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Abstract: 
On edge computing, mobile devices can offload some computing intensive tasks to the cloud so that 

the time delay and battery losses can be reduced. Different from cloud computing, an edge computing model 
is under the constraint of radio transmitting bandwidth, power and etc. With regard to most models in 
presence, each user is assigned to a single mission, transmitting power or local CPU frequency on mobile 
terminals is deemed to be a constant. Furthermore, energy consumption has a positive correlation with the 
above two parameters. In a context of multitask, such values could be increased or reduced according to 
workload to save energy. Additionally, the existing offloading methods are inappropriate if all the compute 
densities of multiple tasks are high. In this paper, a single-user multi-task with high computing density model 
is proposed and partial task is offloaded when use the different offload algorithm. Simulated annealing 
algorithm is the best method to select offloading tasks, which can enhance the offloading ratio and save 
energy consumption. 
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MEC system depends on offloading strategies. 
I. INTRODUCTION 

With popularization of 5G technology, mobile 
terminals and the Internet of Things (IoT) enter a 
new round of rapid progress. However, limited 
computing resources of mobile devices may restrict 
user experience. In this case, computing intensive 
tasks can be offloaded to an edge cloud server by 
virtue of mobile edge computing (MEC) technology. 
It means that servers of computing and memory 
properties are deployed in network access points 
rather close to users so that they are permitted to 
offload tasks on the mobile terminal to edge servers 
to achieve a better service effect. Comparing with 
traditional cloud, the edge cloud has the capability to 
reduce transmission delay of tasks substantially. 
Meanwhile, battery losses incurred by migrating 
computing intensive tasks to the cloud terminal are 
considerably lower than those consumed by local 
processing. . The reason is that energy consumption 
relies on how many CPU cycles are taken by the 
corresponding tasks. Nonetheless, performance of a 

Communication between mobile devices and edge 
servers needs to occupy wireless channels, which 
gives rise to extra energy consumption. On this basis, 
how to make trade-off between time delay and 
energy consumption is a hot spot of MEC 
investigations. A majority of current studies start 
from unlimited cloud resources to think about 
channel assignment problems. For example, wireless 
channel assignment is defined as a self-centered 
crowded game [[1]]. As for [[2]] studied the 
cooperation game of offloading service providers, 
where the radio and compute resources were 
assumed to be managed by different entities 
separately. Computing based on fine grit has been 
extensively explored recently. For example, an 
approach is put forward to make program 
partitioning parallel or serial to sub-tasks [[3]]. In 
other words, multiple sub-tasks are assigned with 
certain bandwidth and computing resources to 
shorten the ultimate completion time. 
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A huge number of studies focus on a multi-user 
single-task type now, that is, a user only executes one 
task to assign channels for offloading decision, both 
transmitting power and CPU master frequency keep 
unchanged. What they thought about is that how to 
allocate bandwidth resources in energy effective way 
[[4]-[5]]. By contrast, a program is usually 
partitioned into multiple tasks to be processed in 
reality. Not only may a single user have the 
requirement of executing multiple tasks 
simultaneously, but it is likely for a mobile device to 
manage several IoT appliances and perform their 
tasks. Therefore, transmitting power and CPU 
frequency should be selected accordingly in line with 
offloading choices of different tasks in multiple tasks. 
In a multi-task scenario [[6]], the user is allowed to 
offload all or partial tasks, which dependent on their 
transmitting power and noise. In the case that all 
tasks of the device are processed locally, it no longer 
carries out radio transmission to the base station, as 
a result, the relevant transmission power can be 0 or 
maximum. If a user only needs to offload a small part 
of tasks, a great transmitting power leads to 
unnecessary energy consumption. It is suggested that 
a task can be partitioned into multiple time slots to 
be executed in [[7]][[8]]. Moreover, some tasks of 
certain bits are performed locally in each time slot, 
while some others are offloaded to the server. A user 
should modify local CPU frequency and transmitting 
power in conformity with workload to minimize 
energy consumption [[7]], where some tasks are 
executed locally and other tasks are executed on the 
server respectively, but they ignore that the 
offloading tasks can adjust dynamically. Although 
the number of executed bits locally or on the server 
is considered to be modified in [[8]], both 
transmitting power and CPU frequency cannot be 
adjusted in accordance with the corresponding 
workload. Meanwhile, random increase or decrease 
of bits may damage program integrity due to 
correlation of programs. Furthermore, a program 
should be partitioned into several tasks that can be 
implemented independently. Consequently, how to 
select some tasks to be offloaded and completed 
before the deadline to reduce the final energy 
consumption is an NP-hard problem. 

