because the repeated context, compared to the new context, 

guides participants’ attention towards the target location. However, divergent results on the 

fixation duration in contextual cueing cry for further investigations.   
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1.5. Awareness in contextual learning - implicit vs. explicit 

learning 

Implicit learning, although without a precise conceptual definition, usually refers to 

the learning of complex information in an incidental manner, without awareness of what has 

been learned. On the contrary, learning under hypothesis-driven and with fully conscious is 

consider as explicit. The differences between implicit and explicit learning have been 

summarized by Dienes and Berry (1997): 1) implicit, rather than explicit knowledge, is often 

relatively inflexible in transfer to different domains, 2) implicit, rather than explicit, learning 

occurs when attention is focused on specific items and not underlying rules, and 3) implicit 

learning and the resulting knowledge are often relatively robust.  

To examine the awareness of contextual cueing, a typical recognition task, in which 

participants had to discriminate which display they had seen before, is usually adopted at the 

end of the contextual cueing search task (e.g., Chun & Jiang, 1998, 2003; Pollmann & 

Manginelli, 2009). The results often reveal that the old and new configurations cannot be 

distinguished (coded as implicit memory), due to contextual cueing been mainly driven by the 

incidental learning of old arrangements. While a great number of studies support implicit 

nature of contextual cueing (Jiang & Swallow, 2013; Jiang, Swallow, & Capistrano, 2014; 

Jiang, Won, & Swallow, 2014; Manginelli, Baumgartner, et al., 2013; Tseng & Lleras, 2013; 

Zellin, von Mühlenen, Müller, & Conci, 2013), other studies have questioned such claim 

(Brockmole & Henderson, 2006b; Conci & von Muhlenen, 2009; Geringswald et al., 2012; 

Geringswald, Herbik, Hoffmann, & Pollmann, 2013a; Geyer, Shi, & Müller, 2010; 

Rosenbaum & Jiang, 2013). For instance, when search for a target in a nature scene, which 

contains rich visual information, the learning of the scene is usually explicit (Brockmole & 

Henderson, 2006a, 2006b; Rosenbaum & Jiang, 2013). It’s worth noting that the repeated old 

http://en.wikipedia.org/wiki/Learning
http://en.wikipedia.org/wiki/Awareness
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context can also be learned explicitly when searching for a target among distractors, 

characterized by significant (or sometimes marginally significant) higher hit rates compared 

to false alarm rates during recognition tasks (Conci & von Muhlenen, 2009; Geringswald et 

al., 2012; Geringswald et al., 2013a; Geyer, Shi, et al., 2010; Heeger, 1997; Macmillan, 2002; 

Shi, Zang, Jia, Geyer, & Müller, 2013). Using concurrent access-consciousness paradigm, 

Smyth and Shanks (2008) and Schlagbauer et al. (2012) have further suggested that some of 

the spatial configurations are accessible to awareness. 

In short, contextual cueing learning is largely based on implicit long-term memory, but 

also supported in some degree by explicit memory. Explicit or implicit learning depends on 

different types of visual stimuli, such as nature scene or non-scene search arrays. When nature 

scenes are used as visual stimuli, explicit learning is more likely to be involved (e.g., 

Brockmole et al., 2006; Brockmole & Henderson, 2006a; Rosenbaum & Jiang, 2013). In 

contrast, when the display consists of non-scene items (e.g., with an array of letters or 

numbers), by and large implicit learning is dominated on contextual cueing.  

1.6. Open questions related to contextual-guided visual search 

As reviewed above, most of the previous studies investigated the role of either the 

local (a number of visual search items near the target location) or the global context (e.g., 

visual search items far away from the target’s location), whereas the interaction between them 

was rarely examined. Furthermore, the effect of different associations between background 

and foreground contexts in contextual cueing effect is also largely neglected in the literature. 

Given that visual context in nature environment often involves different types of contexts 

(e.g., local/global context or foreground/background contexts), investigating the roles played 

by these contexts in contextual-guided visual search would be crucial for understanding 

mechanisms of contextual cueing.  
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1.6.1. Do local and global contexts affect differentially on context learning 

and retrieval?  

A number of studies have found that preserving the local context near the target 

location, rather than the global configuration, is critical for developing a contextual cueing 

effect (Brady & Chun, 2007; Olson & Chun, 2002; Song & Jiang, 2005). On the contrary, 

using natural scene Brockmole et al. (2006) revealed that the global context (i.e., the whole 

view of the scene) plays a more important role than the local context (e.g., a table inside 

library with target on top of it) in developing the contextual cueing effect. Several subsequent 

studies (e.g., Kunar et al., 2006; Kunar, John, et al., 2013) have found that the global context 

(e.g., background colour) is able to boost contextual cueing. It is worth noting that the local 

and global contexts haven’t been strictly manipulated independently in those studies. Often, 

the local and global contexts are mixed together in the presentation of the whole visual search 

display. In such a whole view display, there is no way to keep global context constant while 

changing the local context. The natural link between the local and global contexts may lead to 

confounding observations in previous studies. This begs a number of intriguing questions: Is a 

pure local invariant context, without peripheral global information, sufficient to generate a 

contextual cueing? Or is it necessary to include a certain amount of global context for context 

learning and retrieval? Do the local and global contexts interact in contextual learning or/and 

contextual retrieval? Can the constant context be explicitly learned when only the local 

context near the fixation is presented at any given time during visual search?  

1.6.2. To what degree can contextual cueing be transferred from the learned 

to novel displays? 

The transferability is an important measure of the flexibility of contextual cueing, 

which can provide guidelines for developing user-friendly applications. For example, suppose 
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we get familiar with the arrangement of icons, including the weather-app icon, on a particular 

display mode (e.g., landscape) in an iPad. As a result we can find the weather app without any 

effort; however, when the display mode is changed from the landscape to the portrait mode, 

spatial configuration among icons will be changed accordingly. Can we still efficiently locate 

the weather app? This is a typical example of the transfer effect of contextual cueing.   

As reviewed in section 1.3, a number of studies have provided insightful evidence of 

the transfer effect of contextual cueing (Chun & Jiang, 1998; Makovski & Jiang, 2010; 

Manginelli & Pollmann, 2009; Zellin, 2012; Zellin, Conci, et al., 2013; Zellin et al., 2014). 

For instance, the transfer effect from the learned to novel displays is robust for geometric 

transformation that preserves the predictability of the target, but it can easily vanishes when 

the predictability is destroyed. However, none of the previous studies have investigated the 

transferability of contextual cueing when the display mode changes. Applying contextual 

cueing to the mobile application, we ask the following questions: is it possible to preserve the 

well-established contextual cueing when the display mode switching between landscape and 

portrait display mode? Are there any optimal remapping methods of icons rearrangements that 

can maximize the transferability of contextual cueing when shift the display modes? These 

open questions are examined in the second study of the present dissertation.  

1.6.3. Does the foreground/background information of the search display 

affect contextual representation? 

When the external visual world projects onto the retina, it forms a 2-dimensional 

retinotopic representation. In spite of this, we perceived a coherent world of meaningful 

objects that are effortlessly segregated from the background. This phenomenal experience 

arises from foreground-background segmentation processes (Caputo, 1996; Caputo & Casco, 

1999). It has been shown that the segmentation processes substantially constrain attentional 
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processes, as well as the reverse influence – the segmentation itself can be modulated by 

attention (Driver, Davis, Russell, Turatto, & Freeman, 2001b). For example, selective 

attention can push part of information to the background, thus it boosts relevant visual 

information processing, and facilitate search performance (Cave & Bichot, 1999; Wolfe, 

2003b). Similarly, selective attention and foreground-background segmentation greatly 

influence the contextual representation. For example, it has been revealed that when the 

search display consisted of a white target “T” among black and white distractors (“L”s) in a 

contextual cueing task, only those distractors with the same colour as the target were 

constructed into contextual memory (Jiang & Leung, 2005). The distractors with target-

unrelated colour were simply pushed to the background, and ignored. It should be noted 

however, the feature of foreground/background is not fixed, but rather depends on the tasks. 

For example, when you search trees on Google earth map, roads may consider as irrelevant 

background. However, when you search cars on the same map, roads could be a useful 

background, as the background (roads) and foreground (cars) are strongly coupled. 

Considering selective attention as an argument, several questions related to the role of 

foreground/background context in contextual cueing are still open: Would different item-

independent visual information (e.g., foreground vs. background information) be encoded 

together with the foreground item configuration during spatial context learning and retrieval? 

Does contextual representation depends on the properties (i.e., foreground vs. background) of 

the visual information on the display? Does image segmentation interact to contextual cueing? 

These questions are examined in the third study of the present thesis.  

1.7. Cumulative research work 

To address those open issues stated above, the present Ph.D work mainly focus on the 

following research topics: 
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1.7.1. Learning locally, retrieving globally - Evidence of contextual cueing 

with gaze-contingent visual search task 

The first study of the thesis (Experiments 1-3) was proposed to answer the question 

concerning interactions between the local and global contexts.  In order to examine whether 

pure local information, in the absence of any global-structure information, is sufficient for 

contextual guidance in visual search during the training session of the present experiments, a 

gaze-contingent technique (e.g., Loschky & McConkie, 2000) was employed in the standard 

contextual cueing paradigm (e.g., Chun & Jiang, 1998), such that the local foveal information 

can be presented separately from the global peripheral information. In the following transfer 

sessions, the gaze-contingent was removed to examine if the availability of the peripheral 

global information helps contextual-guided visual search.  

In the first experiment, the size of gaze-contingent view area (i.e., the visible region 

near the fixation) was set to 8°. On average, 2.09 items out of the total 12 items are visible. 

The results showed no contextual cueing effect in the training session, but significant 

facilitation with faster RT for repeated display compared to novel display in the transfer 

session, in which the whole display was visible. Moreover, the context facilitation was 

already visible during the first block of the free-view transfer session. The finding of 

Experiment 1 suggests that the repeated context can be learned with limited local information, 

but cannot be effectively retrieved in the absence of the peripheral information. One question 

remains, whether the local information is too scarce, such that the contextual cues are hard to 

retrieve. Thus, in a second experiment we extended the local visual area from 8° to 12°, on 

average, 4.69 items were visible inside view area (the number of items was doubled). This 

time we found a significant contextual facilitation in both training and transfer sessions, 

suggesting that information within the 12° view angle provides sufficient spatial configuration 

for both contextual learning and retrieval. Experiment 3 was designed to further investigated 
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whether a brief preview (150 ms) of the global context prior to the gaze-contingent search 

display (8°) can aid contextual cueing retrieval. Again, Experiment 3 revealed significant 

contextual cueing effect in both sessions, in line with Experiment 2. Further eye movements 

analyse revealed that the contextual cueing facilitation was associated with reduced number of 

saccades and extended fixation duration for old display compared to new display. 

In summary, the Study 1 investigated the interaction of local/global context in 

contextual guided search by employing gaze-contingent techniques. We found that repeated 

spatial context can be implicitly learned but not retrieved, based on scarce local information 

with only 2~3 visual items available under gaze-contingent limited view. In order to 

effectively retrieve the learned contextual cueing, some global peripheral information (e.g., 

the global brief preview or larger size of gaze-contingent view) must be available.  

1.7.2. Transferability of contextual cueing in full-icon display remapping 

The second study was designed to investigate whether learned contextual cueing can 

be transferred when display orientation (or display mode) was changed. Changes of the 

display modes (e.g., from the landscape to the portrait) happen regularly when you use a 

mobile device, such as an iPad. After a change of display mode, the icons on the display are 

shuffled: the positions of icons in one mode are remapped to the other mode by keeping the 

positional order (left to right and up to down) constant across all icons. Although this 

remapping method preserves the positional order and most of the horizontal inter-icon 

relationships, it destroys almost all local icon relationships (or local context), when the 

display is arranged as a rectangle (see more details in chapter 3). As we reviewed above, the 

transferability of the learned contextual facilitation will also be destroyed. To develop better 

icon-remapping methods for future mobile interaction, four experiments with “full-icon” 

displays were designed in the second study to investigate the transferability of the contextual 
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cueing between two different display modes. Thus, besides the available “position-order” 

remapping method, three other remapping methods, namely, “global rotation”, “local 

invariant” and “central invariant” remapping methods were examined in four separate 

experiments. For the “global rotation” remapping method, the whole display rotated 90° 

clockwise when the display mode varied from landscape to portrait by keeping icon-icon 

spatial configuration constant. For the “local invariant” method, 5 local regions were kept 

constant after the change of the display mode, while the “central invariant” remapping 

methods kept the icons in the central maximal square region unchanged (see details in chapter 

3). Each experiment includes three sessions: training, transfer and recognition sessions. The 

landscape displays were used in the training session, and in the subsequent transfer session, 

the same displays were remapped to portrait display mode according to the four different 

remapping methods. Last but not the least is the recognition session that is aimed to test 

whether participants had learned the context explicitly or not.  

All experiments resulted in robust contextual cueing effects after the training. 

Interestingly, the learned context was only successfully transferred to the novel portrait mode 

for the “local invariant” or “central invariant” remapping methods, but not for the “position-

order” and the “global rotation” remapping methods. The results suggest the traditional 

“position-order” remapping used in current mobiles is not optimal in helping user's search 

performance for display mode changes. Moreover, the “global rotation” remapping method, 

although it happens frequently during everyday life, does not facilitate users’ performance, 

partly due to requiring additional mental resource for mental rotation (Böckler, Knoblich, & 

Sebanz, 2011; Borst, Kievit, Thompson, & Kosslyn, 2011; Ionta & Blanke, 2009; Shepard & 

Metzler, 1971). Most importantly, the learned contextual cueing was preserved by keeping 

invariant local context at maximum across display modes using the “local invariant” or 

“central invariant” remapping methods. A further interesting finding of the second study is 
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that more than 80% of participants reported that they have noticed the repetition of displays 

during the visual search task, suggesting that observers were able to explicitly recognize the 

displays, and remapping did not hamper explicit recognition.  

1.7.3. Interaction between foreground/background item-independent 

information and configural context in contextual cueing 

Our first study found that contextual cueing can be learned based on scarce local 

information; however, to effectively retrieve the learned context, a certain amount of visual 

information or global context must be available. In the second study, we found that the 

learned context can be transferred to a novel display mode that most of the local 

configurations were preserved. In the third study of three experiments (Experiment 8, 9 & 10), 

we focus on whether item-independent information can be encoded together with the spatial 

configural context, and whether the learning and expression of contextual cueing depends on 

the characteristics of the item-independent features (i.e., foreground or background 

information) on the visual search display. The visual search stimuli used in the present 

experiments was made up of a item-independent geometric shape (i.e., a drawing pseudo 

cuboid shape which is presented on 2D plane) and a standard foreground visual search array 

(i.e., a target “T” among a number of distractors “L”s) that were used as in the standard 

contextual cueing paradigm (Chun & Jiang, 1998). During the training session, the feature of 

the item-independent cuboid was manipulated as foreground in Experiment 8 but as 

background in Experiments 9 and 10. In a subsequent transfer session, the item-independent 

cuboid was either titled 90° or removed, to examine whether the learned contextual cueing 

can be transferred or not. The results showed a significant contextual cueing effect during 

training session in all the three experiments; however, the established cueing was transferred 

from the old to the novel display only when the cuboid was presented as background 
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information (Experiment 9 and 10), but not when it was controlled as foreground information 

(Experiment 8). The findings suggest that the contextual cueing effect developed with the 

reference to both foreground item-independent shape and visual search items, whereas the 

cueing was not preserved when the foreground shape was varied or removed. By contrast, 

when the cuboid was presented as background, the contextual cueing developed solely based 

on the foreground configural information, rendering itself less vulnerable when the cuboid is 

changed. In conclusion, the involvement of item-independent shape during contextual cueing 

learning and retrieval depends on its foreground/background features on the visual search 

display. 

1.8. Conclusion 

In summary, the present thesis comprises of three studies that investigated the 

differential roles played by global-local, and foreground-background contexts, as well as the 

interactions among different contexts in contextual-guided visual search. By combining gaze-

contingent technique with a standard contextual cueing paradigm in Study 1, we found that 

contextual cueing can be learned based on pure local information, but peripheral global 

information is needed in order to retrieve the learned contextual cueing. In the second study, 

we found that keeping the local context invariant is crucial to maintain the contextual cueing 

after the display mode varied (e.g., from landscape to portrait). In the third study, the feature 

(i.e., foreground vs. background) of the context was found to be an important factor in 

contextual learning and its retrieval: the foreground context is likely to be encoded while the 

background context is most likely to be ignored during the contextual learning.  
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Chapter 2. Invariant spatial context is learned 

but not retrieved in gaze-contingent limited-

viewing search 

2.1. Abstract 

Our visual brain is remarkable in extracting invariant properties from the noisy 

environment, guiding selection of where to look and what to identify. However, how the brain 

achieves this is still poorly understood. Here we explore interactions of local context and 

global structure in the long-term learning and retrieval of invariant display properties. 

Participants searched for a target among distractors, without knowing that some, “old” 

configurations were presented repeatedly (randomly inserted amongst “new” configurations). 

Crucially, we simulated tunnel vision, limiting the visible region around fixation. Robust 

facilitation of performance for “old-” vs. “new” contexts was observed when the visible 

region was large, but not when it was small. However, once the display was made fully 

visible during the subsequent transfer phase, facilitation did become manifest. Furthermore, 

when participants were given a brief preview of the total display layout prior to tunnel view 

search with only two items visible, facilitation was obtained already during the learning 

phase. The eye movement results revealed contextual facilitation to be coupled with changes 

of saccadic planning, characterized by slightly extended gaze durations but a reduced number 

of fixations and shortened scanpaths for “old” displays. Taken together, our findings show 

that invariant spatial display properties can be acquired based on scarce, para-/foveal 
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information, while their effective retrieval for search-guidance requires the availability (even 

if brief) of a certain extent of peripheral information. 

Keywords   contextual cueing, learning, memory retrieval, eye movements 
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2.2. Introduction  

The ability to learn spatial context is vitally important for humans and other animals, 

as spatial context can improve the efficiency of foraging and other search tasks. In our 

everyday lives, we frequently use contextual cues to find a specific target object, for example, 

when looking for the stapler first in its “usual” place on the desk, when looking for the 

neuroscience book straight on the left side of the lower bookcase shelf as it is normally placed 

there, or when tapping immediately the weather icon at the center of the iPad display without 

much search effort as the task has been repeated many times. However, when such target 

objects are accidently misplaced to a “new” location, for instance, when the weather icon is 

shuffled to another position due to a change of the display mode (Shi et al., 2013), we often 

need additional time and effort to find them. The fact that spatial contextual information 

facilitates visual search, referred as to “contextual cueing”, has attracted much attention in 

recent years (for a review, see Chun, 2000; Oliva & Torralba, 2007). 

Concerning spatial information, researchers generally agree that two types of 

information, namely: global and local spatial configuration, contribute to object localization 

and identification processes (Hochstein & Ahissar, 2002; Navon, 1977; Schyns & Aude, 

1994). One still open question with regard to contextual cueing is how global and local 

context information interact during contextual learning and retrieval (Brady & Chun, 2007; 

Brockmole et al., 2006; Brooks et al., 2010; Kunar et al., 2006; Olson & Chun, 2002; 

Rosenbaum & Jiang, 2013; Song & Jiang, 2005). Global context has been shown to be an 

important factor in contextual learning and transfer (Brockmole et al., 2006; Brooks et al., 

2010; Kunar et al., 2006; Rosenbaum & Jiang, 2013). For example, Brockmole et al. (2006) 

demonstrated that in search of naturalistic scenes, contextual cueing is biased to global-

context associations. In their experiments, participants were asked to search and identify an 

arbitrarily located target letter within a computer-rendered realistic scene, where the “local” 
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context was defined as a set of objects near the target, while the remainder of the scene was 

referred to as “global” context. Brockmole et al. (2006) found contextual cueing to manifest 

after repeated exposure to certain displays. However, the acquired cueing effects transferred 

from the learning to the test session only for search displays that maintained the global 

information, but not for displays that only maintained the local set of objects near the target. 

Similarly, Kunar et al. (2006) found predictive global background context (e.g., background 

scene colors or line patterns) to facilitate visual search. More recently, Rosenbaum and Jiang 

(2013) initially trained participants on displays in which the target locations were predicted by 

both background scene context and array-based context (i.e., the arrangement of the display 

items), and then tested participants either with displays that included the same background 

context but varied the array context, or displays that included the same array context but 

varied the background context. Rosenbaum and Jiang (2013) found that contextual facilitation 

was transferred from the training to the test phase when the background scene was the sole 

predictive search cue, but not with the array of search items as the sole cue – suggesting that 

global background scene contextual cueing precluded item-based cueing when both were 

predictive of the target location. However, in other studies without any manipulation of 

background context, local invariant array-based context appeared to be sufficient for 

generating contextual cueing - that is, cueing manifested even if (some of the) items beyond 

the local region underwent positional changes (Brady & Chun, 2007; Olson & Chun, 2002; 

Song & Jiang, 2005). For instance, Olson and Chun (2002) examined contextual cueing 

effects under partly invariant display configurations - in which the items in one half of the 

display were kept constant while the items in the other half varied in their positions. They 

observed a significant contextual cueing effect when the target appeared in the invariant, but 

not when it appeared in the other, half of the display. The importance of local context has also 

been confirmed by several other studies (Brady & Chun, 2007; Song & Jiang, 2005), all 
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suggesting that partial local predictive information provided by repeated items near the target 

is sufficient to induce contextual cueing. 

The studies reviewed above make valuable contributions to understanding the 

fundamental roles of global and local information in contextual learning and retrieval, by 

showing that both global and local context information can contribute to the cueing effects. 

However, global and local context are not explicitly defined in these studies. Local context 

often implicitly refers to the local spatial configuration near the search target (e.g., Brady & 

Chun, 2007; Olson & Chun, 2002; Song & Jiang, 2005), while the global context generally 

refers to background colors or scene properties, separable from the search items (e.g., Kunar 

et al., 2006; Rosenbaum & Jiang, 2013). This kind of global and local context information 

differs from eye-centered para-/foveal local and peripheral global information. In a typical 

search task, the eyes move from one location to another, continuously bringing display 

regions of interest into the fovea, guided by a map of overall-saliency or “priority” signals 

(the latter combining both bottom-up and top-down information) (Itti & Koch, 2001; Müller, 

Heller, & Ziegler, 1995a; Wolfe, 1994b). Recently, it has been shown that loss or degradation 

of foveal vision can eliminate the contextual advantage conferred by repeated displays in 

visual search (Geringswald et al., 2012; Geringswald et al., 2013a), suggesting that foveal 

local information plays a critical role in contextual learning and retrieval. On the other hand, 

degenerative eye diseases, such as retinitis pigmentosa (RP), often cause the loss of peripheral 

vision, resulting in a constricted, “tunnel” vision (Hartong, Berson, & Dryja, 2006). Yet, it 

remains unclear whether pure eye-centered local information, in the absence of any peripheral 

global-structure information, would be sufficient for contextual guidance in visual search. 

The present study, of three experiments, was designed to fill this gap in our 

knowledge. If contextual cueing were solely based on para-/foveal local learning, the 

availability of local context should suffice for a contextual-cueing effect to manifest using 
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simulated tunnel vision, in which only the items in the vicinity of each fixation position are 

visible. This hypothesis derives partially from several previous studies (Brady & Chun, 2007; 

Olson & Chun, 2002) suggesting that two to three local items near the target can provide 

enough information for contextual cueing to develop. By contrast, if the presence of global 

peripheral structure is necessary for learned contexts to be retrieved and guide visual search, 

then the lack of peripheral information should impede contextual cueing. To examine these 

alternative predictions, we simulated tunnel vision using a gaze-contingent viewing technique 

in a classic contextual-cueing visual search paradigm. Based on real-time tracking of the eye 

position, gaze-contingent tunnel viewing of the search display provides detailed local 

information within the central para-/foveal area, and only coarse information in the periphery 

(Loschky & McConkie, 2002; Loschky & McConkie, 2000; Parkhurst, Culurciello, & Niebur, 

2000). Accordingly, in Experiments 1 and 2, we manipulated the size of the viewing tunnel to 

ascertain whether pure eye-centered local information is sufficient to generate a contextual 

cueing effect, as well as examining for differential oculomotor scanning behavior between old 

(repeated) and new display configurations. In Experiment 3, we further examined for potential 

cueing benefits deriving from brief previews of the global item layout for the subsequently 

performed gaze-contingent search of the target display. 

2.3. Experiment 1 

Experiment 1 examined whether para-/foveal local spatial context, in the absence of 

peripheral global structure, would suffice to engender a classic contextual-cueing effect, and 

whether the learned context could be transferred to the search display with the global 

configuration (i.e., whole display) presented without limitation. To this end, a standard 

contextual-cueing search paradigm (Annac et al., 2013; Chun & Jiang, 1998; Schlagbauer et 

al., 2012) was adopted in Experiment 1: participants were presented with a sequence of trials 
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on which they searched for a target letter “T” among distractor letters “L”, and responded to 

the target T’s orientation. The experiment consisted of three sessions: a “training”, a 

“transfer”, and a “recognition” session. During training, the search display was visible only 

within a region around the gaze location at any given time (i.e., tunnel view). To examine 

whether the context acquired during the training session, if any, could be transferred to a free-

view search condition, the whole display was visible in the transfer session. The final 

recognition session examined whether or not participants were able to explicitly tell apart 

repeatedly encountered (i.e., “old-context”) from ad-hoc generated (i.e., “new-context”) 

displays. 

