
International Journal of Computer Techniques -– Volume 5 Issue 1, Jan – Feb 2018

ISSN :2394-2231 Page 5 http://www.ijctjournal.org

Energy Efficiency Multi task Offloading and Resource Allocation
in Mobile Edge Computing

LiHuanjie Zang*
* (Department of Computer Science, Jinan University, Guangzhou 510632,China)

Abstract:
On edge computing, mobile devices can offload some computing intensive tasks to the cloud so that

the time delay and battery losses can be reduced. Different from cloud computing, an edge computing model
is under the constraint of radio transmitting bandwidth, power and etc. With regard to most models in
presence, each user is assigned to a single mission, transmitting power or local CPU frequency on mobile
terminals is deemed to be a constant. Furthermore, energy consumption has a positive correlation with the
above two parameters. In a context of multitask, such values could be increased or reduced according to
workload to save energy. Additionally, the existing offloading methods are inappropriate if all the compute
densities of multiple tasks are high. In this paper, a single-user multi-task with high computing density model
is proposed and partial task is offloaded when use the different offload algorithm. Simulated annealing
algorithm is the best method to select offloading tasks, which can enhance the offloading ratio and save
energy consumption.

Keywords —edge computing, offloading, simulated annealing.
--************************----------------------------------

MEC system depends on offloading strategies.
I. INTRODUCTION

With popularization of 5G technology, mobile
terminals and the Internet of Things (IoT) enter a
new round of rapid progress. However, limited
computing resources of mobile devices may restrict
user experience. In this case, computing intensive
tasks can be offloaded to an edge cloud server by
virtue of mobile edge computing (MEC) technology.
It means that servers of computing and memory
properties are deployed in network access points
rather close to users so that they are permitted to
offload tasks on the mobile terminal to edge servers
to achieve a better service effect. Comparing with
traditional cloud, the edge cloud has the capability to
reduce transmission delay of tasks substantially.
Meanwhile, battery losses incurred by migrating
computing intensive tasks to the cloud terminal are
considerably lower than those consumed by local
processing. . The reason is that energy consumption
relies on how many CPU cycles are taken by the
corresponding tasks. Nonetheless, performance of a

Communication between mobile devices and edge
servers needs to occupy wireless channels, which
gives rise to extra energy consumption. On this basis,
how to make trade-off between time delay and
energy consumption is a hot spot of MEC
investigations. A majority of current studies start
from unlimited cloud resources to think about
channel assignment problems. For example, wireless
channel assignment is defined as a self-centered
crowded game [[1]]. As for [[2]] studied the
cooperation game of offloading service providers,
where the radio and compute resources were
assumed to be managed by different entities
separately. Computing based on fine grit has been
extensively explored recently. For example, an
approach is put forward to make program
partitioning parallel or serial to sub-tasks [[3]]. In
other words, multiple sub-tasks are assigned with
certain bandwidth and computing resources to
shorten the ultimate completion time.

 International Journal of Computer Techniques -– Volume 5 Issue 1, Jan – Feb 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 6

A huge number of studies focus on a multi-user
single-task type now, that is, a user only executes one
task to assign channels for offloading decision, both
transmitting power and CPU master frequency keep
unchanged. What they thought about is that how to
allocate bandwidth resources in energy effective way
[[4]-[5]]. By contrast, a program is usually
partitioned into multiple tasks to be processed in
reality. Not only may a single user have the
requirement of executing multiple tasks
simultaneously, but it is likely for a mobile device to
manage several IoT appliances and perform their
tasks. Therefore, transmitting power and CPU
frequency should be selected accordingly in line with
offloading choices of different tasks in multiple tasks.
In a multi-task scenario [[6]], the user is allowed to
offload all or partial tasks, which dependent on their
transmitting power and noise. In the case that all
tasks of the device are processed locally, it no longer
carries out radio transmission to the base station, as
a result, the relevant transmission power can be 0 or
maximum. If a user only needs to offload a small part
of tasks, a great transmitting power leads to
unnecessary energy consumption. It is suggested that
a task can be partitioned into multiple time slots to
be executed in [[7]][[8]]. Moreover, some tasks of
certain bits are performed locally in each time slot,
while some others are offloaded to the server. A user
should modify local CPU frequency and transmitting
power in conformity with workload to minimize
energy consumption [[7]], where some tasks are
executed locally and other tasks are executed on the
server respectively, but they ignore that the
offloading tasks can adjust dynamically. Although
the number of executed bits locally or on the server
is considered to be modified in [[8]], both
transmitting power and CPU frequency cannot be
adjusted in accordance with the corresponding
workload. Meanwhile, random increase or decrease
of bits may damage program integrity due to
correlation of programs. Furthermore, a program
should be partitioned into several tasks that can be
implemented independently. Consequently, how to
select some tasks to be offloaded and completed
before the deadline to reduce the final energy
consumption is an NP-hard problem.