The single-user multi-task model is used in this 
paper, multiple independent tasks must be executed 

and completed before the deadline locally or on the 
server. The existing effective energy utilization 
model selects tasks of high computing densities to be 
offloaded, which fails to adapt to scenarios of 
multiple tasks all with high computing densities. The 
simulated annealing algorithm is used to an 
offloading selection decision in this paper. It is 
applicable to multiple tasks of high computing 
densities to avoid the achievement of a locally 
optimal solution in the process of offloading 
selection. The simulation results show that the model 
has the potential to improve task offloading ratio and 
reduce the power consumption of task execution. 

Structure of this paper is as follows.   Section 1 
introduces related works. Section 2 put forward a 
formulaic definition of the proposed model. In 
section 3, corresponding problems are transformed 
into convex optimization problems. An offloading 
strategy of low time complexity is presented in 
section 4. For section 5, numerical simulation of 
different methods is carried out. The paper is 
concluded in section 6. 

II.     SYSTEM MODEL 

As shown in Fig.1, a multi-task and single mobile 
terminal model is taken into account in this paper. In 
this model, a piece of code is divided into multiple 
mutually independent tasks that are executed locally 
or offloaded to corresponding edge servers for 
computing. On the mobile terminal, computation and 
transmission are implemented concurrently and all 
tasks must be completed within the time limit. Local 
and cloud task execution is represented as 
mathematical definition to compute energy 
consumption and delay during computing and 
sending respectively, so as to formulate a power 
minimization implementation strategy. 

A mobile device was assumed to contain N 
independent tasks, which is denoted as ! ≜
{$%, …$(}. Each task could be expressed in a two-
element tuple < +,, -, >, where +, (bits) is data size 
of input data, that consists of environment settings, 
program code and initial parameters of task 
execution, -, stands for CPU cycles of these tasks. 
Values of +,	and	-,  depend on the nature of tasks 
and are achieved by analyzing concrete task 
execution situations [[9]-[10]]. For a user, if task 3 is 
selected to execute locally, CPU frequency of the 
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local machine is denoted by 4. In this context, local 
task execution time (s) can be denoted as equation 
(1). 

 

 
 

Fig. 1  Edge computing system model 

 5,
678 = -,/4 (1) 

To calculate power consumption(J) of local task 
execution, a widely recognized model utilized for 
energy consumption of CPU cycles has been adopted 
in this study. To be specific, energy consumption of 
each CPU cycle is expressed as ε = κ4= [[1]] [[11]], 
where, κ  is a parameter established according to 
CPU chip architecture. Therefore, power 
consumption of local task execution is expressed as 
equation (2). 

 >,
678 = κ4=-, (2) 

As tasks are uploaded to a MEC server, its total 
completion time should be composed of three parts, 

namely (i) 5,
? 

 is the duration of transmitting the 
input data to MEC server via the uplink; (ii) 
5,
!"!denotes the execution time of the tasks on server; 

and (iii) the time required by the task to return results. 
Generally, time delay of returning computing results 
to a user is ignored, because data size obtained by 
computing is far lower than the input data size. It is 
consistent with considerations mentioned in [[1]] 

[[12]]. Here, 5,
? 

 is related to transmission rate of the 

uplink. In line with Shannon equation, the 
transmission rate(bits/s) can be expressed in the 
following formula as equation (3). 

 R$%& = W log$1 +
 -.