2.3.1. Materials and Methods 

Participants. 13 participants (7 females, mean age: 23.8 years) with normal or 

corrected-to-normal visual acuity took part in Experiment 1. They gave written informed 

consent in accordance with the declaration of Helsinki 2008, and were paid for their 

participation. None of them were aware of the purpose of the study. 

Apparatus. The experiment was conducted in a dark cabin (0.35 cd/m
2
). The search 

display was presented on a 19-inch CRT monitor, with a refresh rate of 100 Hz, at a viewing 

distance fixed to 54 cm with the support of a chin rest. Movements of participants’ dominant 

eye were monitored using an Eyelink 1000 desktop-mounted system (SR Research Ltd., 

Canada), set at a sampling rate of 1 kHz. Stimulus presentation, response recording, and eye 

movement sampling were controlled via a Matlab program using the Psychtoolbox and the 

Eyelink Toolbox (Brainard, 1997; Cornelissen, Peters, & Palmer, 2002). 

Stimuli. The search display consisted of one “T”-shaped target and eleven “L”-shaped 

distractors (43.2 ±1.9 cd/m2). The stimuli were positioned randomly at 12 of the 44 possible 

locations within a circular display matrix, with a diameter of 16° of visual angle (see Figure 
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2.1A). Both “T” and “L” shapes were composed of two equal-length lines (1°), one horizontal 

and one vertical. In “T” stimuli, the lines’ contact point was at the tip of the vertical line and, 

respectively, the center point of the horizontal line; in “L”-shaped stimuli, the contact point 

was at the tip of the vertical line and the left side of the horizontal line with a 0.2° offset to the 

tip; the offset construction of the “L” stimuli was meant to increase the difficulty of the search 

task. In the search display, the L shapes could appear in one of the four orthogonal rotations, 

while the T shapes were rotated either 90° to the left or 90° to the right, requiring a “left” or, 

respectively, “right” response (see below).  

Two types of the search configuration were constructed and presented in Experiment 1 

(as well as the subsequent experiments): “old” and “new” configurations. “Old” configuration 

consisted of 8 randomly generated displays, which were kept unchanged during the whole 

experiment, and were presented on randomly selected trials within each block and repeated 

throughout the experiment. “New” configurations, by contrast, consisted of 8 newly generated 

displays for each block. To balance the target locations between “old” and “new” displays, 

target locations were distributed equally across the display’s 4 quadrants for both types of 

display; that is, for both “new” and “old” configurations, there were two randomly selected 

target locations in each quadrant (the only constraint being that the center four locations never 

contained a target). In addition, target orientation was randomized across the generated 

displays. 

Participants viewed the (visible parts of) search display through a gaze-contingent, 

tunnel window. The location of the window depended on the participant’s current gaze 

coordinates, which were on-line updated through the Eyelink toolbox (Cornelissen et al., 

2002). The default psychophysical sample configuration of the Eyelink 1000 (i.e., saccade 

velocity threshold set as 22°/s, saccade acceleration threshold set as 4000°/s
2
) was adopted for 

the eye data samples. Average delays from eye movement to position data availability were 
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less than 10 ms, that is, the display was updated either immediately in the next refresh cycle 

or within a maximum delay of 20 ms (for eye movements that were detected only towards the 

end of a given screen refresh cycle). The visible tunnel was 8° in diameter and consisted of a 

fully visible central para-/foveal area of 5°, and an outer ring (from 5°- 8°) with a gradual 

transition, realized using a Gaussian blob filter, from fully visible to nonvisible information. 

The remainder of display was completely blank, providing no global information as to the 

layout of the search display (see Figure 2.1 B). On average, 2.09 out of the 12 display items 

were visible inside the gaze-contingent viewing area. When the gaze coordinates were 

unavailable due to eye blinks or signal losses, the display was kept completely blank.  

 

Figure 2.1 A) A spatial matrix with 44 possible locations was used in the experiments. Search items 

were randomly distributed across these locations. The grid, numbers, and the circle were invisible 

during the actual experiments. B) Example of a gaze-contingent search display with 8° in diameter. 

The items in the inner, central area around the current fixation position (5° in diameter) was fully 

transparent, while the items in the outer ring (between 5° and 8°) underwent a gradual transition from 

fully transparent to fully opaque using a Gaussian filter. The circles and arrows are drawn only for 

illustration. 
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Design and Procedure. The experiment consisted of three sessions: training (25 

blocks), transfer (5 blocks), and recognition (1 block). Each block consisted of 16 trials, with 

8 “old” and 8 “new” configurations. All visual search displays were presented under 

conditions of dynamic tunnel viewing in the training session, while the whole displays were 

visible during the transfer and the recognition session. 

In the training and transfer sessions, participants were asked to discriminate the 

orientation of a target letter “T” (randomly oriented either 90° or 270°) among distractor “L”s 

(randomly oriented 0°, 90°, 180° or 270°) as fast and accurately as possible by pressing a key, 

either the left or the right arrow key on the keyboard, using their index fingers. A trial started 

with the appearance of a central fixation point which participants were instructed to fixate. 

The fixation marker disappeared after 500 ms of continuous gaze, immediately followed by a 

search display. Participants were allowed to search the display freely without any restriction 

on making eye movements. The search display disappeared when a response was made or 

when the presentation exceeded 15 seconds. After a random interval of 1.0–1.2 seconds, the 

next trial started (see Figure 2.2).   

The last, recognition session included the original 12 repeated and another 12 newly 

generated displays, with both types of display presented in free view and in randomized order. 

Participants were asked to indicate whether or not they had previously seen a given display 

during the course of the experiment. The display was presented on the screen until the 

response was made. Participants were expressly told that about half of the displays were 

repeated and the other half new. No feedback about the correctness of the answer was given. 

To increase the power of statistical analyses, every 5 consecutive blocks were grouped 

into epochs, forming the epochs 1–5 for the training session and epoch 6 for the transfer 

session.  
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Figure 2.2 Schematic illustration of the search paradigm. The upper path (marked by the dash-dot 

lines) indicates the procedure of gaze-contingent limited-viewing search implemented in the training 

phases of Experiments 1 and 2. The middle path (marked by the dashed lines) indicates the procedure 

of (brief, 150ms) preview display followed by gaze-contingent limited-viewing search implemented in 

the training phase of Experiment 3, and the lower path (marked by the solid lines) illustrates the 

procedure in the transfer phase of all three experiments. ITI = inter-trial interval.  

Data analysis. Invalid gaze samples due to eye blinks or signal losses were discarded. 

Furthermore, nearby short fixations (< 50 ms) separated by small movement distances (< 

0.5°) were classified as gaze “dwells” and merged into a single gaze episode, using a custom-

made Matlab script. Following these refinements, the average fixation duration was 273 ms. 

Three different measures of oculomotor behavior were calculated for each trial: (i) the 

number of fixations during the search, (ii) the mean fixation duration, and (iii) the efficiency 

of the scanpath towards the target. For measures (i) and (ii), the first fixation was not included 
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to avoid possible contamination by the initial mandatory fixation. Measure (iii) was 

operationalized by calculating the “scanpath deviation”, that is, the difference between the 

total saccadic distance of the fixations during the actual scanpath (i.e., the total length of the 

actual scanpath) and shortest distance from initial fixation to the target (i.e., the length of the 

shortest possible scanpath). This measure is similar to the “scan pattern ratio” (i.e., the ratio 

between the total distance covered by the eye during the search and the shortest scanpath) 

used in previous studies (Brockmole & Henderson, 2006a; Geringswald et al., 2012; 

Geringswald et al., 2013a). Arguably, the “scanpath deviation” measure is preferable because 

it avoids distortions introduced by extreme denominators in the “scan pattern ratios”, thus 

ensuring normally distributed data for further statistical analysis. 

Repeated-measures analyses of variance (ANOVAs) were carried out on reaction times 

(RTs), number of fixations, fixation durations, and scanpath deviations, with degrees of 

freedom Greenhouse-Geisser corrected if the sphericity assumption was violated. Further 

LSD contrast tests were carried out as necessary. In addition, JZS Bayes factors 

(null/alternative) (Rouder, Speckman, Sun, Morey, & Iverson, 2009) were calculated for those 

results that favoured the null hypothesis. According to Jeffries (1961), a value greater than 3 

provides “substantial” evidence for choosing the null hypothesis. 

2.3.2. Results 

Trials with erroneous responses or reaction times (RTs) outside the range 0.2 s and 10 

s were excluded from analysis. Both the overall mean error and outlier rates were low (errors: 

1.15%; outliers: 3.93%). The error rates were comparable across all conditions: context, F(1, 

12) = 3.25, p = 0.10, 𝜂𝑝
2  = 0.21; epoch, F(2.43, 29.14) = 2.2, p = 0.12, 𝜂𝑝

2  = 0.16; and 

interaction, F(5,60) = 0.66, p = 0.66, 𝜂𝑝
2  = 0.05, revealing no evidence of performance 

accuracy improving as a result of training. 
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Training session.  Two-way repeated-measures ANOVAs, with context (old vs. new) 

and epoch (1-5) as factors, were applied to the (individual-condition) mean RTs, the mean 

number of fixations, the mean scanpath deviation, and the mean fixation duration. Note that 

the major part of the RT is the time required for the search (as compared to the time taken for 

discerning the target orientation and selecting and executing the appropriate response), and 

the search time can be “reconstructed” from the number of fixations and the respective 

fixation durations. Accordingly, some similar result patterns were expected among these 

analyses (see Figure 2.3). 

 

Figure 2.3.  Results of Experiment 1. Mean reaction times (A), mean number of fixations (B), mean 

fixation duration (C), and scanpath deviation (D), all with associated standard errors, are shown as a 

function of experimental epoch and display context (“old”, indicated by solid-diamond lines, vs. 

“new”, indicated by dash-dot lines). Epochs 1-5 represent the training session with the tunnel view 

display, and Epoch 6 (in the dashed box) represent the transfer session with the free-view display. 
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A significant effect of procedural learning (over epochs) was observed in both the RTs 

and the number of fixations, with an average reduction of 406 ms in RT, F(4,48) = 5.03, p < 

0.01, 𝜂𝑝
2 = 0.30, and 1.44 fewer fixations, F(4,48) = 5.84, p < 0.001, 𝜂𝑝

2 = 0.33, in the epoch 5 

compared to epoch 1. However, there were no significant changes over epochs in the scanpath 

deviation, F(4,48) = 0.61, p = 0.66, 𝜂𝑝
2 = 0.05, and the mean fixation duration, F(4,48) = 0.93, 

p = 0.46, 𝜂𝑝
2 = 0.07. 

Of major importance, in the training session, we failed to observe any contextual-

cueing effect, that is, any difference between “old” and “new” configurations, in any of the 

four measures: mean RTs, F(1,12) = 0.35, p = 0.57, 𝜂𝑝
2  = 0.03, JZS Bayes factor 

(null/alternative) = 2.60; mean number of fixations, F(1,12) = 0.16, p = 0.70, 𝜂𝑝
2 = 0.01, JZS 

Bayes factor = 3.16; scanpath deviation, F(1,12) = 0.001, p = 0.98, 𝜂𝑝
2 = 0.001, JZS Bayes 

factor = 4.22; and mean fixation duration, F(1,12) = 0.04, p = 0.85, 𝜂𝑝
2 =0.003, JZS Bayes 

factor =4.72. The Bayes factors were close to or greater than 3, indicative of “some” to 

“substantial” evidence in favor of the absence of a contextual-cueing effect in the training 

session. In addition, the two-way (epoch × context) interactions were non-significant in all 

four measures: RT, F(4,48) = 1.72, p = 0.16, 𝜂𝑝
2 = 0.13; mean number of fixations, F(4,48) = 

1.75, p = 0.15, 𝜂𝑝
2  = 0.13; scanpath deviation, F(4,48) = 1.13, p = 0.35, 𝜂𝑝

2  = 0.09; mean 

fixation duration, F(4,48) = 0.82, p = 0.52, 𝜂𝑝
2  = 0.06. These results indicate that gaze-

contingent tunnel viewing - providing only limited, local information during search - prevents 

either contextual learning altogether or the retrieval of learned context.  

Transfer session. Interestingly, when comparing “old” to “new” contexts in the 

transfer session (epoch 6), the contextual-cueing effect turned out significant and manifest in 

all four measures: there was a reduction of 466 ms in mean RT, F(1,12) = 23.89, p < 0.001, 

𝜂𝑝
2 = 0.67; a reduction of 2.01 in the mean number of fixations, F(1,12) = 23.93, p < 0.001, 𝜂𝑝

2 
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= 0.67; a reduction of 6.76° in scanpath deviation, F(1,12) = 35.60, p < 0.001, 𝜂𝑝
2 = 0.75; and 

an increase of 24.41 ms in the mean fixation duration, F(1,12) = 8.38, p < 0.05, 𝜂𝑝
2 = 0.41. A 

further one-way repeated-measures ANOVA of the mean RTs in the very first block (of the 5-

block epoch) of the transfer session revealed significantly faster responses – a very substantial 

reduction of 719 ms – for “old” compared to “new” contexts, F(1,12) = 35.36, p<0.01, 𝜂𝑝
2 = 

0.75, strongly suggesting that the contextual-cueing effect, rather than being due to fast 

learning in the transfer session, was transferred from the training session. 

To examine more closely whether dynamic tunnel viewing causes a change of 

oculomotor and search behavior, epoch 5 (last epoch of tunnel viewing) and epoch 6 (free 

viewing) were compared using two-way ANOVAs. The results revealed a substantial drop of 

mean RT in epoch 6 compared to epoch 5 (698 ms), F(1,12) = 152.21, p < 0.001, 𝜂𝑝
2 = 0.93, 

along with a significant main effect of context (306 ms), F(1,12) = 12.35, p < 0.01, 𝜂𝑝
2 = 0.51. 

The epoch × context interaction was significant, F(1, 12) = 4.84, p < 0.05, 𝜂𝑝
2 = 0.29. One-

way repeated-measures ANOVAs revealed no significant cueing effect in epoch 5 (147 ms), 

F(1,12) = 1.29, p = 0.28, 𝜂𝑝
2 = 0.10, but a significant effect in epoch 6 (466 ms; see previous 

paragraph). Similarly, the mean number of fixations was significantly reduced (by 1.88 

fixations) in epoch 6 compared to epoch 5, F(1,12) = 52.36, p < 0.001, 𝜂𝑝
2 = 0.81, as well as 

(by 1.22 fixations) for “old” compared to “new” contexts , F(1,12) = 10.79, p < 0.01, 𝜂𝑝
2 = 

0.47. The epoch × context interaction was also significant for fixation number, F(1,12) = 7.28, 

p < 0.05, 𝜂𝑝
2 = 0.38, reflecting absence of (reliable) contextual cueing in epoch 5, F(1,12) = 

0.67, p = 0.43, 𝜂𝑝
2 = 0.05, but a significant effect in epoch 6 (2.01 fixations, see previous 

paragraph). The scanpath deviation ANOVA revealed a significant effect of context, F(1,12) 

= 13.80, p < 0.05, 𝜂𝑝
2 = 0.54, but not of epoch, F(1,12) = 0.04, p = 0.84, 𝜂𝑝

2 = 0.004, and the 

epoch × context interaction was significant, F(1,12) = 11.44, p < 0.01, 𝜂𝑝
2  =0.49. The 



36 

 

interaction effect was mainly attributable to the absence of a (reliable) context effect in epoch 

5, F(1,12) = 0.14, p = 0.72, 𝜂𝑝
2  = 0.01, but a significant effect in epoch 6 (see previous 

paragraph). Importantly, the scanpath deviation for old configurations was significantly 

reduced, by 3.27°, in epoch 6 relative to epoch 5, F(1,12) = 4.98, p < 0.05, 𝜂𝑝
2 = 0.29, which 

compares with an increase, by 2.92°, from epoch 5 to epoch 6 for new configurations, F(1,12) 

= 8.37, p < 0.05, 𝜂𝑝
2 = 0.41. The reduction of the number of fixations and the shortening of the 

scanpaths in epoch 6 (free-view display) relative to epoch 5 (tunnel view display) for “old” 

configurations suggests that viewing the search display under 8° tunnel vision conditions 

limits (optimal) scanpath planning during search performance. The significant lengthening of 

the scanpaths in epoch 6 relative to epoch 5 for “new” configurations is likely attributable to 

the increased number of available scanning choices with free-view compared to tunnel view 

displays. As this would equally have been the case with “old” displays, the more remarkable 

is the fact that the scanpaths were actually shortened (rather than lengthened) with “old” 

configurations. Finally, the mean fixation duration was significantly shorter in epoch 6 than in 

epoch 5 (29.47 ms), F(1,12) = 10.54, p < 0.01, 𝜂𝑝
2  = 0.47, while not being significantly 

influenced by context: main effect, F(1,12) = 2.89, p = 0.12, 𝜂𝑝
2  = 0.19; epoch × context 

interaction, F(1,12) = 3.84, p = 0.07, 𝜂𝑝
2 = 0.24. Overall, this pattern of results replicates the 

contrasts between the training session (with gaze-contingent viewing) and the transfer session 

(free viewing) for the two epochs that were most comparable in terms of time on the task and 

had, thus, the greatest potential for dissociating contextual learning and contextual retrieval. 

Recognition session. In the recognition test, the mean hit rate (i.e., correctly identified 

old configurations) was 59.6%, which was only marginally higher than the false alarm rate 

(44.2%), F(1, 12) = 4.20, p = 0.06, 𝜂𝑝
2 = 0.26; JZS Bayes factor = 0.87 (indicating that this 

effect cannot be regarded as “robust”). This marginal effect was largely due to two (out of a 
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total of 13) participants; when those two participants were excluded, the difference between 

the hit rates and false alarm rates effectively vanished, F(1,10) = 1.44, p = 0.26, 𝜂𝑝
2 = 0.12, 

JZS Bayes factor = 2.52. Thus, the results revealed no clear evidence of explicit learning of 

the repeated configurations. In addition, subject-wise analysis also revealed that the 

recognition sensitivity (d’) was not correlated with the magnitude of contextual cueing from 

the transfer session, r = -0.13, p = 0.67. This was consistent with previous study (Geyer, Shi, 

et al., 2010), which reported no correlation between explicitly recognizing a specific old 

display and the contextual cueing generated by that given display.  

2.3.3. Discussion 

Taking the results of both, the transfer and training, sessions together, we obtained a 

striking finding: although no contextual cueing was evident in the training session (not even 

in epoch 5), in which the viewing area was limited to a visible tunnel of 8° at any time during 

the search, a cueing effect manifested in the transfer session in which the search displays were 

always fully visible. This pattern suggests that search-guiding context is learned, but cannot 

be expressed with a gaze-contingent, limited-view display in which the global display layout 

is not available. Restated, being able to see only a limited, gaze-contingent tunnel area (of 8°) 

containing a local configuration of just 2-3 items can support contextual learning. However, 

effective retrieval of the acquired contextual associations requires additional information from 

the periphery (outside the 8° area), which likely contributes to optimizing (on-line) saccadic 

path planning and thus context-based search guidance. Experiment 2 was designed to examine 

whether such additional peripheral information would enhance contextual retrieval, by 

extending the gaze-contingent display from 8° (Experiment 1) to 12° (Experiment 2). 
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2.4. Experiment 2 

2.4.1. Methods 

The method was essentially the same as in Experiment 1, except that the size of the 

tunnel area was increased to 12° (thus including parts of the peripheral visual field), with a 

central, fully visible area of 7.5° and an outer transition ring covering 7.5°-12°. On average, 

4.69 out of the total 12 items were visible at any given time. 13 participants (8 females, mean 

age: 24.08 years) with normal or corrected-to-normal visual acuity took part in the second 

experiment, after obtaining their informed consent. None of the participants were aware of the 

purpose of the experiment.  

2.4.2. Results 

The overall results are shown in Figure 2.4. Similar data analyses as in Experiment 1 

were applied to both the RT and eye movement measures. 

The overall mean error and outlier rates were low (errors: 0.90%; outliers: 3.03%). A 

two-way repeated-measures ANOVA of the error rates with context (old/new) and epoch (1-

6) as factors revealed the main effect of epoch to be significant, F(5, 60) = 3.66, p < 0.01, 𝜂𝑝
2 

= 0.23, but not that of the context, F(1, 12) = 0.19, p = 0.67, 𝜂𝑝
2 = 0.02, and the epoch × 

context interaction, F(5, 60) = 1.28, p = 0.29, 𝜂𝑝
2 = 0.10. The error rate decreased as the 

experiment progressed, indicative of reliable training and general (procedural) learning 

effects. 
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Figure 2.4 Results of Experiment 2. Mean reaction times (A), mean number of fixations (B), mean 

fixation duration (C), and scanpath deviation (D), all with associated standard errors, are shown as a 

function of experimental epoch and display context (“old”, indicated by solid-diamond lines, vs. 

“new”, indicated by dash-dot lines). Epochs 1-5 represent the training session with the tunnel view 

display, and Epoch 6 (in the dashed box) represent the transfer session with the free-view display. 

Training session. Two-way repeated measures ANOVAs, with the factors context and 

epoch, were applied to the mean RTs, mean number of fixations, mean scanpath deviation, 

and mean fixation durations (the latter averaging 263 ms after refinement of the gaze 

samples). Mean RTs (Figure 2.4 A) changed across the training epochs, F(4, 48) = 12.00, p < 

0.001, 𝜂𝑝
2 = 0.5, RTs were, on average, 589 ms faster in epoch 5 than in epoch 1, illustrating a 

typical effect of procedural learning. Importantly, in contrast to Experiment 1, RTs were 

significantly shorter for “old” compared to “new” configurations, F(1,12) = 6.54, p < 0.05, 𝜂𝑝
2 

= 0.35, manifesting a typical contextual-cueing effect already in the training session (see 

comparison in Figure 2.5). The interaction between epoch and context was not significant, 

F(4, 48) = 1.92, p = 0.12, 𝜂𝑝
2 = 0.14, partly owing to variability (including non-reliable) of the 
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cueing effects across epochs. The mean number of the fixations showed a similar pattern, as is 

illustrated in Figure 2.4 B. The mean fixation number decreased across the five training 

epochs, F(4,48) = 14.34, p < 0.001, 𝜂𝑝
2 = 0.54 , with 2.22 fewer fixations in epoch 5 compared 

to epoch 1, and was reduced for “old” relative to “new” contexts (by 0.99 fixations), F(1,12) 

= 8.08, p < 0.05, 𝜂𝑝
2 = 0.40, without any interaction between the two factors, F(4,48) = 2.03, p 

= 0.11, 𝜂𝑝
2  = 0.15. These results indicate that both the general (procedural) learning and 

contextual-cueing effects, which are typically seen in classic contextual-cueing studies 

(without viewing restrictions), were also observable under conditions of gaze-contingent 

viewing when the tunnel size was extended from 8° to 12°. The mean scanpath deviation was 

also significantly influenced by epoch, F(1.32, 15.87) = 5.53, p < 0.05, 𝜂𝑝
2 = 0.32, being 8.88° 

shorter in epoch 5 than in epoch 1, and by context, F(1,12) = 7.70, p < 0.05, 𝜂𝑝
2 = 0.40, being 

3.25° shorter for “old” compared to “new” displays; the epoch × context interaction was not 

significant, F(1,12) = 1.46, p = 0.22, 𝜂𝑝
2  = 0.11, indicative of a consistent advantage in 

saccadic scanning efficiency for “old” configurations in general. The mean fixations 

durations, depicted in Figure 2.4 C, exhibited no significant effects of epoch (main effect: 

F(4, 48) = 1.16, p = 0.34, 𝜂𝑝
2 = 0.09; interaction with context, F(4,48) = 2.22, p = 0.08, 𝜂𝑝

2 

=0.16); but the main effect of context was significant, characterized by an increase, of some 

20 ms, for “old” compared to “new” configurations, F(1,12) = 5.69, p < 0.05, 𝜂𝑝
2 = 0.32. This 

effect, which appears to run counter to the other measures, suggests that slightly extending the 

fixation duration may actually yield benefits in terms of improved saccade path planning. 
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Figure 2.5. Comparison of contextual-cueing effects across experiments. The cueing effects in the 

training sessions were calculated by averaging across epochs 1–5. 

Transfer session. As shown in Figure 2.4, significant contextual facilitation was 

evident for “old” compared to “new” configurations in the transfer session: RTs were 

shortened by, on average, 333 ms, F(1, 12) = 11.67, p < 0.01, 𝜂𝑝
2 = 0.49; fixation numbers 

were reduced by 1.42 fixations, F(1, 12) = 14.63, p < 0.01,  𝜂𝑝
2 = 0.55; scanpath deviation was 

decreased by 4.92°, F(1, 12) = 14.59, p < 0.05, 𝜂𝑝
2  = 0.55; and fixation durations were 

prolonged by 30.84 ms, F(1, 12) = 10.04, p < 0.01, 𝜂𝑝
2 = 0.46. These results suggest that 

“old” configurations enabled more efficient saccade path planning compared to “new” 

configurations.  