The single-user multi-task model is used in this
paper, multiple independent tasks must be executed

and completed before the deadline locally or on the
server. The existing effective energy utilization
model selects tasks of high computing densities to be
offloaded, which fails to adapt to scenarios of
multiple tasks all with high computing densities. The
simulated annealing algorithm is used to an
offloading selection decision in this paper. It is
applicable to multiple tasks of high computing
densities to avoid the achievement of a locally
optimal solution in the process of offloading
selection. The simulation results show that the model
has the potential to improve task offloading ratio and
reduce the power consumption of task execution.

Structure of this paper is as follows. Section 1
introduces related works. Section 2 put forward a
formulaic definition of the proposed model. In
section 3, corresponding problems are transformed
into convex optimization problems. An offloading
strategy of low time complexity is presented in
section 4. For section 5, numerical simulation of
different methods is carried out. The paper is
concluded in section 6.

II. SYSTEM MODEL

As shown in Fig.1, a multi-task and single mobile
terminal model is taken into account in this paper. In
this model, a piece of code is divided into multiple
mutually independent tasks that are executed locally
or offloaded to corresponding edge servers for
computing. On the mobile terminal, computation and
transmission are implemented concurrently and all
tasks must be completed within the time limit. Local
and cloud task execution is represented as
mathematical definition to compute energy
consumption and delay during computing and
sending respectively, so as to formulate a power
minimization implementation strategy.

A mobile device was assumed to contain N
independent tasks, which is denoted as ! ≜
{$%, …$(}. Each task could be expressed in a two-
element tuple < +,, -, >, where +, (bits) is data size
of input data, that consists of environment settings,
program code and initial parameters of task
execution, -, stands for CPU cycles of these tasks.
Values of +,	and	-, depend on the nature of tasks
and are achieved by analyzing concrete task
execution situations [[9]-[10]]. For a user, if task 3 is
selected to execute locally, CPU frequency of the

 International Journal of Computer Techniques -– Volume 5 Issue 1, Jan – Feb 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 7

local machine is denoted by 4. In this context, local
task execution time (s) can be denoted as equation
(1).

Fig. 1 Edge computing system model

 5,
678 = -,/4 (1)

To calculate power consumption(J) of local task
execution, a widely recognized model utilized for
energy consumption of CPU cycles has been adopted
in this study. To be specific, energy consumption of
each CPU cycle is expressed as ε = κ4= [[1]] [[11]],
where, κ is a parameter established according to
CPU chip architecture. Therefore, power
consumption of local task execution is expressed as
equation (2).

 >,
678 = κ4=-, (2)

As tasks are uploaded to a MEC server, its total
completion time should be composed of three parts,

namely (i) 5,
?

 is the duration of transmitting the
input data to MEC server via the uplink; (ii)
5,
!"!denotes the execution time of the tasks on server;

and (iii) the time required by the task to return results.
Generally, time delay of returning computing results
to a user is ignored, because data size obtained by
computing is far lower than the input data size. It is
consistent with considerations mentioned in [[1]]

[[12]]. Here, 5,
?

 is related to transmission rate of the

uplink. In line with Shannon equation, the
transmission rate(bits/s) can be expressed in the
following formula as equation (3).

 R$%& = W log$1 +
 -.

/
& (3)

In the equation (3), W stands for upstream
bandwidth, ℎ for channel gain jointly determined by
the distance from a user to a wireless base station and

the path loss factor, % for transmission rate required
by a user to upload the input data to a nearby edge
cloud server, and 1 for a task’s background noise
including interference of other users’ transmission
and noise of the natural environment. On this basis,
transmission time and computing time of uploading
a task can be denoted as the total time delay of this
task on the server. If computing resources that a user
has access to use is expressed in 42 , the
corresponding formula can be written as equation (4).