/
&  (3) 

In the equation (3), W  stands for upstream 
bandwidth, ℎ for channel gain jointly determined by 
the distance from a user to a wireless base station and 

the path loss factor, % for transmission rate required 
by a user to upload the input data to a nearby edge 
cloud server, and 1  for a task’s background noise 
including interference of other users’ transmission 
and noise of the natural environment. On this basis, 
transmission time and computing time of uploading 
a task can be denoted as the total time delay of this 
task on the server. If computing resources that a user 
has access to use is expressed in 42 , the 
corresponding formula can be written as equation (4). 

 5,
? 
+ 5,

!"! =
34

5$ &
+

64

78
 (4) 

Considering that data size acquired by cloud 
processing is far below the input data size, only 
energy consumption of uplink transmission needs 
taking into account. In addition, transmitting power 
of a mobile device has an upper limit dependent on 
the LTE standard. Hence, energy consumption can 
be expressed in equations (5) and (6), where P:;" 
signifies the maximum transmitting power. 

 >,
7<<

= %5,
? 

 (5) 

 0 < % < P:;" (6) 
Eventually, calculation model in this study is 

written into the following equations. 

 min
@, ,7	

A∑ >,
678

,∈@D
+ ∑ >,

7<<
,∈@.

E (P1) 

s.t. 

 0 < %	 < P:;" (6) 

  ∑ 5,
678

,∈@D,4
< $F (7) 

         ∑ A5,
? 
+ 5,

!"!E,∈@.,4
< $F (8) 

    ∑ G%,, ∗ G=,, = 0(
,I%  (9) 

 ∑ GJ,, = 1=
JI%  (10) 

Task $, is represented by a binary set of G%,,, G=,,, 

G%,, = 1, G=,, = 0 when 3 ∈ K%; and, G%,, = 0, G=,, =

1	in	the	case	of	3 ∈ K= . In this part, K%  and 	K= 
represent a set of tasks executed locally and the other 
set of tasks implemented on the cloud respectively. 
The objective function means that transmitting 
power and chip operating frequency on the mobile 
terminal should be modified and appropriate tasks 
are selected on the cloud to minimize the power 
consumption when relevant time delay has been 
restricted and the corresponding energy 
consumption remains below its upper limit. For 
example, we could use DVFS to make the CPU 
frequency adjust dynamically. While constraint (6) 
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indicates that transmitting power should not exceed 
its upper limit or be a negative, constraints (7) and (8) 
point out that tasks processed locally or on the cloud 
must be fully implemented and completed before the 
deadline. According to constraints (9) and (10), a 
task must be executed either locally or on a cloud. 

P1 is a mixed integer non-linear programming 
problem(MINLP) to satisfy time delay conditions by 
modifying transmitting power % and CPU frequency 
4 . In addition, an offloading strategy K  should be 
also formulated to minimize the power consumption, 
which has been deemed as a NP hard problem. In the 
next section, complexity of this problem was cut 
down by means of relaxation and decoupling to find 
a feasible solution in low time complexity. 

III.     PROBLEM FORMULATION 

To resolve problem P1, it is necessary to reduce its 
complexity. If the offloading strategy K  has been 
clear to us, constraints (7) and (8) are only related to 
the first half part and the latter part of P1 separately. 
After relaxation and decoupling of the problem, the 
following two sub-problems are achieved by 
satisfying transmitting power adjustment in a 
condition of time delay. 

 min
 	

∑ >,
7<<

,∈@.
 (P2) 

s.t.  (8) 

And CPU frequency adjustment subjected to the (7) 
condition. 

 min
7	

∑ >,
678

,∈@D
 (P3) 

s.t. 	(7) 
In terms of problem P2, it can be written as follows 

in accordance with Equations (3), (4) and (5). 

 min
 	

∑ %	
34

5$ &,∈@.
 (P4) 

 s.t. ∑ R
34

5$ &
	 +

64

78
S,∈@.
< $F (11) 

Nonetheless, this is still a non-convex problem, 
because of a non-convex objective function 
corresponds to a non-linear constraint. To transform 
it into a convex optimization problem, variable 

substitution is adopted. In this case, a variable 	T has 

been introduced to let 	T =
%

5$ &
 and U =

/

-.
, then, the 

original problem is turned into P5, 

 min
V
U ∗ ∑ 	 W2

D

YZ − 1\ T+,,∈@.
 (P5) 

 s.t. ∑ $+,T + -, 4
2⁄ &,∈@.
< $F (12) 

