
1 
	

Leibnizian and Nonstandard Analysis: 
Philosophical Problematization  

of an Alleged Continuity  
 

Ivano Zanzarella 
Faculty of Philosophy and Educational Science 

Ruhr University Bochum 

March 25, 2020 
 

Abstract 
 

In the present paper the philosophical and mathematical continuity 
alleged by A. Robinson in Nonstandard Analysis (1966) between his 
theory and Leibniz’s calculus is investigated. In Section 1, after a brief 
overview of the history of analysis, we expose the historical, mathemat-
ical and philosophical aspects of Leibniz’s calculus. In Section 2 the 
main technical aspects of nonstandard analysis are presented, and Rob-
inson’s philosophy is discussed. In Section 2.1 we claim the absence of 
a complete and direct continuity and the only possibility of a concep-
tual similarity between Leibniz’s and Robinson’s theories, both at the 
philosophical and at the mathematical level.  
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1    History and Philosophy of Mathematical Analysis from Leibniz to Robinson 

1.1   Fundamental Steps in History of Analysis 

Some of the main problems of that discipline today known as ‘mathematical anal-
ysis’ - synthetically definable with the words of Hans N. Jahnke as «the study of 
dependencies among variable quantities»1 - were already present in ancient Greek 
mathematics and philosophy: the definition and computation of lengths, areas, vol-
umes, involved curves and tangents to curves, the problems of infinite and of infinitely 
small, etc. Archimedes, Euclid, Eudoxus, alleged inventor of the famous methods of 
exhaustion, Zeno, Aristoteles with their important ideas and paradoxes about the 
infinite are some of the most significant examples of Greek thinkers whose mathemat-
ical theories and discoveries will be very important for the upcoming developments in 
mathematical analysis.  

These problems continued to be handled throughout the whole Middle and Early 
Modern Age, within an approach not so different from the ancient one, that is, by 
means of geometrical concepts and methods. The Greek and in particular Euclidian 
‘material’ ontology of mathematics still applied and characterized the notions of math-
ematical concept or mathematical truth in a very empirical way, which sometimes 
represented also a limiting factor for the development of new mathematical theories 
or the solution of mathematical problems2.  

At about the time of the Scientific Revolution a remarkable connection between 
all the old problems of analysis3 as well as new methods for treating them were dis-
covered, in particular by Isaac Newton and Gottfried Wilhelm von Leibniz, with 
whom modern analysis undoubtedly began, as we all know from our mathematics 
textbooks. Newton and Leibniz simultaneously and independently developed ideas 
which, albeit expressed in different forms, built up the core of the infinitesimal Cal-
culus - or Analyse des Infiniment Petits, as called by Leibniz’s pupil Guillaume de 
l'Hôpital4 - the science of the infinitely small forerunner of today’s mathematical anal-
ysis.  

	
1   Jahnke H.N. (ed.), A History of Analysis, American Mathematical Society and London Mathemat-

ical Society, Providence 2003, p. vii, emphasis in the original. 
2   The case of the problem of consonance in mathematical music theory is exemplary in this respect, 

cf. Borzacchini L., Incommensurability, Music and Continuum: A Cognitive Approach, in Archive 
for History of Exact Sciences, 61 (2007), pp. 273–302. 

3   Especially between the problems of the quadrature of curves and of tangents to curves, cf. Jahnke 
H.N., op. cit., par. 2.4; Barrow I., Lectiones geometricae, Godbid G., London 1674, rpt. Olms G. 
Verlag, Hildesheim - New York 1976; Bottazzini U., Storia della mathematica moderna e contem-
poranea, UTET, Torino 1990, ch. 1. 

4   De l’Hôpital G., Analyse des infiniment petits pour l'intelligence des lignes courbes, F. Montalant, 
Paris 1715. 
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In comparison to the past, modern calculus did no longer use traditional geomet-
rical methods. The old geometrical researches and achievements was certainly im-
portant both to Newton and Leibniz5, but it was especially the new analytic geometry 
of Descartes and Fermat which offered the novel conceptual framework within which 
the calculus could develop in a totally different methodological direction6. Geometrical 
entities could be now represented by algebraic equations and thus geometrical prob-
lems became of pure algebraic nature. So, metaphorically speaking, square and com-
pass were replaced by algebraic differential equations in dealing with the traditional 
problems of analysis.   

Newton’s core ideas on calculus developed during his anni mirabiles (1665-1667) 
along with many other ideas and discoveries in physics and mechanics. The first work 
about the topic was De analysi per aequationes numero terminorum infinitas (1669, 
published in 1711), containing the fundamental principles of his calculus but still in-
fluenced by Cavalieri’s and Wallis’ geometrical approach of the method of indivisibles. 
Aside from some references in the Philosophiae Naturalis Principia Mathematica 
(1687), the main works on calculus by Newton can be considered De methodis seri-
erum et fluxionum (1671, published in 1736) and De quadratura curvarum (1676, 
published in 1704), in which he thoroughly exposed his method of fluents, fluxions 
and moments for dealing algebraically with analytical problems. So, if x and y were 
fluents, i.e. quantities varying over time, ẋ and ẏ represented their fluxions, i.e. their 
instantaneous speeds; Finally, the moments were their infinitely small variations 
within an infinitely small interval of time o. In considering these infinitely small var-
iations, Newton referred in his works sometimes to infinitesimals, sometimes to limit-
ing processes or physical and kinetic intuitions. Thus, he leaved the foundational prob-
lem of his calculus practically unsolved, which soon led to strong criticisms by con-
temporary thinkers like Georg Berkeley (see Section 1.5).    

The delayed publication of Newton’s discoveries about mathematical analysis led 
to a controversy that reached the proportions of a nationalistic antagonism between 
English and Continental mathematicians, lasted at any rate until the beginnings of 
the 19th century. In fact, during the same period of Newton’s mathematical researches, 

	
5   For example, Newton fluxional calculus owes much to the geometrical techniques used by the me-

dieval scientist Nicole Oresme in representing the behavior of a quality over time, cf. Sherry D., 
The Wake Of Berkeley's Analyst: Rigor Mathematicae?, in Studies in History and Philosophy of 
Science, 18 (4) (1987), pp. 455-480, par. III. 

6   Cf. Jahnke H.N., op. cit., ch. 2, in pt. pp. 90-91; Bos, H.J.M., Newton, Leibniz and the Leibnizian 
tradition, in Grattan-Guinness I., From the Calculus to Set Theory, 1630-1910: An Introductory 
History, Duckworth, London 1980, pp. 49-93., see in pt. pp. 64-65; Sherry D., op. cit., p. 474.  
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Leibniz was independently developing his own version of calculus, published in 16847 
(see Section 1.3). He was accused of plagiarism by Newton and the members of the 
Royal Society, with the effect that English mathematicians did never accept Leibniz’s 
theory of calculus and that Newton’s one found no spread on the continent. Leibniz’s 
ideas were indeed more intuitive and technically handier than the complex and con-
troversial system of fluents and fluxions of Newton. Therefore, the isolated ‘English 
calculus’ developed more slowly than the ‘continental’ Leibnizian one, which generally 
influenced the history of calculus to a greater extent, as also confirmed by the present 
use of the Leibnizian mathematical notation for differential, integrals, etc.8 Neverthe-
less, both Newton and Leibniz are today acknowledged as the official founders of 
modern calculus. 

Despite the success of Leibniz’s calculus, evident also in its application to me-
chanics and physics, many of the foundational problems connected with it still re-
quired an explanation, above all that concerning the nature and the logical role of 
infinitesimals (see Section 1.4), a problem already present in Newton. This brought 
out the necessity, from the end of the 18th century, to give once and for all a solid 
and rigorous foundation to the calculus. Efforts in this direction were made especially 
by d’Alambert, Lagrange, Bolzano, Cauchy and Weierstrass, who gradually elimi-
nated any reference to the controversial and problematic notions of infinitesimals and 
infinite quantities and introduced the concept of limit, which still constitutes the base 
of today’s standard analysis9. The work of Cantor and Dedekind on set theory and in 
particular on the fields of reals numbers finally contributed to define a consistent 
foundational framework for mathematical analysis10.  

If mathematicians tried as much as possible to avoid involving in theorems and 
definitions problematic notions like those of infinitesimals and infinite quantities, the 
interest in these letters never decreased and assumed in some cases an almost ‘exo-
teric’ dimension. Thus, David Hilbert said about Cantor - the controversial genius 
who had finally ‘dominated’ the mathematical infinite with his transfinite set theory 

	
7  Cf. Leibniz G., Nova methodus pro maximis et minimis…, in Acta Eruditorum, October 1684, in 

Gerhardt C.I. (ed.), Leibnizens mathematische Schriften, Eidmann, Berlin - Halle 1850-1863 v. 5, 
pp. 220-226. 

