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Abstract
The goal of this paper is to review and critically discuss the philosophical aspects of proba-
bilistic seismic hazard analysis (PSHA). Given that estimates of seismic hazard are typi-
cally riddled with uncertainty, different epistemic values (related to the pursuit of scien-
tific knowledge) compete in the selection of seismic hazard models, in a context influenced 
by non-epistemic values (related to practical goals and aims) as well. We first distinguish 
between the different types of uncertainty in PSHA. We claim that epistemic and non-
epistemic considerations are closely related in the selection of the appropriate estimate of 
seismic hazard by the experts. Finally, we argue that the division of scientific responsibility 
among the experts can lead to responsibility gaps. This raises a problem for the ownership 
of the results (“no one’s model” problem) similar to the “problem of many hands” in the 
ethics of technology. We conclude with a plea for a close collaboration between philosophy 
and engineering.

Keywords Seismic risk · PSHA · Uncertainty · Logic trees · Epistemology of risk · 
Scientific responsibility

1 Introduction

The goal of this paper is to review and critically discuss the literature on the philosophical 
aspects of probabilistic seismic hazard analysis (PSHA). PSHA has received little atten-
tion in the philosophical literature, but its conceptual aspects have been object of contin-
ued interest in engineering (Marulanda et al. 2021; Foulser-Piggott et al. 2020; Baker et al. 
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2021). These conceptual aspects include the methodology of PSHA (Krinitzsky 1993a, b, 
2002; Castaños and Lomnitz 2002; Mulargia et al. 2017), the assessment of seismic hazard 
models (e.g., Grandori 1991, 1993, 1994), and the scientific responsibility of the partici-
pants in the study, including the scientists that formulate the individual models, the experts 
that evaluate those models, and the team that performs the integration (SSHAC 1997). A 
clarification of the main issues from a philosophical point of view can contribute to a criti-
cal reflection on the foundations of the practice of PSHA.

Throughout the paper, we rely on a distinction between epistemic values, which are 
related to the pursuit of scientific knowledge, and non-epistemic values, which are related 
to practical goals and aims (Diekmann and Peterson 2013). Given that estimates of seis-
mic hazard are typically riddled with uncertainty, different epistemic values compete in 
the selection of seismic hazard models, in a context influenced by non-epistemic values as 
well.

We will proceed as follows. In Sect.  2, we distinguish between the different types of 
uncertainty in seismic hazard analysis. In PSHA, seismic hazard is estimated as the proba-
bility of exceedance of a specified ground-motion intensity at a given site. These estimates 
are subject to two types of uncertainty. On the one hand, there are aleatoric uncertainties, 
which are due to the essential variability of seismic phenomena. On the other hand, there 
are epistemic uncertainties, which are due to insufficient understanding of these phenom-
ena. Both these uncertainties are included in PSHA.

From the epistemic point of view, the main problem is that historical catalogs of seismic 
events, which often comprise only few centuries, are not sufficient for a complete valida-
tion of seismic hazard models, which would require thousands of years of data. Due to this 
problem, PSHA can lead to an overestimation of the hazard at a site due to mistakes in the 
interpretation and elaboration of data (Bommer and Abrahamson 2007), but it can also 
lead to an underestimation of seismic hazard, since “the ‘worst-case scenario’ is unlikely to 
have occurred yet” (Marulanda et al. 2021).

In Sect.  3, we compare different methodologies for the assessment of seismic hazard 
models. Given the practical impossibility to validate individual models, the estimates of 
seismic hazard are often based on ensembles. In an ensemble of models, the final estimate 
of seismic hazard corresponds to the weighted sum of the estimates produced by the mod-
els with the weights determined by the judgments of credibility assigned to those models 
by a group of experts. We raise some methodological challenges to the use of experts in 
PSHA. We then consider two alternative approaches. We claim that epistemic and non-
epistemic considerations are closely related in the selection of the appropriate estimate of 
seismic hazard.

Finally, in Sect. 4 we critically discuss the issue of the scientific responsibility of the 
experts. Models ensembles allow to make decisions that take into account the judgments of 
the scientific community as a whole rather than those of a single expert, but it also makes it 
difficult to ascertain individual scientific responsibilities for the final result. We argue that 
the division of scientific responsibility among experts can lead to responsibility gaps, and 
so it raises a problem for the ownership of the results (“no one’s model” problem) similar 
to the “problem of many hands” in the philosophy of technology. We conclude with a plea 
for a close collaboration between the philosophy and sociology of science and earthquake 
engineering.
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2  Probabilistic seismic hazard analysis

Probabilistic seismic hazard analysis (see Baker et  al. 2021 for a recent presentation) is 
usually traced back to Cornell (1968). However, key elements of modern PSHA, including 
the explicit treatment of ground-motion prediction equations (see below), are due to Esteva 
(1969). Moreover, the Cornell’s formulation is a special case of the Esteva’s formulation 
(Alamilla et al. 2020); see McGuire 2007 for a historical overview.

PSHA estimates seismic hazard1 as the probability of exceedance of a specified ground-
motion intensity at a given site during a specified time interval (or its converse, the return 
period; for example, 10% in 50 year, corresponding to a return period of 475 years). The 
frequency of a seismic event corresponds to the annual rate of occurrence of an event that 
exceeds a given intensity level. Ground-motion acceleration can be measured in terms 
of peak ground acceleration (PGA), peak ground velocity, peak ground displacement, or 
response spectral acceleration; for convenience, in this paper we will always use PGA.