To more closely examine whether a larger gaze-contingent tunnel area gives rise to a 

change of oculomotor and search behavior, epochs 5 and 6 (i.e., the last epoch of the training 

session and, respectively, the only epoch in the transfer session) were compared by means of 

two-way ANOVAs. The results revealed a significant drop of the mean RTs (231 ms) from 

epoch 5 to epoch 6, F(1, 12) = 10.08, p < 0.01, 𝜂𝑝
2 = 0.46, and a significant main effect of 

context (270 ms), F(1, 12) = 10.66, p < 0.01, 𝜂𝑝
2  = 0.47; but the interaction was non-

significant, F(1, 12) = 0.87, p = 0.37, 𝜂𝑝
2  = 0.07. The ANOVA of the mean number of 
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fixations revealed a significant main effect of context, F(1, 12) = 10.95, p < 0.05, 𝜂𝑝
2 = 0.48, 

with, on average, 1.01 fewer fixations for “old” than for “new” configurations; but neither the 

main effect of epoch (despite a slight drop in the number of fixations from epoch 5 to 6, by 

0.31 fixations), F(1, 12) = 0.93, p = 0.35, 𝜂𝑝
2 = 0.07, nor the epoch × context interaction, F(1, 

12) = 1.66, p = 0.22, 𝜂𝑝
2 = 0.12, were significant. Similarly, mean scanpath deviation was 

significantly smaller for “old” compared to “new” configurations (3.53°), F(1, 12) = 8.57, p < 

0.05, 𝜂𝑝
2 = 0.42, while the effects of epoch, F(1, 12) = 3.59, p = 0.08, 𝜂𝑝

2 = 0.23, and the epoch 

× context interaction, F(1, 12) = 2.40, p = 0.15, 𝜂𝑝
2 = 0.17, were non-significant. Finally, the 

mean fixation duration was marginally longer, by 17.78 ms, for “old” than for “new” 

contexts, F(1, 12) = 4.52, p = 0.055, 𝜂𝑝
2 = 0.27, while the main effects of epoch, F(1, 12) = 

1.21, p = 0.29, 𝜂𝑝
2 = 0.09, and the epoch × context interaction, F(1, 12) = 3.39, p = 0.09, 𝜂𝑝

2 = 

0.22, were non-significant. Taken together, these results suggest that the faster responses in 

epoch 6 are likely attributable to continued procedural learning, rather than changes of 

oculomotor scanning engendered by the removal of the gaze-contingent viewing restrictions. 

Recognition session. As in Experiment 1, participants’ mean hit rate (59.62%) was 

numerically higher than their mean false-alarm rate (51.92%), but this trend was non-

significant, F(1, 12) = 2.36, p = 0.15, 𝜂𝑝
2 = 0.16, JZS Bayes factor = 1.73. In other words, 

there was no reliable evidence of explicit learning of spatial context, with the Bayes factor 

indicating that the null hypothesis (of implicit learning) was 1.73 times more likely to be true 

than the alternative hypothesis (of explicit learning).  

2.4.3. Discussion 

In contrast to Experiment 1, a contextual-cueing effect manifested in both the training 

and transfer sessions of Experiment 2, characterized by faster RTs, fewer fixations, longer 

fixation durations, and a smaller scanpath deviations for “old-” compared to the “new-
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context” configurations. These results indicate that a viewing window sized 12°, which makes 

4-5 items visible at any given time, provides sufficient spatial information for both contextual 

learning and retrieval. Our results thus are consistent with previous findings that maintaining 

3-4 local items invariant is sufficient for engendering robust contextual cueing (Brady & 

Chun, 2007). Considering the findings of Experiments 1 and 2 together suggests that 

contextual learning can be based on local configurations of only 2-3 visible items; however, 

being able to retrieve learned contexts for guiding search behavior requires additional, more 

peripheral (global) information, which likely helps optimize saccadic path planning.  

If it is true that global information is necessary for contextual retrieval, then a brief 

preview of the global display prior to search under gaze-contingent, limited-viewing 

conditions might help engender contextual cueing. This prediction was examined in 

Experiment 3. 

2.5. Experiment 3 

2.5.1. Method 

The settings of Experiment 3 were the same as in Experiment 1 (i.e., the gaze-

contingent viewing area subtended only 8° of visual angle), except that a brief preview (150 

ms) of the global display configuration was presented prior to the gaze-contingent search 

display (Figure 2.2). The preview display contained crosses (white crosses composed of two 

intersecting lines, each 1° in length) which marked the locations of all (forthcoming) search 

display items. That is, while being uninformative as to the identity of the (subsequently 

presented) search stimuli, the preview display provided information about the global context 

(structure) of the search display.  
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13 participants (11 females, mean age: 22.46 years) with normal or corrected-to-

normal visual acuity took part in the experiment, after they had given informed consent. All 

participants were naïve with respect to the purpose of the experiment. 

2.5.2. Results 

Similar data analyses as in Experiment 1 were applied to both the RT and eye 

movement measures. The mean error and outlier rates were low (overall error rates of 0.82% 

and outlier rates of 2.61%, respectively). The error rates were comparable across epochs, F(5, 

60)=1.63, p = 0.17, 𝜂𝑝
2 = 0.12, and contexts, F(1, 12)=0.01, p = 0.91, 𝜂𝑝

2 = 0.01, without any 

interaction between the two factors, F(5,60) = 1.58, p = 0.18, 𝜂𝑝
2 = 0.12. 

Training session. Two-way repeated-measures ANOVAs, with epoch and context as 

factors, revealed the mean RTs to decrease significantly across the experimental epochs, 

F(2.54, 30.51) = 5.62, p < 0.01, 𝜂𝑝
2 = 0.32, reaching a reduction of 458 ms in the epoch 5 

versus epoch 1 (Figure 2.6). The main effect of context was marginally significant (132ms), 

F(1, 12) = 4.47, p = 0.056, 𝜂𝑝
2  = 0.27, JZS Bayes factor = 0.952, without an interaction 

between epoch and context, F(3, 36) = 0.95, p = 0.43, 𝜂𝑝
2  = 0.07. This pattern of context 

effects is important as it suggests that a brief preview of the global display layout can bring 

back the contextual-cueing effect (see Figure 2.5), although contextual learning was slower 

and weaker compared to that in Experiment 2. 
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Figure 2.6. Results of Experiment 3. Mean reaction times (A), mean number of fixations (B), mean 

fixation duration (C), and scanpath deviation (D), all with associated standard errors, are shown as a 

function of experimental epoch and display context (“old”, indicated by solid-diamond lines, vs. 

“new”, indicated by dash-dot lines). Epochs 1-5 represent the training session with the tunnel view 

display, and Epoch 6 (in the dashed box) represent the transfer session with the free-view display. 

In addition, the ANOVA of the mean number of fixations revealed both main effects to 

be significant: epoch, F(2.86, 34.32) = 6.74, p < 0.001, 𝜂𝑝
2 = 0.36, and context, F(1,12) = 

5.00, p < 0.05, 𝜂𝑝
2 = 0.29. There were, on average, 1.66 fewer fixations in epoch 5 than in 

epoch 1, and 0.54 fewer fixations for “old” than for “new” configurations. The interaction 

between the epoch and context was non-significant, F(4, 48) = 0.71, p = 0.59, 𝜂𝑝
2  = 0.06. 

Interestingly, mean scanpath deviation was also significantly influenced by context, F(1, 12) 

= 7.17, p < 0.05, 𝜂𝑝
2  = 0.37, and epoch, F(4, 48) = 3.14, p < 0.05, 𝜂𝑝

2  = 0.21, without 

interaction between the two factors, F(4,48) = 0.69, p = 0.61, 𝜂𝑝
2  = 0.05: scanpaths were 

shorter for “old” than for “new” contexts (reduction by, on average, 1.75°), and in epoch 5 

than in epoch 1 (reduction by, on average, 2.87°). Regarding the mean fixation durations, 
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while there was no main effect of epoch, F(4, 48) = 0.57, p = 0.68, 𝜂𝑝
2 = 0.05, the context 

effect turned out significant: fixations were somewhat (12.71 ms) longer for “old” than for 

“new” contexts, F(1, 12) = 7.08, p < 0.05, 𝜂𝑝
2  = 0.37; the interaction between epoch and 

context as not significant F(4, 48) = 0.79, p = 0.54, 𝜂𝑝
2 = 0.06. Taken together, non-significant 

interactions in the oculomotor results suggest that contextual cueing may become effective 

early during the training, albeit being somewhat unstable. 

 

Transfer session. Similar to Experiments 1 and 2, one-way repeated-measures 

ANOVAs analyses for mean RT, mean number of fixations, mean scanpath deviation, and 

mean fixation duration in epoch 6 (transfer epoch) revealed significant contextual effects for 

all measures examined: compared to the “new” configurations, the “old” contexts yielded 

significantly faster RTs (227 ms), F(1, 12) = 6.33, p < 0.05, 𝜂𝑝
2 = 0.35, while requiring fewer 

fixations (1.03), F(1, 12) = 8.00, p < 0.05, 𝜂𝑝
2 = 0.4, of slightly longer durations (18.30 ms), 

F(1, 12) = 5.5, p < 0.05, 𝜂𝑝
2 = 0.31, reaching the target via a shorter scanpath (4.07°), F(1, 12) 

= 10.27, p < 0.01, 𝜂𝑝
2 = 0.46.  

 Recognition session. The mean hit rate was 54.81% for repeated displays in the 

recognition session, which compares to a mean false-alarm rate of 46.15%; the difference 

between them was non-significant, F(1, 12) = 3.02, p = 0.11, 𝜂𝑝
2 = 0.20, JZS Bayes factor = 

1.34. The associated Bayes factor suggests that the null hypothesis (of implicit learning) was 

1.34 times more likely to be true than the alternative hypothesis (of explicit learning). 

2.6. General discussion 

Three experiments were conducted that combined gaze-contingent tunnel viewing of 

the search displays with a, in all other respects, standard contextual-cueing paradigm, in order 

to examine for differential roles of eye-centered local and peripheral-global spatial 
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information in contextual learning and the retrieval of (learned) contexts. To assess whether 

the para-/foveal local information would be sufficient for contextual learning, the visible area 

of the gaze-contingent display (i.e., the tunnel area) in the training sessions (of 5 epochs) 

varied between 8° (including a 3° outer transitional belt) in Experiments 1 and 3 and 12° 

(including a 4.5° outer transitional belt) in Experiment 2, while a fully visible display was 

presented in the transfer sessions (epoch 6). In addition, a brief preview display was presented 

in the training session of Experiment 3 to examine whether brief exposure to the global 

display structure would aid contextual retrieval. When the tunnel area was limited to 8°, with 

on average only 2-3 items visible during any given fixation, no contextual facilitation was 

observed in the training session. Interestingly, however, contextual cueing was evident 

immediately (in the very first block of the subsequent test session) when the display was 

made fully visible - indicating that the repeated context was actually learned during the 

training session (Figure 2.5). When the tunnel area was extended to 12°, with on average 4-5 

items visible during any given fixation, a robust contextual-cueing effect was obtained in both 

the training and transfer sessions, pointing to the need for (the availability of) peripheral 

global information for the cueing effect to become manifest. Experiment 3 further confirmed 

that global context information: even if made available only briefly (150ms) in a preview 

display that did not convey any fine-grained information as to item identity (i.e., whether a 

given item in the subsequent search display was a “T” or an “L”), it  plays an important role 

for contextual retrieval.  

It has been suggested that our perceptually coherent representation of the external 

environment is constructed based on the remapping of successive samples of local 

information onto their correspondent locations in a global spatial map (De Graef, 2007; 

Deubel, Koch, & Bridgeman, 2010; Intraub, 2002; Jonikaitis, Deubel, & de'Sperati, 2009; 

Melcher & Morrone, 2007; Schwarzkopf & Rees, 2010). Our findings suggest that humans 
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are able to construct and learn repeatedly encountered spatial contexts based on scarce para-

/foveal-local information (e.g., when just 2-3 items can be seen in each fixation), highlighting 

the role of local invariant inter-element spatial relations in contextual learning. Lack of para-

/foveal-local information has been shown to impede contextual learning. For example, 

contextual cueing never developed for repeated displays with simulated foveal scotoma or 

fovea degeneration (Geringswald et al., 2012; Geringswald et al., 2013a). Peripheral global 

information, by contrast, affords fast processing of coarse, global-scale spatial information 

(e.g.,Hochstein & Ahissar, 2002; Navon, 1977; Schyns & Aude, 1994), which is important for 

saliency-based guidance and saccadic planning (Itti & Koch, 2001; Müller et al., 1995a; 

Wolfe, 1994b). The scanpath deviation results obtained in the present study also support the 

role of peripheral information in contextual retrieval and search guidance. Availability of 

some peripheral information when scanning the display under “wide” (12°) tunnel view 

conditions or brief (150 ms) availability of the display layout prior to the search led to a 

significant reduction of the deviation of the actual from the shortest (i.e., optimal) scanpath. 

The reduction of the scanpath deviation for the wide, but not the narrow, tunnel view suggests 

that peripheral information aids retrieving the learned spatial inter-element relations from 

contextual memory. 

It should be noted that the roles of para-/foveal-local and peripheral-global information 

that we investigated here is different from the local/global manipulation in previous studies 

(e.g., Brady & Chun, 2007; Song & Jiang, 2005), in which “local information” often refers to 

the near-target local configuration, and “global information” to background features (e.g., 

color) or surrounding objects (Brockmole et al., 2006; Brooks et al., 2010; Kunar et al., 2006; 

Rosenbaum & Jiang, 2013). Both local and global spatial configurations were continuously 

available during search performance in previous studies. Using conditions of full display 

presentation, Brady and Chun (2007) found that when the repeated distractors (e.g., 2 “L”s) 
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were locally positioned near the target, participants were able to acquire the context in the 

learning phase, suggesting that near-target invariant inter-element relations are important for 

contextual learning. Song and Jiang (2005), on the other hand, found that partial repetition – 1 

“T” and 2 “Ls” randomly selected from the total 12 search items (not limited to the local area 

near the target, i.e., there could also be “long-distance” invariant relations) – was not 

sufficient to engender a contextual-cueing effect in the learning phase. But such partial 

repetition was important for contextual retrieval. Once a fully visible repeated display was 

learned, keeping only a part of the repeated display unchanged (e.g., 2 “L”s and 1 “T” out of 

the 12 items) was sufficient for maintaining contextual facilitation. The differential effects of 

near-target invariant (Brady & Chun, 2007) and “long-distant” invariant relations (Song & 

Jiang, 2005) can be well explained by the roles of para-/foveal-local and peripheral-global 

invariances in contextual cueing that were established in the present study. As para-/foveal-

local information is the basic building block for constructing the whole spatial map, local 

invariances are important for successful contextual learning. Faster processing of peripheral 

spatial information (e.g., Hochstein & Ahissar, 2002; Navon, 1977; Schyns & Aude, 1994), 

on the other hand, does not require full matching of the global configuration (Song & Jiang, 

2005); rather, some peripheral invariant features, such as “long-distance” invariances, are 

necessary for efficient search guidance and oculomotor planning. Such peripheral invariances 

can aid contextual learning and retrieval even if, during the actual search process, the global 

information is available only from working memory (WM), as shown in the present 

Experiment 3. Unlike the constant availability of peripheral information with free-view 

displays, though, just having a preview of the whole display (as in Experiment 3) would 

require additional processing to maintain the spatial configuration (in WM), which may be the 

reason for the relatively weak contextual-cueing effect that we obtained in Experiment 3. 

This, however, would require further investigation. Also, further work is required to establish 
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whether the brief exposure of the global context strengthens the encoding of associations 

and/or facilitates the retrieval process. A recent study of contextual cueing in “pop-out” visual 

search suggests that the latter may be the case (Geyer, Zehetleitner, & Müller, 2010), while of 

course not ruling out the former. Geyer, Zehetleitner, et al. (2010) found that even supposedly 

automatic detection of salient pop-out stimuli may be facilitated by learning (i.e., long-term 

memory) contextual associations given that the global display configuration is exposed prior 

to the presentation of the search display proper. Geyer et al. argued that the preview permits 

contextual memory to be activated, to top-down influence the speed with which odd-one-out 

target is singled out by bottom-up feature contrast operations.  

Considering oculomotor behavior, we observed that both procedural and contextual 

learning improve saccadic efficiency, in terms of a reduction of the number of fixations. 

Similar results have been reported in previous studies (Peterson & Kramer, 2001; Tseng & Li, 

2004; Zhao et al., 2012), in which contextual facilitation was associated with a decrease in the 

number of fixations and saccades. While there is thus convergent evidence for RTs and the 

number of fixations to be reduced when searching through repeated (vs. newly encountered) 

configurations, it is still unclear, however, whether repeated contexts reduce or increase the 

mean fixation duration. For instance, Tseng and Li (2004) and Zhao et al. (2012) found no 

contextual facilitation of inter-saccadic fixation duration for repeated configurations. Van 

Asselen et al. (2011), by contrast, observed contextual cueing to be associated with shortened 

fixation durations, which they took to argue that repeated objects could be recognized faster 

than novel objects, thereby facilitating visual search. In our experiments, by contrast, we 

consistently observed prolonged fixation durations in conditions in which the contextual-

cueing effect was observed. The strong coupling of extended fixation durations and contextual 

cueing suggests that the retrieved context alters oculomotor scanning so as to increase search 

efficiency. The finding of longer fixation durations is in line with several other visual search 
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studies (Hooge & Erkelens, 1998, 1999; Zou, Müller, & Shi, 2012). For example, Zou et al. 

(2012) found that irrelevant tones that occurred during a hard visual search task led to an 

extension of the current fixation duration (during which the tone event occurred), increasing 

the likelihood of the subsequent saccade being directed to a display region that had not yet 

been inspected and thus potentially contained the target. Going beyond these visual search 

tasks, our finding confirms that extended fixation durations are coupled with reduced 

deviations of the actual scanpath (from the optimal, shortest path) for “old” configurations in 

contextual-cueing paradigms, reflecting improved planning of the saccade path (i.e., 

“contextual guidance”) to the target location. 

The gaze-contingent tunnel view conditions we realized here resemble the predicament 

of clinical patients with tunnel vision, whose sight is lost progressively from the visual 

periphery to the central fovea. One implication of our findings for such patients would be that 

they might be impaired with regard to contextual retrieval during the exploration of repeated 

scenes, but not necessarily with regard to contextual learning. In contrast to patients with 

tunnel vision, patients with age-related macular degeneration (AMD), who suffer from 

impaired foveal vision, have been shown to have difficulties in contextual learning 

(Geringswald et al., 2013a). A question that remains to be investigated in the future is whether 

the two patient groups do show differential deficits in contextual learning and retrieval. Such 

a comparison study would also be interesting with regard to patients with central versus 

peripheral vision loss developing differential search strategies to compensate for their deficits 

- as would be suggested by a recent study (Kwon, Nandy, & Tjan, 2013) which revealed the 

oculomotor system to be capable of adjusting saccadic behavior to compensate for a loss of 

foveal vision. 

In conclusion, we demonstrated that repeated contexts can be learned based on limited 

local context (2-3 items) under gaze-contingent viewing of the search display, but cannot be 
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effectively retrieved to aid search guidance. However, once (some) peripheral global 

information was provided or the whole display configuration was previewed, the contextual-

cueing effect immediately manifested - suggesting that global information is necessary for 

contextual retrieval. The learned retrievable context was strongly coupled with changes of the 

oculomotor scanning patterns, indicative of better saccadic planning for learned and 

retrievable contexts. 

  



53 

 

Chapter 3. Transfer of contextual cueing in full-

icon display remapping 

3.1. Abstract 

Invariant spatial context can expedite visual search, an effect that is known as 

contextual cueing (e.g., Chun & Jiang, 1998). However, disrupting learned display 

configurations abolishes the effect. In current touch-based mobile devices, such as the iPad, 

icons are shuffled and remapped when the display mode is changed. However, such 

remapping also disrupts the spatial relationships between icons. This may hamper usability. In 

the present study, we examined the transfer of contextual cueing in four different methods of 

display remapping: “position-order invariant”, “global rotation”, “local invariant”, and 

“central invariant”. We used full-icon landscape mode for training and both landscape and 

portrait modes for testing, to check whether the cueing transfers to portrait mode. The results 

showed transfer of contextual cueing, but only with the local invariant and the central 

invariant remapping methods. We take the results to mean that predictability of target 

locations is a crucial factor for the transfer of contextual cueing and thus icon remapping 

design for mobile devices. 

Keywords: Contextual cueing, visual search, mobile interface, icon remapping  



54 

 

3.2. Introduction 

Invariant visual context provides an important spatial cue for the guidance of visual 

search and focal-attentional selection. Repeated exposure to the same arrangements of search 

displays facilitates reaction time (RT) performance, an effect that has been referred to as 

contextual cueing (Chun, 2000; Chun & Jiang, 1998; Chun & Nakayama, 2000). In their 

seminal paper, Chun and Jiang (1998) had their observers search for a target letter “T” 

embedded in a set of distractor letters “L”. Unbeknown to participants, half of the presented 

displays contained identical configurations of target and distractor items (i.e., old displays), 

while the other half contained novel configurations (i.e., new displays). The main result was 

that of faster RTs to old relative to new displays (i.e., contextual cueing) – an effect that 

developed after a short period of training. Interestingly, when observers were queried about 

repeated displays at the end of the search task in an “old-new” recognition test, their 

performance was only at chance level. From these findings, Chun and Jiang (1998) concluded 

that (i) contextual cueing guides focal attention more rapidly to the target location, (but see 

Kunar, Flusberg, Horowitz, & Wolfe, 2007), for evidence that contextual cueing might also 

aid post-perceptual processes), and (ii) the cueing effect derives from an implicit memory for 

the items’ spatial arrangement. Since then, the cueing effect has been elaborated in a number 

of further studies (Chun, 2000; Chun & Jiang, 1998; Chun & Nakayama, 2000; Conci et al., 

2011; Conci & von Muhlenen, 2009; Conci & von Mühlenen, 2011; Geyer, Shi, et al., 2010; 

Jiang & Wagner, 2004; Kunar et al., 2006). Jiang and Wagner (2004; see also Brady & Chun, 

2007, or Olson & Chun, 2002) showed that contextual cueing is supported by two distinct 

spatial memory systems for individual item locations (i.e., local learning) and, respectively, 

the entire configuration formed by the distractors (i.e., global learning). Further, Kunar et al. 

(2006) showed that non-spatial attributes, too, such as background colour, can facilitate RT 

performance. Contextual learning is also influenced by selective attention: only the 
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arrangement of some items, in particular, those sharing the target colour, are learned over the 

course of an experiment (e.g., Geyer, Shi, et al., 2010; Jiang & Leung, 2005). 

However, the degree to which contextual cueing can adapt to changes in learned 

displays remains subject to debate. For example, Jiang and Wagner (2004) reported that 

contextual cueing was still reliable even when learned displays were shifted along the 

horizontal display axis, the vertical display axis, or presented in a different size (compressed 

or expanded). Other studies (Brady & Chun, 2007; Olson & Chun, 2002) showed that 

contextual cueing “survived” changes of approximately 50% up to 75% of the display items, 

that is, cueing was reliable even when only one half or one quadrant of the display was 

repeated across trials. On the other hand, Olson and Chun (2002) reported that the cueing 

effect was abolished when “new” distractors were presented in-between the target and the 

“old” distractors, with the target being presented, for example, in the left half and the “old” 

distractors in the right half of the display. Several other studies confirmed that contextual 

cueing diminished when the target was re-positioned in repeated displays and thus became 

unpredictable (Chun & Jiang, 1998; Manginelli & Pollmann, 2009; Olson & Chun, 2002). In 

contrast, the contextual cueing effect remained effective with predictable target location 

changes (Conci & Müller, 2012; Conci et al., 2011). Makovski and Jiang (2010) suggested 

that predictability based on invariant context is a key factor for contextual cueing, based on 

their finding that the cueing effect decreased as the target appeared further away from its 

“learned” location; in fact, there were even RT costs when the target swapped its location 

with a previous distractor. Similar findings have been reported in 3D-scene search (Chua & 

Chun, 2003), in which contextual cueing decreased with increasing angular difference 

between viewpoints  in the training versus the test displays (the experiment was divided into a 

training and test phase, with the latter containing modified displays).  
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While most of the work on contextual cueing was conducted using consistent (i.e., 

spatially invariant) search displays with a fixed number of items (e.g., 1 target and 11 

distractors presented at a total of 48 locations within an invisible 6 x 8 matrix), none of these 

studies has examined the influence of changes of the display orientation on the cueing effect. 

Although changing display mode (and accordingly remapping of the items) occurs rarely with 

“standard” (i.e., laboratory) displays, switching display mode is a normal routine in current 

touch-based mobile devices – such as the iPad. Interestingly, with these devices, there is only 

one type of item – or icon – remapping method available: the positions of icons in one display 

(e.g., landscape mode) are remapped to the other display (portrait mode) by keeping the 

positional order (left to right and up to down) constant across all icons (see Figures 3.1 A and 

3.1 B). Although this remapping method preserves the positional order and 80% of the 

horizontal inter-icon relationships (in a 4 × 6 icon matrix, as shown in Figures 3.1 A and 3.1 

B), it destroys almost all local icon relationships, in particular, when the display is arranged as 

a rectangle (as with almost all mobile devices). However, based on the contextual cueing 

studies reviewed above, it is possible that contextual cueing is reduced, if not entirely 

abolished, when display orientation changes from landscape to portrait mode and icons are 

remapped in the “standard” position-order manner. Given this, one intriguing question arises, 

namely: are there any other improved methods for icon remapping, such that the remapping 

could enhance users’ performance in everyday situations of display mode changes? This 

question was addressed in the current study by using the contextual cueing effect as a tool to 

evaluate the effectiveness of various display remapping techniques, that is: preserved 

contextual cueing from one to the other display mode was taken as an indicator for the value 

of a given remapping method.  