8   Cf. Geymonat L., Storia e filosofia dell’analisi infinitesimale, Levrotto e Bella, Torino 1947, rpt. 
Bollati Borinighieri, Torino 2008, p. 140; Castelnuovo G., Le origini del calcolo infinitesimale 
nell'era moderna, Feltrinelli, 1962, p. 115.; Loria G., Storia delle matematiche, STEN, Torino 1933, 
2, pp. 564-582; Hankel H., Die Entwickelung der Mathematik in den letzten Jahrhunderten, Fues, 
Tübingen 1885, p. 12; Jahnke H.N., op. cit., ph. 3.5; Kline M., Mathematics in Western Culture, 
Oxford University Press 1953, ch. 15; 

9   Cf. Jahnke H.N., op. cit., ch. 6. 
10  Cf. Jahnke H.N., op. cit., ch. 10. 
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- he created a real paradise for every mathematician11. The hope that such a mathe-
matical conquest could take place for infinitesimals too was however very weak after 
the rigorization of analysis in 19th century, if not completely undesired by the major 
part of the mathematicians (among which Cantor himself, Peano, Russell, etc.). Nev-
ertheless, in the 1960s the Jewish-German (later naturalized American) mathemati-
cian Abraham Robinson realized this hope, warmly expressed also by his mentor 
Abraham Fraenkel12. In fact, he managed to give to infinitesimals a solid and con-
sistent arithmetical foundation and to make them usable both in mathematics and 
empirical sciences. He was really that «zweiter Cantor »13 - albeit at the opposite 
extreme of mathematical infinite - which Fraenkel dreamed of 

14.  
Researches on nonstandard models of arithmetic and analysis, which refused for 

example the Weierstrassian, standard, epsilontic, limit-based approach to analysis or 
the Archimedean, Dedekind-Cantorian continuum were carried out even from the 19th 
century. Many contributions for example by Paul du Bois-Reymond (1871), Otto 
Stolz (1883), Giuseppe Veronese (1889), Rodolfo Bettazzi (1890), Tullio Levi-Civita 
(1893), less known those by Charles Sanders Peirce (1881) and Charles L. Dodgson 
(1885)15 as well as the late ones by Kurt Geissler (1904), Paul Natorp (1923), Curt 
Otto Schmieden (1958) and Detlef Laugwitz (1961) attempted to develop consistent 
theories in geometry, analysis or arithmetic based on infinitesimals and non-Archime-
dean fields16. It was Robinson, however, who offered in 196617 (developed since 1960) 
a first nonstandard model of analysis which was completely consistent from the logical 
point of view and that would soon demonstrate a great applicative power both inside 
and outside mathematics18. Decisive were to Robinson’s formulation of nonstandard 

	
11  Cf. Dauben J.W., Georg Cantor: His Mathematics and Philosophy of the Infinite, Princeton Uni-

versity Press, Princeton (NJ) 1990. 
12  Fraenkel A., Einleitung in die Mengenlehre, Springer, Berlin 1923, p. 163, emphasis added. 
13  Ibidem. 
14  Cf. Robinson A., Non-Standard Analysis, North-Holland Publishing Co., Amsterdam 1966, p. 279; 

Dauben J.W., Abraham Robinson: The Creation of Nonstandard Analysis, a Personal and Mathe-
matical Odyssey, Princeton University Press, Princeton (NJ) 1995, pp. 353-354. 

15  Cf. Abeles F.F., The Enigma of the Infinitesimal: Toward Charles L. Dodgson’s Theory of Infini-
tesimals, in Modern Logic, 8 (3), pp. 7–19. 

16  Cf. Ehrlich, P., The rise of non-Archimedean mathematics and the roots of a misconception. I. The 
emergence of non-Archimedean systems of magnitudes, in Archive for History of Exact Sciences, 
60 (1) (2006), pp. 1–121. 

17  Cf. Robinson A., op. cit. 
18  Robinson’s nonstandard analysis demonstrated not only to be able to prove consistently all theorems 

from classical differential geometry by infinitesimals, but also to be applicable both to ‘internal’ 
mathematical problems (nonmetric topological spaces, complex analysis, analytic theory of polyno-
mials, theory of exceptional values of entire functions, theory of linear spaces - including normed 
spaces and Hilbert space, spectral theory of compact operators, theory of topological and Lie groups, 

	



6 
	

analysis the latest progresses in algebra, mathematical logic and model theory, in 
particular, among the most representative one, the theory of formally-real fields of 
Artin and Schreier (1927), Skolem’s work on non-standard models of arithmetic 
(1934)19 and Jerzy Łoś’ work on model theory (1955)20.   

 
1.2   From History to Philosophy: Some Philosophical Problems of Mathematical 

Analysis 

The very brief examination outlined in the previous section provided us with a 
general understanding of the pivotal developments in history of mathematical analy-
sis: the seven-eighteenth-century algebraization of analytical problems and the birth 
of modern calculus based on the controversial notion of infinitesimal, the nineteenth-
century arithmetical rigorization of analysis by banishment of the latter, the re-
searches on non-Archimedean continua leading finally to the twentieth-century reha-
bilitation of infinitesimals with Robinson’s nonstandard analysis.  

Now, gaining awareness of these historical developments is essential to start a 
philosophical problematization of both the particular concepts involved in mathemat-
ical analysis, which is relevant from the point of view of philosophy of mathematics, 
and of history of analysis itself as rational reconstruction in Lakatosian sense21, which 
is important for history of mathematics and general philosophy of science.  

In our case, this problematization shall regard in particular the Robinsonian non-
standard model of analysis as rehabilitation - according to the statements of its creator 
himself22 - of the Leibnizian ideas on calculus. Analyzing this continuity between 
Leibniz and Robinson is indeed not only a matter of historiography, but a topic which 
opens several philosophical questions for example in the ontology of mathematics, in 

	
classical function theory, etc.) and to empirical sciences (theoretical physics, in particular quantum 
field theory). Cf. Dauben J.W., op. cit., pp. 345-348 and ch. 9 par. ‘Nonstandard Analysis And 
Quantum Physics’; other examples of application of nonstandard analysis to physics in Lobry C., 
Sari T., Nonstandard Analysis and Representation of Reality, in International Journal of Control, 
81 (3) (2007), pp. 519-536. 

19  Cf. Skolem T. Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar 
unendlich vieler Aussagen mit ausschließlich Zahlenvariablen, in Fundamenta Mathematicae, 23 (1) 
(1934), pp. 150–161. 

20  Especially his proof of the so-called transfer principle (see Section 2.1); Cf. Łoś J., Quelques re-
marques, théorèmes et problèmes sur les classes définissables d'algèbres, in Mathematical interpre-
tation of formal systems, pp. 98-113, North-Holland Publishing Co., Amsterdam 1955. 

21  About the relation between history and philosophy of science and about the history of science as 
rational reconstruction cf. Lakatos, I., The Methodology of Scientific Research Programmes, Cam-
bridge University Press, 1978, ch. 2.  

22  «It is shown in this book that Leibniz’s ideas can be fully vindicated and that they lead to a novel 
and fruitful approach to classical Analysis and to many other branches of mathematics», Robinson 
A., op. cit. p. 2. 
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particular about the nature of infinite and infinitesimals and in epistemology of math-
ematics, in particular about the relation between mathematics and reality and about 
the problem of the truth in mathematics. Moreover, the investigation into the pre-
conceptions23 on which Leibniz and Robinson respectively based their philosophical 
and mathematical ideas can represent an occasion to reflect about the existence itself 
of this alleged continuity as well as about the important epistemological issue of theory 
replacement in mathematics. And it is just on the problematization of this continuity 
that we choose to focus here: Is Robinson’s nonstandard analysis really the logically 
consistent version of Leibniz’s calculus (assuming it is inconsistent, as the traditional 
history of analysis claims) or rather a completely different theory? Is there a philo-
sophical continuity between Leibniz and Robinson? These are the central questions 
which we shall deal with in the following, after the examination of both Leibniz’s and 
Robinson’s mathematical and philosophical ideas.  
 
1.3   Leibniz’s Calculus: Some Historical and Technical Aspects 

We close our historical examination with a more accurate overview of Leibniz’s 
mathematical and philosophical ideas on calculus as well as of the criticisms which 
have been made to them, which was intentionally omitted in Section 1.1. Such an 
examination seems to us quite reasonable, since Leibniz constitutes, as seen above, 
the starting philosophical and mathematical point of Robinson’s nonstandard model 
of analysis. 

Leibniz’s occupation in mathematics began roughly in 1672, when he was in Paris 
as diplomat and knew there, among others, the famous Dutch mathematician Chris-
tiaan Huygens. After he completed in few months the study of the most important 
contemporary works on mathematics, he was already able to conceive own mathemat-
ical ideas, which mostly flowed into several manuscripts and letters dating 1673-
167624. In this material the original bases of infinitesimal calculus are to be found, 
which, however, were systematized and published by the author only later, in 1684, 
in a short and quite obscure paper, Nova methodus pro maximis et minimis, itemque 
tangentibus, qua nec irrationales quantitates moratur25, for the German scientific 
journal Acta Eruditorum. 

	
23  Ger. Vormeinungen, cf. Lorentzen P., Konstruktive Wlissenschaftstheorie, Shurkamp 1974, ph. Wie 

ist Philosophie der Mathematik möglich?, pp. 149-166, En. tr. by Pavlovic K.R., Constructive Phi-
losophy, The University of Massachusetts Press, Amherst, 1987. 

24  Cf. Leibniz, G.W. Mathematische Schriften, Mayer U., Probst S. (ed.), Leibniz-Forschungsstelle der 
Akademie der Wissenschaften zu Göttingen beim Leibniz-Archiv der G.W. Leibniz Bibliothek (Han-
nover), Hannover, 2012, Reihe 7, vols. 3-7, 1673–1676. 

25  Leibniz, G.W., op. cit. 1684. 
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The first intuitions about infinitesimal calculus came to Leibniz within the work 
on the traditional geometrical problems of seventeenth-century mathematics, viz. the 
quadrature of curves and the tangent of a curve. In particular, Leibniz noticed that 
these two problems are reciprocal, i.e. the determination of quadratures and tangents 
are mutually inverse operations. In this respect, very important were to him the re-
searches on number successions: He observed that the sum of the terms of a (finite or 
infinite) number sequence  

 b1, b2, b3, ... , bn, (1.3.1) 

where  

 b1 = a1 – a2, b2 = a2 – a3, b3 = a3 – a4, ... , bn = an – an+1 (1.3.2) 

can be given by the difference a1 – an+1, i.e. that the sum of the terms of a number sequence 
and the construction of difference sequences are mutually inverse operations. Thus, it was 
relatively simple for Leibniz to apply this observation to the geometry of curves and 
tangents and notice that (see Figure 1.3.3) to sum equidistant ordinates y1, … , yn of 
a curve approximately correspond to the definition of its quadrature and that the 
difference of two consecutive ones to that of the slope of the relative tangent, inferring 
in this way the inverse relation between these two geometrical operations. 