The first step in PSHA is to identify all possible sources of a seismic event that can 
affect the site of interest. An earthquake rate model (ERM) consists of a set of events char-
acterized by the magnitude (M) of the earthquake, its location (usually represented as a 
point on a plane), and its rate of occurrence (for example, 10−4/year). The average annual 
number of events with magnitude equal to or greater than some m in a given region is 
expressed by:

where �0 is the average total number of events per year with magnitude equal to or greater 
than a chosen threshold (“minimum earthquake”) and FM is the magnitude probability dis-
tribution function at the source of interest.

The PGA is calculated on the basis of the ground-motion model (GMM), or ground-
motion attenuation relation, which is used to determine the peak ground-motion accelera-
tion at the site of interest as a function of the magnitude of the event M and of the distance 
between the site and the source (calculated on the basis of the earthquake’s location). A 
ground-motion attenuation relation has the general form2:

where M is the magnitude of the seismic event, R is the distance from the source, c, d, and 
e are constants that characterize the site of interest, and � is the deviation from the mean3; 
however, much more than just three parameters are considered today in the estimate of the 
ground-motion attenuation relation.

Finally, the frequency of exceedance at the site of a given PGA = a is:

where P[PGA > a] is calculated by integration over all relevant distances (determined by 
the ground-motion attenuation relation) and magnitudes (determined by the magnitude 
probability distribution FM):

(1)NM(m) = �0[1 − FM(m)]

(2)ln PGA = cM − d ⋅ lnR + e ± �,

(3)𝜈(a) = 𝜈0 P[PGA > a],

1 In this paper, we will focus on seismic hazard (the probability that an adverse event occurs); similar con-
siderations apply to vulnerability estimates (the probability of a loss was the adverse event to occur) in 
earthquake engineering.
2 Cf. Hanks and Cornell (1994).
3 PGA is assumed to be lognormally distributed.
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where Mmax is the maximum intensity considered at that source, rmax is the maximum dis-
tance between the source and the site, fM is the probability density function of M, and fR 
is the probability density function of R. If the site can be affected by n sources, the total 
hazard is determined by:

The seismic hazard corresponds to the combination of all possible earthquakes that might 
affect the site of interest weighted by their annual frequencies. Notice that the seismic haz-
ard is itself a mean value (see Eq. 4), therefore it also has an aleatory uncertainty that is not 
represented in the final estimate.4

Seismic hazard is an uncertain measure, and a characteristic feature of PSHA over the 
last 20 years has been the systematic treatment of uncertainties. The main types of uncer-
tainties in PSHA are tabled in Fig. 1.

Aleatoric uncertainty5 is due to the essential randomness of seismic phenomena. It is 
uncertain where future earthquakes will occur (spatial uncertainty), when those earth-
quakes will occur (temporal uncertainty), and which level of ground motion they will pro-
duce (ground-motion uncertainty).6

The aleatoric variability at a site is represented by the shape of the hazard curve. A haz-
ard curve plots PGAs (on the x-axis) and their frequencies of exceedance (on the y-axis). 
The characteristic shape of the hazard curve displays the fact that earthquakes that produce 
strong PGAs have longer return periods (bottom right of the curve) and earthquakes that 
produce small PGAs have shorter return periods (top left of the curve). A simplified hazard 
curve is depicted in Fig. 2.

Finally, aleatoric uncertainty is due to the stochastic rather than deterministic nature of 
seismic processes, and so, it does not decrease over time, even though, given enough time, 
all the values of the variables will eventually be sampled (Field 2001).

Epistemic uncertainty is due to limited knowledge of seismic phenomena (for exam-
ple, incomplete dataset) and to insufficient understanding of the seismogenic processes (for 
example, differences between fault systems in different areas).

Epistemic uncertainty is represented by a suite or bundle (or family) of hazard curves. 
The spread of the family of hazard curves corresponds to how much the models diverge 
on their estimate of the seismic hazard at the site. For each point on the x-axis, the corre-
sponding values on the y-axis represent the variance in the estimation of the frequency of 
events that produce a given ground-motion intensity level; vice versa, for each point on the 
y-axis, the values on the x-axis represent the variance in the estimation of the most intense 
event with a given frequency.

We can distinguish between two sorts of epistemic uncertainty. Model uncertainty, 
by contrast, is due to the inherent idealizations of the model (Field 2001). For example, 

(4)P[PGA > a] = ∫
Mmax

Mmin
∫

rmax

0

P[PGA > a ∣ m, r]fM(m) fR(r) dm dr

(5)�(a) =

n∑

i=1

�i(a)

4 We are grateful to an anonymous reviewer for pointing this out.
5 The distinction between aleatoric and epistemic uncertainties was established in PSHA practice by the 
report of the US Senior Seismic Hazard Analysis Committee (SSHAC 1997).
6 See, e.g., Bazzurro and Luco (2005).
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multiple models of the same site may be available.7 Model uncertainty is due to both lack 
of data and incomplete understanding of the processes that generate seismic phenomena 
(Wang et .al 2003), given that historical catalogs are not enough for a statistical validation 
of seismic hazard models (Kijko 2011).