Besides the position-order remapping method, several other (simple) remapping 

methods are possible. For example, one of the most natural ways is to rotate the entire display 
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by 90° in clockwise direction (individual icons are rotated 90° in counter- clockwise direction 

to keep their appearance constant; see Figure 3.1 C). Such a “global rotation” is similar to the 

rotation of an object in our physical world (e.g., imagine you rotate a key cabinet with many 

keys). Alternatively, and motivated by the above mentioned studies on contextual cueing 

(e.g., Brady & Chun, 2007), one could also try to preserve local associations within the entire 

configuration as completely as possible. There are two ways to maximize such local 

invariants. One is to subdivide displays into several local regions and preserve the placement 

of these local regions in the entire configuration after icon remapping (Figure 3.1 D). Another 

method is to keep the display centre constant in remapped displays (Figure 3.1 E).  

In order to investigate how these various display remapping methods influence 

memory performance, we examined contextual cueing effects in four separate experiments. 

Each experiment examined one display remapping method. To simulate touch-based icon 

displays and observers’ active touch action, we used real desktop icons as search items and 

presented them on a touch monitor in the four experiments. 

 

Figure 3.1 Schematic illustrations of display layouts and remapping methods. A) Display layout in 

landscape mode; each number denotes an individual icon. B) Portrait display layout obtained by the 

position-order invariant remapping method; the arrow indicates the icon remapping sequential order 

from the landscape to portrait mode. C) Portrait display layout obtained by the global rotation 

remapping method; the arrow indicates the rotation direction from the landscape to portrait mode. D) 

Portrait display layout obtained by the local invariant remapping method; circled regions remain the 

same between the landscape and portrait mode. E) Portrait display layout obtained by the central 

invariant remapping method; circled regions are invariant.  
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3.3. Experiment 4-7 

3.3.1. Methods 

Participants. A total of 40 observers took part in the experiments (10 in each 

experiment, mean ages: 27.9, 26.2, 25.5 and 27.3, number of females: 7, 6, 6 and 5 for 

Experiments 4-7 respectively). All had normal or corrected-to-normal visual acuity (including 

colour vision). They gave written consent prior to the experiment and were paid at a rate of 8 

Euro/hour for taking part. Participants were naive as to the intention of the study. 

Apparatus and stimuli. The experiments were conducted in a dimly lit cabin (ambient 

light: 4.36𝑐𝑑/𝑚2). Visual stimuli were presented on a 23-inch multi-touch LCD monitor 

(HP2310ti) with spatial resolution set to 1920×1080 pixels. In order to make touch-pointing 

comfortable for the participants, the screen panel was placed on the table tilted by 45°. The 

viewing distance was approximately 40 cm, with participants’ head position fixed by a chin 

rest. 24 typical computer icons (randomly selected from 48 candidate icons with creative 

commons attribution copyrights for each observer) were presented within an invisible 6×4 

horizontal grid (subtending 24°×16° of visual angle) or a 4×6 vertical grid (subtending 

24°×16°). The target was the icon with a top overlay of a compound letter “T” (subtending, 

1.6°×1.6°; luminance, 35.67𝑐𝑑/𝑚2; see Figure 3.2). Such a compound target letter was used 

for two reasons: first, to avoid interference between the target and some other (distractors) 

letters (e.g., the letter “S” in the Skype icon; Figure 3.2); second, to make the compound letter 

and the icon comparable in terms of their luminance level. The background of the search 

displays was set to grey (16.56 𝑐𝑑/𝑚2 ). To enhance the global spatial “Gestalt” (i.e., 

perception of the display as landscape or, respectively, portrait mode), we added one array of 

6 up-right white triangles (130.5𝑐𝑑/𝑚2) with a grey background (19.62𝑐𝑑/𝑚2) below the 

landscape mode (Figure 3.2 A) or to the left side of the portrait mode (Figure 3.2 B). The 
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triangle array was meant to serve as a global landmark in the experiments, indicating display 

mode changes. The experimental program was developed with and controlled by Mat lab 

(Mathworks Inc.), in addition to the Psychtoolbox (Brainard, 1997; Pelli, 1997). Response 

times were recorded via the touch screen. In order to determine the onset of a response, an 

additional input button (connected to a NI PXI system) was placed in-between the touch 

screen and the participants, which was used for initiating the task and pointing movement. 

Design and procedure.A three-factorial within-subject design was used with display 

mode (landscape, portrait), context (old, new), and experimental epoch (1-9) as independent 

variables. From the 24 possible target locations, we randomly selected 12 target positions for 

old and the other 12 positions for new displays. In This way, the target appeared equally 

likely at any of the 24 possible locations. In order to have enough difference between old and 

new configurations and to control the similarity of icons identities, we selected 24 icons from 

48 typical icon candidates and assigned to random locations. Each of the new target locations 

was paired with newly generated distractor icons for every new-display trial, whereas each of 

the old target locations was paired with randomly selected distractor icons at the beginning of 

each experiment and served as old landscape displays. These old landscape displays were also 

used to define the remapped old portrait displays. Remapping was one as follows: 

(i) Experiment 4 (“position-order invariant”). The positional order (left-to-right and top 

to bottom) of the icons in the portrait mode was the same as that in the landscape mode 

(Figure 3.1 B). This method is used in most of the present mobile devices for the 

rearrangement of icons. 

(ii) Experiment 5 (“global-rotation”). The landscape display was, as a whole, rotated 

by 90° clockwise into the portrait mode, while preserving the (upright) orientation of the 

individual icons. With this global rotation, the global and local relationships of the icons are 

rotated by 90° across display changes (Figure 3.1 C). 
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Figure 3.2 Example displays in the experiments. A) Example of a landscape display. In this example, 

the “Apple” icon (second row, right-most column) is the search target. B) Example of a portrait 

display. In this case, icons are remapped from the landscape mode by keeping the position order 

constant in the left-to-right and up-to-down manner (Experiment 4).  C) The top overlay for the target 

icon (a compound letter “T”). 

(iii) Experiment 6 (“local invariant”). To preserve the local (and global) spatial 

configuration as much as possible, in Experiment 6, the display was divided into four 

peripheral and one central region, each consisting of four icons (see circled regions in Figure 

3.1 D). The positioning of these four “corners” and the central region were kept constant 

across display mode changes. Only four remaining items (i.e., icons 3, 4, 21, and 22 in Figure 

3.1 D) changed their relative positions. Similar to the global rotation, with the local-invariant 

transformation, the local relationships between all icons are preserved across display changes.  

(iv) Experiment 7 (“central-invariant”). Instead of dividing the display into multiple 

regions, in Experiment 7, we preserved the central display region as much as possible (i.e., 

preserving the central maximum square region). As shown in Figure 3.1 E, icons in the central 

4x4 matrix were positioned at identical locations across display mode changes. In addition, 

the four outermost (‘corner’) icons were also unchanged. Only the remaining four icons (7, 

12, 13, and 18 in Figure 3.1 E) changed their positions. 

Each experiment comprised of three consecutive sessions: learning, test, and 

recognition. In the learning session, there were 5 epochs of 3 blocks, with each block 
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consisting of 24 search trials. To keep the experiment as short as possible, learning session 

contained only 12 old-landscape displays to foster learning effect (each of the “old” display 

repeated twice per block). The test session had four epochs, with each epoch consisting of 24 

trials (i.e., one block only). In half of these trials, an old display was presented, and new 

displays in the other half. New displays were randomly generated at the beginning of each 

trial. The order of display modes in the test epochs was fixed: landscape (L), portrait (P), 

portrait (P), and landscape (L). The first test epoch with the landscape mode (i.e., non-

transformed) was intended to test for a “standard” contextual cueing effect. The last test epoch 

was intended for examining whether contextual cueing is still manifested by two intervening 

epochs containing different display modes. In order to avoid confounding by repetition 

effects, we randomly presented trials in such a way that the same old display was never 

repeated within 3 consecutive trials. 

In the learning and test sessions, each trial started with a cross fixation presented in the 

centre of the display. Participants had to press the input button (also serving as the initial hand 

position) to trigger the presentation of the search display. Participants were instructed to 

detect the target and touch its location with their index finger as rapidly and as accurately as 

possible. A blank screen was presented after the localization response, or 4.5 seconds when no 

response was made. When participants made an erroneous response, an additional feedback 

display containing a stop warning sign was presented for 1.0 second. After 1.0 to 1.2 seconds 

of inter-trial interval, the next trial started. 

In the recognition session, participants were asked if they had realized any display 

repetitions during the learning and test sessions and, if so, when they had first noticed the 

repeated displays (note that a similar protocol was used by Chun & Jiang, 1998). Following 

this, they had to judge a total of 24 displays, including 12 new displays (6 landscape and 6 
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portrait displays) and 12 old displays (6 landscape and 6 portrait displays), in an “old-new” 

recognition test. In this test, the chance rate for recognizing a repeated display was 50%. 

Prior to the experiment, participants practiced the experimental task in one training 

block of 24 trials (data not recorded). The search displays used in the practice trials were not 

shown later in the experiment. Participants were allowed to take break in-between successive 

blocks of the experiment. The break between the learning and test sessions was similar to 

other between-block breaks. 

3.3.2. Discussion 

The findings of Experiment 1 suggest that context can be learned with a tunnel view of 

2–3 display items per fixation, but the learned context cannot facilitate search (likely because 

contextual associations cannot be effectively retrieved) under such limited viewing 

conditions. The findings of Experiment 3 further indicate that a brief preview of the whole 

display configuration can help reinstate the contextual-cueing effect even if oculomotor 

scanning is subject to the same restrictions as in Experiment 1; that is, presumably, contextual 

associations may be retrieved in response to the preview display and thus guide scanning 

behavior. Taken together, the pattern of effects indicates that the global context, even if 

available only briefly prior to the search, plays an important role in the retrieval of contextual 

associations.  

3.3.3. Results 

Accuracy performance. Error rates were overall small (<1%) and were comparable 

across all experiments. For further RTs data analyses, we excluded trials with erroneous 

responses and RTs outside the range 200 to 3000ms. Such outliers were also low in general 

(<3%). 
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Figure 3.3 Mean correct RTs as a function of epoch for the learning (epochs 1-5) and test (epochs 6-9) 

sessions; for the latter, mean RTs are shown separately for old displays (denoted by diamonds and 

solid lines) and new displays (denoted by dots and dashed lines). A) Experiment 4, Position-order 

invariant remapping. B) Experiment 5, Global rotation remapping. C) Experiment 6, Local invariant 

remapping. D) Experiment 7, Central invariant remapping. 

Perceptual learning.The mean RTs for the learning sessions are shown in Figure 3.3 

(epochs 1-5). For each experiment, the mean RTs were examined by repeated-measures 

ANOVA with the single factor epoch. The main effect was significant for all four experiments 

(all “p”s<0.05); further Bonferroni tests revealed a significant perceptual learning effect, 

defined as the difference in RTs between epoch 5 (i.e., the end of the training session) and 

epoch 1 (i.e., the beginning of the training session) (see Table 3.1). In addition, to examine 

interference by the introduction of new (both landscape and portrait) displays in the test 

session, RTs for the old displays in the first epoch of the test session (epoch 6) were compared 

to RTs in the last epoch of the learning session. Although RTs were numerically longer in 

epoch 6 compared to epoch 5, the slowing was significant only for Experiment 5 (see Table 
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3.1 and Table 3.2). This suggests that introducing novel displays had only some moderate 

influence on the search task response. 

Transfer of contextual cueing effect. The mean RTs, separately for old and new 

contexts, as function of epoch for the test phase are presented in Figure 3.3 (epochs 6-9). To 

examine the contextual cueing effect, mean RTs were subjected to a repeated-measures 

ANOVA with epoch (6-9) and context (old vs. new) as factors, separately for each 

experiment. The results are summarized in Table 3.2. RTs were significantly faster for old 

displays compared to new displays in all four experiments, indicating robust contextual 

cueing benefits. The main effect of epoch was also significant for Experiments 4, 6, and 7, 

indicating that some perceptual learning also occurred in the test session. Finally, the context 

× epoch interaction was significant for all experiments, reflecting differential cueing effects in 

the different epochs. Post-hoc tests revealed significant contextual cueing to be significant for 

all landscape displays (epochs 6 and 9). By contrast, for portrait displays (in epoch 8), 

significant contextual cueing was evident only in Experiments 6 and 7 (see Table 3.2). Note 

that each epoch in the test session contained only 24 trials, suggesting that the contextual 

cueing effect could be quickly transferred with the local invariant and central invariant 

remapping methods when the display mode was changed.  

Table 3.1 Mean learning effect in the training sessions and interference by the addition of new 

displays in the test session, for each experiment 

Experiment Perceptual learning Interference associated with the presentation of new displays 

 Facilitation (ms) ANOVA Cost (ms) ANOVA 

4 364 P < 0.01 60 p = 0.08 

5 185 P < 0.05 154 p < 0.05 

6 385 P < 0.01 36 p = 0.21 

7 380 P < 0.01 98 p = 0.11 
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Table 3.2 Contextual cueing effects in the test session 

Experi

ment 

Contextual cueing effect (ms)   ANOVA test with F-value 

Average 

(Epoch6~9) 
Epoch6 Epoch7 Epoch8 Epoch9  Context(old/new) 

Epoch  

(6-9) 
Interaction 

4 86 202*** 5 18 120*  9.25* 9.23** 4.49* 

5 120 262*** 7 28 197**  12.48** 1.40 8.80*** 

6 156 223** 50 147* 205**  21.49*** 5.16** 3.07* 

7 163 286** 43 142* 190**  22.42*** 5.63** 3.91* 

The reported significance values are as follows: *: p<0.05; **: p<0.01;***: p<0.001.  

To examine whether contextual cueing effects were comparable among the different 

experiments, a repeated-measure ANOVA was conducted on the cueing effect in the first test 

epoch 6 (with landscape mode), with the single factor experiment. The effect of experiment 

was non-significant, F(3,27) = 0.55, p = 0.65, suggesting that the contextual cueing effects 

were comparable among experiments. Thus, any differences in the subsequent test epochs are 

likely attributable to the particular method of display (icon) remapping.  

Recognition test. Based on participants’ post-experimental reports, we determined the 

percentages of participants who noticed display repetitions during the search task and who 

attempted to explicitly learn the displays; the times (in terms of the number of blocks 

performed) at which these participants first noticed the repetitions were also calculated. We 

then further calculated participants’ mean hit and false alarm rates as well as their 

discrimination sensitivities (d’) for landscape (L) and portrait (P) displays. The results are 

summarized in Table 3.3.  
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Table 3.3 Results of recognition test 

Experi- 

ment 

Noticed  

repetition 

Explicit  

learning 

When 

(blocks) 

Hit  

rates 

False 

 alarms 
d'L d'P d'L= d'P 

4 90% 60% 6.89 76.3% 38.3% 2.17** 1.17* p=0.17 

5 80% 30% 7.25 72.9% 43.3% 1.33** 1.17* p=0.68 

6 90% 20% 5.85 65.1% 28.3% 1.56 2.02* p=0.51 

7 80% 60% 4.75 80% 28.3% 3.42** 1.52* p<0.05 

The reported significance values are as follows: *: p<0.05; **: p<0.01.  

In all experiments, participants exhibited high proportions of recognized displays. The 

recognition sensitivities (d’s) were significantly larger than zero for both landscape and 

portrait displays (p < 0.05), except for one marginally significant effect for the landscape 

display in Experiment 6 (p = 0.066), which was mainly due to one observer who showed an 

extreme negative dH’ score (-1.40).When excluding this participant, dH’ was also significant: 

p < 0.05. Taken together, the significantly positive d’ scores suggest that after learning, 

participants recognized not only the old landscape displays, but also the remapped portrait 

displays in all four experiments. Moreover, there was no significant difference in recognition 

sensitivity between the landscape and portrait displays, at least for the first three experiments 

(see the last column in Table 3.3), indicating that remapping did not hamper explicit 

recognition. Although recognition accuracy was lower for portrait than for landscape displays 

in Experiment 7, the effect was mainly due to the very high recognition sensitivity in the 

landscape mode (see Table 3.3). Nevertheless, even in Experiment 7, the sensitivity for the 

portrait displays was still significantly greater that than zero, supporting the idea that the 

transformed “old” portrait displays can be recognized explicitly. The lack of differential 

recognition sensitivities between landscape and portrait displays in Experiments 4 and 5 is in 

contrast to the differential contextual cueing effects with landscape versus portrait displays. 
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This suggests that recognition and visual search may involve different memory processes, 

with the former recruiting more complex information matching processes that do not benefit 

the search processes. 

3.4. Gernal Discussion 

The present study examined the transfer of learned contextual cues in full-icon display 

remapping. The main goal was to investigate whether contextual cueing continues to facilitate 

icon localization (RT) performance following display mode changes. We compared four 

different types of icon remapping: position-order invariant, global-rotation, local-invariant, 

and central-invariant remapping. In all experiments, robust learning effects were found in the 

training session for the landscape displays. RTs were faster at the end relative to the 

beginning of the training session. This practice effect is likely attributable to general learning 

of the localization task (Schneider & Shiffrin, 1977).  

In the test session, in which new displays were introduced (in addition to the old 

displays), we established a contextual cueing effects in all experiments – at least when the 

display mode was kept the same. This suggests that icon identities and spatial configurations 

among icons could serve as context cues to facilitate the localization task. Note, the 

facilitation effect might also be partially due to position-based learning, given that only “old” 

displays were used in the training session. However, the transfer effects found in the portrait 

displays (Experiments 6 and 7) cannot be fully explained by position-based learning, because 

the positions were changed in the portrait displays and positional repetitions were equated 

between the old and new displays. Interestingly, contextual cueing was evident for landscape 

displays even after the insertion of two epochs of portrait displays. This may be taken to 

indicate that the cueing effect is relative robust against interference within the same set of old 

configurations, consistent with previous studies (Chun & Jiang, 1998, 2003; Conci & Müller, 
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2012; Conci et al., 2011; Jiang et al., 2005; Song & Jiang, 2005; Zellin, Conci, von Mühlenen, 

& Müller, 2011). However, contextual cues acquired with landscape displays were transferred 

to portrait displays only under certain remapping conditions (those of Experiments 6 and 7), 

suggesting that contextual cueing is relatively inflexible and that transfer is confined to 

specific remapping situations.  

The differential pattern of effects revealed among the four experiments raises the 

question as to the factors that modulate the transfer of learned displays. The position-order 

invariant method maintained icons in their same left to right and up to down manner. 

Although 80% of the horizontal relationships are preserved with this transformation, it 

destroys almost all vertical relationships. It also changes the absolute positions of the icons 

dramatically; for instance, position 5 is shifted from the left side in the landscape display 

(Figure 3.1 A) to the right side in the portrait display (Figure 3.1 B). As a result, the target 

location might become unpredictable in remapped displays, abolishing the contextual cueing 

effect (Conci et al., 2011; Manginelli & Pollmann, 2009). Note that, in the current terms, 

predictability refers to both the target’s absolute location on the screen as well as its 

placement within the entire configuration (given that we did not vary the target’s absolute and 

relative location independently).  

When comparing the position-order invariant to the global-rotation method, the latter 

maintains all local icon neighbourhood relationships, but the overall “Gestalt” is rotated by 

90° from the landscape to portrait mode. With this type of remapping, repeated displays failed 

to facilitate RT performance in portrait displays. Possibly, the contextual associations learned 

in the landscape displays were quite instance-specific and too weak for the global-rotation 

remapping. As shown in mental rotation studies (Böckler et al., 2011; Borst et al., 2011; Ionta 

& Blanke, 2009; Shepard & Metzler, 1971; Shomstein & Yantis, 2004). RTs increase linearly 

with increasing angular disparity when participants were asked to decide whether two 
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presented objects are the same or not. Those paired objects were normally “rotated” objects or 

“mirrored” objects, and participants had to carry out mental rotation (rotating one object into 

the other) to solve the task. Applied to the current Experiment 5, although the global rotation 

maintains the local icons neighbourhood relationships, the mapping of a “new” portrait onto 

an “old” landscape display may likewise be a demanding (i.e., time-consuming) process, 

which diminishes any performance gains brought about by contextual cueing. In a previous 

study using 3D visual search, Chua and Chun (2003) also showed that contextual cueing 

decreased with increasing angular difference between viewpoints of training and test displays. 

Thus, demanding mental rotation might be the main reason why we failed to find any transfer 

of contextual cueing from the landscape to the portrait in Experiment 5. It should be noted, 

however, that in our setup, the experimental program presented the “rotated” portrait display 

automatically. That is, participants passively viewed the search displays, rather than carrying 

out the rotation actively. It would be interesting to examine the transfer of contextual cueing 

when participants rotate the displays themselves (i.e., actively).  

In contrast to Experiments 4 and 5, we found significant transfer of contextual cueing 

in Experiments 6 and 7 - in which the portrait display was remapped from the landscape 

display using the local-invariant (Experiment 6) or central-invariant methods (Experiment 7). 

Both experiments disclosed numerical contextual cueing benefits already in the first epoch 

with portrait displays (50.8 and 44ms for Experiments 6 and 7, respectively), although these 

effects were not significant. No contextual cueing in the first portrait epoch is likely due to the 

orientation change of the whole display. Mapping “old” landscape to portrait displays may 

engage additional mental processes, diminishing the contextual cueing effect. In addition, 

inter-observer variability was large since both the “old” and “new” displays were presented 

only once in this epoch. Interestingly, transfer of contextual cueing was highly reliable for 

both remapping methods (147.4 and 142.0ms for Experiments 6 and 7, respectively) in the 
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second epoch. The local-invariant remapping method keeps 5 out of 7 local regions 

unchanged and the global topological relationship of these 5 local regions also remains the 

same. This means that local regions appear at the very same positions (quadrants) in the entire 

configuration after the remapping. Likewise, the central-invariant remapping method 

maintains the absolute icon positions of the 4 outermost corners and the central region (83% 

in total). In both cases, after the remapping, the target position is much better predictable 

compared to both the position-order invariant and the global rotation methods. In contrast to 

previous investigations of contextual cueing, suggesting that only 3-4 repeated items 

(amongst some 8 novel items) can produce the effect (Song & Jiang, 2005), the results of the 

present Experiments 4 and 5 suggest that merely preserving some local invariant information 

does not guarantee transfer of contextual cueing. Instead, the 3-4 items would have to appear 

at the very same positions within the global configuration to observe contextual cueing 

(Experiments 6 & 7; see also Brady & Chun, 2007, for a related proposal, albeit using 

different approach).  

The recognition tests showed that in all experiments, participants were well able to 

discern repeated from non-repeated displays. This contrasts with “standard” contextual cueing 

studies in which recognition accuracy was typically at chance level (Chun & Jiang, 1998). 

Explicit memory effects may be due to the heterogeneous and, importantly, realistic icons 

used as distractors in our experiments (see also Brockmole et al., 2006). Interestingly, in all 

the experiments of the present study, recognition accuracy was larger than chance for all 

landscape and, importantly, remapped portrait displays. In contrast, transfer of contextual 

cueing was observed only in Experiments 6 and 7. This argues that merely recognizing a 

repeated display as an old one does not necessarily mean that this also facilitates RT 

performance. Of interest in this regard, it has been reported that explicit learning of repeated 

displays engages neural processes that are distinct from those concerned with implicit 
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configural learning (Geyer, Baumgartner, Müller, & Pollmann, 2012; Westerberg et al., 

2011). Along these lines, we suggest that recognition and visual search are supported by 

different memory processes. Further, the dissociation between the transfer of contextual 

cueing (Experiments 6, 7) and explicit recognition (Experiments 4-7) suggests that the 

memory underlying explicit learning is more flexible than that underlying implicit configural 

learning. 

In sum, our experiments suggest that when display orientation switches and icons are 

rearranged, the traditional position-order remapping method used in current mobile touch 

devices is suboptimal in aiding search performance. Comparing and contrasting three 

alternative methods of icons remapping, we found that when using local-invariant or central-

invariant remapping, contextual cueing continues to enhance (target) icon localization 

performance. While the global-rotation method may be intuitive for users, it might introduce 

additional mental-rotation processes that are detrimental to localization performance. Our 

findings thus have implications for alternative interface design guidelines for icon 

rearrangement in mobile devices. Open questions awaiting further research concern how to 

optimize local invariance regions and what the effects of active manual rotation are.  
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Chapter 4. Foreground-background 

segmentation influences contextual cueing 

4.1. Abstract 

In previous two chapters, we found that maintaining the local information is critical for 

contextual learning. When the local information is scarce (Chapter 2), or reshuffled (Chapter 

3), the contextual effect can hardly be archived. In Chapter 2, we also found that the 

availability of the global information is important for contextual retrieval. In this chapter, we 

will focus on the following question: whether the association of background context and 

foreground search array can influence contextual learning and retrieval. It has been shown 

that segmentation process influences the selective attention (Wolfe, 2003a), also selective 

attention could influence contextual learning (Jiang & Leung, 2005). However, it is still not 

clear whether foreground-background segmentation affects contextual cueing. In this chapter, 

we conducted three experiments to examine the dependency of item-independent context in 

contextual cueing on the foreground/ background segmentation. In the experiments, together 

with a classical contextual search display (a “T” and “L”s, we presented a task-irrelevant 

geometric cuboid frame, which was not changed during the training session, but was either 

rotated 90º or removed in the subsequent transfer sessions. The cuboid was manipulated as the 

foreground information in Experiment 8, and as the background information in Experiments 9 

and 10. The results showed that the contextual cueing effect was manifested in the training 

session across all experiments. However, the cueing effect diminished when the cuboid was 

changed or removed in Experiment 8, but not in Experiments 9 and 10. These findings 

suggest that segmentation process is prior to the contextual learning process. When the cuboid 
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and search array were both selected in the learning phase, changes of cuboid can destroy the 

learned contexts. In contrast, when the cuboid was automatically segmented out from the 

search array, it has little influence on the contextual learning and retrieval. 