Define that Λ$T& ≜ $2
D

_Z − 1&T , and 
`.a$V&

`V.
=

2
D

YZ
bc. =

d.Ve
≥ 0 corresponding to a condition of ∀T >

0, here the objective function is a convex function 
and the constraint condition becomes linear. 
Therefore, such a convex optimization problem can 
be solved by a Lagrangian multiplier method in  

[[13]].Make h$T, i& = U ∗ ∑ T$2
D

YZ − 1&+,,∈@. +

i$∑ $+,T + -, 4
2⁄ &,∈@.
− $F& , where i  is the 

Lagrange's multiplier, and 
jk

jV
= 0 and 

jk

jl
= 0, that is, 

2
D

YZ ∗ R1 −
bc=

dV
S − 1 + i = 0 , ∑ $+,T +,∈@.

-, 4
2⁄ & − $F = 0 ;That is, i = 1 − 2

D

YZ R1 −

bc=

dV
S = −

Fa$V&

FV
. Due to 

`.a$V&

`V.
≥ 0 , 

Fa$V&

FV
 is an 

increasing function about T ; together with 

lim
V→n

Fa$V&

FV
= −∞  and lim

V→pq

Fa$V&

FV
= 0 , it can be 

concluded that i = −
Fa$V&

FV
> 0  in the case of T ∈

$0, +∞& . Moreover, i  is monotone decreasing in 
relation with T . To obtain the value of i , this 
problem is resolved by dichotomy as algorithm1 

Algorithm1:Subcarrier-Search For Transmission 
Power 

Input烉烉烉烉+, ∈ K=, -, ∈ K=, r, $
F,s, ℎ=, 1, 42 

Output:	T 

i6 = 0		i- = it;" 

While 
it = $i6 + i-&/2  

Solve the equation 2
D

_Z ∗ R1 −
bc =

dV
S − 1 =

it 

If u∑ A5,
? 
+ 5,

!"!E,∈@.
− $Fu < r   break 

Else If ∑ A5,
? 
+ 5,

!"!E,∈@.
> $F	   i6 = 	it 

Else If ∑ A5,
? 
+ 5,

!"!E,∈@.
< $F   i- = it 

End If 
End While 

Likewise, P3 can be also transformed into a 
convex optimization problem by means of 
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substitution. The reason why it can be directly solved 
by the Lagrangian multiplier method is that problem 
P3 has a convex objective function and a linear 
constraint. 

In detail, it is assumed that v$wx!8, y& =

∑ z4= -, + y$∑
64

7,∈@D
 − $F&,∈@D

, to make 
j{

j7
=

2z4-, − y
64

7.
= 0 and ∑ -, 4⁄,∈@D

 − $F = 0, then, 

y = 2z$4&| . Apparently, y is descending in terms 
of 4 in a context of $0, +∞&, where, 4 ∈ $0, +∞&. 
Similarly, value of 4  can be also gained by 
dichotomy. 

Algorithm2: Subcarrier-Search For CPU 
Frequency 

Input烉烉烉烉+, ∈ K%, -, ∈ K%, r, T
`, z 

Output:	4 

y6 = 0		y- = yt;" 
While 

yt = $y6 + y-&/2 
Solve the equation yt = 2z$4&| 

If u∑ t~
b�Ä

~∈ÅD
− T`u < r break 

Else If ∑ t~
b�Ä

~∈ÅD
> T` y6 = yt	 

Else If ∑ t~
b�Ä

~∈ÅD < T` y- = yt 

End While 

Regarding Algorithm1 and Algorithm2, their time 
complexity is O$log É&, Equations (2) and (5) are 

used to work out ∑ >,
678

,∈@D
+ ∑ >,

7<<
,∈@.