By contrast, parametric uncertainty concerns the value of the parameters of the ERM 
and of the GMM at the site of interest. An example is the Gutenberg–Ritcher equation.8 
The a-value in the equation is related to the total number of earthquakes in the seismic 
zone, and the b-value corresponds to the relative ratio of small and large earthquakes, or 
alternatively, to the probability that a random seismic event at the source has magnitude 
m. Parametric uncertainty is due to the lack of data, given that historical catalogs are not 
enough to determine the exact values of the parameters.

Uncertainty in PSHA

Aleatoric uncertainty

• due to natural
randomness;

• correspond to the
shape of the hazard
curve;

• does not decrease
over time.

Epistemic uncertainty

• due to ignorance,
incompleteness
and/or insufficient
understanding of
physical
phenomena,
idealisation, and
lack or data;

• corresponds to a
family of hazard
curves.

• can decrease over
time.

Parametric uncertainty

• concerns the values
of the parameters.

Model uncertainty

• concerns the gen-
eral form of the
equations.

Fig. 1  A schema of different types of uncertainties in probabilistic seismic hazard analysis

7 For simplicity, we will only consider probabilistic models.

8 It is often assumed that earthquake magnitudes follow the Gutenberg–Ritcher distribution:

where N
M

 is the total number of earthquakes with magnitude M, and a and b are constants (“a-value” and 
“b-value,” respectively) that characterizes the source site.

log10 N(m) = a − bm
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We will now consider how these two types of epistemic uncertainties (model uncer-
tainty and parametric uncertainty) are currently treated in PSHA.9

2.1  Logic trees

Logic trees (Kulkarni et al. 1984) have become the standard way of including epistemic 
uncertainties in PSHA.

Setting up a logic tree involves two stages. First, different ERMs and different GMMs 
are selected together with different values for their parameters (for example, different 
a-values and b-values in the Gutenberg–Ritcher equation). Each branch of the tree corre-
sponds to an hazard curve.

Second, a weight is assigned to each model. Weights are expressed as probabilities 
assigned to each model and values for its parameters; the weights of the branches departing 
from each node of the tree are required to sum up to one. Figure 3 depicts a simplified logic 
tree.

The mean seismic hazard10 outputted by a family of curves can be calculated by means 
of the total probability law as the sum of all exceedance probabilities estimated by each 
curve weighted by the weight of that curve:

9 For more philosophically oriented taxonomies of uncertainty, see Hansson (2022).
10 Bommer and Scherbaumb (2008) and Bommer (2012) argue in favor of the use of fractiles in the estima-
tion of seismic hazard (for example, the 85th fractile or the 90th fractile); for a defense of the use of the 
mean hazard curve, see Musson (2005, 2012), and McGuire et al. (2005).

Fig. 2  A simplified hazard curve
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where B1,…Bn each corresponds to a branch of the logic tree, {B1,…Bn} is a partition of 
the probabilistic space, and P(Bi) > 0 for each Bi.

In order for the total probability law to be legitimately applied, the branches of the logic 
tree must be mutually exclusive and collectively exhaustive (MECE), that is, the models 
that are included in the logic tree should not overlap with each other (mutual exclusivity) 
and all the models should be included in the logic tree (collective exhaustivity).

As regards the first condition (mutual exclusivity), no two branches should correspond 
to the same model. This condition is easier to satisfy in the case of parametric uncertainty, 
since two branches arguably count as distinct if they correspond to different estimates of 
the value to the same parameter. In the case of model uncertainty, however, it can be hard 
to tell whether two models overlap with each other simply by looking at the form of the 
equations. In this case, exclusivity can be easier to satisfy if fewer and more diverse mod-
els are included. However, including less branches rather than more can undermine the 
exhaustivity of the tree; vice versa, including more branches increases the probability that 
branches are redundant, so that models are double-counted (Abrahamson and Bommer 
2005).

The second condition (collective exhaustivity) can be interpreted in either of two ways 
that are not usually distinguished in the literature. A strong interpretation of collective 
exhaustivity is that all possible values must be included in the logic tree. A weak interpre-
tation is, by contrast, that only values recognized by the scientific community (i.e., present 
in the scientific literature) are included in the logic tree.

The strong interpretation is more plausible in the case of parametric uncertainty: If it is 
uncertain what the true value of a parameter is, it is natural to think that the full range of 
possible values must be included (provided that those values are not unrealistic), not only 
those that have been considered in the literature. An example is the inclusion of all possible 
magnitudes between the minimum magnitude considered Mmin and the maximum magni-
tude considered Mmax (Bommer et al. (2004)).

(6)𝜈(a) =
∑

n

P(PGA > a | Bn)P(Bn),

Fig. 3  A simplified logic tree; 
B
i
 = the ith branch of the logic 

tree; w = weight; b = model 
parameter
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The weak interpretation is more plausible in the case of model uncertainty: If it is 
uncertain which model is correct, it is natural to think that only the models that received 
attention in the scientific literature should be included. On this interpretation, a logic tree 
is exhaustive if it includes all available models that can plausibly be applied in the site of 
interest (Abrahamson and Bommer 2005; Bommer et al. 2010).

3  Models ensembles and credibility

In the face of epistemic uncertainty (lack of data, incompleteness, insufficient understand-
ing, etc.), a complete validation of individual models may not be viable. Consequently, it 
may be practically impossible to determine which model is the correct one. On the oppo-
site, many alternative models will often be available, and experts can disagree on which 
model is the most reliable.

However, decisions must be taken also in conditions of uncertainty. In particular, we 
need to estimate seismic hazard despite the insufficiency of data; these estimates must 
therefore take into account not only what we know (the available data), but also what we 
don’t know (the epistemic uncertainty surrounding those data). This requires us to assess 
which models we should rely on among the available ones.