Keywords: image segmentation, selective attention, connectedness   
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4.2. Introduction 

In everyday life we are bombarded with huge amount of sensory inputs. To save 

mental efforts and cognitive resources, we benefit from sophisticated selective attention 

mechanisms that help us select the information that is important for performing a given task, 

while ignoring the irrelevant information (Treisman & Gelade, 1980; Wolfe, 2003a). This 

selective process builds up on prior knowledge or some heuristic cues that influences the 

deployment of attention. One classic example is image segmentation (Driver, Davis, Russell, 

Turatto, & Freeman, 2001a; Martínez et al., 2006). 

The human visual system can effortless segment the observed visual input into 

candidate objects, that is grouping together those retinal inputs that are likely to correspond to 

the same object and separate from those that are parts of the other objects (e.g., Driver et al., 

2001a). A number of studies have observed evidences that image segmentation occurred quite 

early in visual perception, yielding the candidate perceptual units (e.g., foreground task-

relevant objects or information) for further attentional processing and other visual information 

(e.g., background task-irrelevant information) for inattentional processing (e.g., Baylis & 

Driver, 1992; Baylis & Driver, 1993; Driver et al., 2001a; Kim, 2013; Mazza, Turatto, & 

Umilta, 2005).  For example, Mazza et al. (2005) have investigated the foreground-

background segmentation and attention effect administering a change blindness task, in which 

participants had to judge whether any alternation (e.g., color variation) occurred between two 

consecutive displays (consist of foreground / background rectangles) that were intervened by 

a blank interval. The results revealed significantly higher detection sensitivity for the 

foreground change compared to the background change trials. Because of the foreground-

background segmentation, participant’s attention was, by default, biased toward the 

foreground elements, therefore boosting better detection performance.  
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While on one hand the aforementioned studies observed the influence exerted by 

segmentation on deployment of attention, on the other hand, selective attention has been 

observed to change perception and cognitive behavior (e.g., Jiang & Chun, 2001; Jiang & 

Leung, 2005; Treisman & Gelade, 1980; Wolfe, 1994b; Wolfe, 2003a). For instance, it is 

understood that attended visual information is usually processed faster and more accurate 

compared to the information that is not attended (Daniel & Deubel, 2008; Kim, 2013; Mazza 

et al., 2005; O'Regan, Deubel, J., & Rensink, 2000). The behavior of selective attention has 

been meticulously observed in visual search tasks. For example the contextual cueing 

paradigm has proved a useful tool for exploring the facets of attentional selection (e.g., Chun, 

2000; Chun & Jiang, 1998; Geyer, Shi, et al., 2010; Geyer, Zehetleitner, et al., 2010; Jiang & 

Swallow, 2013; Jiang, Swallow, et al., 2014; Jiang, Won, et al., 2014).  In a standard 

contextual cueing paradigm, participants search for a “T”-shape target among a number of 

“L”-shape distractors. Unbeknown to the participants, half of the displays are repeated “old” 

displays (target/distractor’s locations were maintained across block) while the other half was 

“new” displays (items’ locations varied from block to block). These studies found that 

participants learned the repeated spatial configuration as indexed by faster search time for the 

“old” display compared to “new” display. Moreover the configural learning was rendered 

implicit, since participants were unable to tell apart “old” from “new” displays in a memory 

task. Altogether this robust observation is known as contextual cueing effect.  The learning 

and expression of contextual cueing facilitation can be modified by different attentional 

deployment (Endo & Takeda, 2004; Jiang & Chun, 2001; Jiang & Leung, 2005). For instance, 

Jiang and Leung (2005) examined contextual cueing effect by asking participants to search for 

a white target among white and black distractors. After participants learned the constant 

spatial context (with both white and black distractors in constant locations), they were tested 

in a following transfer session with displays that maintained either the white (black varied) or 
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the black (white varied) distractor sets. The results revealed that contextual cueing was 

enhanced with faster search speed when the locations of the target and the attended set (i.e., 

white distractors) but not the locations of the target and the ignored set (i.e., black distractors) 

were repeated, suggesting the selective attention modulates the expression of the contextual 

cueing.  

Because image segmentation is a decisive factor upon the deployment of attention, we 

set-out to answer the question as to whether image segmentation interacts with the behavior of 

selective attention that can be expressed in the contextual cueing paradigm. To date, a number 

of studies have investigated item-dependent grouping and segmentation effect in contextual 

cueing (Conci et al., 2013; Conci & von Muhlenen, 2009; Conci & von Mühlenen, 2011), 

which observed that contextual cueing was significantly reduced for the grouped display with 

respect to the standard display. In their experiments, however, the visual search items were 

grouped and segmented by item’s features (e.g., color, size and etc.); Although these studies 

have investigated the visual segmentation based on grouping factors, these finding are limited 

by the manipulation of item-dependent features, therefore leaving answers the question as to 

whether item-independent features, has an effect on the deployment of attention in the 

contextual cueing task. Furthermore, Conci and colleagures only focused on the gropuping 

effect of foreground context (i.e. visual search items), the different contributions of 

foreground / background context in contextual guided visual search is still unclear. 

In order to investigate whether the item-independent foreground-background 

segmentation influences contextual cueing effect, the current study administrated three 

experiments presenting both visual search items (“T” and “L”s)  and an additional pseudo 3D 

shape on the visual search stimuli. We aimed to answer whether item-independent feature 

information can be encoded together with the spatial configural context (i.e., target “T” and 

distractor “L”s), and whether the expression of contextual cueing depends on the 
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characteristics of the item-independent features (i.e., foreground or background information) 

on the visual search display. We manipulated the features of the item-dependent information 

by constraining the positions and the depth of configural context and a pseudo cuboid shape 

information (i.e., a drawing cuboid shape which is presented on 2D plane, see Figure 4.1 as an 

example) in three experiments. The spatial shape was set as foreground in Experiment 8 and 

as background in Experiment 9 and 10. We first trained participants with visual search 

displays that include both constant configural information and the pseudo cuboid during the 

training session, and then either varied the cuboid or omitted it in the following transfer 

session. Therefore, based on the literature covered herein, we hypothesize that, should the 

pseudo cuboid (item-independent feature) be segmented in relation to the spatial configuration 

in terms of foreground / background associations during the training session, this should alter 

the way in which attentional selection is deployed in the task, thus the well-established 

contextual cueing effect should decrease or be abolished when the cuboid perspective changes 

or when it is absent in the transfer session. Furthermore we propose that contextual cueing 

transfer should be affected when the foreground but not the background item-independent 

cuboid changes in the transfer session. 

4.3. Experiment 8 

Experiment 8 investigated whether a foreground item-independent spatial shape (i.e., a 

pseudo cuboid) helped to group configural context and is encoded in contextual learning and 

expression. Crucially, we examined whether the already learned contextual cueing effect can 

be transferred, when the foreground shape varied or removed. In order to manipulate the item-

independent cuboid as a foreground shape, we presented the visual search items only on the 

edges of the cuboid. In other words, visual search items were connected by the 9 lines that 

formed into the edges of cuboid (see Figure 4.1 as example). As proposed by previous studies 
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(Han, Humphreys, & Chen, 1999; Palmer, 1992; Palmer & Rock, 1994), a uniform 

connectedness between items (i.e., connect the “T” and “L”s in the current experiment) is a 

strong factor in perceptual organization and grouping which occurs at a very early stage.  

Therefore, the item-independent cuboid can be segregated together with the visual search 

items as foreground task-relevant information during visual perception. 

4.3.1. Materials and Methods 

Participants. Participants were given written informed consent in accordance with the 

declaration of Helsinki (2008), and were paid for their participation of 8 Euro per hour. Due 

to the reason that we are mainly interested in the transfer effect of contextual cueing when the 

spatial shape is varied, we only conducted the transfer session for those participants showing a 

positive contextual-cueing effect in the training session. A similar approach has been used in 

previous studies (Conci & Müller, 2012; Conci et al., 2011; Zellin, von Mühlenen, et al., 

2013). In the end, 10 participants (7 females, mean age 26.5 years old) finished both the 

training and transfer sessions.  

Apparatus and Stimuli. The visual stimuli were presented on a 21-inch LACIE CRT 

monitor with a refresh rate of 100 Hz in a dark cabin (2.95 ± 0.95 𝑐𝑑/𝑚2). The viewing 

distance was maintained to 57 cm by the support of a chin rest. The visual display was 

presented on a grey background (6.33 ± 0.91 𝑐𝑑/𝑚2 ), which consisted of two types of 

context: configural context and spatial shape context (see Figure 4.1). The configural context 

comprised of 12 visual search items (each item subtends as 0.8° x 0.8° visual angle, 24.24 ± 

3.39 𝑐𝑑/𝑚2), which included one “T” shape target and eleven “L” shape distractors. Similar 

to previous studies (Jiang & Chun, 2001; Olson & Chun, 2002; Zang, Jia, Müller, & Shi, 

2013), the “L” distractor had a small offset (0.12°) at the line junctions making the “L”s more 

similar to the target stimuli. The spatial shape context was a pseudo cuboid (i.e., a cuboid that 
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is drawing on a 2D plane, see Figure 4.1 for an example), which composed of 9 white lines 

(24.24 ± 3.39 𝑐𝑑/𝑚2, with 12°x12° of visual angle). Two type of the cuboid was used in the 

present experiment: “up-tilted” pseudo cuboid and “down-tilted” pseudo cuboid. The square 

face of the “up-tilted” pseudo cuboid located in quadrant I (the right-up quadrant, see Figure 

4.1, the cuboid used during the training session), while the “down-tilted” pseudo cuboid was 

formed by rotating the “up-tilted” pseudo cuboid 90° clockwise (see Figure 4.1, the pseudo 

cuboid used during the transfer session). 

In each search display, “L” shapes could appear in one of the four orthogonal rotations 

(rotated as 0°, 90°, 180° or 270°), while “T” shapes were rotated 90° either clockwise or 

counter-clockwise, pointing to the right or to the left (requiring a “left” or, respectively, 

“right” response – see below). Both “T” and “Ls” were randomly located in a 36 possible 

spatial locations inside an invisible 11x11 grid square area, each location subtended as 1.2° x 

1.2° of visual angle. The 36 possible item locations were selected on the edges but not vertex 

of the trained “up-tilted” cuboid (see the left panel in Figure 4.1A). In this way, the pseudo 

cuboid was tightly related to the configural items, therefore, serves as foreground task-

relevant information.  
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Figure 4.1 Stimulus configurations and schematic paradigm used in Experiments 8, 9 and 10.  Left 

panel: Possible positions (gray grids) for search items in three experiments respectively. The visual 

search items were presented on the edges on the pseudo cuboid in Experiment 8 and 9 (A, B), however 

spread over the whole display except on the edges of the cuboid in Experiment 10 (C).  The grids, 

numbers, and the grey color were invisible during the actual experiments. The background cuboid was 

inside an 11×11 matrix area, which subtended as 13.2°×13.2°. Right panel are schematic illustration of 

three sessions used in the experiments: the training session (block 1-28), the first transfer session 

(block 29-30), and the second transfer session (block 31-32). For “old” item-based configurations, 

each target was paired with a particular consistent distractor sets, repeated once per block; while for 

the novel item-based configuration, the target was paired with newly generated distractor sets for each 

presentation. The global background, however, was the same for both repeat and novel displays, with 

the “up-tilted” cuboid in the training session, “down-tilted” during the first transfer session, and was 

removed during the second transfer session. Of note, the visual stimuli used in Experiment 9 (B) was 

similar as the stimuli used in Experiment 8 (A) except the pseudo cuboid was presented on different 

depth plane compared to the configural context. The display was plotted from a -45° of view angle in 

order to show the depth information well. In the real experiment, however, participants view the 

display from the front of the visual search items. 
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Procedure and design. Participants were asked to discriminate the orientation of a 

target letter “T” among 11 distractor “L”s on the display as fast and accurate as possible by 

pressing a key, either the left or the right arrow key on the keyboard, using their index fingers. 

Each trial started with the presentation of a central fixation cross for 800-1000ms, which 

immediately followed by the search display. The search display remained on the screen until a 

response was made or the presentation exceeded 10 seconds. The next trial automatically 

started after a random interval of 1.0-1.2 seconds. As shown in Figure 4.1A, the experiment 

consisted of a 28-block training session, two 2-block transfer sessions and a 1-block 

recognition session. Each block of 16 trials contains 8 “old” and 8 “new” displays, randomly 

intermixed with each other. For the “old” displays, the configural context (with one “T” shape 

target and eleven “L” shape distractors) was consistent in both identities and locations, 

repeated once per block. For the “new” displays, however, the configural context varied by 

coupling a particular target location with newly generated distractor sets for each presentation. 

Importantly, the orientation of the target was randomly chosen in each trial for both “old” and 

“new” displays, so that the target’s orientation itself won’t lead to any context facilitation 

between “old” and “new” context. 

During the training session, an “up-tilted” foreground pseudo cuboid, with visual 

search items presented on its edges (but not vertexes), served as the task-relevant scene for 

both “old” and “new” displays. Since the cuboid was identical, it cannot cue the target’s 

location better for the “old” compared to the “new” displays. Any differences in search 

behavior between the “old” and “new” displays should either be due to configural context 

(“old” vs. “new”), or due to the interaction of task-relevant cuboid and the search items. In a 

subsequent transfer session, the task-relevant cuboid was rotated 90° clockwise into a “down-

tilted” cuboid for both “old” and “new” displays to examine whether the learned contextual 

cueing, if any, can be transferred to the displays regardless of the change of the foreground 
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pseudo cuboid. The configural context was maintained constant across different sessions for 

the “old” displays. With this variation, most of the visual search items (more than 88%) were 

not on the edges of the “down-tilted” cuboid, thus clearly destroys the association between the 

task-irrelevant cuboid and the search array. In a second transfer session, however, the 

foreground pseudo cuboid was removed (“no-cuboid”), served as the baseline, to investigate 

if the spatial context can be learned and retrieved in depend of the landmark information.  

Once the search task was completed, participants performed a block of recognition 

task, which includes original 8 repeated and another 8 newly generated displays, with both 

types of the display presented without pseudo cuboid in order to examine whether participants 

had learned the configural context explicitly or not. Each display was presented for 20 s, and 

participants were informed that around half of the display was repeated display and the other 

half was new display. The task was to decide whether they had seen the current given display 

in the former visual search task or not, by manual key press input (left arrow key for “yes” 

and right arrow key for “no”). Prior to the experiment, participants practiced the search task 

with “up-tilted” cuboid in one block of 16 trials. The configural context of search displays 

used in the practice trials were not shown later in the experiment. Participants were allowed to 

take a break in-between successive block of the experiment. 

4.3.2. Results 

Search task. To increase the power of statistical analysis, every 7 consecutive blocks 

in the training session were grouped into one epoch, forming epochs 1-4, and every transfer 

session (2 blocks) was grouped into one epoch, forming epoch 5 (i.e., transfer session I) and 

epoch 6 (i.e., transfer session II) respectively. Trials with erroneous responses or reaction 

times (RTs) that were outside the range 0.2s and 3 standard deviations were excluded for 

further analysis. Both the overall mean error rates and outliers were low (mean error rates: 
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1.04%; outliers: 2.29%). The error rates were comparable across all conditions: context, F(1, 

9) = 2.22, p = 0.17, ηp² = 0.20, epoch, F(2.03, 10.73) = 1.92, p = 0.18, ηp² = 0.18, and 

interaction, F (2.26, 9.53) = 1.61, p = 0.22, ηp² = 0.15, showing no improvement in accuracy 

by training. The overall results of the 10 participants are presented in Figure 4.2. 

 In the training session, repeated-measures analysis of variance (ANOVA) for reaction 

time (RT) with context (“old” vs. “new”) and epoch (1~4) as factors, revealed significant 

context effect, 𝐹(1, 9) = 8.48, p < 0.05, ηp² = 0.49, with 213 ms faster for the old displays 

compared to the new displays, as well as epoch effect, 𝐹(1.21, 10.92) = 22.36, p < 0.01, ηp² = 

0.71, with 340 ms faster in epoch 4 compared to epoch 1, but no interaction effect, 𝐹(3, 24) = 

2.47, p = 0.08, ηp² = 0.22.  

 

Figure 4.2  Results of the three Experiments. A) The results of Experiment 8 when the visual search 

items were presented on the edges of the cuboid. B) The results of Experiment 9 with 3D disparity 

vision; C) The results of Experiment 10 when the visual search items were presented on the empty 

space of the cuboid.  Mean reaction times with associated 95% confidence interval, are shown as a 

function of experimental epoch and display context (“old”, indicated by solid-diamond lines, vs. 

“new”, indicated by dash-dot lines). Epochs 1-4 represent the training session, Epochs 5 and 6 

represent the two transfer sessions respectively. 
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In the transfer sessions, participants tend to show faster response for old display 

compared to new display, however, this trend was neither significant in epoch 5 nor in epoch 

6, manifested by one-way repeated measures ANOVA analysis: in epoch 5, F (1, 9) = 0.008, 

p = 0.93, ηp² = 0.001, with mean effect of -5ms; in epoch 6, F(1, 9) = 1.96, p = 0.20, ηp² = 

0.18, with mean effect of 145ms. In addition, JZS Bayes factors (null / alternative) (Rouder et 

al., 2009) were calculated for epoch 5 and 6 to check whether our results favored the null 

hypothesis. According to Jeffries (1961), a value greater than 3 provides solid evidence for 

choosing the null hypothesis. The JZS Bayes factor was 4.29 for epoch 5 supporting the null 

hypothesis of the absence of contextual cueing, and was 1.85 for epoch 6 which provide 

“some” evidence for the absence of contextual cueing effect. The less solid evidence of null 

hypothesis and the trend of contextual facilitation in epoch 6 were mainly due to two out of 

ten participants who were significantly faster for the “old” configuration compared to the 

“new” configuration (> 700 ms). When excluded these two participants, there was no 

significant contextual facilitation any more, F(1, 7) = 0.07, p = 0.20, ηp² = 0.18, JZS Bayes 

factor = 3.79, mean effect of 7 ms, suggesting the well-established contextual cueing cannot 

be preserved for most of the participants when the foreground cuboid was removed. In 

summary, these results suggest that although the cuboid itself does not indicate target’s 

location, the item-independent cuboid is integrated together with the configural context during 

contextual learning. Therefore, when the identity of the foreground cuboid was changed or 

removed, the context facilitation disappeared. 

Recognition results. Those trials with response exceeded 20s were excluded for 

further analyses. In total only 0.42% of data was discarded. Participants’ mean hit rate (i.e., 

correctly identified old configuration) was 60.54%, which was numerically higher than the 

false alarm rate (48.75%). However, this difference was not significant, F(1, 9) = 1.80, p = 

0.21, ηp² = 0.17. The JZS Bayes factor (1.98) provided “some” but not strong evidence for the 
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null hypothesis, suggesting participants cannot recognize the repeated configuration 

explicitly. Further subject-wise analysis revealed that the recognition sensitivity (d’) was not 

correlated with the magnitude of contextual cueing in the last epoch of the training session, r 

= 1.63, p = 0.65, suggesting explicit memory (if any) is not a determination of contextual 

cueing effect.  

4.3.3. Discussion 

When the visual search array were presented on the edges of the pseudo cuboid, 

forming a foreground task-relevant shape during the training session, the learned contextual 

cueing can hardly be retrieved when the cuboid was rotated or removed during the transfer 

session. Of note, the missing of contextual cueing during transfer session may due to two 

possible reasons: on the one hand, the learned spatial context memory during the training 

session was constructed in part with reference to the foreground pseudo cuboid although the 

cuboid did not provide any informative spatial information about the target’s location. In 

other words, the foreground cuboid was encoded during contextual learning. Given that the 

visual search items are linked by the edges of the foreground cuboid, which lead participant’s 

spatial context representation to a cuboid- or partial cuboid like object. As a result, the learned 

contextual cueing is sensitive to the change of the spatial pseudo cuboid. In this case, if we 

can dissociate the tight relationship between visual search items and the cuboid in further 

experiments (i.e., a background cuboid), the variation of cuboid in the transfer session won’t 

impede contextual cueing. On the other hand, the contextual learning may be independent of 

the pseudo cuboid that is the spatial context memory was constructed merely based on the 

configural context. However, the variation of the cuboid during the transfer session may block 

participant’s ability to retrieve the learned spatial memory therefore impeded the learned 

contextual effect.  If this is the reason that we observed no contextual facilitation during the 
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transfer session of Experiment 8, the rotation or omission of the cuboid would always block 

participant’s ability to retrieve the well-established cueing no matter this cuboid is presented 

as foreground or background. In addition, what still equivocal with respect to the current 

experiment are: are all types of pseudo 3D shapes that are presented together with configural 

context on the visual search display were encoded during contextual-guided visual search? Do 

the contributions of the pseudo 3D shapes in contextual cueing depend on their properties 

(e.g., foreground vs. background information)? Due to the reason that attention is biased 

towards the foreground element (e.g., Mazza et al., 2005), and it is indispensable for 

successful contextual learning and expression (Jiang & Leung, 2005), a background task-

irrelevant shape may play a different role in contextual cueing in comparison with foreground 

task-relevant shape information. In order to investigate these questions, we designed a second 

experiment which manipulated the pseudo cuboid as background task-irrelevant information 

on the display. 

4.4. Experiment 9 

Experiment 9 is designed to address the question whether the encoding of 3D shape in 

contextual learning is limited to the foreground task-relevant shape, or can encompass 

background task-irrelevant shape. The method was essentially the same as in Experiment 8, 

except 3D layout formulated by binocular disparity vision was adopted as the visual search 

stimuli. In order to generate the 3D layouts, Experiment 9 was conducted in a different lab 

cabin mounted with a 3D projector inside. Hence, some minor differences of the visual 

stimuli and apparatus between Experiment 8 and 9 exist, and they are described in the 

following part.    
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4.4.1. Materials and Methods 

The configural context (includes one “T” and eleven “L”s) was still presented at the 36 

possible item locations that are limited to edges but not the vertex of the pseudo cuboid (see 

Figure 4.1 B as an example). Nonetheless, the pseudo cuboid and the configural context were 

presented in different depth planes, providing configural context on the fixation plane (i.e., the 

frontal plane) and the cuboid on the back plane. As mentioned by (Nakayama & Silvermann, 

1986) that human are able to perform a parallel search in one depth plane without interference 

from visual information in another depth plane, the background task-irrelevant cuboid in the 

current experiment may be sequestered from the configural context during contextual 

learning. Therefore, the variation of the pseudo cuboid may not decrease the well-established 

contextual facilitation. 

Participants. Similar as in Experiment 1, only the participants who showed positive 

contextual-cueing effect in the training session were recruited in the transfer session. In the 

end, 10 participants (8 females, mean age 26.1 years old) finished the whole experiment, 

including both the visual search and recognition task. 

Apparatus and Stimuli. The visual stimuli were presented by a 3D compatibility 

Optoma projector (HD131Xe) to a white canvas. The refresh rate of the projector was set as 

120 Hz, and the display mode was set as 3D SBS (side by side). Note that the projector’s 

refresh rate was divided into left/right eye by Optoma ZF2100 3D glasses, and the final 

refresh rate for participant’s left or right eye was 60 Hz.  The experiment was conducted in a 

dark cabin (13.2 ± 6.67𝑐𝑑/𝑚2) and the viewing distance was maintained to 77 cm by the 

support of a chin rest. The fixation plane (i.e., the frontal plane) was defined by a grey 

rectangle area (56.78 ± 1.23𝑐𝑑/𝑚2, with a size of 16°×16°, see Figure 4.1 B, right panel as 

examples) which enclosed either configural context (i.e., the visual search stimuli) or the 

fixation cross (i.e., the fixation display). This grey rectangle area was always available during 
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the experiment. The configural context included a “T” and eleven “L”s (0.8° × 0.8° in visual 

angle, 97.62± 2.35𝑐𝑑/𝑚2) was presented on the center area (with a size of 13.2° × 13.2°) of 

the frontal fixation plane. A pseudo cuboid composed of nine lines (97.62± 2.35𝑐𝑑/𝑚2) was 

presented on a back plane with a visual distance around 6 cm hinter the fixation plane when 

participants visual the display with 3D disparity glasses. Importantly, although the configural 

context and the pseudo cuboid were presented on different depth planes, the visual search 

items were visually on the edges of the pseudo cuboid. With these experimental settings, the 

pseudo cuboid was manipulated as background task-irrelevant cuboid which can be easily 

segregated from the configural context. 

4.4.2. Results 

Search task. Similar to the analysis used in Experiment 8, the trials were grouped into 

epochs 1-4 for the training session, and epochs 5 and 6 for the transfer session. Trials with 

erroneous responses or reaction times (RTs) that were outside the range of 0.2s and 3 standard 

deviations were excluded for further analysis. Both the error rates and the ratio of outliers 

were low (mean error rates: 1.58%; outliers: 2.96%). The error rates were comparable across 

all conditions: context, F(1, 9) = 0.39, p = 0.55, ηp² = 0.04, epoch, F(5, 45) = 1.57, p = 0.19, 

ηp² = 0.15, and interaction, F(5, 45) = 0.48, p = 0.79, ηp² = 0.05, showing no improvement in 

accuracy by training. The overall results are presented in Figure 4.2 B. 

In the training session, repeated-measures analysis of variance (ANOVA) for reaction 

time (RT) with context (“old” vs. “new”) and epoch (1-4) as factors, revealed significant 

context effect, F(1,9) =17.94, p < 0.01, ηp² = 0.67,  with 201ms faster for the old displays 

compared to the new displays, as well as epoch effect, F(1.46, 13.13) = 6.00, p < 0.01, ηp² = 

0.40,  with 166ms faster in epoch 4 compared to epoch 1, and interaction effect, F(3, 27) = 

3.13, p < 0.05, ηp² = 0.26. The significant interaction effect was mainly due to marginally 
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significant differences between old and new contexts during the first epoch, F(1, 9)  = 4.77, p 

= 0.06.  