. In the end, 

the problem lies in the solution to task allocation K. 

 min
@	
A∑ >,

678
,∈@D

+ ∑ >,
7<<

,∈@.
E (P6) 

s.t. (6),(9),(10) 
However, it is still an NP-hard problem, the 

optimal solution of which can be acquired by listing 
all possible solutions in a method of exhaustion. 
Considering that each task can be implemented after 
being offloaded to a cloud or locally, the number of 
possibilities is 2Ñ in total. Time complexity of this 
decision scheme is O$2Ñ logÉ&  that we cannot 
accept. In the next section, an algorithm of low 
complexity is proposed to solve this issue. 

IV.     SOLVING OFFLOAD DECISION-MAKING 

PROBLEM ON LOW TIME COMPLEXITY 

In this part, the simulated annealing algorithm is 
presented to make offloading decisions so that the 
problem could be resolved in a condition of 

polynomial time complexity. For the convenience of 
description, the following operation has been defined. 
In the course of this operation, task 3 is taken out of 
one set and then put into the other. At the beginning, 
∀3 ∈ K%  and K= = ∅ , indicating that all tasks are 
assumed to be locally executed originally. 

Algorithm3:Exchange 

Input烉烉烉烉K6, KÜ, 3 

Output烉烉烉烉K6, KÜ 

If 3 ∈ K6 
K6 = K6\3 
KÜ = KÜ ∪ 3 

End If 

In most research, tasks of high computing density 
always achieve an offloading priority of a higher 

level. For example, >,
678 > >,

7<<
 has been selected 

as a condition to pick offloaded tasks to a cloud in 
multiple papers, for an example, paper [[6]] is 
inclined to offload tasks of high computing density. 
Generally, diverse tasks are with different computing 
densities. If their computing densities are slightly 
differentiated and also high, energy consumption of 
the cloud is mainly incurred by data upload, while 
the local power consumption is computing, 
migration of tasks to a cloud must save more energy 
than that executed locally with the condition of 
urgent deadline, which may lead to the following 
situations. Because the higher computing densities 
tasks has the higher offloading priority, the 
possibility of migration can be higher for tasks which 
has a small data size but great computational 
complexity. But such tasks with huge data size as 
well as high computational complexity will become 
too late to be transmitted. They have to be completed 
before the deadline by increasing CPU frequency 
locally due to a fact that the transmitting power has 
an upper limit, further resulting is unexpected 
increasing energy consumption. 

On this basis, a greedy offload (GRO) scheme is 
proposed. It attempts to select a task to  offload from 
all candidate tasks; after the calculation of objective 
function P6, it is placed back into the original set; 
then, another task is chosen to offload from other 
candidate tasks to work out the relevant objective 
function and then put back again… In this way, a 
round of offloading is completed for all tasks to find 
a task of optimal performance and this task is thus 
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selected for computing migration, followed by the 
next round up until the offloading decision becomes 
unable to acquire any other value better than the 
current function results. The optimal offloading 
decision of a round is made after all tasks have been 
calculated and compared, let n the number of rounds, 
complexity of GRO can be denoted as O$É= logÉ&. 

Algorithm4:Greedy Offload(GRO) 

Input烉+, ∈ K%, -, ∈ K%, 

Output:	K%, K= 

Value= ∑ >,
678

,∈@D
 

While(true) 

â = −1  
For 3 ∈ K%  

  Exchange(K%, K=, 3) 

  tempValue=∑ >,
678

,∈@D
+ ∑ >,

7<<
,∈@.

 

If tempValue<Value And % < ät;" 
  Value= tempValue 

  â = i  
End If 
ãåçéèêëí$K=, K%, 3& 

End For 
If â == −1 

Break 
End If 
ãåçéèêëí$K%, K=, â& 

End While 

We should pay attention a phenomenon that when 
the current most power-efficient task has been 
selected and offloaded, because the selected task 
occupies great transmitting power such that e other 
tasks cannot be offloaded; the sum of power 
consumption of offloading these tasks may be higher 
than that spared by the present task. For instance, 
offloading $% spares energy 0.1J and consumes the 
transmitting power 0.11W; by contrast, the energy of 
offloading $= and $| is both 0.06J and each of them 
consumes 0.1W transmitting power. Therefore, 
when the transmitting power remains below 0.2W, it 
is not ideal to select $% to offload. Such a category of 
problems can be summarized as 0-1 knapsack 
problems with corresponding solutions.  