In this section, we compare three methodologies for the assessment of seismic hazard 
models. The first one is directly connected to the use of logic trees, with the weights deter-
mined by eliciting the judgments of the experts on the likelihood of the models. The sec-
ond methodology selects a single model by a purely statistical procedure that allows to 
assess which model is more reliable for the estimation of a specific target quantity related 
to the seismic hazard at a given site. Finally, the third approach aims to assess the predic-
tive power of the models using “experimental” data and can result either in the selection of 
single model or in the construction of an ensemble using a logic tree. We claim that in all 
these three approaches, epistemic and non-epistemic considerations are closely related to 
each other in the calculation of the appropriate estimate of seismic hazard.

3.1  The use of experts in PSHA

Probability theory is used twice in PSHA: first, to represent aleatoric uncertainty due to 
natural randomness (spatial uncertainty, time uncertainty, ground-motion uncertainty, etc.), 
and second, to represent epistemic uncertainty due to ignorance (model uncertainty and 
parametric uncertainty).

The weights in a logic trees are usually interpreted as degrees of confidence of the ana-
lyst that the model is correct (e.g., SSHAC 1997), the best one available (Bommer 2012), 
or the one that should be used (Musson 2012). For example, Scherbaum and Kuehn (2011) 
state that “the branch weights [are] subjective estimates for the degree-of-certainty or 
degree-of-belief ...that the corresponding model is the one that should be used.” In epis-
temology, subjective degrees of belief like the ones expressed by the experts are called 
credences (Huber and Schmidt-Petri 2008). In PSHA, these credences are elicited from the 
experts and the final weights are estimated by the integration of those judgments.

The systematic inclusion of experts’ judgments in PSHA originated from the report of 
Senior Seismic Hazard Analysis Committee (SSHAC 1997). The SSHAC guidelines are 
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summarized by the US National Research Council Panel (NRC 1997); our presentation is 
based on Budnitz et al. (1998).

The SSHAC report distinguishes between the proponents, namely the scientist or team 
of scientists that formulate the models; the evaluators, namely the expert or group of 
experts that express the credibility judgments; and the Technical Facilitator (TF) or Tech-
nical Facilitator/Integrator (TFI), namely the team that is in charge of the elicitation of the 
experts’ judgments and of the production of the aggregated model.

The process consists of two main phases:11 first, the elicitation of individual judgments 
or probabilities from the experts; and second, the aggregation of those judgments in the 
form of a “community distribution” (Budnitz et al. 1998). Scientists can participate in the 
process in two roles, both as proponents (of their own model) in the first phase and as 
evaluators (of others’ models) in the second phase.12

In the second phase, the individual experts’ judgments are integrated into a distribution 
that merges together the judgments expressed by the experts. It is important to notice that 
the aim of this phase is not that each expert believes in the same model or the same value 
for a variable or parameter of the model (Consensus 1), or that each expert believes in the 
same probability distribution for a random variable or model parameter (Consensus 2), but 
only that all experts agree that a particular composite probability distribution represents 
them as a group (Consensus 3), or, more weakly, and that all experts agree that distribution 
represents the overall scientific community (Consensus 4).

According to SSHAC (1997), consensus among experts can be achieved in five different 
ways.13 First and foremost, (1) experts might explicitly agree on a particular probability 
distribution. If not, then their judgments can be integrated either (2) by assigning the same 
weight to each judgment or (3) by assigning unequal weights. In this last case, a possible 
approach is (4) to assign quantitative but unequal weights (for example, if it is clear that 
a given expert is an outlier, but it still makes sense to assign to her judgment a numerical 
weight corresponding to how much that judgment is represented in the overall scientific 
community); a final approach would consist in (5) taking into account different judgments 
(for example, if the community ranks a model as more credible than another) but without 
assigning any definite numerical value to them. This last option is considered as the less 
desirable outcome.

This approach treats the judgments of the experts as evidence. This is clearly acknowl-
edged, for example, by Hanks and Cornell (1994), who claim that “diverse expert opin-
ion will become surrogate data,” and by Budnitz et al. (1998), who claim that “although 
some of the key inputs to a PSHA can be determined reasonably well from observations or 
experiments, other key inputs require the judgment of experts.” This has often been criti-
cized on the grounds that it would make PSHA less scientific, supplying the shortage of 
hard data, namely historical catalogs of seismic events, with soft data, namely the esti-
mates given by the experts (Krinitzsky 1993a, 2003; Castaños and Lomnitz 2002; Mulargia 
et al. 2017).

11 See Coppersmith et al. (2010); SSHAC (1997) distinguishes between four phases, in which the integra-
tor performs a literature review, evaluates the models, and estimates the community distribution (Phase 1); 
interacts with the proponents (Phase 2); fosters debate between proponents and experts (Phase 3); and puts 
together a panel of experts, elicits judgments, and infer the community distribution (Phase 4).
12 An overview of the methods of elicitation and aggregation used in PSHA is given by Klügel (2011).
13 The SSHAC report considers, besides the cases mentioned below, also cases in which unintentional 
agreement/disagreement is reached among experts; for simplicity, we do not consider this distinction here.
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By definition, the hazard value outputted by the logic tree is not the value estimated by 
the best model, which is the model that receives the highest score, but rather the sum of 
all the estimates of the models included in the tree weighted by the probability assigned to 
each branch. So it is possible that no single expert believes that the integrated model is “the 
one that should be used,” even though that model represent the judgements of the scientific 
community as a whole.