In the transfer sessions, one-way repeated measures ANOVA showed significant 

contextual cueing effect in both epoch 5, F(1, 9) = 7.63, p < 0.05, ηp² = 0.46, with 269ms 

faster for old context compared to new context, and epoch 6, F(1, 9) = 7.45, p < 0.05, ηp² = 

0.45, with 188ms faster for old context than new context. These results suggested that spatial 

context can be learned independent of the pseudo cuboid during the training session when it 

was presented on a different depth plane compared to the configural context. Although the 

configural items were still presented on the edges of the cuboid (same as experiment 8), the 

learned contextual cueing was maintained when the cuboid was changed or removed. 

Recognition results. All the trials were responded within 20 s. The mean hit rate was 

46.24%, which revealed no significant difference from the false alarm rate (52.5%), F(1, 9) = 

1.0, p = 0.34, ηp² = 0.1, JZS Bayes factor = 2.74, suggesting participants can not explicitly 

recognize the old configuration after the executing of the visual search task under 3D 

condition. Further subject-wise analysis revealed that the recognition sensitivity (d’) was not 

correlated with the magnitude of contextual cueing in the last epoch of the training session, r 

= 1.64, p = 0.65.  

4.4.3. Discussion 

In this experiment, the configural context and the item-independent cuboid were 

presented on different depth planes on the visual display. Although the search array was still 

presented on the edges of the pseudo cuboid, it can be easily segregated from the configural 

context. Interestingly, we observed the learned contextual cueing with “up-tilted” cuboid in 

the training session was maintained when this cuboid was rotated or removed in following 

transfer sessions. These results suggested that the spatial configural context can be learned 
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independent of the background task-irrelevant cuboid, and the variation of the cuboid itself 

won’t block contextual retrieving. Due to the reason that the visual stimuli in Experiment 9 

were very similar to the stimuli in Experiment 8, by keeping the similar visual item 

arrangement (i.e., all of the visual search items were presented on the edges of the pseudo 

cuboid), the foreground-background segmentation effect can be the crucial factor that leads to 

different contributions of the pseudo cuboid in contextual learning. In other words, the 

repeated spatial context can be learned independent of the background task-irrelevant cuboid 

but with reference to the foreground task-relevant cuboid.  Of note, some implications of the 

findings in Experiment 8 and 9 may lead to different observations. For example, the 

additional depth information involved in the two experiments, the different experimental 

environments (e.g., the different luminance of the environment and the visual stimuli, the 

visual distance, the use of the 3D glasses and so on) may lead to different observations. In 

order to rule out these effects, Experiment 10 was designed and conducted in the same cabin 

as used Experiment 8. 

4.5. Experiment 10 

4.5.1. Materials and Methods 

The method was essentially the same as in Experiment 8, and both the configural 

context and the pseudo cuboid were presented on the same depth plane; no depth information 

was involved in this experiment. It should be note that, in this experiment, the pseudo cuboid 

was controlled as a background task-irrelevant information (similar as in Experiment 9) to 

further clarify the foreground-background segmentation effect in contextual cueing. In order 

to achieve this, the search items were not constrained to the edges of the cuboid shape, rather 

they were located anywhere else (see Figure 4.1 C, left panel, the 78 possible item locations 
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inside the whole 13.2° x 13.2° square area). With this arrangement, the association between 

configural context and the “up-tilted” cuboid is weak, thereupon the pseudo cuboid was not 

associated to the locations of the items can be considered as background task-irrelevant 

information. It is important to point out that in the first transfer session, in which the cuboid 

was rotated 90° (“down-tilted” cuboid), a part of visual search items (around 15.4% of the 

overall items) do appear on the edges of the “down-tilted” cuboid, which may bring the 

background cuboid to participant’s focus of attention to some degree. Same as in Experiment 

8 and 9, only participants who showed positive contextual cueing effect during the training 

session was selected for further analysis (10 participants with mean age of 26.5 years old were 

selected, 7 of them are females). 

4.5.2. Results 

Search task. Similar to the analysis used in Experiment 8, the trials were grouped into 

epochs 1-4 for the training session, and epochs 5 and 6 for the transfer session. Trials with 

erroneous responses or reaction times (RTs) that were outside the range of 0.2s and 3 standard 

deviations were excluded for further analysis. Both the error rates and the ratio of outliers 

were low (mean error rates: 1.0%; outliers: 2.52%). The error rates were comparable across 

all conditions: context, F(1, 9) = 0.02, p = 0.89, ηp² = 0.002, epoch, F(2.52, 22.67) = 1.83, p = 

0.13, ηp² = 0.17, and interaction, F(5, 45) = 0.59, p = 0.71, ηp² = 0.061), showing no 

improvement in accuracy by training. The overall results are presented in Figure 4.2 C. 

A repeated-measures ANOVA with context (old vs. new) and epoch (1-4) as factors 

was applied to mean RTs and revealed significant differences of epoch, F(1.49, 13.41) = 

13.31, p < 0.001, ηp² = 0.60, with 316 ms faster in epoch 4 compared to epoch 1; as well as of 

context, F(1, 9) = 34.39, p < 0.001, ηp² = 0.79, with 292 ms faster for the old display 

compared to the new display. The interaction was also significant, F(3, 24) = 7.58, p < 0.01, 
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ηp² = 0.46. Further paired sample t-test revealed significant contextual benefit of epoch 2-4 (p 

< 0.01) but only marginally significant of epoch 1 (p = 0.05), indicating both contextual 

cueing effect and learning effect was manipulated in the training session. One-way repeated 

measures ANOVA analysis in the transfer sessions revealed significant contextual cueing 

transfer effect in both Epoch 5 with “down-tilted” cuboid, F(1,9) = 11.02, p < 0.01,  ηp² = 

0.55, mean effect of 321 ms, as well as in Epoch 6 without cuboid, F(1,9) = 8.39, p < 0.05, ηp² 

= 0.48, mean effect of 137 ms, suggesting the learned contextual cueing facilitation during the 

training session with a background cuboid can be transferred when the cuboid was varied or 

removed. These results stark contrast to the findings obtained in Experiment 8, where a 

foreground cuboid was used.  

Recognition results. All the trials were responded within 20 s. The mean hit rate 

(58.75%) was significantly higher than the false alarm rate (43.75%), F(1, 9) = 7.36, p < 0.05, 

ηp² = 0.45. Further analysis revealed that 5 out of 10 participants were able to recognize the 

old displays by showing at least 25% higher hit rate than the false alarm rate. These results 

suggested that participants were able to remember the old configurations. The relative better 

recognition performance in the current experiment compared to previous experiments may 

due to the grouping effect of the background cuboid. In this experiment, the visual search 

items were easily separated by the cuboid into 5 sub-areas (e.g., inside or outside the cuboid), 

with a mean of 2-3 items in each area; while in Experiment 8 and 9, the visual items were on 

the edges of the cuboid and are difficult to be grouped into sub-areas. The relative small 

number of visual search items in each area are can boost a better explicit memory 

performance. Nevertheless, explicit memory in the current experiment does not help 

participants to maintain the well-established contextual cueing when the cuboid varied or 

removed. These observations confirm our previous study (Shi et al., 2013) that suggest 

recognition and visual search may involve different memory process, with the former 
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recruiting more complex information-matching processes that do not facilitate the search 

processing.  

4.5.3. Discussion 

In Experiment 10, we presented visual search items together with a background cuboid 

on the same depth plane to examine whether the background cuboid can be involved in 

contextual learning. The results showed the learned contextual facilitation during training 

session can be transferred to the display with a varied or removed cuboid. Providing that the 

contextual cueing was manifested in both training and transfer sessions, the background 

cuboid, which was merely presented together with the repeated configural context, was 

probably not encoded into spatial contextual memory. Considering the same experimental 

environments (i.e., same luminance level of the environments and visual stimuli, visual 

distance, no depth information) in Experiment 8 and 10, our results confirm that the 

environmental differences are not the reason which leads to different observations in the first 

two experiments. Instead, the findings in Experiment 10 further confirmed our hypothesis that 

foreground-background segmentation influences contextual cueing effect, proving a 

foreground task-relevant context was learned together with the configural context, but a 

background context was ignored during contextual learning. 

4.6. General Discussion 

In the three experiments conducted in the current study,  participants searched for a 

target on the display consisting of both visual search items and an additional item-

independent pseudo 3D cuboid. The aim of the manipulation was to investigate the interaction 

effects (if any) of foreground-background segmentation and contextual cueing. In order to 

assess different contributions of foreground/background context information in contextual 
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guided visual search, the properties (foreground versus background) of a pseudo 3D cuboid 

were manipulated in three experiments. In the training session of Experiments 8 and 9, visual 

search items were allocated on the edges of the pseudo cuboid but not to the empty space, 

whereas the reverse was true for Experiment 10, that is, the items were allocated off the edges 

in the training session. Of note, the pseudo cuboid was presented on the back of the fixation 

plane (contains visual search items) in Experiment 9 with 3D disparity vision. On this ground, 

the pseudo cuboid served as foreground information in Experiment 8 but background 

information in Experiment 9 and 10. In the subsequent transfer sessions of all three 

experiments, the pseudo cuboid was either rotated 90°, or removed, without any changes of 

the configural context. The results showed that contextual cueing effects were transferred 

from the training to the transfer sessions, only when the cuboid was presented as background 

context in Experiment 9 and 10, but not when the cuboid served as foreground context in 

Experiment 8, suggesting foreground-background segmentation interferes with the contextual 

cueing. Further recognition test revealed that participants explicitly recognized the repeated 

configural context from the novel one in Experiment 10 but not 8 and 9. However, this 

explicit memory was not correlated to contextual cueing transfer effect when the cuboid 

varied, suggesting recognition and visual search may involve different memory process.  

Our finding that the well-established contextual cueing was maintained when the 

background cuboid but not the foreground cuboid varied suggests that the effect of the item-

independent shape information in contextual cueing depends on its foreground/background 

properties. When the visual search items were presented on the edges of the cuboid in 

experiment 1, different items were connected by the 9 white lines that formed the edges of the 

cuboid, therefore providing a uniform connectedness of the visual search items. As proposed 

by previous studies (Han et al., 1999; Palmer, 1992; Palmer & Rock, 1994), the uniform 

connectedness provided an effective way of perceptual grouping, thus, the connected visual 
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search items in Experiment 8 can be grouped together and formed a unique “cuboid-like” 

object. On this ground, we suggest that both the visual search items and the cuboid were 

perceived as foreground context therefore attracting participants’ attention after the 

preattentive segmentation stage (Treisman & Gelade, 1980; Wolfe, 1994b, 2003a) and 

encoded in contextual memory. As a result, the spatial configuration was learned with 

reference to the foreground cuboid in Experiment 8, although the cuboid did not serve as 

spatial cue and could not predict the target’s location. Nevertheless, when presenting the 

visual search items hinter the item plane with disparity vision in Experiment 9, the frontal 

item context can be more salient compared to the hinter cuboid therefore restricting attention 

to the frontal plane and sequestering attentive processing of the hinter plane. The saliency 

effect generated by objects lying in the front plane, thus attracting more attentional resources 

than those lying in the hinter plane was also observed by previous studies (Mazza et al., 2005; 

Nakayama, Shimojo, & Silvermann, 1989). In the Experiment 10, the spatial relationship 

between visual search items and the cuboid was weak even although both of types of the 

visual information were presented with the same depth plane. As a result, the items could be 

easily segregated from the cuboid therefore attracted participants’ attention. In this case, the 

learned contextual facilitation mainly depended on the configural context while the variation 

of the background cuboid in the transfer session didn’t impede contextual cueing. Based on 

these observations, we conclude that, the foreground-background segmentation that occurs 

during preattentive stage affects participant’s deployment of attention, herein leading 

participants to deploy more attentional resources to the foreground context than to the 

background information during the visual search task.  

The finding that contextual learning and retrieving occurs after image segmentation is 

indeed an interesting pheromone. Whereas on one hand,  previous studies on contextual 

cueing proposed that implicitly learned spatial memory can guide participants’ attention to 
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possible targets location (e.g., Annac et al., 2013; Assumpção, Shi, Zang, Müller, & Geyer, 

2015; Brady & Chun, 2007; Chun & Jiang, 1999), boosting a better search performance of the 

repeated displays, on the other hand, other studies (Endo & Takeda, 2004; Jiang & Chun, 

2001; Jiang & Leung, 2005) proposed that attention modulate contextual retrieving. However, 

none of them have investigated at which selective attention (preattentive v.s. attentive) stage 

contextual learning and retrieving occurs. Due to the reason that the filtering-out item-

independent background cuboid by the image segmentation processing stage was not encoded 

in contextual learning, and the image segmentation usually occurs during preattentive stage 

(e.g., Driver et al., 2001a; Nakayama & Silvermann, 1986), we can speculate that contextual 

learning may occurs after preattentive stage. In other words contextual learning occurs during 

attentive stage. This speculation was also hinted by previous studies (Geringswald et al., 

2012; Geringswald et al., 2013a; Zang et al., 2013). For example contextual cueing was 

observed to developed but not retrieved under the tunnel vision manipulation that participants 

can only see the configuration falling inside a limited area around their fixations (Zang et al., 

2013). Therefore, the missing global context makes preattentive processes such as 

segmentation or grouping obsolete for the task, thus advancing to attentive processes in order 

to learn the local context around fixations. These successive samples of the local information 

obtained by para-/foveal vision were then constructed to an overall representation (e.g., De 

Graef, 2007; Deubel et al., 2010) thus boosting contextual facilitation. Interestingly, when 

limiting or removing para-/foveal local information which may impede the attentive 

processing, the repeated spatial context could not be learned. For example, contextual cueing 

never developed for repeated displays with simulated foveal scotoma or fovea degeneration 

(Geringswald et al., 2012; Geringswald et al., 2013a). All in all, although more direct 

evidences should be considered in future studies, it is quite possible that contextual cueing 

occurs during attentive but not preattentive processing.  
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Our findings that the foreground but not background visual information was encoded 

during spatial context learning may provide a unified account for the controversial findings in 

previous studies (Brooks et al., 2010; Kunar, John, et al., 2013; Rosenbaum & Jiang, 2013) 

which investigated the interactions between predictive configural context and predictive item-

independent scene context. For example, Kunar, John, et al. (2013) has demonstrated that 

when the contextual learning was manifested by repeating both the background color and the 

configural search array, preserving either background or configural context was enough to 

maintain contextual cueing. Nevertheless, contextual cueing was largely preserved when the 

configural context was maintained (180ms), and weakly preserved when only the background 

context was available (77ms). In contrast to Kunar, John, et al. (2013)’s findings, another 

study from Brooks et al. (2010) observed a joint learning effect of a natural scene context and 

the configural context. The learned contextual cueing of displays with both scene and 

configural predictive context cannot be retrieved when one type of the contexts was missing. 

A recent study from Rosenbaum and Jiang (2013) makes the view of the contextual 

interaction even more complex, by observing the learned contextual cueing from both 

configural predictive and scene predictive displays could only be transferred to the scene 

predictive (configuration varied) display, but not to the configural predictive (scene varied) 

display. These studies, although with similar experimental settings, observed contradictory 

results, and these contradictions have not been well explained. Fortunately, our findings that 

foreground information is more important in contextual cueing may provide a possible 

explanation. In the study of Kunar, John, et al. (2013), the unique color information, although 

predictive to the target’s location, contained little spatial relations to the search array. Thus 

the color could be segregated as the background context. In this case, it is reasonable that the 

configural learning served as the major source that driving contextual cueing. In Brooks et al. 

(2010)’s experiments, the visual search array (i.e., target and distractors) was presented on the 
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center area of a real nature scene on the peripheral area (e.g., a room scene with chairs and 

tables) of a display. Considering the real nature scene normally contains salient objects (e.g., a 

chair) which may attract participants’ attention, both the configural context and the nature 

scene could be segregated as foreground context to some extent. In this case, repeated spatial 

context could be learned depending on both types of the context information. Therefore, the 

learned contextual cueing facilitation providing both types of context cannot be preserved 

when one type of the context was missing.  Different to Brooks et al. (2010), the predicted 

natural scene of the display in Rosenbaum and Jiang (2013)’s study was spread over the 

display (with a size of 20°×20°). The relatively small visual search items (i.e., one “T” and 

eleven “L”s with the size of 0.56°×0.56°) were sparsely embedded over the natural scene. In 

this way, the configural context was much less salient than the predicted natural scene. 

Therefore the contextual cueing was learned mainly based on the scene context which was 

segregated as foreground information but not dependent on the configural context. To 

conclude, our findings provide direct evidence for the effect of foreground-background 

association in contextual learning and retrieving, and valuable evidences to explain the 

contradictory findings of the previous studies on the interactions of configural context and 

item-independent features. 

In summary, the present findings suggest that the influence of item-independent 

pseudo 3D shape on contextual cueing depends on it foreground/background properties on the 

visual search display. When the pseudo 3d shape is segmented together with the configural 

context, resulting in a putatively foreground perception, any changes or removal of the pseudo 

3D shape may abolish the learned contextual cueing. However, when the pseudo 3D shape 

serves as background task-irrelevant information, the contextual cueing is less influenced by 

the changes of the background context. Our findings highlight the role of the foreground  and 

background contexts in the contextual learning, and point out the possible processing stage of 
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contextual learning (attentive stage).  The foreground/background segmentation between 

different types of context may guide participants’ attention to particular information on the 

visual display during contextual learning, thus modify the roles of different contexts in 

contextual memory. It should be noted, however, in our study, we only applied a pseudo 3D 

cuboid as the item-independent context. To generalize our conclusion, it is necessary to use 

other background contexts in future studies. Nevertheless, our study provides promising 

unification of the influence of foreground-background segmentation in the contextual 

learning.  
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Chapter 5. Deutsche Zusammenfassung 

Visuelle Suche, wie z.B., die Suche nach dem Hefter auf einem Schreibtisch oder die 

Suche nach der Lieblings-Schokolade in einem Supermarkt, ist eine der gewöhnlichsten 

Aufgaben im Alltag, die normalerweise ein aktives Absuchen der visuellen Umgebung nach 

einem bestimmten Ziel beinhaltet. Die Fähigkeit, ein Objekt in einem komplexen Umfeld 

effizient zu lokalisieren wurde im letzten halben Jahrhundert ausgiebig untersucht und viele 

Faktoren, die in der „bottom-up“ und „top-down“-Verarbeitung von visueller Suche beinhaltet 

sind, konnten identifiziert werden (Wolfe, 2003b). Um effektiv mit der Außenwelt 

interagieren zu können, verwenden wir oft relevante Informationen während wir irrelevante 

Informationen ignorieren, um unsere Aufmerksamkeit auf das Ziel zu lenken (Wolfe, 1994a). 

Eine Art solcher relevanter Information ist die Unveränderlichkeit des visuellen Inputs (Chun, 

2000). In den meisten Fällen ist unsere visuelle Außenwelt stark strukturiert und über die Zeit 

hinweg stabil. Folglich ist es für Wahrnehmungsprozesse sehr vorteilhaft, empfindlich auf die 

unveränderte Struktur zu reagieren, da es die Vorhersehbarkeit der Außenwelt steigert 

(Gibson, 1969). Beispielsweise würde die Verwendung unveränderter Hinweise, wie etwa die 

gewöhnliche Position eines Hefters, die sich auf dem Schreibtisch aber nicht unter dem 

Schreibtisch befindet, die Suche nach dem Hefter erleichtern. 

Die Erleichterung durch den unveränderten Kontexts bei der visuellen Suche, die im 

„Contextual Cueing“-Paradigma erfasst wird, hat großes Interesse in der Gemeinschaft der 

visuellen Suche geweckt (z.B., Chun, 2000; Chun & Jiang, 1998; Conci & Müller, 2012; 

Geringswald et al., 2012; Geringswald, Herbik, Hoffmann, & Pollmann, 2013b; Manginelli, 

Langer, Klose, & Pollmann, 2013; McDonnell, Mills, McCuller, & Dodd, 2014). In einem 

klassischen „Contextual Cueing“-Paradigma werden Teilnehmer angewiesen, unter einer 

Reihe von Distraktoren einen Zielreiz auf dem visuellen Suchbildschirm zu suchen. Ohne die 
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Teilnehmer zu informieren, wird die Hälfte der Displays (Anordnung von Zielreiz und 

Distraktoren auf dem Bildschirm) während des Experiments wiederholt dargeboten, während 

die andere Hälfte der Displays immer neu generiert und im Laufe des Experiments nicht 

wiederholt wird. Die Teilnehmer reagieren in der Regel schneller auf bereits gezeigte 

Displays im Vergleich zu den neu generierten Displays („Contextual Cueing“-Effekt), was 

darauf hindeutet, dass der unveränderte Kontext tatsächlich die Suchleistung verbessern kann 

(Chun & Jiang, 1998), 1998).  

Da der unveränderte Kontext durch verschiedene Arten von visuellen Strukturen 

zustande kommen kann, wie z.B., die lokale Anordnung von Suchelementen, die globale 

Struktur oder Hintergrundeigenschaften, ist es wichtig, herauszufinden, welche Rolle diese 

verschiedenen Typen von Kontexten spielen, um den Mechanismus des „Contextual Cueing“-

Effekts zu verstehen. Eine Reihe von aktuellen Studien haben die unterschiedliche Rollen des 

lokalen, des globalen sowie des Hintergrundkontexts im „Contextual Cueing“-Effekt 

untersucht: So haben einige Studien eine große Bedeutung der lokalen Unveränderlichkeit im 

kontextuellen Lernen gefunden. So wurde zum Beispiel gezeigt, dass eine Wiederholung von 

drei bis vier lokalen Elementen in der Nähe des Zielorts (lokaler Kontext) genügt, um einen 

„Contextual Cueing“-Effekt zu produzieren (Brady & Chun, 2007; Olson & Chun, 2002; 

Song & Jiang, 2005). Auf der anderen Seite zeigten weitere Studien (Brockmole et al., 2006; 

Brockmole & Henderson, 2006a) mit Hilfe von Natur-Szenerien als Reize für die visuelle 

Suche, dass der globale unveränderte Kontext wichtig ist, um den gelernten „Contextual 

Cueing“-Effekt zu erhalten. Es wird gezeigt, dass ein gut etablierter „Contextual Cueing“-

Effekt nur übertragen werden kann, wenn der globale Kontext unverändert bleibt und dieser 

unabhängig von der Änderung des lokalen Kontexts ist, aber nicht umgekehrt. Außerdem 

haben Kunar et al. (2006) festgestellt, dass das Hintergrundmuster auch als Prädiktor zur 

Erleichterung der visuellen Suche verwendet werden kann. Obwohl diese Studien wertvolle 
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Ergebnisse darlegen, die uns helfen, die Rollen von verschiedenen Kontexten zu verstehen, 

sind noch eine Reihe interessanter Fragen offen: Da sich in früheren Studien die lokalen und 

globalen Kontexte nicht vollständig gegenseitig ausschließen, ist es noch nicht klar, ob ein 

rein lokal fovealer Kontext ohne globalen peripheren Kontext ausreicht, um einen 

„Contextual Cueing“-Effekt zu induzieren. Außerdem ist auch nicht bekannt, wie die globalen 

und lokalen Kontexte während des kontextuellen Lernens und der Wiederauffindung von 

Reizen miteinander interagieren. Darüber hinaus wird die Interaktion von Hintergrund- und 

Vordergrundkontexten im kontextuellen Lernen ebenfalls diskutiert. 