 5,
?
+ 5,

!"! =
34

5$ &
+

64

78
 (4)

Considering that data size acquired by cloud
processing is far below the input data size, only
energy consumption of uplink transmission needs
taking into account. In addition, transmitting power
of a mobile device has an upper limit dependent on
the LTE standard. Hence, energy consumption can
be expressed in equations (5) and (6), where P:;"
signifies the maximum transmitting power.

 >,
7<<

= %5,
?

 (5)

 0 < % < P:;" (6)
Eventually, calculation model in this study is

written into the following equations.

 min
@, ,7	

A∑ >,
678

,∈@D
+ ∑ >,

7<<
,∈@.

E (P1)

s.t.

 0 < %	 < P:;" (6)

 ∑ 5,
678

,∈@D,4
< $F (7)

 ∑ A5,
?
+ 5,

!"!E,∈@.,4
< $F (8)

 ∑ G%,, ∗ G=,, = 0(
,I% (9)

 ∑ GJ,, = 1=
JI% (10)

Task $, is represented by a binary set of G%,,, G=,,,

G%,, = 1, G=,, = 0 when 3 ∈ K%; and, G%,, = 0, G=,, =

1	in	the	case	of	3 ∈ K= . In this part, K% and 	K=
represent a set of tasks executed locally and the other
set of tasks implemented on the cloud respectively.
The objective function means that transmitting
power and chip operating frequency on the mobile
terminal should be modified and appropriate tasks
are selected on the cloud to minimize the power
consumption when relevant time delay has been
restricted and the corresponding energy
consumption remains below its upper limit. For
example, we could use DVFS to make the CPU
frequency adjust dynamically. While constraint (6)

 International Journal of Computer Techniques -– Volume 5 Issue 1, Jan – Feb 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 8

indicates that transmitting power should not exceed
its upper limit or be a negative, constraints (7) and (8)
point out that tasks processed locally or on the cloud
must be fully implemented and completed before the
deadline. According to constraints (9) and (10), a
task must be executed either locally or on a cloud.

P1 is a mixed integer non-linear programming
problem(MINLP) to satisfy time delay conditions by
modifying transmitting power % and CPU frequency
4 . In addition, an offloading strategy K should be
also formulated to minimize the power consumption,
which has been deemed as a NP hard problem. In the
next section, complexity of this problem was cut
down by means of relaxation and decoupling to find
a feasible solution in low time complexity.

III. PROBLEM FORMULATION

To resolve problem P1, it is necessary to reduce its
complexity. If the offloading strategy K has been
clear to us, constraints (7) and (8) are only related to
the first half part and the latter part of P1 separately.
After relaxation and decoupling of the problem, the
following two sub-problems are achieved by
satisfying transmitting power adjustment in a
condition of time delay.

 min
 	

∑ >,
7<<

,∈@.
 (P2)

s.t. (8)

And CPU frequency adjustment subjected to the (7)
condition.

 min
7	

∑ >,
678

,∈@D
 (P3)

s.t. 	(7)
In terms of problem P2, it can be written as follows

in accordance with Equations (3), (4) and (5).

 min
 	

∑ %	
34

5$ &,∈@.
 (P4)

 s.t. ∑ R
34

5$ &
	 +

64

78
S,∈@.
< $F (11)

Nonetheless, this is still a non-convex problem,
because of a non-convex objective function
corresponds to a non-linear constraint. To transform
it into a convex optimization problem, variable

substitution is adopted. In this case, a variable 	T has

been introduced to let 	T =
%

5$ &
 and U =

/

-.
, then, the

original problem is turned into P5,

 min
V
U ∗ ∑ 	 W2

D

YZ − 1\ T+,,∈@.
 (P5)

 s.t. ∑ $+,T + -, 4
2⁄ &,∈@.
< $F (12)

Define that Λ$T& ≜ $2
D

_Z − 1&T , and
`.a$V&

`V.
=

2
D

YZ
bc. =

d.Ve
≥ 0 corresponding to a condition of ∀T >

0, here the objective function is a convex function
and the constraint condition becomes linear.
Therefore, such a convex optimization problem can
be solved by a Lagrangian multiplier method in

[[13]].Make h$T, i& = U ∗ ∑ T$2
D

YZ − 1&+,,∈@. +

i$∑ $+,T + -, 4
2⁄ &,∈@.
− $F& , where i is the

Lagrange's multiplier, and
jk

jV
= 0 and

jk

jl
= 0, that is,

2
D

YZ ∗ R1 −
bc=

dV
S − 1 + i = 0 , ∑ $+,T +,∈@.