In this paper, we assume that offloading and 
transmitting power consumption of each task is  not 
constant amounts,  but both vary along with different 

task combinations. In this condition, u∑ A5,
? 
+,∈@.

5,
!"!E − $Fu < r  is used to compute transmitting 

power %. Value of ∑ A5,
? 
+ 5,

!"!E,∈@.
 is different for 

different offloading task combinations in a condition 
of identical i; hence, value of % is also distinct. In a 
word, we do not know the transmitting power and 
energy saving about a tasks until we calculate them 
according to different K%, K=. So we cannot use the 
solution about 0-1 knapsack problem. 

In this section, solution of this problem is 
improved by the simulated annealing algorithm. 
Simulated annealing is a term originated in 
metallurgy. During annealing, the material is heated 
and cooled down at a particular rate so that it 
becomes much more likely for atoms to find 
positions where internal energy is much lower than 
before. Statistically, optimal solution to simulated 
annealing converges to a locally optimal solution 
with probability. In general hill climbing algorithms, 
they stop when solutions of the near space can be no 
longer better than the current solution. But, the 
simulated annealing algorithm accepts a solution 
poorer than the current one in accordance with a 
certain probability so that it can possibly step out 
such a local optimal solution. When the objective 
function 4ìÉî53ïÉ$3 + 1&  is better than 
4ìÉî53ïÉ$3&, the corresponding solution is accepted; 
otherwise, the migration should be accepted in 
conformity with a certain probability that gradually 
changes along with time. 

Computing density is used as a control factor in 
the proposed algorithm. Under the circumstance of 
similar data sizes, it will save more energy to offload 
the task with higher computing density. On this basis, 
equation (13) is employed to initialize relevant 
solutions. Let χ,  be the computing density 
proportion, which is obtained by equation (13), 
where  ρt;"	3ò	5ℎô maximum computing density, 
ρt,Ñ  is the minimum computing density and ρ,   is 
computing density of the current task. 

 χ
3
=

ρ
3
−ρ

ö3É

ρ
öõú

−ρ
ö3É

 (13) 

Obviously, χ, ∈ ù0,1û, χ, is closer to 1 in the case 
of a higher computing density. Therefore, only when 
the sum of χ,  and cooling factor 5  is below ü , ü 
represents the random factor and r ∈ ù0,1û, the task 
can be placed in a local position. In this way, it is 
much possible that tasks with higher computing 
densities will be implemented on an edge server. 
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Subsequently, energy consumption of this scheme 
is calculated. If the energy consumption is lower than 
the current value, the scheme can be accepted; 
otherwise, solutions should be accepted in line with 
a particular probability by virtue of Equation (14). 

 äüï =
%

%p!°¢£4 §⁄  (14) 

Where, $ stands for the initial temperature and is 
a constant, Δ>, is the difference between the new and 
the original solutions. In the case, the random 
number is smaller than äüï, the solution is poorer 
than the current one, which should be accepted; 
otherwise, it is rejected. 

Eventually, the simulated annealing offload (SAO) 
algorithm is presented in Algorithm 5. 

Dependent on SAO, the probability of executing a 
task with high computing density locally  increases, 
which makes tasks with large data size and massive 
calculations be migrated and prevent the low data 
size and high computational complexity tasks to take 
the high offload priority. In order to avoid local 
optimum, a poorer solution than the current one 
should be accepted in line with a particular 
probability. 

Time complexity of the algorithm depends on an 
annealing factor fac. The inner loop possesses time 
complexity O$n log n&  and the number of exterior 
loops is m , the ultimate time complexity is 
O$mn logn&. Some simulation results will validate 
these ideas in section 5. 
 

Algorithm5: Simulated Annealing Offload (SAO) 

Input烉烉烉烉+, ∈ K%, -, ∈ K%, ϵ, wõî, $, ∆t 

Output:	K%_Ü!x?6©, K=_Ü!x?6© 

oldValue= ∑ >,
678

,∈@D
+ ∑ >,

7<<
,∈@.