The use of experts in PSHA appears to be mainly motivated by non-epistemic values. 
The declared aim of the integration is to “represent the center, the body, and the range of 
technical interpretations that the larger informed technical community would have if they 
were to conduct the study” (SSHAC 1997). The fact that ensemble modeling in PSHA 
aims to “represent” the judgments of the experts indicates that epistemic values may also 
be involved: An ensemble of models may be praised because it accurately represents the 
uncertainty in the scientific community. However, the final goal of the aggregation is not 
to produce the most accurate model, but a model that best represents the judgments of the 
scientific community as a whole, and there may be practical reasons to rely on such model 
for public decisions. As stated, for instance, by Marzocchi and Zechar (2011), “one of the 
main goals of decision-makers is to minimize possible a posteriori critiques if a forecast 
model fails” (p. 446). Avoiding criticisms is easier if the decision-maker has considered all 
the available models and takes into consideration the judgments of all the experts.

3.2  Credibility

Grandori et al. (1998) move the following objection to the approach with the use of experts 
and logic trees:

This kind of procedure is much debatable. It must be noted, first, that the results 
obtained with n different models do not constitute a sample of a random variable of 
which mean value and variance could be estimated. Moreover, the dispersion of the 
n values depends on the subjective choice of possible models, and so does the mean 
value. Therefore, the procedure is formally not correct.

Starting from this criticism and from the consideration that it is not possible to statisti-
cally validate the estimates of seismic hazard produced by different models due to shortage 
of data, Grandori proposes a different approach to assess the models by means of a notion 
of credibility. He posed attention to the use of statistical tests for preferring one of two 
competing models in the estimation of a specific quantity (A) related to the seismic hazard 
at a given site (see also Lind 1996).

Referring in particular to the comparison of two earthquake rate models (F1 and F 2 ) for 
the estimate of the peak ground acceleration with a specific return period (A), the funda-
mental tool for selection of one of the two is the evaluation of their foreseeable errors in 
estimating A, under a given hypothetical “true” distribution F 0 . It is assumed that the avail-
able catalog is a random sample S 0 drawn from F 0 and that the true value of A is obtained 
from the known procedure Z: A0 = Z(F0).

The errors of F 1 under the hypothesis that the true magnitude distribution (F0 ) has the 
same mathematical form as F 1 (i.e., F 1 is the right model) and under the alternative hypoth-
esis that the model F 1 is not correct (F2 is the right one) are calculated, using synthetic seis-
mic catalogs generated from F 0 using Monte Carlo method. The same for F 2.

The distribution of such errors is described by: (1) the mean value Âm of 1000 independ-
ent estimations obtained from 1000 random samples S 0 drawn from F 0 with the same size 
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as the available catalog; (2) the standard deviation � of the 1000 estimates of Ai ; and (3) an 
indicator Δ0

i
 called “credibility” of the model F i  with respect to F 0:

where Âi is the estimator of A with the model F i  , and the parameter k defines a conven-
tional limit.

The results of this analysis give a measure of the statistical uncertainty connected with 
the use of the model F i  (as right model) and of its robustness (as not correct model).

Finally, the relative credibility of one model with respect to the other is given by:

The model 1 is more credible than the model 2 if Δ0

1,2
> 0 , and equally or less credible 

otherwise. This procedure is akin to an empirical test (see 3.3), except that the data are 
drawn from a synthetic catalog rather than obtained directly by observation; this allows to 
consider samples that include strong earthquakes.

A model can have high credibility only when that same model is used as the conjectural 
truth but low credibility when another model is used, whereas another model can have high 
credibility in both cases (Grandori et al. 1998). Moreover, two models that give fairly dif-
ferent estimates for the same quantity A may have nonetheless similar credibility if their 
relative credibility indexes are similar in most cases; this suggests that two models can be 
“similar” besides the estimate of a particular value (Grandori et al. 2004). Moreover, it is 
worth noting that the credibility of a model is always relative to a specific quantity. Indeed, 
“when two models are proposed for the interpretation of reality, it may happen that [the 
first model] is more reliable than [the second model] in the estimate of PGA with a return 
period of 50 years, while for the estimate of PGA with a return period of 475 years [the 
second model] is more reliable than [the first one]” (Grandori et al. 1998).

3.3  Predictive power

Alternatively, the selection or preference for a model can be determined by the predictive 
power of that model in correctly estimating a specific quantity related to seismic hazard 
experimentally acquired (i.e., data observed in real word and not generated synthetically 
as proposed for credibility, see 3.2). This approach was already proposed by Esteva (1969) 
and has received an increasing attention in the last few years, becoming a conceptual alter-
native to the aggregation of experts’ judgments (Baker and Gupta 2016; Marzocchi and 
Jordan 2018; Secanell et al. 2018).