-, 4
2⁄ & − $F = 0 ;That is, i = 1 − 2

D

YZ R1 −

bc=

dV
S = −

Fa$V&

FV
. Due to

`.a$V&

`V.
≥ 0 ,

Fa$V&

FV
 is an

increasing function about T ; together with

lim
V→n

Fa$V&

FV
= −∞ and lim

V→pq

Fa$V&

FV
= 0 , it can be

concluded that i = −
Fa$V&

FV
> 0 in the case of T ∈

$0, +∞& . Moreover, i is monotone decreasing in
relation with T . To obtain the value of i , this
problem is resolved by dichotomy as algorithm1

Algorithm1:Subcarrier-Search For Transmission
Power

Input烉烉烉烉+, ∈ K=, -, ∈ K=, r, $
F,s, ℎ=, 1, 42

Output:	T

i6 = 0		i- = it;"

While
it = $i6 + i-&/2

Solve the equation 2
D

_Z ∗ R1 −
bc =

dV
S − 1 =

it

If u∑ A5,
?
+ 5,

!"!E,∈@.
− $Fu < r break

Else If ∑ A5,
?
+ 5,

!"!E,∈@.
> $F	 i6 = 	it

Else If ∑ A5,
?
+ 5,

!"!E,∈@.
< $F i- = it

End If
End While

Likewise, P3 can be also transformed into a
convex optimization problem by means of

 International Journal of Computer Techniques -– Volume 5 Issue 1, Jan – Feb 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 9

substitution. The reason why it can be directly solved
by the Lagrangian multiplier method is that problem
P3 has a convex objective function and a linear
constraint.

In detail, it is assumed that v$wx!8, y& =

∑ z4= -, + y$∑
64

7,∈@D
 − $F&,∈@D

, to make
j{

j7
=

2z4-, − y
64

7.
= 0 and ∑ -, 4⁄,∈@D

 − $F = 0, then,

y = 2z$4&| . Apparently, y is descending in terms
of 4 in a context of $0, +∞&, where, 4 ∈ $0, +∞&.
Similarly, value of 4 can be also gained by
dichotomy.

Algorithm2: Subcarrier-Search For CPU
Frequency

Input烉烉烉烉+, ∈ K%, -, ∈ K%, r, T
`, z

Output:	4

y6 = 0		y- = yt;"
While

yt = $y6 + y-&/2
Solve the equation yt = 2z$4&|

If u∑ t~
b�Ä

~∈ÅD
− T`u < r break

Else If ∑ t~
b�Ä

~∈ÅD
> T` y6 = yt	

Else If ∑ t~
b�Ä

~∈ÅD < T` y- = yt

End While

Regarding Algorithm1 and Algorithm2, their time
complexity is O$log É&, Equations (2) and (5) are

used to work out ∑ >,
678

,∈@D
+ ∑ >,

7<<
,∈@.

. In the end,

the problem lies in the solution to task allocation K.

 min
@	
A∑ >,

678
,∈@D

+ ∑ >,
7<<

,∈@.
E (P6)

s.t. (6),(9),(10)
However, it is still an NP-hard problem, the

optimal solution of which can be acquired by listing
all possible solutions in a method of exhaustion.
Considering that each task can be implemented after
being offloaded to a cloud or locally, the number of
possibilities is 2Ñ in total. Time complexity of this
decision scheme is O$2Ñ logÉ& that we cannot
accept. In the next section, an algorithm of low
complexity is proposed to solve this issue.

IV. SOLVING OFFLOAD DECISION-MAKING

PROBLEM ON LOW TIME COMPLEXITY

In this part, the simulated annealing algorithm is
presented to make offloading decisions so that the
problem could be resolved in a condition of

polynomial time complexity. For the convenience of
description, the following operation has been defined.
In the course of this operation, task 3 is taken out of
one set and then put into the other. At the beginning,
∀3 ∈ K% and K= = ∅ , indicating that all tasks are
assumed to be locally executed originally.