 

(Figure 1.3.3) 

It is obvious that the smaller the distance between two ordinates is chosen, the more 
precise will be the definition of quadratures and tangents, so that for an infinitely 
small distance this definition would be exact. 

Thus, here the main ideas of infinitesimal calculus of sums and differences were 
already sketched out and the important heuristic role of infinitely small quantities 
already acknowledged. During these ‘geometrical researches’, which took place during 
the years 1673-74, Leibniz also met Pascal’s use of the so-called characteristic triangle 
- a triangle with infinitesimal sides - in transformations of quadratures. While Pascal 
used it only for the circumference, Leibniz generalized it for all curves, which led him 

A	O																																																																									B	
A		y1		

A	y2		
A	y3		A	y4		

A	y5		A	y6		
			y7				A	y8		
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to the discovery of a particular transformation - the transmutation26 - that allowed to 
calculate areas bounded by curves. We briefly discuss Leibniz’s reasoning in the fol-
lowing.  

The core idea is that every curve can be thought as composed of infinitely many 
infinitesimal straight segments, and thus the subtended area (its quadrature) as sum 
of infinitely many infinitesimal portions of area. For example, the area OABG sub-
tended to a curve OAB (see Figure 1.3.5) correspond either to the sum of infinitely 
many infinitesimal rectangles RPQS or to the sum of the area of the triangle OBG 
plus the sum of infinitely many infinitesimal triangles OPQ (1.3.5): 

 
(Figure 1.3.4) 

 
OABG = ∑ RPQS  = 

OG	∙	OB

2
+ ∑ OPQ, 

 

(1.3.5) 

where the area of the infinitesimal triangle OPQ is given by  

 
OPQ = 

OW	∙	PQ
2

 = 
PN ∙ OT

2
 = 

1

2
RUVS 

(1.3.6) 

since the characteristic triangle PQN associated with the point P is similar to the 
triangle OWT 27 and hence 

 PN

OW
= 

PQ

OT
	. 

(1.3.7) 

	
26  Cf. Leibniz. G.W., Mathematische Schriften, Gerhardt, C.I. (ed.), 7 vols., Eidmann, Berlin - Halle 

1850-1863, v. 5, pp. 401-402; Hofmann J.E., Die Entwicklungsgeschichte der Leibnizschen Mathe-
matik während des Aufenthaltens in Paris 1672-1676, De Gruyter Oldenbourg, Munich 1949, pp. 
32-35; Guicciardini N., Newton’s Method and Leibniz’s Calculus, in Jahnke H.N., op cit., pp. 86-88; 
Bos, H.J.M., op. cit., pp. 62-65. 

27  Obtained prolonging the tangent e to the point P towards the x-axis and considering its normal 
OW. 

A	P		

A	Q	
A	B	

A	M	

A	F	A	O
	

A	
W
	

A	 T	
	

				A			
	

A	N 	

A	V	

A	y0
	

A	y1
	

A	x0
	

A	x1
	

A					dy	
A					dx	

A					ds

	

A					h	
A					z	

A					e	

A	U	

A	L 	

A					z	

A	xn
	

A	R	 A	S	 A	G	
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For each P on OAB a corresponding U can be individuated by considering the tangent 
to each P and its intersection T with the y-axis. Thus, we have RU=OT. In this way 
a new curve OLM is defined, so that the quadrature (area) of the first one OAB can 
be given by 

 
OABG = 

OG	∙	OB

2
+ ∑OPQ 

 = 
OG ∙ OB

2
+ ∑ 1

2
OT ∙ PN  

= 
1

2
OT ∙ PN	+	

1

2
 OLMG 

 

 

 

 

(1.3.8) 

This is exactly the Leibnizian transmutation theorem, which, applying the geometry 
of the characteristic triangle, makes possible to transmute the quadrature of a curve 
in that of another one, constructed from the former by use of the tangents.  

Once again, the mutual connection between quadrature and definition of tangents 
was investigated and proven and, although the general methodological framework of 
this work was still the traditional, geometrical one, it anticipated the main intuitions 
about infinitesimal and differential calculus developed by Leibniz later, in 1675. The 
novelty of this work, compared to that of other contemporary or previous mathema-
ticians, was represented, in fact, by the possibility of expressing results about quad-
rature, definition of tangents etc., obtained by use of infinitely small quantities, in a 
truly analytical and formal way, i.e. without any reference to geometry.    

Indeed, going back to our example and considering the ordinate of the curve OLM, 

‘translated’ in the modern analytical equation z	=	y	–	x	 dy
dx
 for OB = xn, one can also 

‘translate’ the entire argumentation of Leibniz in modern analytical terms28: 

 	∫ y dx =
1

2
 ∫ z dx +

1

2
x0y0

x0

0

xn

0
  

(1.3.9) 
(Transmutation rule) 

 ∫ y dx =
1

2
 ∫ #y – x

dy

dx
 $ dx + 

1

2
x0y0

x0

0

xn

0
   

 =
1

2
∫ y dx		– 

1

2
 ∫ x

dy

dx
dx		+

1

2
x0y0

x0

0

x0

0
,   

hence 

	
28  Cf. Guicciardini N., op cit., p. 88; Bos, H.J.M., op. cit., p. 65. 
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 ∫ y dx  + ∫ x 
dy

dx
= x0y0

x0

0

xn

0
 , (1.3.10) 

equivalent to what Leibniz himself will later express29 as a reduction formula for in-
tegration:   

 ∫ ydx = xy –∫ xdy .  (1.3.11) 

In 1675 Leibniz finally sharpened his ideas and developed those algorithms, rules 
and symbols of infinitesimal and differential calculus which already spread among 
contemporary mathematicians and scientists and are essentially the same still used 
today, albeit within a totally different conceptual and foundational framework (see 
Section 1.1). He again considered the two ideas of the characteristic triangle and the 
quadrature of a curve as sum of infinitely many infinitesimal rectangles in order to 
calculate the area subtended to a curve C in a Cartesian coordinate system (see Figure 
1.3.12).  

(Figure 1.3.12) 

He noticed that infinitely many infinitesimal intervals30 dx = xn+1 – xn on the x-axis 
individuate on the curve C infinitely many infinitesimal arcs ds = sn+1 – sn and on 
the y-axis infinitely many infinitesimal intervals dy = yn+1 – yn31, so that the resulting 
characteristic triangle for each point sn (xn, yn) on C has sides dx, ds, dy. The ratio 

	
29  Leibniz, G.W., Historia et origo calculi differentialis, Manuscript, 1714, in Gerhardt, C.I. (ed.), op. 

cit., v. 5, pp. 392-410, p. 408. 
30  Leibniz calls them ‘difference’ instead of today’s ‘differentials’.  
31  No function. 

A	dy A	ds

A	dx

A	x 	
A	O 	
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dy
dx

 corresponds, as we know, to the slope of the tangent to C in the point sn32. Consid-

ering these differential quantities Leibniz could express the area subtended to the 
curve as sum of infinitely many infinitesimal rectangles ydx, indicating it with a new 
symbol of his invention, ∫	(ancient form for the ‘s’, meaning ‘summa’), hence ∫ydx. 
From his researches on number sequences Leibniz however knew that an infinite se-
quence can be expressed as difference sequence (see 1.3.2), thus he also acknowledged 
the mutually reciprocal relation between calculating sums and calculating differences, 
i.e. between integration and differentiation. In order to calculate the differences l of a 
given sequence from a calculus of sums ∫l	,	he introduced the symbol d so that, if       
∫l = ya, where ∫l is the sum of all y’s of a given curve and a ist quadrature (subtended 
area), then   

 l = ya ⋅ 
1
d
	, expressed later more conveniently as        l = d(ya). (1.3.13) 

During the years elapsed between the manuscripts of 1675 and the first important 
mathematical publications (168433 and 168634), Leibniz improved his infinitesimal cal-
culus, especially working on its formalism. As we have seen, he began to develop 
algorithms and rules for sums and differences which allowed to work only manipulat-
ing symbols, instead of geometrical entities, and it was really this purely analytical 
implementation the very novelty that determined to a greater extent the fortune of 
Leibniz’s calculus. 

 
1.4   Leibniz’s Philosophy of Calculus and Foundational Problems 

The developments of the calculus, especially in such an analytical and formalistic 
way, was conceived by Leibniz within the context of a more general philosophical 
project, which interested him since the early intellectual experiences. This project was 
that of the characteristica universalis, i.e. of a universal formal language through 
which all sort of philosophical, scientific and mathematical arguments could automat-
ically be carried out and led to correct conclusions (thus, without long and tedious 

	
32  Many historians (see Bos 1980, Guicciardini 2003) stress that one does not have to (mis)interpret 

this ratio in modern terms as derivative f' of a function f(x) in a point xn, i.e. as a difference quotient 
in modern sense. It expresses, in fact, merely a ratio between differential quantities, and the reason 
is obvious: Leibniz has no concept of function - which will be introduced in calculus only later by 
Euler and others - as well as no concept of limit, necessary for the definition of the modern notion 
of derivative. 