The approach is also called “Bayesian” (e.g., Esteva 1969; Secanell et al. 2018) because 
models are scored based on the conditional probability that the model is correct given the 
available data.14 Given an observation A consisting of recordings of the seismic activity at 
the site in a given interval of time, the probability that the model that corresponds to the ith 
branch of a logic tree is correct and is expressed by Bayes’ law:

Δ0

i
= P{|Âi − A0| < kA0}

Δ0

1,2
= Δ0

1
− Δ0

2

14 Our presentation is based on Secanell et al. (2018).



 Natural Hazards

1 3

If the tree has n branches, the prior probability P(Bi) can be set to:

More often, P(Bi) is set to the weights assigned to the model Bi by the experts that are then 
updated using “empirical” data. Finally, the probability of the observation A is expressed 
by the total probability theorem,

as the sum of the probability of observing A if the model Bj is correct weighted by the 
probability that Bj is correct.

The posterior probability that a model is correct given some set of observations that 
can be used to score the predictive power of that model and are based purely on the per-
formances of the models in predicting the observed phenomena (Scherbaum and Kuehn 
2011). Notice that the scores represent therefore degrees of confirmation of the models 
with respect to the observations rather than to degrees of confidence of the experts.

The experimental approach can be used in two ways, either to select a single model or to 
construct an ensemble of models. In the first case, the model that is selected is the one that 
receives the highest score, and which is, therefore, the most successful in predicting the 
observations. In the second case, the hazard is determined as the mean value of an ensem-
ble of models whose weights are determined by their predictive power.

Marzocchi and Zechar (2011) claim that scoring the predictive power of the models is 
“a scientific experiment in the traditional sense,” where the hypothesis corresponds to the 
forecasts of future seismic activity, and the experimental data are the yearly recordings 
against which those forecasts are tested.15 For this reason, they also argue that the experi-
mental approach is more objective, since it provides an assessment of the models based on 
hard data rather than by integrating different estimates provided by the experts.

Unlike traditional experiments, however, (i) neither the experimenter has control over 
the initial conditions (i.e., the seismogenic process) nor he or she can intervene on that 
process during the experiment. Moreover, (ii) only a specific subclass of similar phenom-
ena will likely be observed over a short period of time, namely small earthquakes, which 
are more frequent, rather than strong ones, that are rarer. It must therefore be assumed that 
the forecasting performances of the models with respect to those earthquakes carry over to 
their predictions of stronger events in order for the test to be reliable. However, given that 
strong earthquakes are rare, not only it is difficult to extrapolate robust probabilistic models 
but it is also difficult to determine whether large earthquakes have the similar distributions 
as small earthquakes.

Moreover, non-epistemic considerations are relevant to the experimental approach as 
well. In particular, practical aims and goals suggest in which situations the experimental 

(7)P(Bi|A) =
P(Bi) P(A|Bi)

P(A)

(8)P(Bi) =
1

n

(9)P(A) =

n∑

j=i

P(Bj) P(A|Bj),

15 The example of the experimental approach that they provide is the Californian Regional Earthquake 
Likelihood Models Test (RELM), which produced an assessment of short-term earthquake forecast in the 
Bay area (Lee et al. 2011).
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approach should be used. For example, this approach can be used to select a model that 
can be used to issue short-term forecasts of future seismic activity (i.e., small earthquakes) 
rather than when long return periods must be considered (e.g., long return periods must be 
considered (e.g., in the hazard assessment for nuclear power plant). Moreover, a dynamic 
update of the weights of the logic tree can be useful in “regions ...where large increases 
in the rate of earthquakes [are] triggered by anthropogenic activities” (Baker and Gupta 
2016).

We can conclude that epistemic and non-epistemic considerations are therefore deeply 
intertwined in the assessment of seismic hazard model. Therefore, analyzing the epistemic 
aspects of PSHA leads to considering its non-epistemic aspects; we will now see that the 
converse is also true when we consider the non-epistemic aspects of PSHA, in particular, 
the scientific responsibility of the experts.

3.4  Discussion

We have considered three approaches to the assessment of seismic hazard models. These 
approaches differ of course from one another. The main difference is whether the approach 
selects a single model or builds an ensemble. The first approach aims to define an ensemble 
of models by integrating the judgments of the experts in a way that represents the overall 
epistemic uncertainty. By contrast, the second approach aims to determine which one of 
two competing models is the most credible one in estimating a given quantity. Finally, the 
third approach can be used either to select a single model, namely the model that receives 
the highest score with respect to some metric, or to update the weights of an ensemble of 
models on the basis of a posterior distribution calculated according to Bayes’ Law.

As seen, the three approaches correspond to different meanings of “best model.” In 
the first approach, the best model is the one that reflects the whole body of judgments 
expressed by the experts. In the second approach, the best model is the model that has high-
est credibility index with respect to a certain quantity that must be estimated.16 Finally, in 
the third approach the best model is the one whose forecasting performances (with respect 
to a set of empirical data collected over a given period of time) receive the highest score.

The data that are used to assess the models (i.e., the inputs to PSHA) vary as well. The 
inputs to the first approach are both the historical catalogs and the judgments elicited from 
the experts that are used to determine the weights. The inputs to the second approach are 
historical catalogs alone, which are used to estimate the parameters of the true model F 0 
from which synthetic catalogs are generated. Finally, the inputs to the third approach are 
both historical catalogs (that are used to formulate the models) and a set of independent 
data (that are used to assess the models).

The three approaches pursue, in a sense, different aims. Of course, the final aim is in all 
cases to estimate the seismic hazard at the site; however, those approaches differ on how 
this value is estimated. The aim of the first approach is to include epistemic uncertainties 
in the estimate of seismic hazard. The aim of the second approach is to be able to select on 
the basis of statistical tests the most suitable model. Finally, the aim of the third approach 

16 Credibility explicitly targets a value that is significant in engineering (for example, a return period of 
475 years), whereas both Credences and Confirmation produce an estimate of seismic hazard for any return 
period.
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is scoring different models on the basis of empirical data that can be continuously updated. 
The three approaches are compared in Fig. 4.