Algorithm3:Exchange

Input烉烉烉烉K6, KÜ, 3

Output烉烉烉烉K6, KÜ

If 3 ∈ K6
K6 = K6\3
KÜ = KÜ ∪ 3

End If

In most research, tasks of high computing density
always achieve an offloading priority of a higher

level. For example, >,
678 > >,

7<<
 has been selected

as a condition to pick offloaded tasks to a cloud in
multiple papers, for an example, paper [[6]] is
inclined to offload tasks of high computing density.
Generally, diverse tasks are with different computing
densities. If their computing densities are slightly
differentiated and also high, energy consumption of
the cloud is mainly incurred by data upload, while
the local power consumption is computing,
migration of tasks to a cloud must save more energy
than that executed locally with the condition of
urgent deadline, which may lead to the following
situations. Because the higher computing densities
tasks has the higher offloading priority, the
possibility of migration can be higher for tasks which
has a small data size but great computational
complexity. But such tasks with huge data size as
well as high computational complexity will become
too late to be transmitted. They have to be completed
before the deadline by increasing CPU frequency
locally due to a fact that the transmitting power has
an upper limit, further resulting is unexpected
increasing energy consumption.

On this basis, a greedy offload (GRO) scheme is
proposed. It attempts to select a task to offload from
all candidate tasks; after the calculation of objective
function P6, it is placed back into the original set;
then, another task is chosen to offload from other
candidate tasks to work out the relevant objective
function and then put back again… In this way, a
round of offloading is completed for all tasks to find
a task of optimal performance and this task is thus

 International Journal of Computer Techniques -– Volume 5 Issue 1, Jan – Feb 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 10

selected for computing migration, followed by the
next round up until the offloading decision becomes
unable to acquire any other value better than the
current function results. The optimal offloading
decision of a round is made after all tasks have been
calculated and compared, let n the number of rounds,
complexity of GRO can be denoted as O$É= logÉ&.

Algorithm4:Greedy Offload(GRO)

Input烉+, ∈ K%, -, ∈ K%,

Output:	K%, K=

Value= ∑ >,
678

,∈@D

While(true)

â = −1
For 3 ∈ K%

 Exchange(K%, K=, 3)

 tempValue=∑ >,
678

,∈@D
+ ∑ >,

7<<
,∈@.

If tempValue<Value And % < ät;"
 Value= tempValue

 â = i
End If
ãåçéèêëí$K=, K%, 3&

End For
If â == −1

Break
End If
ãåçéèêëí$K%, K=, â&

End While

We should pay attention a phenomenon that when
the current most power-efficient task has been
selected and offloaded, because the selected task
occupies great transmitting power such that e other
tasks cannot be offloaded; the sum of power
consumption of offloading these tasks may be higher
than that spared by the present task. For instance,
offloading $% spares energy 0.1J and consumes the
transmitting power 0.11W; by contrast, the energy of
offloading $= and $| is both 0.06J and each of them
consumes 0.1W transmitting power. Therefore,
when the transmitting power remains below 0.2W, it
is not ideal to select $% to offload. Such a category of
problems can be summarized as 0-1 knapsack
problems with corresponding solutions.

In this paper, we assume that offloading and
transmitting power consumption of each task is not
constant amounts, but both vary along with different

task combinations. In this condition, u∑ A5,
?
+,∈@.

5,
!"!E − $Fu < r is used to compute transmitting

power %. Value of ∑ A5,
?
+ 5,

!"!E,∈@.
 is different for

different offloading task combinations in a condition
of identical i; hence, value of % is also distinct. In a
word, we do not know the transmitting power and
energy saving about a tasks until we calculate them
according to different K%, K=. So we cannot use the
solution about 0-1 knapsack problem.

In this section, solution of this problem is
improved by the simulated annealing algorithm.
Simulated annealing is a term originated in
metallurgy. During annealing, the material is heated
and cooled down at a particular rate so that it
becomes much more likely for atoms to find
positions where internal energy is much lower than
before. Statistically, optimal solution to simulated
annealing converges to a locally optimal solution
with probability. In general hill climbing algorithms,
they stop when solutions of the near space can be no
longer better than the current solution. But, the
simulated annealing algorithm accepts a solution
poorer than the current one in accordance with a
certain probability so that it can possibly step out
such a local optimal solution. When the objective
function 4ìÉî53ïÉ$3 + 1& is better than
4ìÉî53ïÉ$3&, the corresponding solution is accepted;
otherwise, the migration should be accepted in
conformity with a certain probability that gradually
changes along with time.