33  Leibniz, G.W., op. cit. 1684. Cf. Dupont P., Roero C.S., Leibniz 84 : il decollo enigmatico del calcolo 
differenziale, Mediterranean Press, Cosenza 1991.   

34  Leibniz, G.W., De geometria recondita et analysi indivisibilium atque infinitorum, in Acta Erudito-
rum, June 1686, in	Gerhardt, C.I. (ed.), op. cit., v. 5, pp. 226-233. 
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discussions between philosophers). This language was thought as made up by symbols 
and formulas whose combinations were ruled by specific algorithms which would have 
ensured the correctness of the arguments themselves. From this perspective it is not 
surprising that, within the researches on calculus, Leibniz paid great attention to 
symbols, whose formal function had to be well defined and that had to be, above all, 
easy to manipulate: In this respect, he was looking for a calculus, i.e. for a handy, 
mechanic and ‘automatic’ calculating method in dealing with the old infinitesimal-
geometrical problems, excluding, in this way, the complicated geometrical construc-
tions commonly used in the past. 

Leibniz also showed this pragmatic attitude towards the foundational problem of 
calculus. The foundational problem in mathematics did not exists at that time in the 
same terms of today or of the 19th and 20th century. Nevertheless, it was already felt 
the need to base such a useful, effective and powerful mathematical instrument as the 
calculus on solid foundations, all the more so because it dealt with infinitesimal quan-
tities, the differentials, which seemed to exhibit self-contradictory properties when 
applied.  

From the ontological point of view, Leibniz does not conceive infinitesimals in a 
platonistic way, i.e. as really existing, actual entities35. To him they are only fictions 
- but well-founded ones - without any external reference, useful to «shorten the path 
of the thought»36 and facilitate mathematical proofs, just like for example imaginary 
numbers. This very modern formalistic, almost Hilbertian conception of infinite, and 
more in general of mathematics, is indeed not very surprisingly, if we think to one of 
the most important roots of Leibniz’s philosophy, namely the universal characteristic. 
The Leibnizian formalistic interpretation of mathematical infinite is also consistent 
with his metaphysics, as shown for example by Russell37. Following Russell’s inter-
pretation, a metaphysical argument in this respect affirms, for example, that actual 
infinite, as possibility of infinite divisibility at the basis of the mathematical contin-
uum and of the abstract concepts of time and space can exist only as ideal but not as 
real. For what is real is always an aggregate of parts (monads), which, even if infinitely 
many, are however well determinate. On the contrary, the infinite parts which com-
pose number continuum or space and time continuum are not something determinate. 

	
35  Cf. Leibniz G.W., Letter to Varignon, 2 February 1702, in Gerhardt, C.I, op. cit., v. 6, pp. 91–95, 

Leibniz G.W., Letter to Des Bosses, 11 March 1706, in Gerhardt, C.I, op. cit., v. 2, p. 305. 
36  Ferraro, G., The rise and development of the theory of series up to the early 1820s, in Sources and 

Studies in the History of Mathematics and Physical Sciences, Springer, New York 2008, p. 35. 
37  Russell B., A Critical Exposition of the Philosophy of Leibniz, Cambridge University Press, Cam-

bridge 1900, ch. 9. 
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Therefore, actual infinite in mathematics cannot be conceived as substance, i.e. as 
something real, ontologically characterized in a particular way.  

However, we may ask now: What does the well-foundedness of infinitesimals con-
sist in? Why can we use them consistently in calculus?  

The technical considerations of Section 1.3 allow us to see that, in his researches 
on calculus, Leibniz dealt with traditional geometrical problems starting from tradi-
tional infinitary ideas, which, nevertheless, are reinterpreted by him in a quite novel 
sense. For example, the idea that geometrical objects can be considered as composed 
of infinitely many more simple ones was already present in Archimedean methodolo-
gies like the exhaustion. But, whereas in these methodologies finite and indivisible 
quantities were involved, in Leibniz these quantities are conceived as infinitesimal and 
are homogeneous with the objects they compose (i.e. their sum is possible and corre-
sponds to the finite object they compose)38. So, a curve is composed by infinitesimal 
segments and no longer by finite and indivisible points, the subtended area by infini-
tesimal strips, not indivisible lines, and so on.  

For these reasons many scholars have acknowledged in Leibniz’s calculus two 
different infinitary methodologies39: A first one bounded up with a kind of Archime-
dean methodology, at the base of the method of exhaustion and a second, Bernoul-
lian40 one, purely based on the use of infinitesimal quantities. In this respect, calculus 
can be seen, on the one hand, as shorthand, as a simplified language for the proofs by 
exhaustion, if differential and infinitesimal quantities are approximated to finite ones 
so long as these are chosen small enough, and, on the other, as mere manipulation of 
non-referential, fictionally symbols, representing infinitely small or large objects.  

Now, the ‘interface’ between A-methodology to the B-methodology, i.e. the pos-
sibility to pass from finite and assignable quantities to infinite and unassignable ones 
is ensured for Leibniz by a principle which thus also provides the consistent foundation 

	
38  Cf. Katz M.G., Sherry D., Leibniz’s Infinitesimals: their Fictionality, their Modern Implementations, 

and their Foes from Berkeley to Russell and beyond, in Erkenntnis, 78, pp. 571–625, 2013, pp. 5-7. 
39  Cf. for example Bos, H.J.M., Differentials, higher-order differentials and the derivative in the Leib-

nizian calculus, in Archive for History of Exact Science, 14 (1974), pp. 1-90, p. 55; Ferraro, op. cit. 
Katz M.G., Sherry D., op. cit.; Horváth, M., On the attempts made by Leibniz to justify his calculus, 
in Studia Leibnitiana 18 (1) (1986), pp. 60-71; Jesseph, Laugwitz, etc. The distinction between these 
two methodologies has however to be interpreted not as an ontological but only as a procedural 
one. The difference between ontology and procedures of calculus is underlined also by Bair. J. et 
al., Interpreting the Infinitesimal Mathematics of Leibniz and Euler, in Journal for General Philos-
ophy of Science, 48 (2017), pp. 195-238, sec. 2.4. On this topic cf. also Wartofsky M., The Relation 
Between Philosophy of Science and History of Science in Essays in Memory of Imre Lakatos, D. 
Reidel, Dordrecht 1976. pp. 717–737. 

40  Leibniz’s pupil, Johann Bernoulli was a strong supporter of the exclusive use of infinitesimal meth-
odology in mathematics. 
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of his calculus, i.e. the possibility to deal with these infinite and infinitesimal fictional 
quantities without logical contradictions, applying to them the same laws of finite 
arithmetic. He calls such a principle lex continuitatis, En. law of continuity 41, which 
asserts that the rules that apply in the domain of the finite are also valid in that of 
the infinite42. This is rather a philosophical postulate, which applies for Leibniz also 
in physics, metaphysics, cosmology and other research fields43. 

Leibniz never offered a mathematical, formal proof of this law for what concerns 
its utilization in calculus and mathematics and formulated it in many manuscripts 
and letters, always in a different form44. Nevertheless, he gave many examples of its 
application which show how it functions. He mentioned, for instance, the case of the 
«parabolic ellipse with one focus at infinity»45, i.e. the case of a parabola obtained 
from an ellipse by distancing infinitely its second focus from the first one. A mathe-
matical implementation of this example in modern terms can help us to better under-
stand Leibniz’s ideas46.   

We take an ellipse E in a Cartesian coordinate system with apex at (0, –1) and 
foci at (0, 0) and (0, H ). Its equation will be  

 !x 2 + y 2  + !x 2 + (y – H )2 = H + 2  (1.4.1) 

after squaring and moving the second radical to the left-hand side 

 
2"(x	2	+	y	2)%x	2	+	(H	–	y)&= H	2+	4H	+	4	–	(x	2	+	y	2	+	x	2	+	(H	–	y)2)  (1.4.2) 

thus, after squaring again and cancelling  

 
'𝑦	 + 	2	 +	

2
𝐻,

2

	–		(x	2	+	y	2) '1+
4
H

+	
4
H	2
, 	=	0	. (1.4.3) 

	
41  Cf. Leibniz G.W., Cum prodiisset atque increbuisset Analysis mea infinitesimalis... , 1701, in Ger-

hardt, C.I (ed.), Historia et Origo calculi differentialis a G.G. Leibnitio conscripta, Hannover, 1846, 
pp. 39-50, in part. p. 40; Katz M.G., Sherry D., op. cit. sec. 4.2; Katz M.G., Sherry D., Leibniz’s 
Laws of Continuity and Homogeneity, in Notices of the American Mathematical Society, 59 (11) 
2012, 1550-1558. 

42  This formulation in particular comes from Leibniz G.W., op. cit., 1702. 
43  Cf. Breger H., Das Kontinuum bei Leibniz in Lamarra A. (ed.), L'infinito in Leibniz, problemi e 

terminologia, Roma, Edizioni dell'Ateneo, 1990, pp. 53-67; Russell B., op. cit. pp. 60-66; 
44  Cf. Leibniz G.W., op. cit. 1702, pp. 46-47; Jorgensen, L., The Principle of Continuity and Leibniz’s 

Theory of Consciousness, in Journal of the History of Philosophy, 47 (2) (2009), pp. 223-248, in 
part. 224-229. 

45  Leibniz, G.W., op. cit. 1702, pp. 46-47. Cf. Child, J.M. (ed.), The early mathematical manuscripts 
of Leibniz, The Open Court Publishing Co., Chicago-London 1920, p. 149. 