Epistemic and non-epistemic considerations are therefore deeply intertwined in the 
assessment of seismic hazard models. In particular, practical aims determine which 
approach should be used. Each approach determines, in its turn, whether a single model or 
an ensemble of models should be used, how inputs are selected and interpreted, and which 
model is the best. Therefore, analyzing the epistemic aspects of PSHA leads to consider-
ing its non-epistemic aspects; we will now see that the converse is also true when we con-
sider the non-epistemic aspects of PSHA, in particular, the scientific responsibility of the 
experts.

4  Scientific responsibility and the “no one’s model” problem

The philosophical literature, and especially Murphy and Gardoni (2011) and Doorn (2015), 
has focused on the moral and social responsibility related to seismic events.17 Given that 
those are random events that cannot be predicted (Geller 1997), there is arguably no 
responsibility for the occurrence of the event itself (namely for seismic hazards), even 
though that there can be responsibilities concerning the communication of scientific data 
(Allen 1976; Sol and Turan 2004) and the mitigation of seismic risk.

The literature in engineering has focused, by contrast, on the intellectual responsibil-
ity of the scientist (scientific responsibility). In the engineering literature, SSHAC (1997) 
provides indeed both a definition of intellectual responsibility and a criterion for attributing 
responsibility in PSHA.

Fig. 4  Synopsis of different approach for the assessment of probabilistic seismic hazard analysis

17 van de Poel (2011) distinguishes between active responsibility, which consists in a proactive thinking 
about how a scientific result will be used in the future, and passive responsibility, namely backward-looking 
responsibility.
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Intellectual responsibility is defined as “the responsibility not only for the accuracy and 
completeness of the results, but also for the process used to arrive at the results” (SSHAC 
1997). The key term used in the report to describe scientific responsibility is “ownership.” 
For example, “it is absolutely necessary that there be a clear definition of ownership of 
the inputs into the PSHA, and hence ownership of the results of the PSHA”; this princi-
ple is important because “it assigns to an identified entity, the “owner,” clear intellectual 
or scientific responsibility for the conduct and results of a PSHA.” Specifically, scientific 
responsibility encompasses two levels of types of ownership: (1) ownership of the input of 
the PSHA and (2) ownership of its results. With respect to the standard approach based on 
the use of experts and the logic tree, 

(1) the inputs are defined in broad terms as “the composite distribution of the informed 
technical community” (SSHAC 1997). That includes not only the historical dataset 
and the models considered in the integration, but also the judgments elicited from 
the experts. The assumption of SSHAC (1997) is that “using the collective input of 
the informed technical community [is] the best, and most defensible, way of defining 
seismic hazard.”

(2) the outputs of PSHA is the ensemble of models (aggregate distribution) and the cor-
responding mean hazard curve.18

The literature has discussed the different responsibilities, respectively, of the proponents of 
the individual models, of the expert evaluators, and of the team of integrators.

The scientists that propose the model have intellectual responsibility for it (Erto et al. 
2016). The responsibility of the scientist includes both intellectual integrity, which requires 
that the scientist exercises his/her best professional judgment, does not fabricate data, 
etc., and also due diligence, which requires, for example, that the scientists “learn about 
the most recent advances in the field, often by direct contact with other experts,” update 
their credences in light of new data, etc. (SSHAC 1997). When a single model is selected, 
responsibility is also easy to ascertain, because it lies with the scientist that formulated the 
selected model.

However, scientific responsibility is neither a purely epistemic value nor a purely non-
epistemic value, but rather a value that has both epistemic and non-epistemic facets. The 
proponents of the model are also responsible for the selection of the historical data that are 
considered for the formulation of the probabilistic model. These choices concern not only 
the inclusion of a particular historical catalog in the dataset, but also controversial issues 
such as the removal of foreshocks and aftershocks. The collection and elaboration of these 
data are among the epistemic facets of scientific responsibility, whereas scientific integrity, 
for example, belongs to the non-epistemic facets.

The responsibilities of the experts are briefly discussed by Klügel (2011). He lists five 
principles that experts should abide by. These principles are based on Cooke (1991). They 
concern (1) the reproducibility of results, (2) the accountability for the judgments that are 
expressed, (3) the empirical control of those judgments on the basis of the available data-
set, (4) the neutrality of the procedure of aggregation, and (5) the fairness in giving each 
experts an equal say (Hanea et al. 2021). Applying these principles to PSHA is not easy; 

18 Note that the very existence of such hazed curve may be a substantial assumption; see Anderson and 
Biasi (2016).
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in particular, estimating the experts’ performances (as proposed by Aspinall and Cooke 
(2011)) can be difficult in the context of seismic risk assessment due to the rarity of strong 
earthquakes and the shortage of historical data.

Finally, the integrator has responsibility for producing the overall distribution of weights 
to the branches and for the formulation of the final model. The integrators have always a 
choice on how to infer the “community distribution” from the judgements given by the 
experts, even if those judgements are expressed directly as probabilities.19 Moreover, the 
final estimate of seismic hazard is an aggregate result based on the amalgamation of dif-
ferent models and of different estimates of the values of their parameters; the shape of the 
final hazard curve will therefore depend not only on the models that are included in the 
ensemble, but also on how those models have been weighted by the experts.