Computing density is used as a control factor in
the proposed algorithm. Under the circumstance of
similar data sizes, it will save more energy to offload
the task with higher computing density. On this basis,
equation (13) is employed to initialize relevant
solutions. Let χ, be the computing density
proportion, which is obtained by equation (13),
where ρt;"	3ò	5ℎô maximum computing density,
ρt,Ñ is the minimum computing density and ρ, is
computing density of the current task.

 χ
3
=

ρ
3
−ρ

ö3É

ρ
öõú

−ρ
ö3É

 (13)

Obviously, χ, ∈ ù0,1û, χ, is closer to 1 in the case
of a higher computing density. Therefore, only when
the sum of χ, and cooling factor 5 is below ü , ü
represents the random factor and r ∈ ù0,1û, the task
can be placed in a local position. In this way, it is
much possible that tasks with higher computing
densities will be implemented on an edge server.

 International Journal of Computer Techniques -– Volume 5 Issue 1, Jan – Feb 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 11

Subsequently, energy consumption of this scheme
is calculated. If the energy consumption is lower than
the current value, the scheme can be accepted;
otherwise, solutions should be accepted in line with
a particular probability by virtue of Equation (14).

 äüï =
%

%p!°¢£4 §⁄ (14)

Where, $ stands for the initial temperature and is
a constant, Δ>, is the difference between the new and
the original solutions. In the case, the random
number is smaller than äüï, the solution is poorer
than the current one, which should be accepted;
otherwise, it is rejected.

Eventually, the simulated annealing offload (SAO)
algorithm is presented in Algorithm 5.

Dependent on SAO, the probability of executing a
task with high computing density locally increases,
which makes tasks with large data size and massive
calculations be migrated and prevent the low data
size and high computational complexity tasks to take
the high offload priority. In order to avoid local
optimum, a poorer solution than the current one
should be accepted in line with a particular
probability.

Time complexity of the algorithm depends on an
annealing factor fac. The inner loop possesses time
complexity O$n log n& and the number of exterior
loops is m , the ultimate time complexity is
O$mn logn&. Some simulation results will validate
these ideas in section 5.

Algorithm5: Simulated Annealing Offload (SAO)

Input烉烉烉烉+, ∈ K%, -, ∈ K%, ϵ, wõî, $, ∆t

Output:	K%_Ü!x?6©, K=_Ü!x?6©

oldValue= ∑ >,
678

,∈@D
+ ∑ >,

7<<
,∈@.

While wõî > ϵ
 For 3 ∈ K%⋃K=

-õîì´õ5ô	¨,	õîîïüÍ3ÉÆ	5ï	$11&	õÉÍ
üõÉÍïö	ü	Øô5ÐôôÉ$0,1&

 If r ≥ χ, + wõî
Exchange$K=, K%, 3&

 Else If
 Exchange$K%, K=, 3&

 End If

 newValue= ∑ >,
678

,∈@D
+ ∑ >,

7<<
,∈@.

 If newValue < oldValue
 oldValue = newValue

 If minValue<old Value
 minValue=oldValue
 K=_Ü!x?6© = K=

K%_Ü!x?6© = K%

 End If
 Else

îõîì´õ5ô	äüï	õîîïüÍ3ÉÆ	5ï	$12&
õÉÍ	ÖõÉÍïö	ü	Øô5ÐôôÉ	$0,1&

 If ü < ä,	
 oldValue = newValue
 Else
 3	üô×ôü5	5ï	5ℎô	

ïü3Æ3Éõ´	îï´´ôî53ïÉ
 End If
 End If

End For
wõî = wõî − ∆t

End While

V. NUMERICAL SIMULATION

In this section, emulation experiment is used to
evaluate performance of the proposed algorithm. It
is supposed that there is only one mobile device that

communicates with an edge server in a community炻

the mobile device is assigned with bandwidth s =
20MHz, CPU parameter κ = 10ª=º[0], channel gain
h = 10ª| , noise 1 = 10ªÝ and the maximum
transmitting power ät;" = 0.2W. In addition, CPU
resource 42 on the cloud is 5GHz. During this
experiment, data size of a program is assumed to be

ø100炻500¡KB roughly, it should be divided into 10

tasks, the data size of each task is denoted as +, ∈

ø10炻50¡KB. If all tasks possesses high computing

densities, -,/+, ∈ ø1000炻1500¡ cycles/bit, above

parameters are all obtained by referring to [[8]].
Then, energy consumption of different methods with
diverse time delay is investigated and compared.