 

While wõî > ϵ 
 For 3 ∈ K%⋃K= 

-õîì´õ5ô	¨,	õîîïüÍ3ÉÆ	5ï	$11&	õÉÍ 
üõÉÍïö	ü	Øô5ÐôôÉ$0,1&  

  If r ≥ χ, + wõî      
Exchange$K=, K%, 3& 

  Else If 
   Exchange$K%, K=, 3& 

  End If 

  newValue= ∑ >,
678

,∈@D
+ ∑ >,

7<<
,∈@.

 

  If newValue < oldValue 
   oldValue = newValue 

   If minValue<old Value 
    minValue=oldValue 
    K=_Ü!x?6© = K= 

K%_Ü!x?6© = K% 

   End If 
       Else 

îõîì´õ5ô	äüï	õîîïüÍ3ÉÆ	5ï	$12& 
õÉÍ	ÖõÉÍïö	ü	Øô5ÐôôÉ	$0,1& 

             If ü < ä,	 
   oldValue = newValue 
  Else    
                         3	üô×ôü5	5ï	5ℎô	 

ïü3Æ3Éõ´	îï´´ôî53ïÉ 
  End If 
 End If 

End For 
wõî = wõî − ∆t 

End While 

V.    NUMERICAL SIMULATION 

In this section, emulation experiment is used to 
evaluate performance of the proposed algorithm. It 
is supposed that there is only one mobile device that 

communicates with an edge server in a community炻 

the mobile device is assigned with bandwidth s =
20MHz, CPU parameter κ = 10ª=º[0], channel gain 
h = 10ª| , noise 1 = 10ªÝ  and the maximum 
transmitting power ät;" = 0.2W. In addition, CPU 
resource 42  on the cloud is 5GHz. During this 
experiment, data size of a program is assumed to be 

ø100炻500¡KB roughly, it should be divided into 10 

tasks, the data size of each task is denoted as +, ∈

ø10炻50¡KB. If all tasks possesses high computing 

densities, -,/+, ∈ ø1000炻1500¡  cycles/bit, above 

parameters are all obtained by referring to [[8]]. 
Then, energy consumption of different methods with 
diverse time delay is investigated and compared. 

First, a high density offload (HDOF) approaches 
with the priority are compared to GRO in 
Algorithm3 and  SAO in Algorithm 4.. The task 
offloading should be completed in a descending 
order of their computing densities until all tasks have 
been involved. In this course, the transmitting power 
of a mobile terminal is not allowed to go beyond its 
maximum value. When they were compared, 
precision of r  is set to 10ª| s when %	õÉÍ	4  are 
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calculated. Particularly, several parameters in the 
simulated annealing algorithm are set as follows, 
wõî = 0.5, ϵ = 0.3, $ = 100  and ∆t =
0.02 .Corresponding deadline is defined to range 
from 0.44s to 0.5s. 

 
Fig. 2 Energy consumption with different deadline 

 

Fig.3 Local CPU frequency with different deadline 

Fig. 2 shows energy consumption for HDFO, 
GRO and SAO approaches at different deadlines, 
energy consumption goes down along with 
relaxation of time delay constraints and the average 
energy consumption of SAO is lower than another 
two approaches in different deadlines. About 12% 
and 4% average energy are spared when HDFO and 
GRO are compared with SAO. Such result signifies 
that SAO is an ideal scheme. Through vertical 
comparison, most energy has been consumed by 
high computing density tasks that cannot be 
uploaded to the cloud; however, as soon as such 
tasks have been uploaded successfully, energy 
consumption decreases evidently.  