46  Cf. Katz M.G., Sherry D., op. cit. 2013, sec. 4.5. 
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What we obtain with (1.4.3) is defined by Leibniz as status transitus 

47, a state of 
transition of a certain object or quantity between finite and infinite, assignable and 
unassignable. So, for example, in Figures (1.3.4) and (1.3.12) the hypotenuses ds’s of 
the characteristic triangles are the unassignable stati transiti for the corresponding 
assignable48, finite arcs of the curve. In our present example we still have an ellipse, 
since it satisfys the equations (1.4.1) and (1.4.3), but no longer a finite entity, as it 
has foci at the origin and at an infinitely distant point (0, H ). This infinite object is 
hence an intermediate, transitive state between a finite ellipse and a finite parabola. 
The most important thing that one has to note here is however that in these calcula-
tions the same rule of finite arithmetic (squaring inverse of radicals, algebraic identi-
ties, transferring terms to the respectively opposite equation side, etc.) also apply in 
dealing with infinite entities such as H : this is precisely the effect of the law of conti-
nuity. This law allows one to work genuinely within the B-methodology, i.e. whit 
infinite and infinitesimal entities without contradictions. What ontological nature 
these entities have is for Leibniz «open to question»49, and, indeed, even worthless for 
practiced mathematics of infinite:  

«It will be sufficient simply to make use of them as a tool that has ad-
vantages for the purpose of the calculation, just as the algebraists retain 
imaginary roots with great profit»50. 

In addition to the law of continuity Leibniz introduced a second important prin-
ciple to justify the procedures used in his calculus, a principle whose relevance is 
therefore quite obvious in regard to the foundational problem. This principle is called 
lex homogeneorum transcendentalis, En. transcendental law of homogeneity 51 (THL) 
and conceptually constitutes the inverse of the law of continuity (LC), (see Figure 
1.4.4). In fact, if the law of continuity allows one to pass from the finite to the infinite, 
the transcendental low of homogeneity permits to return from the infinite to finite.  

 
 

 

(Figure 1.4.4) 

Let us take our example of the parabola once again. The status transitus EST of 
the ellipse E into a parabola P expressed with (1.4.3) is the ‘unassignable version’, 

	
47  Cf. Leibniz G.W., op. cit. 1702, p. 42; Child, J.M. (ed.), op. cit. p. 149. 
48  Cf. Leibniz G.W. op. cit. 1684, Katz M.G., Sherry D., op. cit. 2013, sec. 5.1. 
49  Child J.M. (ed.), op. cit., p. 149. Cf. Katz M.G., Sherry D., op. cit. 2013, sec. 4.4 
50  Ibidem. Emphasis added. 
51  Cf. Leibniz G.W. Symbolismus memorabilis… , 1710 in Gerhardt C.I., op. cit. v. 5, pp. 377-382; 

Leibniz G.W., op. cit., 1684, p. 224. Cf. Katz M.G., Sherry D., op. cit. 2013, sec. 4.4. 
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the infinite equivalent of an assignable, finite, real parabola PR, from which it differs 
only by an infinitesimal quantity n

H	n . In other terms, a	PR exists, if  

 														∀p ∈ P ∃pr ∀ε : |pr – p| < ε , (1.4.5) 

where ε is an assignable (finite) quantity greater than 0 and small at will. This means 
that we can obtain the real parabola PR by approximation of the infinitesimal quan-
tities to the finite, i.e., practically, discarding them in the status transitus (1.4.3):  

 
(y + 2 + 

2
H
)

2

 –  (x 2 + y	2) (1+
4
H

+ 
4

H 2)  = 0  

                     =	(y + 2)2                           = 1  

  (y + 2)2		– (x 2 + y 2)	=	0  

 
yR	=		

xR	
	2

4
	–	1 (1.4.6) 

The obtained equation (1.4.6) represents the real parabola PR  in the Cartesian coor-
dinate system, or better, the finite part of P, which is infinitely close to what Leibniz 

calls the really true parabola y	=		 x	
	2

4
	–	1,  i.e. that parabola which does not derive from 

an ellipse and has no focus at infinite.  
This possibility to discard infinitesimal quantities when compared to other finite 

ones (x + dx = x) is just the effect of the transcendental law of homogeneity. This 
means, it provides the possibility of the reverse path from infinite to finite.  

 Whit the discussion of the law of homogeneity we therefore note that Leibniz 
has another account of the equality in addition to the classical, identity-based one 
(x = x): He conceives equality, in fact, also as equality up to an infinitesimal 
error, i.e. as the relation to be infinitely close, for which he makes use of the 
symbol ⊓ (like for example in x + dx ⊓ x, which means, the quantity x + dx is infinitely 
close to the quantity x, such that, for THL, they can be considered as equal). The 
distinction between these two kinds of equality is made by Leibniz in an important 
text written around 1676, which has however been remained unpublished until 1993. 
This text, De quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium 
est trigonometria sine tabulis 52, can be considered Leibniz’s masterwork on calculus, 
and maybe the most important systematic text dealing with its foundational prob-
lems. Therein the laws of continuity and homogeneity take the ‘concrete’ 

	
52  Leibniz G.W., De quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium est trigo-

nometria sine tabulis (1676), Knobloch E. (ed.), Vandenhoeck & Ruprecht, Gottingen 1993. 
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mathematical form of formal calculation rules which actually build the Leibnizian 
arithmetic of infinite53 and, on the oder hand, found the infinitesimal calculus as log-
ically consistent.     

 
1.5    The Critics of the Calculus: Berkeley’s Analyst  

The fact that such an important text for understanding the foundational laws and 
concepts at the base of Leibniz’s calculus was discovered only recently has maybe 
been responsible for its ‘distorted’ reception, namely as inconsistent, albeit useful, 
mathematical theory. Thus, criticisms and sometimes harsh judgments of Leibniz’s 
calculus (but also of Newton’s one), viz. of its foundational instances, did never miss 
already among contemporaries and continued until recent times with for example 
Kronecker, Cantor, Peano and astonishingly even Karl Marx54.   

The first and most famous thinker, who published a fierce as well as systematical 
critique of the calculus was the Irish philosopher and Anglican bishop Georg Berkeley 
with his The Analyst; Or a Discourse Addressed to an Infidel Mathematician 

55 (1734). 
Berkeley, rigorous nominalist and critic of the contemporary skepticism, mechanism 
and deism, exasperated the modern empiricism up to a form of proto-idealism, where 
the existence of the matter itself as something external and independent from us is 
denied and made to depend exclusively on our sensations56. This immaterialist phi-
losophy has passed into the annals of history synthetized in Berkeley’s notorious 
motto «esse est percipi »57. Berkeley obviously associated to his metaphysics a suitable 
gnoseological counterpart: Universals do not exist, since their ‘external’ references - 
in form of perceptions - are given in any way to us, and all what we can know, i.e. all 
what can be in our mind in form of idea, is only the content of our perceptions, which 
are, as we know, the things themselves, from the ontological point of view. The ne-
cessity and objectivity of our ideas is finally guaranteed by God, who is cause of them.   

The satirical vain, with which Berkeley usually expressed himself, did not fail to 
characterize also the work at stake here, dedicated to a no further identified infidel 
mathematician, probably Edmund Halley, who had criticized the foundations of 

	
53  Cf. Leibniz G.W., op. cit. 1993; Katz M.G., Sherry D., op. cit. 2013, sec. 5.2. 
54  Cf. Marx K., МАТЕМАТИЧЕСКИЕ РУКОПИСИ, Yanovskaya S.A. (ed.), Nauka, Moscow 1968, En. tr. 

by Kol’man E. et al., Mathematical manuscripts of Karl Marx, New Park Publications Ltd., London 
1983; Katz M.G., Sherry D., op. cit. 2013, sec. 6.1. 

55  Cf. Berkeley G., The Analyst; Or a Discourse Addressed to an Infidel Mathematician, J. Tonson, 
London 1734. 

56  Cf. Berkeley G., A Treatise Concerning the Principles of Human Knowledge, 1710, in Clarke D.M., 
Berkeley: Philosophical Writings, Cambridge University Press, 2008, pp. 67-149; Rossi M.M., Intro-
duzione a Berkeley, Laterza, Roma-Bari 2005. 

57  Berkeley G., op. cit. 2008, p. 85. 
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Christian religion. With arguments which apply both to Newton’s and to Leibniz’s58 
calculus, Berkeley claims its unfoundedness and so the unfoundedness of the blind 
faith in it professed by scientists and mathematicians, especially those, like Halley, 
who then allowed themselves to question the foundedness of the Christian faith.  

Berkeley’s critique of differential calculus can be conceptually summarized in two 
distinct parts: a metaphysical (and gnoseological, I would also say) criticism and a 
logical criticism59, which are however interrelated and «cut from the same cloth»60.  

It is quite simple to imagine, on the base of the key points of Berkley’s metaphys-
ics and gnoseology explained above, what the first criticism of the calculus amounts 
to. Berkeley argues that all our ideas derive from the perceptions and are even the 
content of these perceptions. Now, perceptions are always something finite, therefore 
the ideas of infinite and infinitesimal cannot have a reference and are in this respect 
empty. Only the habit and the custom are responsible, as with causality in Hume, for 
the free use of these words which, like universals, are however meaningless because 
completely devoid of any real reference. Berkeley points also out that, especially in 
the Newtonian conception of calculus, contradictory ontological properties inhere in 
the nature of infinitesimal quantities: Infinitesimal increments, like the Newtonian 
moments, have an extension when they generate quantities, but seem to be extension-
less entities when they are compared to finite quantities and therefore discarded. This 
criticism in particular seems however not to be valid for Leibniz, given his formalistic 
account of infinitesimals. Yet this shows that Berkeley was probably not aware of the 
particulars of Leibniz’s foundational ideas on calculus. As we have seen, Leibniz al-
ways had from the very beginning a resolute formalistic account of infinitesimals, i.e. 
as fictions without any reference. On the contrary, Newton repeatedly reformulated 
his foundational ideas about infinitesimals, indeed never reaching a definitive and 
definite position about this. Moreover, Newton’s calculus and ideas about infinitesi-
mals never developed completely outside the (more or less evident) connection with 
physical and applicative intuitions, which obviously led for him to an ontologically 
more ‘concrete’ answer to the foundational problem, that could not have been a purely 
formalistic one as that of Leibniz, which had certainly a more ‘rationalistic’ philo-
sophical background (see for example the project of the universal characteristic and 
the will to find rules of  ‘calculus’ for traditional geometrical problems). Thus, in 
regard to Newton, this latter criticism by Berkeley seems to be consistent, though not 
for Leibniz.  