First, a high density offload (HDOF) approaches
with the priority are compared to GRO in
Algorithm3 and SAO in Algorithm 4.. The task
offloading should be completed in a descending
order of their computing densities until all tasks have
been involved. In this course, the transmitting power
of a mobile terminal is not allowed to go beyond its
maximum value. When they were compared,
precision of r is set to 10ª| s when %	õÉÍ	4 are

 International Journal of Computer Techniques -– Volume 5 Issue 1, Jan – Feb 2018

ISSN :2394-2231 http://www.ijctjournal.org Page 12

calculated. Particularly, several parameters in the
simulated annealing algorithm are set as follows,
wõî = 0.5, ϵ = 0.3, $ = 100 and ∆t =
0.02 .Corresponding deadline is defined to range
from 0.44s to 0.5s.

Fig. 2 Energy consumption with different deadline

Fig.3 Local CPU frequency with different deadline

Fig. 2 shows energy consumption for HDFO,
GRO and SAO approaches at different deadlines,
energy consumption goes down along with
relaxation of time delay constraints and the average
energy consumption of SAO is lower than another
two approaches in different deadlines. About 12%
and 4% average energy are spared when HDFO and
GRO are compared with SAO. Such result signifies
that SAO is an ideal scheme. Through vertical
comparison, most energy has been consumed by
high computing density tasks that cannot be
uploaded to the cloud; however, as soon as such
tasks have been uploaded successfully, energy
consumption decreases evidently.

Due to short transmission time, variations in
energy consumed by uploading are small in the case
of diverse time delay. Nevertheless, percentage
occupied by offloading energy required by all
approaches becomes increasingly higher from
respectively 3.1%, 5.3% and 7.2% to 10.5%, 10.1%

and 17.5% as time delay increases. In conformity
with computing, the average uploading energy
consumption needed by HDFO, GRO and SAO are
0.026W, 0.043W and 0.055W far below their
thresholds, which meets the time delay requirement.
If tasks are transmitted by the maximum transmitting
power all along, additional energy consumption can
be generated. Especially in the case of relaxed
deadline, using the maximum transmitting power to
translate tasks, the waste of energy consumption will
become more and more serious

The comparison between Fig. 2 and Fig. 3
addresses that the CPU frequency depends on
performance of energy consumption. The lower CPU
master frequency required is, the lower energy
consumption will be. Therefore, how to select tasks
to be migrated to an edge cloud server is apparently
deemed to be especially important. As shown in Fig.
3, SAO can be adopted to effectively select the
offloading tasks to lower CPU master frequency,
which is 4.8% and 0.9% lower than that consumed
by GRO and HDFO separately.

Fig.4 shows offloading ratio of different
algorithms at different deadlines, it indicates an
interesting phenomenon. When the deadline
increases, offloading ratio increases also for all
algorithms. The offloading rate of SAO algorithm is
lower than HDOF and GRO.

Fig.4 Offload percentage with different deadline

While SAO generates the highest offloading rate
over 70%, offloading rate of HDOF with the
maximum energy consumption is greater than that of
GRO requiring less energy. By contrast, it has been
proven in Fig. 2 that its uploading energy
consumption is lower than another two approaches.
This illustrates that tasks HDOF selects to be
transmitted have a small data size, which further
verifies the conjecture of this study. The reason why

International Journal of Computer Techniques -– Volume 5 Issue 1, Jan – Feb 2018

ISSN :2394-2231 Page 14 http://www.ijctjournal.org

the phenomenon shown in Fig. 4 takes form is that
always selecting prioritized tasks all possessing high
computing densities may cause some tasks of large
data size and massive calculations to be not
offloaded. On the contrary, those of heavy
calculation burden, small data size and high
computing density can be offloaded to the cloud.
Consequently, the latter takes up energy
consumption of transmitting so that the former fails
to satisfy a condition that the transmitting power
must be lower than threshold and these tasks are
forced to be implemented locally. In this case, power
consumption is incurred due to rather high CPU
master frequency.