Due to short transmission time, variations in 
energy consumed by uploading are small in the case 
of diverse time delay. Nevertheless, percentage 
occupied by offloading energy required by all 
approaches becomes increasingly higher from 
respectively 3.1%, 5.3% and 7.2% to 10.5%, 10.1% 

and 17.5% as time delay increases. In conformity 
with computing, the average uploading energy 
consumption needed by HDFO, GRO and SAO are 
0.026W, 0.043W and 0.055W far below their 
thresholds, which meets the time delay requirement. 
If tasks are transmitted by the maximum transmitting 
power all along, additional energy consumption can 
be generated. Especially in the case of relaxed 
deadline, using the maximum transmitting power to 
translate tasks, the waste of energy consumption will 
become more and more serious 

The comparison between Fig. 2 and Fig. 3 
addresses that the CPU frequency depends on 
performance of energy consumption. The lower CPU 
master frequency required is, the lower energy 
consumption will be. Therefore, how to select tasks 
to be migrated to an edge cloud server is apparently 
deemed to be especially important. As shown in Fig. 
3, SAO can be adopted to effectively select the 
offloading tasks to lower CPU master frequency, 
which is 4.8% and 0.9% lower than that consumed 
by GRO and HDFO separately.  

Fig.4 shows offloading ratio of different 
algorithms at different deadlines, it indicates an 
interesting phenomenon. When the deadline 
increases, offloading ratio increases also for all 
algorithms.  The offloading rate of SAO algorithm is 
lower than HDOF and GRO.  

 
Fig.4 Offload percentage with different deadline 

While SAO generates the highest offloading rate 
over 70%, offloading rate of HDOF with the 
maximum energy consumption is greater than that of 
GRO requiring less energy. By contrast, it has been 
proven in Fig. 2 that its uploading energy 
consumption is lower than another two approaches. 
This illustrates that tasks HDOF selects to be 
transmitted have a small data size, which further 
verifies the conjecture of this study. The reason why 
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the phenomenon shown in Fig. 4 takes form is that 
always selecting prioritized tasks all possessing high 
computing densities may cause some tasks of large 
data size and massive calculations to be not 
offloaded. On the contrary, those of heavy 
calculation burden, small data size and high 
computing density can be offloaded to the cloud. 
Consequently, the latter takes up energy 
consumption of transmitting so that the former fails 
to satisfy a condition that the transmitting power 
must be lower than threshold and these tasks are 
forced to be implemented locally. In this case, power 
consumption is incurred due to rather high CPU 
master frequency. 

Uploading energy consumption of GRO is roughly 
identical to that of SAO but greater than HDOF. It 
signifies that GRO usually selects tasks of large data 
size and heavy calculation burden to be offloaded to 
the cloud sparing a lot of energy. However, due to a 
large data size of these tasks, transmitting power 
occupied by them is rather high leading to failure in 
offloading other tasks and a low offloading rate. 

Overcoming defects described above, the 
simulated annealing approach is able to offload tasks 
have low data size but big calculations in line with a 
certain probability as well as the massive 
calculations and big data size tasks. Meanwhile, it 
also has the capacity to substitute some local optimal 
solutions to place an energy conservative task 
occupying great transmitting power in a local 
position to obtain the possibility of offloading 
multiple tasks that may be acquired. Furthermore, 
the sum of energy spared by such multiple tasks is 
superior to that produced by offloading just one task. 
In this context, offloading rate related is at the 
maximum level. Time complexity of the simulated 
annealing algorithm is slightly higher than that of 
another two approaches due to several rounds of 
iterations. 

VI. CONCLUSION 
The single-user multiple-task model raised in this 

paper was adopted to assign tasks to be offloaded by 
virtue of a simulated annealing algorithm and modify 
both transmitting power and CPU frequency in line 
with conditions of these tasks. The aim to reduce the 
total energy consumption of device by dynamically 
adjusting these two parameters could be achieved. 

As demonstrated by emulation experiment based 
on numerical simulation, in the case of multiple tasks 
have high computing densities that offloading them 
according to computing densities may give rise to 
failure in offloading those of big data size but heavy 
calculation burden; besides, keeping selecting tasks 
that seem to be most energy conservative to be 
offloaded to the cloud can possibly lead to a low 
offloading rate and falling into the local optimal 
solution because such an operation has occupied 
excessive transmitting power. However, the 
simulated annealing algorithm proposed in this paper 
is capable of offloading tasks that consuming much 
energy executed locally and improving the 
offloading rate simultaneously to ultimately lower 
the total energy consumption. 
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