	
58  Leibniz and his successors are explicitly mentioned by Berkeley in section XVIII. 
59  Cf. Sherry D., op. cit.; Katz M.G., Sherry D., op. cit. 2013, sec. 6. 
60  Sherry D., op. cit., p. 460;  
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However, the logical counterpart of this metaphysical criticism which represents 
the point of transition between the two parts of Berkeley’s critique, is valid for Leib-
niz’s calculus too. Berkeley says, in fact, that the use of infinitesimals in mathematics 
does not follow the law of noncontradiction. Contradictory logical predicates are at-
tributed to them at the same time, in the same theorem or demonstration. More in 
particular, their use in mathematics suffers for Berkeley of a fallacia suppositionis 61. 
What the Irish bishop is objecting here is the fact that infinitesimals firstly are treated 
as non-zero quantities, for what concerns the performance of demonstrations and cal-
culations but then they are made equal to zero, that means, at the same time 

 dx ≠	0 and dx = 0 (1.5.1) 

which appears to Berkeley undoubtedly logically contradictory62. Therefore, he calls 
infinitesimals «ghosts of departed quantities»63 and find it detrimental to base the 
calculus on them.  

Now, having a look at the history of analysis (see Section 1.1), Berkeley’s criti-
cisms seem to have accomplished their purposes. They actually contributed to expel 
these contradictory objects, the infinitesimals, from analysis and mathematics and to 
bring the latter on the ‘right’ way, the way of the ‘victors’64, on which the work of 
Cauchy, Weierstrass, Dedekind, Cantor, etc. will develop65.  

Yet we claim, with Katz and Sherry66, that this picture is only the result of a 
historiographical failure, of an a priori judgment made by mathematician and histo-
rian of mathematics throughout the centuries, which makes difficult the effective and 
genuine understanding of modern calculus.  

First of all, the criticisms of Berkeley arise only from his particular metaphysical 
and gnoseological assumptions, i.e. from his exasperated empiricism and from his 
nominalism. Therefore, they do not highlight effective and inherent shortcomings in 
infinitesimal calculus, but only what has to be considered as inconsistent with these 

	
61  Cf. Berkeley G., op. cit., “Query 28”. A fallacia suppositionis corresponds to gain from a certain 

initial supposition certain points and then to infer the final conclusion combining these achieved 
points with the negation of the initial supposition, all within the same argument. An example in a 
predicate-logic formula: ((p ⟶	q) ∧ ¬ p ) ⟶	s, which is obviously a wrong argument. 

62  In this case, the fallacia suppositionis implemented in predicate logic would be (using the formula 
in Footnote 61) p: dx ≠	0, q: x + dx (in the calculation), ¬ p: dx = 0, s: x (in the conclusion). 

63  Cf. Berkeley G., op. cit. sec. XXXV. 
64  Bair J. et al., Is Mathematical History Written by the Victors?, in Notices Of The American Math-

ematical Society, 60 (7) (2013), pp. 886-904. 
65  Cf. for example Cajori F., Discussion of Fluxions: From Berkeley to Woodhouse, in American 

Mathematical Monthly, 24 (4) (1917), pp. 145-154.; Boyer C., The concepts of the calculus, Hafner 
Publishing Company, New York 1949. 

66  Cf. Katz M.G., Sherry D., op. cit. 2013, secs. 6-8; Bair J. et al., op. cit. 
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philosophical assumptions themselves. We have already seen, in this respect, that 
some elements of Berkeley’s metaphysical criticism lose their sense if one looks at the 
foundational problem of calculus from a different ontological and philosophical stand-
point, for example the Leibnizian formalistic one. So, the rebuttal of infinite both as 
concept and as ontological realty, which would have led Berkeley to reject even mod-
ern theory of Archimedean continua and infinite as the Weierstrassian, Dedekindian, 
Cantorian ones, constitutes a perspectivist philosophical assumption which actually 
invalidates a proper understanding of the effective pro und contra of the Leibnizian 
oder Newtonian calculus, whose alleged unfoundedness is removed once this assump-
tion itself is removed or the philosophical standpoint changed.  

Furthermore, at least in the case of Leibniz’s calculus, the Berkeleyan logical 
criticism also seems not to apply. In fact, we know from Section 1.4 that Leibniz 
managed to found his calculus as logically consistent - certainly not having in mind 
that standards of mathematical rigor and consistency required today by a mathemat-
ical theory. He did this through the laws of continuity and homogeneity and their 
‘procedural’ implementation in the 1676 De quadratura arithmetica. The fact that 
this text, as mentioned, has been remained unknown until modern times has surely 
played a crucial role in bringing up Leibniz’s foundational ideas on calculus as not 
always so homogeneous and systematic as they indeed are67.  

 
2    Robinson and the vindication of Leibniz’s Calculus: The Problem of the Philo-

sophical and Mathematical Continuity    

Among those who, at the end, sided with the ‘victors’ of history of mathematics 
and with their historiographically acritical and careless judgment of Berkeley’s cri-
tique as really effective there is none other than Abraham Robinson, who, in fact, in 
1966 wrote: 

«The vigorous attack directed by Berkeley against the foundations of the 
Calculus in the forms then proposed is, in the first place, a brilliant expo-
sure of their logical inconsistencies»68. 

Thus Robinson - like the supporters of the anti-infinitesimalist analysis and mathe-
matics, developed especially during the 19th century by the mathematicians of the 
‘triumvirate’ (Cantor, Dedekind, Weierstrass) - did manifestly not acknowledge the 
consistency of Leibniz’s (and Newton’s) calculus, which however, at least from the 
historiographical point of view, appears in part justifiable, since he could not know 
Leibniz’s most important work on calculus, unpublished until 1993.  

	
67  Cf. Katz M.G., Sherry D., op. cit. 2013; Bair J. et al., op. cit. 2013. 
68  A. Robinson, op. cit., p. 280, emphasis added.  
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From these historiographical presuppositions he thus starts to develop a model of 
non-standard analysis in which, by means of modern logic and modern set theory, 
infinitesimals are implemented in a consistent theory of mathematical analysis.  

After a brief discussion of the technical aspects of nonstandard analysis, we will 
proceed with the inquiry into Robinson’s philosophy and then consider the problem 
of continuity between his theory and Leibniz’s calculus as it has been presented in 
Section 1.2.  

 
2.1   Main Concepts of Nonstandard Analysis   

In Section 1.4 we pointed out the convergence in Leibniz of two types of infinitary 
methodologies, an Archimedean and a Bernoullian one, the latter different from the 
former essentially for the use of infinite and infinitesimal quantities. Now, to these 
two types of methodologies correspond two different conceptions of mathematical con-
tinuum: The A-continuum, composed of assignable, (theoretically) measurable quan-
tities and thought as punctiform; the B-continuum, conceived as ‘enriched’ version of 
the A-continuum and containing infinite and infinitesimal quantities in addition to 
the A-quantities. B-quantities are unassignable and unmeasurable; Therefore the B-
continuum has to be envisioned as non-punctiform. Many historians of mathematics 
like for example Felix Klein69, have acknowledged a parallel development of A-math-
ematics and B-mathematics in history (the second one represented by the Leibnizian 
tradition), a development which has been lasting until the 19th century. At this point, 
in fact, Weierstrass offered a consistent non-infinitesimalist formulation of analysis 
and, above all, Dedekind and Cantor expelled infinitesimal from mathematics using 
the instruments of the newly formulated set theory and mathematical analysis in order 
to give models for a logically consistent and rigorous construction of the Archimedean 
continuum70, i.e. what we today call the field ℝ of the real numbers, where the Ar-
chimedean properties of real numbers apply71.  

	
69   Klein F., Elementarmathematik vom höheren Standpunkte aus, Springer Verlag, Leipzig, 1908. 
70  Both Cantor and Dedekind construct the set ℝ of the real numbers as extension of ℚ, that of the 

rational ones. In particular, Cantor conceives ℝ	(or more exactly ℝ\ℚ) as the quotient set of all 
equivalence classes of rational Cauchy sequences which converge to zero. ℚ	is then embedded in ℝ	
considering the stationary sequences of the rational numbers. Dedekind, on the oder hand, conceives 
ℝ	as the set of all Dedekind’s cut on ℚ. With the operations of addition and multiplication ℝ	is 
moreover defined as field. 

71  ∀a, b ∈ ℝ, a, b > 0 ∃n ∈	ℕ	na > b  and  ∀ε	∈ ℝ,	∃n ∈	ℕ	1
n
<ε	. These properties do not apply for elements 

of those field which are therefore called non-Archimedean fields, as for example that of the hyperreal 
numbers *ℝ (which we have informally defined ‘B-continuum’), containing the elements of ℝ	plus 
infinitary elements.  
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A logically consistent and rigorous embedment of B-quantities in the A-contin-
uum or, in other words, an extension of ℝ up to involve infinitely great and infinitely 
small quantities were however considered as impossible by most of the mathemati-
cians. Nevertheless, Cantor managed to ‘tame’ the former and include them consist-
ently in A-mathematics through his set-theoretic means but, at the same time, be-
lieved even to be able to prove, by means of his infinitary mathematics, the impossi-
bility to do this with infinitesimals. Thus, infinitesimals seemed to have really no 
longer place in mathematics, at least until Robinson and his nonstandard analysis 
(see Section 1.1). 