Aus diesem Grund hat die vorliegende Arbeit, welche aus drei Studien besteht, das 

Ziel, die oben genannten offenen Fragen in Bezug auf die unterschiedlichen Rollen des 

lokalen und globalen Kontexts sowie des Hintergrundkontexts zu untersuchen. Durch die 

Kombination einer durch Augenbewegungen gesteuerten Technik (Duchowski, Cournia, & 

Murphy, 2004; Loschky & McConkie, 2002) und des klassischen „Contextual Cueing“-

Paradigmas untersucht Studie 1 die Wechselwirkungen der lokalen und globalen Kontexte im 

kontextuellen Lernen und beim Wiederauffinden von Reizen. Studie 2 untersucht die Rolle 

der lokalen invarianten Informationen bei der Übertragung des gelernten „Contextual 

Cueing“-Effekts nach Änderung des globalen Kontexts. Zuletzt untersucht die 3. Studie den 

Einfluss der Assoziationsstärke zwischen dem Vorder- und Hintergrund-Kontext in einer 

kontextuell geführten visuellen Suche. 
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5.1. Die Interaktion zwischen der fovealen lokalen und 

peripheren globalen Information im kontextuellen Lernen und im 

Gedächtnisabruf 

Die erste Studie konzentrierte sich auf die Interaktion der fovealen lokalen und 

peripheren globalen Kontexte im kontextuellen Lernen und im Gedächtnisabruf. Insbesondere 

untersuchten wir, ob reine foveale lokale Information, ohne periphere globale Information, 

ausreichend ist, um einen „Contextual Cueing“-Effekt zu generieren. Mit anderen Worten, ist 

es notwendig, ein gewisses Maß an globalem Kontext zu haben, um einen „Contextual 

Cueing“-Effekt zu entwickeln? Um wirklich keine periphere Information bei der Präsentation 

der Stimuli abzubilden, setzten wir eine augenbewegungsgesteuerte Technik zur 

Einschränkung der Sicht in der Trainingseinheit ein (Loschky & McConkie, 2002; Loschky & 

McConkie, 2000; Parkhurst et al., 2000). Diese Technik beschränkt zu jedem Zeitpunkt die 

Sicht auf das Gebiet um die Fixierung. Die Größe des augenbewegungsgesteuerten 

eingeschränkten Sichtkreises wurde in verschiedenen Experimenten auf 8° und 12° 

festgesetzt. Die Teilnehmer mussten den Bildschirm aktiv erkunden, um den Zielreiz unter 

einer Menge von Distraktoren herauszufinden. Um zu überprüfen, ob der unter der 

augenbewegungsgesteuerten eingeschränkten Sicht gelernte „Contextual Cueing“-Effekt, 

wenn er überhaupt auftritt, auch auf einen Bildschirm mit uneingeschränkter Sicht übertragen 

wird oder nicht, wurde in den folgenden Transfersitzungen die eingeschränkte Sicht entfernt 

und die gesamte Anzeige präsentiert. Die Ergebnisse zeigten keinen signifikanten „Contextual 

Cueing“-Effekt während des Trainingsprozesses, wenn der foveale lokale Sichtkreis klein war 

(8°, mit einem Mittelwert von 2,09 von 12 Elementen), aber einen deutlichen „Contextual 

Cueing“-Effekt wenn der Sichtkreis groß war (12°, mit einem Mittelwert von 4,69 von 12 

Elementen). Diese Ergebnisse zeigen, dass der „Contextual Cueing“-Effekt von der Größe der 
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sichtbaren räumlichen Konfiguration abhängt, und dass das Fehlen peripherer visueller 

Information in einer relativen sichtbaren Anzeigengröße (8° Blickwinkel) den 

Gedächtnisabruf von unverändertem Kontext verhindert. Durch Hinzufügen einer kurzen 

Vorschau (150 ms) der gesamten räumlichen Konfiguration vor der 

augenbewegungsgesteuerten eingeschränkten Sicht (8°) erholte sich jedoch der „Contextual 

Cueing“-Effekt. Entscheidend ist, dass alle Experimente signifikante „Contextual Cueing“-

Effekte in den Transfersitzungen zeigten, wenn die gesamte Anzeige sichtbar war. Diese 

Ergebnisse deuten darauf hin, dass der räumlich unveränderte Kontext gelernt und basierend 

auf ausschließlich begrenzter fovealer Information konstruiert werden kann, aber zum 

Gedächtnisabruf des gelernten Kontexts einige periphere Informationen oder eine kurze 

globale Vorschau der gesamten Anzeige erforderlich sind. 

Außerdem ergab eine Analyse des okulomotorischen Verhaltens eine signifikante 

Verringerung der Zahl der Fixationen bei der alten Anzeige im Vergleich zur neuen Anzeige, 

was mit früheren Studien konsistent ist (Peterson & Kramer, 2001; Tseng & Li, 2004; Zhao et 

al., 2012). Das Ergebnis zeigt, dass die wiederholte kontextuelle Konfiguration als Leitfaden 

für die Suche nach dem Zielreiz verwendet werden kann. Darüber hinaus wurde der 

„Contextual Cueing“-Effekt mit einer erhöhten mittleren Fixierungsdauer verbunden, was 

wahrscheinlich eine verbesserte Planung des Wegs der Sakkade zum Zielort reflektiert (Zou 

et al., 2012). 

Abschließend ist zu sagen, dass die Anwendung einer augenbewegungsgesteuerten 

Anzeigenvariation in einem klassischen „Contextual Cueing“-Paradigma uns in Studie 1 

gestattete, die globalen und lokalen Kontexte sauber zu trennen. Die Ergebnisse zeigen 

eindeutig, dass räumlich unveränderte Kontexte basierend auf lediglich 2-3 lokal verfügbaren 

Elementen gelernt werden können, aber die gelernten Kontexte nur wieder abgerufen werden 

können, wenn einige weitere periphere (globale) Informationen verfügbar sind. 
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5.2. Die Rolle der lokalen unveränderten Information bei der 

Übertragung des „Contextual Cueing“-Effekts nach Änderung 

des Anzeigemodus  

In Studie 1 fanden wir heraus, dass der lokale Kontext eine wichtige Rolle beim 

kontextuellen Lernen spielt, während der globale Kontext als Hilfe gebraucht wird, um sich 

an den erlernten Kontext zu erinnern. Zahlreiche aktuelle Studien (Brady & Chun, 2007; 

Olson & Chun, 2001; Song & Jiang, 2005) haben herausgefunden, dass sich kontextuelles 

Lernen zeigt, wenn der lokale unveränderte Kontext bestehen bleibt (z.B., 3-4 visuelle 

Suchitems in der Nähe des Zielreizes konstant halten), der globale Kontext jedoch verändert 

wird (die restliche visuelle Information). Aber vorherige Studien haben eine konstante 

Displaymatrix verwendet, bei der die Orientierung des Suchdisplays unverändert blieb. 

Obwohl sich der Displaymodus für den normalen Monitor kaum verändert (z.B., Querformat), 

kann er sich bei aktuellen, auf Berührung basierenden Mobilfunkgeräten häufig ändern (z.B. 

der Wechsel des Displays zwischen dem Querformat und dem Hochformat eines iPads). 

Deshalb ist es wichtig, herauszufinden, wie sich ein Wechsel des Displaymodus auf das 

Suchverhalten auswirkt, so wie z.B., das Ausfindigmachen eines Zielsymbols bei einem 

Mobilfunkgerät.  

Um herauszufinden, ob der bereits erlernte Kontext erhalten bleiben kann, wenn der 

globale Anzeigemodus vom Querformat zum Hochformat wechselt, hat Studie 2 den Einfluss 

von 4 verschiedenen Methoden, in denen die Icons jeweils neu sortiert waren, auf das 

Suchverhalten verglichen: 1) „unveränderte Reihenfolge“: die von Mobilfunkgeräten 

verwendete einzig verfügbare Neuanordnung der Items: Die Position der Icons in einem 

Anzeigemodus wird auf den anderen Anzeigemodus übertragen, indem einfach die 

Anordnung der Icons beibehalten wird von der linken oberen Ecke bis zur rechten unteren 
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Ecke. Dabei ist es wichtig zu erwähnen, dass bei der „unveränderten Reihenfolge“ meist die 

lokalen Beziehungen der Items zueinander zerstört werden, besonders wenn der ganze 

Display ein Rechteck ist (was bei den meisten Mobilfunkgeräten der Fall ist.) 2) „globale 

Drehung“: Vergleichbar mit der Drehung eines Objekts in unserer physikalischen Welt, dreht 

sich der gesamte Display um 90° im Uhrzeigersinn während die individuelle Ausrichtung der 

Icons direkt nach der Neuanordnung beibehalten wird. 2) „lokal unverändert“: fünf lokale 

Bereiche der gesamten Konfiguration bleiben nach der Neuanordnung der Icons erhalten. 4) 

„zentral unverändert“: Das zentrum des Displays bleibt nach der Neuanordnung der Icons 

unverändert. Sowohl die Methoden „lokal unverändert“ als auch „zentral unverändert“ zielen 

auf einen maximal konstanten lokalen Kontext nach der Neuanordnung ab. Wir verwendeten 

das klassische kontextuelle Paradigma für diese 4 Neuanordnungs-Methoden, um 

herauszufinden, bei welcher Methode der Neuanordnung der erlernte unveränderte Kontext in 

einem Anzeigemodus auf den anderen Anzeigemodus übertragen werden kann. Der visuelle 

Display, der in Studie 2 verwendet wurde, setzte sich aus 24 alltäglich verwendeten Icons 

(z.B., das Skype-Icon) zusammen, die entweder im Querformat (ein 4x6-Format mit 4 Icons 

pro Spalte und 6 Icons pro Reihe) oder im Hochformat (ein 6x4-Format mit 6 Icons pro Spalte 

und 4 Icons pro Reihe, wie in Figur 3.2). Die Teilnehmer wurden instruiert, nach einem 

Zielicon zu suchen, das mit dem Buchstaben „T“ überspielt wurde. Die visuelle Suchaufgabe 

der vorliegenden 4 Experimente in Studie 2 beinhaltete 2 Sitzungen: Das Training und die 

Testsitzung. Während des Trainings wurden 12 unveränderte Displays im Querformat 

zufälligerweise generiert und wiederholt präsentiert. In der anschließenden Testsitzung haben 

wir in der Hälfte der Durchgänge neue Displays eingeführt, um zu vergleichen, ob ein 

kontextueller Effekt im selben Anzeigemodus zustandekommen kann und ob der kontextuelle 

Effekt auf den anderen Anzeigemodus übertragen werden kann, basierend auf den eben 

genannten 4 Methoden der Neuanordnung der Icons. Die Ergebnisse enthüllten einen robusten 
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„Contextual Cueing“-Effekt im Training für alle 4 Experimente und die erlernte kontextuelle 

Erleichterung blieb auch nach zwei dazwischenliegenden Blocks mit dem Hochformat-Modus 

erhalten. Interessanterweise wurde der erlernte „Contextual Cueing“-Effekt für das 

Querformat nur dann erfolgreich auf das Hochformat übertragen, wenn die Icons auf dem 

Display durch die „lokal unveränderte“ und die „zentral unveränderte“ Methode neu 

angeordnet wurden, aber nicht bei der „unveränderten Reihenfolge“ und der „globalen 

Drehung“ Methode. Diese Ergebnisse lassen darauf schließen, dass die klassische 

„unveränderte Reihenfolge“-Anordnungsmethode, die in aktuellen Mobilfunkgeräten 

verwendet wird, nicht die optimale Methode ist, um das Suchverhalten des Gebrauchers zu 

verbessern. Zudem ist die „globale Drehung“ Methode, obwohl sie für Benutzer intuitiv 

erscheint, nicht von Vorteil für das Suchverhalten des Benutzers nach dem Wechsel des 

Anzeigemodus, da wahrscheinlich zusätzliche Prozesse in der mentalen Drehung für den 

gedrehten Anzeigemodus benötigt werden (Böckler et al., 2011; Borst et al., 2011; Ionta & 

Blanke, 2009; Shepard & Metzler, 1971; Shomstein & Yantis, 2004). Hervorzuheben ist, dass 

der erlernte Kontext bei der „lokal unveränderten“ und „zentral unveränderten“ Methode 

beibehalten werden konnte, da das Beibehalten von lokal regionalen Konfigurationen und der 

topologischen Beziehung zwischen diesen Regionen der Schlüssel zum Erhalt des erlernten 

räumlichen Kontext beim Wechsel des Anzeigemodus ist. 

5.3. Einflüsse von Informationen des Vorder- und Hintergrunds 

im räumlichen Kontextlernen und Kontextabruf  

Die drei Experimente (Experimente 8, 9 und 10) des dritten Teils der Dissertation 

konzentrieren sich auf die Interaktion zwischen Vordergrund und Hintergrund in der 

kontextuell geführten visuellen Suche. Genauer gesagt konzentrierten wir uns auf die Frage, 

wie die unterschiedlichen Kontexte zwischen Hintergrund- und Vordergrundinformationen 
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den „Contextual Cueing“-Effekt beeinflussen. Ein klassisches „Contextual Cueing“-

Paradigma wurde in drei Experimenten herangezogen. Zusätzlich zu dem klassischen 

„Contextual Cueing“-Paradigma wurde eine item-unabhängige geometrische Form (d.h. ein 

Rahmen in Form eines Quaders) unter der Item-Anordnung (die 1 „T“ und 11 „L“s beinhaltet) 

angezeigt. Wichtig ist, dass die Eigenschaften der item-unabhängigen Informationen durch 

Änderung der Positionen und der Tiefen zwischen der Item-Anordnung und der Quader, 

während der Trainingsphase auf verschiedene Arten variiert wurde. Die geometrische Form 

wurde als Vordergrund der Trainingsphase des Experiments 8 aber als Hintergrund der 

Experimente 9 und 10 eingestellt. In der anschließenden Transfersitzung wurde der Quader 

entweder um 90° gedreht oder ganz entfernt, um zu untersuchen, ob das „Contextual Cueing“ 

durch die Änderung der Quader-Form beeinflusst wird. Die Ergebnisse der 

Trainingssitzungen bestätigten einen signifikanten „Contextual Cueing“-Effekt in allen 

Experimenten. Während der anschließenden Transfersitzungen zeigte sich, dass der erlernte 

„Contextual Cueing“-Effekt zwar in der Bedingung zerstört wurde, in der die Änderung der 

Vordergrund-Quader stattfand (Experiment 8), jedoch nicht in derjenigen, in der die 

Änderung der Hintergrund-Quader (Experimente 9 und 10) stattfand. Diese Ergebnisse lassen 

darauf schließen, dass der Quader und die visuellen Items im Vordergrund während des 

kontextuellen Lernens zusammen erworben werden, wenn der Quader als Vordergrund 

Informationen präsentiert wurde. Als Ergebnis lässt sich festhalten, dass der erlernte 

„Contextual Cueing“-Effekt bei einem Wechsel des Quader -Kontexts empfindlich ist und 

dass jede geringe Änderung des Hintergrunds den erlernten „Contextual Cueing“-Effekt 

zerstören kann. Im Gegensatz dazu kann Anordnung des Vordergrund-Kontexts unabhängig 

vom Hintergrund während der Trainingsphase erlernt werden, und der erlernte „Contextual 

Cueing“-Effect kann auf Displays mit einem anderen Hintergrund übertragen werden.  
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Zusammenfassend lässt sich sagen, dass die Ergebnisse der dritten Studie einen 

direkten Beweis für den Effekt der Assoziation zwischen Hintergrund und Vordergrund im 

kontextuellen Lernen und Wiederauffinden liefern. Die Quaderinformation wird während dem 

kontextuellen Lernen quasi ignoriert, wenn die Quaderinformation auf verschiedene 

Tiefenebene im Vergleich zu der Item-Anordnung präsentiert wird (z.B. der Quader, der in 

Experiment 9 verwendet wurde), oder wenn sie nicht stark mit den Items im Vordergrund 

assoziiert wird (z.B. der Quader, der in Experiment 10 verwendet wurde). Wenn die 

Quaderinformation jedoch stark mit dem Kontext im Vordergrund assoziiert wird (z.B., der 

Quader, der in Experiment 8 verwendet wurde), wird der Quaderkontext meist in das 

kontextuelle Lernen bei der Anordnung der Reize im Vordergrund integriert. Deshalb kann 

der bereits erlernte „Contextual Cueing“-Effekt bei verändertem Quader zerstört werden. 

5.4. Bewusstsein und okulomotorische Korrelationen in der 

kontextuell geleiteten visuellen Suche 

In allen vorliegenden Studien wurde das Bewusstsein über das erlernte kontextuelle 

Gedächtnis erforscht. Es wurde sowohl implizites als auch explizites Lernen gefunden: 1) In 

der ersten Studie konnten die Teilnehmer wie in vielen anderen Studien zum „Contextual 

Cueing“ (z.B., Chua & Chun, 2003; Cleeremans, Destrebecqz, & Boyer, 1998; Jiang, Won, et 

al., 2014; McDonnell et al., 2014) nicht explizit die wiederholten bzw. neuen Displays 

identifizieren, wenn die Displays nur in einem durch die Blickbewegung eingeschränkten 

Bereich sichtbar waren (Experimente 1 und 2). Jedoch führte eine kurze, zusätzliche 

Vorschau des ganzen Displays vor jedem Durchgang zu explizitem Lernen (Experiment 3). 

Wir vermuteten, dass die kurze Vorschau auf das gesamte Display vor der durch die 

Blickbewegung begrenzten Sicht zusätzliche Aufmerksamkeit auf die räumliche 

Konfiguration des gesamten Displays lenkt. Darum kann man die Konfigurationen explizit 
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lernen. Dennoch sollte beachtet werden, dass das explizite Lernen nicht mit der Stärke des 

Kontexteffekts korreliert, was darauf hindeutet, dass die Verwendung von explizitem Lernen 

nicht unbedingt einen zusätzlichen Beitrag zum Kontexteffekt bringt. 2) In Studie 2 erkannten 

Teilnehmer nicht nur die alten Landschaftdisplays, sondern auch die neu zugeordneten 

Porträtdisplays in allen vier Experimenten (4-7), möglicherweise aufgrund der umfangreichen 

Eigenschaften, die durch die verschiedenen Symbole geboten werden. Sie bestehen aus 

Reizen für visuelle Suche. Aber ähnlich wie in Studie 1 korreliert das explizite Lernen nicht 

mit dem Kontexteffekt, was nur in 2 von 4 Display-Methoden herausgefunden wurde. 3) In 

Studie 3 wurde das traditionelle implizite Lernen für das erste zwei Experiment beobachtet. 

Wir fanden jedoch explizites Lernen, wenn visuelle Suchelemente zufällig auf einem 

Hintergrundquader dargestellt wurden. Wir glauben, dass das explizite Lernen teilweise aus 

der Segmentierungswirkung resultiert, die von der Hintergrundform verursacht wird. Das 

heißt, die Suchelemente wurden durch die drei Flächen des Hintergrundquaders in mehrere 

Unterbereiche eingeteilt, deshalb erhöht es die Wahrscheinlichkeit, sich an einen oder 

mehrere Unterbereiche anstatt an das gesamte Display zu erinnern. Das explizite Lernen von 

solchen Teilbereichen wäre der wichtigste Faktor für die explizite Erinnerung der 

Konfigurationen in den Teilbereichen. Auch hier korrelierte das explizite Gedächtnis der 

Konfigurationen nicht mit dem Kontexteffekt, was die Ergebnisse aus den Studien 1 und 2 

bekräftigt. Zusammengefasst können die Wiedererkennung und die visuelle Suche 

verschiedene Gedächtnisprozesse beinhalten und das Kontextwissen kann durch implizite und 

explizite Lernprozesse erworben werden.  

Zusätzlich zu den Analysen der manuellen Reaktionen und des Bewusstseins für 

kontextuelles Lernen wurden auch die Augenbewegungen der Teilnehmer für Studien 1 

aufgenommen und analysiert. Die okulomotorischen Ergebnisse zeigten, dass der 

Kontexteffekt mit einer Reduktion der Anzahl der Sakkaden sowie mit einer Erhöhung der 
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Fixationsdauer gekoppelt ist. Die gekoppelte Beziehung zwischen der Anzahl der Sakkaden 

und Kontexteffekt wurde auch in früheren Studien beobachtet (z.B., Manginelli & Pollmann, 

2009; Ogawa & Watanabe, 2010; Zhao et al., 2012), was darauf hinweist, dass der alte 

Kontext die Aufmerksamkeit der Teilnehmer auf die Position des Zielreizs lenkt und einen 

effizienteren Suchpfad erzeugen kann. Die erhöhte Fixationsdauer in der wiederholten 

Konfiguration stellt im Vergleich zu der neuen Konfiguration während der kontextuell 

geführten visuellen Suche eine bessere Sakkaden-Pfadplanung für die wiederholte 

Konfiguration in der visuellen Suche dar. Ähnliche Ergebnisse wurde in einer früheren Studie 

gezeigt (Zou et al., 2012), in der die Forschungsergebnisse darlegen, dass irrelevante Töne in 

einer schwierigen visuellen Suchaufgabe zu einer Verlängerung der aktuellen Fixationsdauer 

führte. Allerdings wurde das Ergebnis der verlängerten Fixationsdauer nicht immer 

manifestiert. Zum Beispiel beobachteten Tseng and Li (2004) und Zhao et al. (2012) keinen 

signifikanten Unterschied der Fixationsdauer zwischen den alten und neuen Konfigurationen 

und Van Asselen et al. (2011) fanden, dass im Vergleich zu der neuen Konfiguration die 

Fixationsdauer für die alte Konfiguration reduziert wurde. Die unterschiedlichen Ergebnisse 

über die Fixationsdauer in der Literatur erfordern weitere Forschung. 

Zusammenfassend liefert die vorliegende Arbeit mit drei Studien verschiedene neue 

Beweise, die einige offene Fragen über die Rolle der verschiedenen Kontexte (d.h. globaler, 

lokaler Kontext und Hintergrundkontext) bei der visueller Suche beantworten. Die Ergebnisse 

zeigen, dass der räumliche Kontext auf Basis eines rein lokalen Kontexts gelernt werden 

kann, der innerhalb eines durch die Blickbewegung gesteuerten eingeschränkten zu einem 

bestimmten Zeitpunkt präsentiert wird. Aber um effektiv den gelernten Kontext abrufen zu 

können, müssen einige periphere globale visuelle Informationen verfügbar sein (Studie 1). 

Darüber hinaus haben wir gefunden, dass es von besonders wichtiger Bedeutung ist, die 

lokalen unveränderten Informationen aufrecht zu halten, um den „Contextual Cueing“-Effekt 
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für den wechselnden Anzeigemodus aufrecht zu erhalten. Der „Contextual Cueing“-Effekt 

kann nach der Änderung des Anzeigemodus übertragen werden, wenn die Symbole von einem 

Modus dem anderen Modus gemäß der Methode der „lokalen Unveränderlichkeit" oder 

„zentralen Unveränderlichkeit" neu zugeordnet wurden (Studie 2). Schließlich fanden wir, 

dass die Hintergrundinformationen (z.B. ein Hintergrund-Quader) wahrscheinlich in den 

erlernten Kontext integriert wird, wenn der Hintergrund und Vordergrund stark miteinander 

assoziiert werden. Jegliche Änderung der Hintergrundinformation wird den Gedächtnisabruf 

mit Hilfe des „Contextual Cueing“-Effekts verhindern. Aber wenn die Assoziation zwischen 

Vordergrund und Hintergrund relativ schwach ist, werden die Hintergrundinformationen 

wahrscheinlich während des kontextuellen Lernens ignoriert (Studie 3). 
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Invariant spatial context can expedite visual search, an
effect that is known as contextual cueing (e.g., Chun &
Jiang, 1998). However, disrupting learned display
configurations abolishes the effect. In current touch-
based mobile devices, such as the iPad, icons are
shuffled and remapped when the display mode is
changed. However, such remapping also disrupts the
spatial relationships between icons. This may hamper
usability. In the present study, we examined the transfer
of contextual cueing in four different methods of display
remapping: position-order invariant, global rotation,
local invariant, and central invariant. We used full-icon
landscape mode for training and both landscape and
portrait modes for testing, to check whether the cueing
transfers to portrait mode. The results showed transfer
of contextual cueing but only with the local invariant
and the central invariant remapping methods. We take
the results to mean that the predictability of target
locations is a crucial factor for the transfer of contextual
cueing and thus icon remapping design for mobile
devices.

Introduction

Invariant visual context provides an important
spatial cue for the guidance of visual search and focal-
attentional selection. Repeated exposure to the same
arrangements of search displays facilitates reaction
time (RT) performance, an effect that has been referred
to as contextual cueing (Chun, 2000; Chun & Jiang,
1998; Chun & Nakayama, 2000). In their seminal
paper, Chun and Jiang (1998) had their observers
search for a target letter ‘‘T’’ embedded in a set of
distractor letters ‘‘L’’. Unbeknown to participants, half
of the presented displays contained identical configu-
rations of target and distractor items (i.e., old displays),
whereas the other half contained novel configurations
(i.e., new displays). The main result was that of faster
RTs to old relative to new displays (i.e., contextual
cueing), an effect that developed after a short period of
training. Interestingly, when observers were queried
about repeated displays at the end of the search task in
an ‘‘old-new’’ recognition test, their performance was
only at chance level. From these findings, Chun and
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Jiang (1998) concluded that (a) contextual cueing
guides focal attention more rapidly to the target
location (but see Kunar, Flusberg, Horowitz, & Wolfe
[2007], for evidence that contextual cueing might also
aid postperceptual processes) and (b) the cueing effect
derives from an implicit memory for the items’ spatial
arrangement. Since then, the cueing effect has been
elaborated in a number of further studies (Chun, 2000;
Chun & Jiang, 1998; Chun & Nakayama, 2000; Conci,
Sun, & Müller, 2011; Conci & von Mühlenen, 2009,
2011; Geyer, Shi, & Müller, 2010; Jiang & Wagner,
2004; Kunar, Flusberg, & Wolfe, 2006). Jiang and
Wagner (2004; see also Brady & Chun, 2007, or Olson
& Chun, 2002) showed that contextual cueing is
supported by two distinct spatial memory systems for
individual item locations (i.e., local learning) and,
respectively, the entire configuration formed by the
distractors (i.e., global learning). Further, Kunar et al.
(2006) showed that nonspatial attributes, too, such as
background color, can facilitate RT performance.
Contextual learning is also influenced by selective
attention: Only the arrangement of some items, in
particular, those sharing the target color, are learned
over the course of an experiment (e.g., Geyer et al.,
2010; Jiang & Leung, 2005).

However, the degree to which contextual cueing can
adapt to changes in learned displays remains subject to
debate. For example, Jiang and Wagner (2004) reported
that contextual cueing was still reliable even when
learned displays were shifted along the horizontal
display axis, the vertical display axis, or presented in a
different size (compressed or expanded). Other studies
(Brady & Chun, 2007; Olson & Chun, 2002) showed that
contextual cueing survived changes of approximately
50% up to 75% of the display items; that is, cueing was
reliable even when only one half or one quadrant of the
display was repeated across trials. On the other hand,
Olson and Chun (2002) reported that the cueing effect
was abolished when new distractors were presented in
between the target and the old distractors, with the
target being presented, for example, in the left half and
the old distractors in the right half of the display. Several
other studies confirmed that contextual cueing dimin-
ished when the target was repositioned in repeated
displays and thus became unpredictable (Chun & Jiang,
1998; Manginelli & Pollmann, 2009; Olson & Chun,
2002; Wolfe, Klempen, & Dahlen, 2000). In contrast,
the contextual cueing effect remained effective with
predictable target location changes (Conci & Müller,
2012; Conci et al., 2011). Makovski and Jiang (2010)
suggested that predictability based on invariant context
is a key factor for contextual cueing, based on their
finding that the cueing effect decreased as the target
appeared further away from its learned location; in fact,
there were even RT costs when the target swapped its
location with a previous distractor. Similar findings

have been reported in three-dimensional (3D) scene
search (Chua & Chun, 2003), in which contextual cueing
decreased with increasing angular difference between
viewpoints in the training versus the test displays (the
experiment was divided into a training and test phase,
with the latter containing modified displays).