Uploading energy consumption of GRO is roughly
identical to that of SAO but greater than HDOF. It
signifies that GRO usually selects tasks of large data
size and heavy calculation burden to be offloaded to
the cloud sparing a lot of energy. However, due to a
large data size of these tasks, transmitting power
occupied by them is rather high leading to failure in
offloading other tasks and a low offloading rate.

Overcoming defects described above, the
simulated annealing approach is able to offload tasks
have low data size but big calculations in line with a
certain probability as well as the massive
calculations and big data size tasks. Meanwhile, it
also has the capacity to substitute some local optimal
solutions to place an energy conservative task
occupying great transmitting power in a local
position to obtain the possibility of offloading
multiple tasks that may be acquired. Furthermore,
the sum of energy spared by such multiple tasks is
superior to that produced by offloading just one task.
In this context, offloading rate related is at the
maximum level. Time complexity of the simulated
annealing algorithm is slightly higher than that of
another two approaches due to several rounds of
iterations.

VI. CONCLUSION
The single-user multiple-task model raised in this

paper was adopted to assign tasks to be offloaded by
virtue of a simulated annealing algorithm and modify
both transmitting power and CPU frequency in line
with conditions of these tasks. The aim to reduce the
total energy consumption of device by dynamically
adjusting these two parameters could be achieved.

As demonstrated by emulation experiment based
on numerical simulation, in the case of multiple tasks
have high computing densities that offloading them
according to computing densities may give rise to
failure in offloading those of big data size but heavy
calculation burden; besides, keeping selecting tasks
that seem to be most energy conservative to be
offloaded to the cloud can possibly lead to a low
offloading rate and falling into the local optimal
solution because such an operation has occupied
excessive transmitting power. However, the
simulated annealing algorithm proposed in this paper
is capable of offloading tasks that consuming much
energy executed locally and improving the
offloading rate simultaneously to ultimately lower
the total energy consumption.

REFERENCES
[1] X. Chen, “Decentralized computation offloading game for mobile cloud

computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 974–
983, Apr. 2015.

[2] R. Kaewpuang, D. Niyato, P. Wang, and E. Hossain, “A framework for
cooperative resource management in mobile cloud computing,” IEEE J.
Sel. Areas Commun., vol. 31, no. 12, pp. 2685–2700, Dec. 2013.

[3] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks
for computation-intensive applications in mobile cloud computing,” in
Proc. IEEE Int. Conf. Comput. Commun. Workshops (INFOCOM
WKSHPS), Toronto, Canada, Apr. 2014.

[4] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud with
computing access point,” in Proc. of IEEE INFOCOM, Atlanta, GA,
May 2017.

[5] M. H. Chen, B. Liang, and M. Dong, ‘‘Joint offloading decision and
resource allocation for multi-user multi-task mobile cloud,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–6.

[6] K. Liu, J. Peng, H. Li, X. Zhang, and W. Liu, “Multi-device task
offloading with time-constraints for energy efficiency in mobile cloud
computing,” Futur. Gener. Comput. Syst., vol. 64, pp. 1–14, 2016.

[7] Tadapaneni, N. R. (2016). Overview and Opportunities of Edge
Computing. Social Science Research Network.

[8] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans.
Wireless Commun., vol. PP, no. 99, 2016.

[9] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation
partitioning for latency sensitive mobile cloud applications,” IEEE Trans.
Comput., vol. 64, no. 8, pp. 2253–2266, 2015.

[10] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proc. USENIX Conf. Hot Topics Cloud Comput.
(HotCloud), June 2010.

[11] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,” in
Proc. IEEE INFOCOM, pp. 2716–2720, 2012.

[12] X. Lyu, H. Tian, P. Zhang, and C. Sengul, “Multi-user joint task
offloading and resources optimization in proximate clouds,” IEEE Trans.
Veh. Technol., vol. PP, no. 99, 2016.

[13] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge,
UK:Cambridge University Press, 2004.

[14] C. You, K. Huang, and H. Chae, “Energy efficient mobile cloud
computing powered by wireless energy transfer,” IEEE Journal on
Selected Areas in Communications.

[15] Liu, Allan and Yu, Ting, Overview of Cloud Storage And Architecture
(2018). International Journal of Scientific & Technology Research.

[16] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Power-delay tradeoff
in multi-user mobile-edge computing systems,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Washington, DC, USA, Dec. 2016, pp.
1–6.