 All what Robinson did was to provide an extension of ℝ, termed already by 
Edwin Hewitt field of hyperreal numbers *ℝ,	in which infinitely great and infinitely 
small quantities were consistently contained, so that mathematical analysis could be 
finally founded on the same infinitesimalist grounds, on which Leibniz and Newton 
based their theories of calculus. ‘Old’ infinitesimals were therefore «vindicated»72 and 
consistently rehabilitated in a rigorous mathematical theory, which could «lead to a 
novel and fruitful approach to classical Analysis and to many other branches of math-
ematics»73.  

As mentioned in Section 1.1, this extension was gained by means of the newest 
instruments of modern logic, modern set theory and model theory (ultrapowers, ul-
trafilters, ultraproducts, etc.). Unfortunately, for reasons of space, a formal exposition 
of the Robinsonian logical construction of *ℝ	is not possible here. For a detailed and 
quite accessible discussion of it we recommend An Introduction to Nonstandard Anal-
ysis by Isaac Davis74 in addition to Robinson’s text itself.  

Philosophically interesting is however the fact that the two Leibnizian founda-
tional laws of calculus (see Section 1.4) are implemented by Robinson in his model of 
analysis as consistent and rigorous mathematical tools. In particular, the law of con-
tinuity becomes in nonstandard analysis the transfer principle and the transcendental 
law of homogeneity the standard part function.  

	
72  A. Robinson, op. cit., p. 2. 
73  Ibidem. 
74    Cf. Davis I., An Introduction to Nonstandard Analysis, in The University of Chicago Mathematics 

VIGRE REU Papers 2009, internet source: http://www.math.uchcago.edu/~may/VIGRE/VI-
GRE2009/REUPapers/Davis.pdf. Davis refers to the ‘standard’ Robinsonian construction of *ℝ	
(even if an analogous construction of this kind was already given by E. Hewitt in 1948), which 
defines the set of hyperreal numbers *ℝ as ultraproduct ∏ ℝ/Un ∈	ℕ  with U non-principal ultrafilter 
over ℕ. It is important to notice that this construction is however not the only possible one. For 
example, in Borovik, et al., An integer construction of infinitesimals: Toward a theory of Eudoxus 
hyperreals, in Notre Dame Journal of Formal Logic 53 (4) (2012), a construction by means of 
integers is offered. 
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The law of continuity heuristically states the equivalence between the rules of the 
domains both of finite and of infinite. This idea was mathematically implemented by 
Jerzy Łoś75 in 1955, which thus formulated the transfer principle proving that every 
first-order statement is valid for the reals if and only if it is valid for the hyperreals 
too and vice versa76. This principle permits to show that the field of hyperreals *ℝ 
has all the properties of ℝ, and that one can prove theorems about ℝ by first proving 
them in *ℝ and then transferring them back to ℝ, or vice versa. 

On the oder hand, the standard part function formalizes the heuristic concept of 
‘discarding’ infinitesimal quantities when compared to finite ones, a concept which 
Leibniz even introduced with his transcendental law of homogeneity. Properly speak-
ing, the standard part function st(x)77, associates to every finite hyperreals x the 
unique real x 0 infinitely close to it, which is called standard part or shadow of x. Every 
real number in *ℝ	has	a neighborhood, called monad, with a collection of hyperreal 
numbers infinitely close to it. The hyperreals in a monad are however limited or finite 
hyperreals, i.e. all the elements belonging to the complement of a subset of *ℝ	which	
contains the nonzero inverse of every infinitesimal of *ℝ. Then the st-function can be 
formally definied: 

 . *R\I	-1→ R
		x									↦	x	0

  

*R\I	-1:  complement  of  the  set  I	-1 containing  
the nonzero inverse of every infinitesimal of  *ℝ 

  
 
 

 

(2.1.1) 

Thus, we can observe the effects of the standard part function considering once 
again the Leibnizian example of the parabola mentioned above (see Section 1.4). The 
informal and heuristic operation of discarding infinitesimal is now replaced by the 
rigorously defined standard part function. Since the standard part of every infinitesi-
mal is 0: 

 
2y + 2 + st (

2
𝐻)5

2

 –  (x 2 + y	2)	21+	st (
4
𝐻)+ st (

4
𝐻	#)5  = 0  

  	(y + 2	+	0)2  – (x 2 + y 2) (1	+	0	+	0)	= 0  

 	(y + 2	)2  – (x 2 + y 2) = 0 .  

	
75  Łoś J., op. cit. 
76  Davis I., op. cit., 2009, pp. 11-18. 
77  Robinson uses the notation ˚x . 

           st: 
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 		y	=		
x		2

4
	–	1 (2.1.2) 

What we have now with (2.1.2) is an equation with finite (limited) values of *ℝ	
infinitely close to their respective standard part in ℝ	⊂	*ℝ. To gain this latter, i.e. the 
equation of ‘real’ parabola we apply the standard part function to the equation (2.1.2) 
itself, so that 

 
st(y) =  st2

	x 
 2

4
 – 15  

 y0 =  x	0
	2

4
 – 1 . (2.1.3) 

Another example of standard part function is provided by its application in finding 
the derivative f '(x) of a function f (x) (assuming it exists) in a certain point x 0. While 
in standard analysis the derivative is defined as limit for h tending to zero of the 
difference quotient (2.1.4), in nonstandard analysis it is instead defined as standard 
part of the difference quotient (2.1.5): 

 f '(x	0) =	 limh→0

f (x 0+h) – f (x)
h

 

 

  
 
 

 

(2.1.4) 

 	f '(x	0) =	st 2
f	(x 0+h) – f (x)

h
5 , 

(2.1.5) 

or, in Leibnizian notation, 

 f	'(x) = st "dy
dx
# 

  
 
 

 

(2.1.6) 

where dx and dy are respectively the infinitesimal x-increment and the corresponding 
y-increment and the derivative f '(x) the standard part of the infinitesimal ratio be-
tween them. 

And thus, analogously, all notions of standard analysis, which are expressed in 
terms of limits, become expressible in nonstandard analysis in terms of standard part 
function.  

 
2.2  Robinson’s Philosophy and the Problem of Continuity  

We have now all theoretical means to provide a possible answer to our initial 
philosophical questions about the continuity between Leibnizian and nonstandard 
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analysis. Nevertheless, a deeper investigation into Robinson’s philosophical presuppo-
sitions can help us to analyze the problem more effectively.  

In fact, Robinson alleges this continuity in the context of a historical investiga-
tion, and as pointed out by Lakatos78, any investigation in scientific-historical matters 
implies a philosophical starting point: In history of science (and of mathematics) it is 
impossible to consider historiographical problems outside a particular philosophical 
perspective, which indicates how bare facts have to be interpreted. In other words, 
different philosophies of science give different theoretical models of ‘science’ and ‘ra-
tionality’, on the basis of which the historiographical activity as rational reconstruc-
tion can be carried out. Within such an activity of rational reconstruction there can 
also be the case, however, in which false philosophies of science give a distorted history 
of science, and this appears to Lakatos even to be the case of history of mathematics79.  

Therefore, it seems to us very important to consider Robinson’s philosophical 
presuppositions, in order to understand to what extent they influenced his historical 
understanding of Leibniz’s philosophical and mathematical ideas and his admitting a 
continuity between them and his own ideas. 

These presuppositions, as mentioned, are implicitly involved in the rational re-
construction of the history of analysis and of Leibniz’s calculus Robinson makes in 
the last chapter of his 1966-work. However, they have been explicitly formulated by 
him in many papers and articles80 which thus demonstrate a deep philosophical inter-
est of the author, developed throughout his entire career. 

After the Platonic realism of the 1950s81, Robinson accepted as definitive philo-
sophical position a formalism close to the Hilbertian one but non coincident with it, 
whose most representative exposition is given in Formalism 6482, maybe the most 
important philosophical text by Robinson. Therein he acknowledges as main charac-
teristic points of his philosophical position, especially for what concerns the problem 
of foundations, the two following assumptions: 

	
78  Lakatos I., op. cit. 1978 (1). 
79  Lakatos I., Cauchy and the continuum: the significance of non-standard analysis for the history and 

philosophy of mathematics, in Mathematics, Science and Epistemology, Cambridge University Press, 
Cambridge 1978, pp. 43-60. Lakatos refers in particular to a distorted rational reconstruction of 
Cauchy’s analysis. 

80  Cf. Robinson A., Selected Papers of Abraham Robinson, Keisler H.J. et al. (eds.), Yale University 
Press, New Haven 1979, v. 2 Nonstandard Analysis and Philosophy. 

81  Dauben J.W., Abraham Robinson and Nonstandard Analysis: History, Philosophy, and Foundations 
of Mathematics, University of Minnesota Press, Minneapolis 1988, p. 186. 