Although most of the work on contextual cueing was
conducted using consistent (i.e., spatially invariant)
search displays with a fixed number of items (e.g., one
target and 11 distractors presented at a total of 48
locations within an invisible 6 · 8 matrix), none of
these studies has examined the influence of changes of
the display orientation on the cueing effect. Although
changing display mode (and accordingly remapping of
the items) occurs rarely with standard (i.e., laboratory)
displays, switching display mode is a normal routine in
current touch-based mobile devices, such as the iPad.
Interestingly, with these devices, there is only one type
of item—or icon—remapping method available: The
positions of icons in one display (e.g., landscape mode)
are remapped to the other display (portrait mode) by
keeping the positional order (left to right and up to
down) constant across all icons (see Figure 1a, b).
Although this remapping method preserves the posi-
tional order and 80% of the horizontal intericon
relationships (in a 4· 6 icon matrix, as shown in Figure
1a, b), it destroys almost all local icon relationships, in
particular, when the display is arranged as a rectangle
(as with almost all mobile devices). However, based on
the contextual cueing studies reviewed above, it is
possible that contextual cueing is reduced, if not
entirely abolished, when display orientation changes
from landscape to portrait mode and icons are
remapped in the standard position-order manner.
Given this, one intriguing question arises, namely, are
there any other improved methods for icon remapping,
such that the remapping could enhance users’ perfor-
mance in everyday situations of display mode changes?
This question was addressed in the current study by
using the contextual cueing effect as a tool to evaluate
the effectiveness of various display-remapping tech-
niques; that is, preserved contextual cueing from one to
the other display mode was taken as an indicator for
the value of a given remapping method.

Besides the position-order remapping method, sev-
eral other (simple) remapping methods are possible.
For example, one of the most natural ways is to rotate
the entire display by 908 in the clockwise direction
(individual icons are rotated 908 in the counterclock-
wise direction to keep their appearance constant; see
Figure 1c). Such a global rotation is similar to the
rotation of an object in our physical world (e.g.,
imagine you rotate a key cabinet with many keys).
Alternatively, and motivated by the above mentioned
studies on contextual cueing (e.g., Brady & Chun,
2007), one could also try to preserve local associations
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within the entire configuration as completely as
possible. There are two ways to maximize such local
invariants. One is to subdivide displays into several
local regions and preserve the placement of these local
regions in the entire configuration after icon remapping
(Figure 1d). Another method is to keep the display
center constant in remapped displays (Figure 1e).

To investigate how these various display-remapping
methods influence memory performance, we examined
contextual cueing effects in four separate experiments.
Each experiment examined one display remapping
method. To simulate touch-based icon displays and
observers’ active touch action, we used real desktop
icons as search items and presented them on a touch
monitor in the four experiments.

Methods

Participants

A total of 40 observers took part in the experiments
(10 in each experiment, mean ages: 27.9, 26.2, 25.5, and
27.3 years and number of females: 7, 6, 6, and 5 for
Experiments 1–4, respectively). All had normal or
corrected-to-normal visual acuity (including color vi-
sion). They gave written consent prior to the experiment
and were paid at a rate of E8/hour for taking part.
Participants were naive as to the intention of the study.

Apparatus and stimuli

The experiments were conducted in a dimly lit cabin
(ambient light: 4.36 cd/m2). Visual stimuli were
presented on a 23-inch multitouch LCD monitor
(HP2310ti) with spatial resolution set to 1920 · 1080

pixels. To make touch pointing comfortable for the
participants, the screen panel was placed on the table
tilted by 458. The viewing distance was approximately
40 cm, with participants’ head position fixed by a chin
rest. Twenty-four typical computer icons (randomly
selected from 48 candidate icons1 for each observer)
were presented within an invisible 6 · 4 horizontal grid
(subtending 248 · 168 of visual angle) or a 4 · 6 vertical
grid (subtending 248 · 168). The target was the icon
with a top overlay of a compound letter ‘‘T’’ (subtend-
ing 1.68 · 1.68; luminance 35.67cd/m2; see Figure 2).
Such a compound target letter was used for two
reasons: first, to avoid interference between the target
and some other (distractors) letters, and second, to
make the compound letter and the icon comparable in
terms of their luminance level. The background of the
search displays was set to gray (16.56 cd/m2). To
enhance the global spatial ‘‘Gestalt’’ (i.e., perception of
the display as landscape or, respectively, portrait mode),
we added one array of six upright white triangles (130.5
cd/m2) with a gray background (19.62 cd/m2) below the
landscape mode (Figure 2a) or to the left side of the
portrait mode (Figure 2b). The triangle array was meant
to serve as a global landmark in the experiments,
indicating display mode changes. The experimental
program was developed with and controlled by Matlab
(Mathworks Inc., Natick, MA), in addition to the
Psychtoolbox (Brainard, 1997; Pelli, 1997). Response
times were recorded via the touch screen. To determine
the onset of a response, an additional input button
(connected to a NI PXI system) was placed in between
the touch screen and the participants, which was used
for initiating the task and pointing movement.

Design and procedure

A three-factorial within-subject design was used with
display mode (landscape, portrait), context (old, new),

Figure 1. Schematic illustration of display layouts and remapping methods. (A) Display layout in landscape mode; each number

denotes an individual icon. (B) Portrait display layout obtained by the position-order invariant remapping method; the arrow indicates

the icon remapping sequential order from the landscape to portrait mode. (C) Portrait display layout obtained by the global rotation

remapping method; the arrow indicates the rotation direction from the landscape to portrait mode. (D) Portrait display layout

obtained by the local invariant remapping method; circled regions remain the same between the landscape and portrait mode. (E)

Portrait display layout obtained by the central invariant remapping method; circled regions are invariant.
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and experimental epoch (1–9) as independent variables.
From the 24 possible target locations, we randomly
selected 12 target positions for old and the other 12
positions for new displays. In this way, the target
appeared equally likely at any of the 24 possible
locations. To have enough difference between old and
new configurations and to control the similarity of icon
identities, we selected 24 icons from 48 typical icon
candidates and assigned to random locations. Each of
the new target locations was paired with newly
generated distractor icons for every new-display trial,
whereas each of the old target locations was paired with
randomly selected distractor icons at the beginning of
each experiment and served as old landscape displays.
These old landscape displays were also used to define
the remapped old portrait displays. Remapping was
one as follows:

a. Experiment 1 (position-order invariant). The posi-
tional order (left to right and top to bottom) of the
icons in the portrait mode was the same as that in
the landscape mode (Figure 1b). This method is used
in most of the present mobile devices for the
rearrangement of icons.

b. Experiment 2 (global-rotation). The landscape dis-
play was, as a whole, rotated by 908 clockwise into
the portrait mode, while preserving the (upright)
orientation of the individual icons. With this global
rotation, the global and local relationships of the
icons are rotated by 908 across display changes
(Figure 1c).

c. Experiment 3 (local invariant). To preserve the local
(and global) spatial configuration as much as
possible, in Experiment 3, the display was divided
into four peripheral and one central region, each
consisting of four icons (see circled regions in Figure
1d). The positioning of these four ‘‘corners’’ and the
central region were kept constant across display
mode changes. Only four remaining items (i.e., Icons

3, 4, 21, and 22 in Figure 1d) changed their relative
positions. Similar to the global rotation, with the
local-invariant transformation, the local relation-
ships between all icons are preserved across display
changes.

d. Experiment 4 (central-invariant). Instead of dividing
the display into multiple regions, in Experiment 4,
we preserved the central display region as much as
possible (i.e., preserving the central maximum
square region). As shown in Figure 1e, icons in the
central 4 · 4 matrix were positioned at identical
locations across display mode changes. In addition,
the four outermost (corner) icons were also un-
changed. Only the remaining four icons (7, 12, 13,
and 18 in Figure 1e) changed their positions.

Each experiment comprised three consecutive ses-
sions: learning, test, and recognition. In the learning
session, there were five epochs of three blocks, with
each block consisting of 24 search trials. To keep the
experiment as short as possible, the learning session
contained only 12 old-landscape displays to foster
learning effect (each of the old display repeated twice
per block). The transfer session had four epochs, with
each epoch consisting of 24 trials (i.e., one block only).
In half of these trials, an old display was presented and
new displays in the other half. New displays were
randomly generated at the beginning of each trial. The
order of display modes in the transfer epochs was fixed:
landscape (L), portrait (P), portrait (P), and landscape
(L). The first transfer epoch with the landscape mode
(i.e., nontransformed) was intended to test for a
standard contextual cueing effect. The last transfer
epoch was intended for examining whether contextual
cueing is still manifested by two intervening epochs
containing different display modes. To avoid con-
founding by repetition effects, we randomly presented
trials in such a way that the same old display was never
repeated within three consecutive trials.

Figure 2. Example displays in the experiments. (A) Example of a landscape display. In this example, the ‘‘Apple’’ icon (second row,

right-most column) is the search target. (B) Example of a portrait display. In this case, icons are remapped from the landscape mode

by keeping the position order constant in the left-to-right and up-to-down manner (Experiment 1). (C) The top overlay for the target

icon (a compound letter ‘‘T’’).
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In the learning and test sessions, each trial started
with a cross-fixation presented in the center of the
display. Participants had to press the input button (also
serving as the initial hand position) to trigger the
presentation of the search display. Participants were
instructed to detect the target and touch its location
with their index finger as rapidly and as accurately as
possible. A blank screen was presented after the
localization response, or 4.5 s when no response was
made. When participants made an erroneous response,
an additional feedback display containing a stop
warning sign was presented for 1.0 s. After 1.0 to 1.2 s
of intertrial interval, the next trial started.

In the recognition session, participants were asked if
they had realized any display repetitions during the
learning and transfer sessions and, if so, when they had
first noticed the repeated displays (note that a similar
protocol was used by Chun & Jiang, 1998). Following
this, they had to judge a total of 24 displays, including
12 new displays (six landscape and six portrait displays)
and 12 old displays (six landscape and six portrait
displays), in an ‘‘old-new’’ recognition test. In this test,
the chance rate for recognizing a repeated display was
50%.

Prior to the experiment, participants practiced the
experimental task in one training block of 24 trials
(data not recorded). The search displays used in the
practice trials were not shown later in the experiment.
Participants were allowed to take a break in between
successive blocks of the experiment. The break between
the learning and transfer sessions was similar to other
between-block breaks.

Results

Accuracy performance

Error rates were overall small (,1%) and were
comparable across all experiments. For further RT
data analyses, we excluded trials with erroneous
responses and RTs outside the range of 200 to 3000 ms.
Such outliers were also low in general (,3%).

Perceptual learning

The mean RTs for the learning sessions are shown in
Figure 3 (Epochs 1–5). For each experiment, the mean
RTs were examined by repeated-measures analysis of
variance (ANOVA) with the single-factor epoch. The
main effect was significant for all four experiments (all
p’s , 0.05); further Bonferroni tests revealed a
significant perceptual learning effect, defined as the
difference in RTs between Epoch 5 (i.e., the end of the

training session) and Epoch 1 (i.e., the beginning of the
training session; Table 1). In addition, to examine
interference by the introduction of new (both landscape
and portrait) displays in the transfer session, RTs for
the old displays in the first epoch of the transfer session
(Epoch 6) were compared with RTs in the last epoch of
the learning session. Although RTs were numerically
longer in Epoch 6 compared with Epoch 5, the slowing
was significant only for Experiment 2 (Table 2). This
suggests that introducing novel displays had only some
moderate influence on the search task response.

Transfer of contextual cueing effect

The mean RTs, separately for old and new contexts,
as a function of epoch for the test phase are presented
in Figure 3 (Epochs 6–9). To examine the contextual
cueing effect, mean RTs were subjected to a repeated-
measures ANOVA with epoch (6–9) and context (old
vs. new) as factors, separately for each experiment. The
results are summarized in Table 2. The RTs were
significantly faster for old displays compared with new
displays in all four experiments, indicating robust
contextual cueing benefits. The main effect of epoch
was also significant for Experiments 1, 3, and 4,
indicating that some perceptual learning also occurred
in the transfer session. Finally, the context · epoch
interaction was significant for all experiments, reflect-
ing differential cueing effects in the different epochs.
Post hoc tests revealed significant contextual cueing to

Figure 3. Mean correct response times (RTs) as a function of

epoch for the learning (Epochs 1–5) and transfer (Epochs 6–9)

sessions; for the latter, mean RTs are shown separately for old

displays (denoted by diamonds and solid lines) and new displays

(denoted by dots and dashed lines). (A) Experiment 1, position-

order invariant remapping. (B) Experiment 2, global rotation

remapping. (C) Experiment 3, local invariant remapping. (D)

Experiment 4, central invariant remapping.
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be significant for all landscape displays (Epochs 6 and
9). By contrast, for portrait displays (in Epoch 8),
significant contextual cueing was evident only in
Experiments 3 and 4 (see Table 2). Note that each
epoch in the transfer session contained only 24 trials,
suggesting that the contextual cueing effect could be
quickly transferred with the local invariant and central
invariant remapping methods when the display mode
was changed.

To examine whether contextual cueing effects were
comparable among the different experiments, a re-
peated-measure ANOVA was conducted on the cueing
effect in the first transfer Epoch 6 (with landscape
mode), with the single-factor experiment. The effect of
experiment was nonsignificant, F(3, 27)¼0.55, p¼0.65,
suggesting that the contextual cueing effects were
comparable among experiments. Thus, any differences
in the subsequent transfer epochs are likely attributable
to the particular method of display (icon) remapping.

Recognition test

Based on participants’ postexperimental reports, we
determined the percentages of participants who noticed
display repetitions during the search task and who
attempted to explicitly learn the displays; the times (in
terms of the number of blocks performed) at which
these participants first noticed the repetitions were also
calculated. We then further calculated participants’
mean hit and false alarm rates as well as their
discrimination sensitivities (d0) for landscape (L) and

portrait (P) displays. The results are summarized in
Table 3.

In all experiments, participants exhibited high
proportions of recognized displays. The recognition
sensitivities (d’s) were significantly larger than zero for
both landscape and portrait displays (p , 0.05), except
for one marginally significant effect for the landscape
display in Experiment 3 (p¼ 0.066), which was mainly
due to one observer who showed an extreme negative
dH

0 score (�1.40). When excluding this participant, dH
0

was also significant: p , 0.05. Taken together, the
significantly positive d0 scores suggest that after
learning, participants recognized not only the old
landscape displays but also the remapped portrait
displays in all four experiments. Moreover, there was
no significant difference in recognition sensitivity
between the landscape and portrait displays, at least for
the first three experiments (see the last column in Table
1), indicating that remapping did not hamper explicit
recognition. Although recognition accuracy was lower
for portrait than for landscape displays in Experiment
4, the effect was mainly due to the very high recognition
sensitivity in the landscape mode (Table 1). Neverthe-
less, even in Experiment 4, the sensitivity for the
portrait displays was still significantly greater than
zero, supporting the idea that the transformed old
portrait displays can be recognized explicitly. The lack
of differential recognition sensitivities between land-
scape and portrait displays in Experiments 1 and 2 is in
contrast to the differential contextual cueing effects
with landscape versus portrait displays. This suggests
that recognition and visual search may involve different

Perceptual learning

Interference associated with the

presentation of new displays

Experiment Facilitation (ms) ANOVA Cost (ms) ANOVA

1 364 p , 0.01 60 p ¼ 0.08

2 185 p , 0.05 154 p , 0.05

3 385 p , 0.01 36 p ¼ 0.21

4 380 p , 0.01 98 p ¼ 0.11

Table 1. Mean learning effect in the training sessions and interference by the addition of new displays in the transfer session, for each
experiment.

Experiment

Contextual cueing effect (ms) ANOVA test with F value

Average (Epoch 6–9) Epoch 6 Epoch 7 Epoch 8 Epoch 9 Context (old/new) Epoch (6–9) Interaction

1 86 202*** 5 18 120* 9.25* 9.23** 4.49*

2 120 262*** 7 28 197** 12.48** 1.40 8.80***

3 156 223** 50 147* 205** 21.49*** 5.16** 3.07*

4 163 286** 43 142* 190** 22.42*** 5.63** 3.91*

Table 2. Contextual cueing effects in the transfer session. The reported significance values are as follows: *p , 0.05; **p , 0.01; ***p
, 0.001.
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memory processes, with the former recruiting more
complex information-matching processes that do not
benefit the search processes.

Discussion

The present study examined the transfer of learned
contextual cues in full-icon display remapping. The
main goal was to investigate whether contextual cueing
continues to facilitate icon localization (RT) perfor-
mance following display mode changes. We compared
four different types of icon remapping: position-order
invariant, global-rotation, local-invariant, and central-
invariant remapping. In all experiments, robust learn-
ing effects were found in the training session for the
landscape displays. The RTs were faster at the end
relative to the beginning of the training session. This
practice effect is likely attributable to general learning
of the localization task (Schneider & Shiffrin, 1977).

In the test session, in which new displays were
introduced (in addition to the old displays), we
established a contextual cueing effects in all experi-
ments, at least when the display mode was kept the
same. This suggests that icon identities and spatial
configurations among icons could serve as context cues
to facilitate the localization task. Note that the
facilitation effect might also be partially due to
position-based learning, given that only old displays
were used in the training session. However, the transfer
effects found in the portrait displays (Experiments 3
and 4) cannot be fully explained by position-based
learning, because the positions were changed in the
portrait displays and positional repetitions were
equated between the old and new displays. Interest-
ingly, contextual cueing was evident for landscape
displays even after the insertion of two epochs of
portrait displays. This may be taken to indicate that the
cueing effect is relatively robust against interference
within the same set of old configurations, consistent
with previous studies (Chun & Jiang, 1998, 2003; Conci
et al., 2011; Conci & Müller, 2012; Jiang, Song, &
Rigas, 2005; Song & Jiang, 2005; Zellin, Conci, von
Mühlenen, & Müller, 2011). However, contextual cues
acquired with landscape displays were transferred to
portrait displays only under certain remapping condi-

tions (those of Experiments 3 and 4), suggesting that
contextual cueing is relatively inflexible and that
transfer is confined to specific remapping situations.

The differential pattern of effects revealed among the
four experiments raises the question as to the factors
that modulate the transfer of learned displays. The
position-order invariant method maintained icons in
their same left-to-right and up-to-down manner.
Although 80% of the horizontal relationships are
preserved with this transformation, it destroys almost
all vertical relationships. It also changes the absolute
positions of the icons dramatically; for instance,
Position 5 is shifted from the left side in the landscape
display (Figure 1a) to the right side in the portrait
display (Figure 1b). As a result, the target location
might become unpredictable in remapped displays,
abolishing the contextual cueing effect (Conci et al.,
2011; Manginelli & Pollmann, 2009). Note that in the
current terms, predictability refers to both the target’s
absolute location on the screen as well as its placement
within the entire configuration (given that we did not
vary the target’s absolute and relative location inde-
pendently).

When comparing the position-order invariant to the
global-rotation method, the latter maintains all local
icon neighborhood relationships, but the overall Gestalt
is rotated by 908 from the landscape to portrait mode.
With this type of remapping, repeated displays failed to
facilitate RT performance in portrait displays. Possibly,
the contextual associations learned in the landscape
displays were quite instance specific and too weak for the
global-rotation remapping. As shown in mental rotation
studies (Böckler, Knoblich, & Sebanz, 2011; Borst,
Kievit, Thompson, & Kosslyn, 2011; Ionta & Blanke,
2009; Shepard & Metzler, 1971; Shomstein & Yantis,
2004), RTs increase linearly with increasing angular
disparity when participants were asked to decide
whether two presented objects are the same. Those
paired objects were normally rotated objects or mirrored
objects, and participants had to carry out mental
rotation (rotating one object into the other) to solve the
task. Applied to the current Experiment 2, although the
global rotation maintains the local icons’ neighborhood
relationships, the mapping of a new portrait onto an old
landscape display may likewise be a demanding (i.e.,
time-consuming) process, which diminishes any perfor-
mance gains brought about by contextual cueing. In a

Experiment Noticed repetition Explicit learning When (blocks) Hit rates False alarms d0
L d0

P d0
L ¼ d0

P

1 90% 60% 6.89 76.3% 38.3% 2.17** 1.17* p ¼ 0.17

2 80% 30% 7.25 72.9% 43.3% 1.33** 1.17* p ¼ 0.68

3 90% 20% 5.85 65.1% 28.3% 1.56 2.02* p ¼ 0.51

4 80% 60% 4.75 80% 28.3% 3.42** 1.52* p , 0.05

Table 3. Results of recognition test. The reported significance values are as follows: *p , 0.05; **p , 0.01.
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previous study using 3D visual search, Chua and Chun
(2003) also showed that contextual cueing decreased
with increasing angular difference between viewpoints of
training and test displays. Thus, demanding mental
rotation might be the main reason why we failed to find
any transfer of contextual cueing from the landscape to
the portrait in Experiment 2. It should be noted,
however, that in our setup, the experimental program
presented the rotated portrait display automatically.
That is, participants passively viewed the search
displays, rather than carrying out the rotation actively.
It would be interesting to examine the transfer of
contextual cueing when participants rotate the displays
themselves (i.e., actively).

In contrast to Experiments 1 and 2, we found
significant transfer of contextual cueing in Experiments
3 and 4, in which the portrait display was remapped
from the landscape display using the local-invariant
(Experiment 3) or central-invariant methods (Experi-
ment 4). Both experiments disclosed numerical con-
textual cueing benefits already in the first epoch with
portrait displays (50.8 and 44 ms for Experiments 3 and
4, respectively), although these effects were not
significant. No contextual cueing in the first portrait
epoch is likely due to the orientation change of the
whole display. Mapping old landscape to portrait
displays may engage additional mental processes,
diminishing the contextual cueing effect. In addition,
interobserver variability was large because both the old
and new displays were presented only once in this
epoch. Interestingly, transfer of contextual cueing was
highly reliable for both remapping methods (147.4 and
142.0 ms for Experiments 3 and 4, respectively) in the
second epoch. The local-invariant remapping method
keeps five of seven local regions unchanged, and the
global topological relationship of these five local
regions also remains the same. This means that local
regions appear at the very same positions (quadrants)
in the entire configuration after the remapping.
Likewise, the central-invariant remapping method
maintains the absolute icon positions of the four
outermost corners and the central region (83% in
total). In both cases, after the remapping, the target
position is much more predictable compared with both
the position-order invariant and the global rotation
methods. In contrast to previous investigations of
contextual cueing, suggesting that only three to four
repeated items (among some eight novel items) can
produce the effect (Song & Jiang, 2005), the results of
the present Experiments 1 and 2 suggest that merely
preserving some local invariant information does not
guarantee transfer of contextual cueing. Instead, the
three to four items would have to appear at the very
same positions within the global configuration to
observe contextual cueing (Experiments 3 and 4; see

also Brady & Chun, 2007, for a related proposal, albeit
using different approach).

The recognition tests showed that in all experiments,
participants were well able to discern repeated from
nonrepeated displays. This contrasts with standard
contextual cueing studies in which recognition accuracy
was typically at chance level (Chun & Jiang, 1998).
Explicit memory effects may be due to the heteroge-
neous and, importantly, realistic icons used as dis-
tractors in our experiments (see also Brockmole,
Castelhano, & Henderson, 2006). Interestingly, in all
the experiments of the present study, recognition
accuracy was larger than chance for all landscape and,
importantly, remapped portrait displays. In contrast,
transfer of contextual cueing was observed only in
Experiments 3 and 4. This argues that merely
recognizing a repeated display as an old one does not
necessarily mean that this also facilitates RT perfor-
mance. Of interest in this regard, it has been reported
that explicit learning of repeated displays engages
neural processes that are distinct from those concerned
with implicit configural learning (Geyer, Baumgartner,
Müller, & Pollmann, 2012; Preston & Gabrieli, 2008;
Westerberg, Miller, Reber, Cohen, & Paller, 2011).
Along these lines, we suggest that recognition and
visual search are supported by different memory
processes. Further, the dissociation between the trans-
fer of contextual cueing (Experiments 3, 4) and explicit
recognition (Experiments 1–4) suggests that the mem-
ory underlying explicit learning is more flexible than
that underlying implicit configural learning.

Conclusion

In sum, our experiments suggest that when display
orientation switches and icons are rearranged, the
traditional position-order remapping method used in
current mobile touch devices is suboptimal in aiding
search performance. Comparing and contrasting three
alternative methods of icons remapping, we found that
when using local-invariant or central-invariant remap-
ping, contextual cueing continues to enhance (target)
icon localization performance. Although the global-
rotation method may be intuitive for users, it might
introduce additional mental-rotation processes that are
detrimental to localization performance. Our findings
thus have implications for alternative interface design
guidelines for icon rearrangement in mobile devices.
Open questions awaiting further research concern how
to optimize local invariance regions and what the
effects of active manual rotation are.

Keywords: contextual cueing, visual search, mobile
interface, icon remapping
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