82  Cf. Robinson A., Formalism 64, Proceedings of the International Congress for Logic, Methodology 
and Philosophy of Science, Jerusalem 1964, in Robinson A., op. cit. 1979, v. 2, pp. 228-243. 
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«(i) Infinite totalities do not exist in any sense of the word (i.e. either really 
or ideally). More precisely, any mention, or purported mention, of infinite 
totalities is, literally, meaningless. 
(ii) Nevertheless, we should continue the business of Mathematics “as 
usual”, i.e. we should act as if infinite totalities really existed.»83 

For Robinson actual infinite does not exist as it exists for example for a Platonist, 
but, on the other hand, it cannot be denied as concept as a nominalist would do. 
Rather, references to infinite totalities in a mathematical theory are possible, but they 
cannot be interpreted in actual sense, i.e. having external reference (concrete or not). 
Therefore, theories involving infinite totalities are in this sense meaningless, but not 
devoid of significance and hence superfluous.   

In fact, infinite totalities have to be used in mathematics, as if they had a refer-
ence. In fact, the significance of a theory for Robinson does not depend on the direct 
interpretability of all its terms, but, almost syncategorematically, in being able to 
«follow its logical developments»84. Therefore, infinite terms can be used in mathe-
matics independently from really having a reference. We can use them as if they had 
it. This applies for Robinson not only for mathematics, but, within a formalistic 
framework, also for metamathematics, where Hilbertians instead admit only finitary 
and directly interpretable structures. This is evident for example for the notions of 
consistency and completeness of recursive structures, whose definition requires the 
totality of natural number. Hence, in metamathematics itself infinite terms are present 
and, although they have to be regarded as meaningless, they can however be used, as 
if they had a meaning.  

Now, if these are Robinson’s philosophical presuppositions, it is quite normal to 
acknowledge a continuity of them with the Leibnizian foundational ideas on calculus. 
In fact, Leibniz, as seen in Section 1.4, supports a quite modern formalistic position 
in philosophy of mathematics believing in the inexistence of infinite and infinitesimals 
as actual entities. For Leibniz they are only ideals without external reference, useful 
in order to carry out more easily and intuitively mathematical proofs.  

This similarity has, as such, certainly to be acknowledged. I think, however, that 
some points of the Leibnizian and Robinsonian philosophy of mathematics85, if re-
garded independently from the problem of the philosophical foundations respectively 
of calculus and of nonstandard analysis, have to be considered as not completely 
coincident. This has as consequence the impossibility to affirm the existence of a 

	
83  Ibidem, p. 230. Emphasis in original. 
84  Ibidem, p. 235.  
85  We use here the terminology ‘philosophy of mathematics’ for Leibniz too for reasons of theoretical 

convenience, well aware of the fact that Leibniz never did ‘philosophy of mathematics’ in today’s 
sense.  
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philosophical continuity between all aspects of their respective philosophies. In par-
ticular, Leibniz’s philosophical ideas on mathematics are deeply influenced by his more 
general philosophical ideas, especially in ontology and epistemology. His philosophy 
of mathematics and even his truly mathematical ideas depend, in fact, on a ‘mecha-
nistical’ conception of the entire human knowledge, as shown by his constant interest 
in projects as the characteristica universalis for the ‘mechanization’ of the entire 
knowledge. This thought is clearly not present as such in Robinson, both for historical 
and philosophical reasons. In fact, Robinson - like all scientists and philosophers of 
his time - was already aware of the fact that, as the latest developments in logic and 
in informatics showed, such a project was achievable only for a selected part of the 
knowledge, i.e. the formalizable one, and not universally, as Leibniz had in mind. In 
short, the original project of the characteristica universalis had become in part an 
anachronistic project. Moreover, in Formalism 64 Robinson acknowledged on the one 
hand the merits of Gödel’s theorems and on the other the theoretical insufficiency of 
the logical positivism, that is, the impossibility of an exact correspondence between 
mathematics and logic and even between knowledge and logic, i.e. the impossibility 
of a complete and consistent formalizability of both. On the other side, if Leibniz 
denied the existence of actual infinite in mathematics, he accepted it in other branches 
of his philosophy - namely, in ontology, the infinity of the monads - as even Robinson 
noticed86. Yet this is clearly not the ontological position of Robinson himself, who, 
close to the neopositivism, could certainly not have supported such metaphysical as-
sumptions about reality.   

For these reasons, I would speak here rather of a similarity between Leibniz’s and 
Robinson’s ideas on philosophy of mathematics than of a generic and broader philo-
sophical continuity between the two authors. Robinson, in fact, draws on solely a 
specific idea from Leibniz - the specific interpretation of the nature of infinitesimals 
as well-founded fictions - ultimately neglecting the broader, organic philosophical con-
text in which this idea is embedded, from which it derives.   

The philosophical level is however not the only one that gives the possibility to 
discuss the problem of the continuity between Leibniz and Robinson. This continuity 
can be indeed problematized also at the merely mathematical level. We saw in Section 
2.1 that all foundational principles of Leibniz’s calculus find a consistent logical im-
plementation in nonstandard analysis as well as infinitesimals themselves. Bos87 points 
out that there is however a great difference between the Leibnizian law of continuity, 

	
86  Cf. Robinson A., The Metaphysic of the calculus, in Lakatos I. (ed.), Problems in Philosophy of 

Mathematics, North-Holland Publishing Company, Amsterdam 1967, pp. 28-46. Cf. also Dauben 
J.W., op. cit. 1988, p. 182. 

87  Bos H.J.M., op. cit. 1974, p. 81-86. 
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law homogeneity and infinitesimals and the Robinsonian transfer principle, standard 
part function and hyperreals: Leibniz did never provide a formal proof of these prin-
ciples, and the mathematical means required for this proof, as well as for the con-
struction of a continuum involving at the same time reals and infinitesimals, were no 
way available neither to Leibniz nor to the mathematicians of the following genera-
tions; Moreover, while ‘old’ infinitesimals derived from and indeed were geometrical 
intuitions, modern hyperreals (and reals) are nothing but purely analytical entities, 
involved in mathematical structures (functions, derivatives, etc.) which do actually 
not have an equivalent in Leibnizian calculus. Hence, Robinsonian nonstandard ana-
lytical concepts and principles have to be mathematically regarded as something com-
pletely different from the Leibnizian ones.  

Notwithstanding the accuracy and indeed the truth of this account by Bos of the 
differences between Leibnizian calculus and Robinsonian nonstandard analysis, I can-
not however deny, as also Katz and Sherry do88, that, given the genuine historical 
interests of Robinson, the Leibnizian mathematical ideas on calculus, or at least their 
most essential conceptual content, represented for him a conscious ‘source of inspira-
tion’ and heuristic toolbox in formulating nonstandard analysis. The fact that Leib-
niz’s ideas were not formally implemented (a thing that, as seen in Section 1.4 is only 
partly true, considering Leibniz’s 1676-text De quadratura, which Bos could not know 
in 1974 yet) or the fact that they were still bounded to geometry (a thing that, as 
seen in Section 1.3 is not absolutely true) is not, in my opinion, a so decisive argument 
against the possibility that Robinson could find in them fruitful conceptual stimuli 
for his work. Moreover, Bos’ arguing the complete extraneousness of Leibniz’s calculus 
to nonstandard analysis through the lack of a formal proof and formal implementation 
of its foundational principles (that, as said, is however only partly true) does not take 
into account the fact that present standards of mathematical formalism cannot be 
properly used as parameter for the appraisal of historical mathematical theories89, 
since ‘mathematical formalism’ corresponds to a conceptual category partly influenced 
by historical factors. Bos acknowledges this at least in regard to what concerns the 
related notion of mathematical rigor90. In fact, agreeing on this with him, one cannot 
judge Leibniz’s and Robinson’s analysis with the same standards of mathematical 
rigor of today91, since ‘mathematical rigor’ amounts more to a historical rather than 

	
88  Cf. Katz M.G., Sherry D., op. cit. 2013. 
89  Lakatos I., op. cit. 1978 (2), sec. 7. 
90  Bos H.J.M., op. cit. 1974, p. 82.  
91  Cf. Katz M.G., Sherry D., op. cit. 2013, p. 30; Bos H.J.M., op. cit. 1974, sec. 7. This is also why one 

cannot claim the inconsistency of Leibniz’s calculus having in mind the present standards of math-
ematical rigor, as indeed Robinson does.  
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to a logical category, which, as such, has repeatedly been reformulated throughout 
the time. Yet the same has also to be affirmed, in our opinion, for what concerns 
mathematical formalism, ultimately dependent on the standards of mathematical ri-
gor and evolving in the time with them.  

In this perspective, each mathematical theory has therefore to be considered as 
‘son of its time’. This however means that Robinson indeed failed in judging Leibniz’s 
calculus as inconsistent and in considering his own theory as its ‘logical purification’ 
and vindication. It is true for Robinson too, that, from a historiographical perspective, 
he could not be totally aware of the consistence of Leibniz’s calculus, whose most 
important foundation was given by the German philosopher in a work published only 
twenty-seven years after Nonstandard Analysis. Yet it is also true that Robinson 
retroactively used conceptual, philosophical and (meta)mathematical categories of his 
own time in apprising Leibniz’s calculus, which is historiographically incorrect - as 
pointed out also by Bos92 - and actually led him to a falsified historical appraisal of 
Leibniz’s mathematical ideas. The continuity which Robinson alleges between him 
and Leibniz has therefore to be interpreted as undermined by this falsified historical 
appraisal as well.  

Hence, after these considerations, we can finally state that, at the mathematical 
level too - as at the philosophical one, one cannot speak of a generic continuity be-
tween Leibnizian calculus and nonstandard analysis as Robinson himself did, but of 
course also not of a complete extraneousness between them, as Bos does. So, what 
remains to observe, is once again only a conceptual similarity between Leibniz’s math-
ematical ideas and their Robinsonian implementation, a similarity that has to be 
acknowledged at the informal (or pre-formal) and heuristic level, but certainly not at 
the formal one, if one has in mind the present standards of mathematical formalism.  
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