This can create a problem for how responsibility is shared among the different partici-
pants in a PSHA. In SSHAC (1997), it is noticed, for example, that responsibility in PSHA 
is “typically diffused over a large group of experts, analysts and stakeholders in a nebulous 
way,” and even “overly diffused” among them. The reason is that many PSHA studies20 
involve a very large number of participants; this makes it difficult to ascertain individual 
responsibilities for the final result.

This is the similar to the so-called problem of many hands in the philosophy of technol-
ogy (van de Poel et al. 2015): often, the complexities of an engineering project are such 
that “it is usually very difficult, if not impossible, to know who contributed to, or could 
have prevented a certain action, who knew or could have known what.” In the case of seis-
mic hazard analysis, in particular, the “many hands” are those of the proponents of the 
individual models, the evaluators of those models, and the team that performs the integra-
tion of the judgments elicited from the experts.

SSHAC (1997) solves the problem of many hands by attributing the overall scientific 
responsibility to the integrator. As stated by Budnitz et al. (1998), “final responsibility for 
the process of obtaining the aggregated product rests with the [integrator].” The report 
stresses also that the scientific responsibility of the integrator concerns both the inputs and 
of the results of the PSHA. In particular, the integrator selects the inputs (models and data-
sets), forms the panels of experts, elicits the individual judgments, infers the distribution 
of the judgments of the experts resulting from the elicitation, and produces the final esti-
mate of seismic hazard. According to SSHAC (1997), the criterion allows to achieve “clear 
responsibility for the conduct of the study.”

However, this can also lead to a de-responsibilization of individual scientists. In particu-
lar, the scientist who formulates a model could apply lower scientific standards to his/her 
work if he/she knows that the model will only contribute to the final hazard estimate as part 
of an ensemble, for which the scientist feels no responsibility. At the same time, the inte-
grator could be tempted to include all available models, regardless of their accuracy, since 
the goal of the integrator is to represent the full spectrum of epistemic uncertainty, and he 
or she may feel in turn no responsibility for the accuracy of the proposed models.

20 Some examples are the European SHARE project (Giardini et  al. 2014), the National Seismic Hazard 
Model for New Zealand (e.g., Stirling et al. 2012) and the new Italian seismic hazard model (MPS19; see 
Meletti et al. 2021).

19 The opinions of the experts can be elicited either as qualitative judgments about the models (how good 
the model is) that are then turned into probabilistic measures, or directly as probabilities; see Scherbaum 
and Kuehn (2011) and Runge et al. (2013).
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The proponents and the integrator have indeed different goals. The goal of the propo-
nent is to produce a model that, according to his/her best judgment, is correct, given the 
available data; the hazard curve produced by the individual model should corresponds to 
his/her best estimate of the “true” seismic hazard. By contrast, the goal of the integrator is 
to formulate the model that best represents the distribution of epistemic uncertainty in the 
scientific community. As highlighted in SSHAC (1997), “this does not necessarily mean 
that the ‘owner’ agrees with every particular input or result but that the owner feels confi-
dent that the PSHA has fulfilled the purpose of representing the larger technical commu-
nity and can be defended in scientific and regulatory arenas.”

The criterion proposed by SSHAC seems therefore to conflate two different types of sci-
entific responsibility: the responsibility for the hazard estimate itself (the final hazard curve 
considered as the result of PSHA) and the responsibility for the integration. Even though 
all scientific responsibility is attributed to the integrator, this latter cannot have full respon-
sibility for the final model being the correct one.

With respect to the final hazard estimate, neither the individual proponent nor the inte-
grator seem to have ownership of the final result. On the one hand, the proponents of the 
model can think that their best estimate is represented by the individual hazard curve and 
not by the ensemble of models. On the other, the integrator could take no responsibility 
for the final estimate, since that estimate is produced by an aggregation of different mod-
els, and the weights assigned to those models is not determined by scientists themselves. 
Responsibility for the scientific accuracy of the final result is still share between the propo-
nents, the experts, and the RFI; the final model is, in a relevant sense, no one’s model.

The “no one’s model problem” shows that scientific responsibility is still “overly dif-
fused” (SSHAC 1997) even if the ownership of the final result is attributed to the integra-
tor alone. The SSHAC criterion solves the problem of many hands at the price of a clear 
attribution of responsibility for the scientificity of the final model. This “no one’s model” 
problem has not been explored yet neither in the philosophical nor in the scientific litera-
ture. Finally, the interconnections between epistemic and non-epistemic aspects of PSHA 
suggest that this problem can be tackled only from a perspective that integrates philosophy 
and engineering.

5  Conclusions

PSHA estimates the seismic hazard at a site as the probability of exceedance of a given 
ground-motion intensity level in a given period of time. Such estimates are subject to two 
kinds of uncertainty. (i) Aleatoric uncertainty is due to the natural variability of seismic 
phenomena; for example, it is uncertain where future earthquakes will occur (spatial uncer-
tainty), when they will occur (temporal uncertainty), and which level of ground motion 
they will produce (ground-motion uncertainty). (ii) Epistemic uncertainty, by contrast, is 
due to limited knowledge; in particular, it concerns the mathematical form of the seismic 
hazard models (model uncertainty) and the values of the model parameters (parametric 
uncertainty). Unlike the aleatoric uncertainty, epistemic uncertainty can decrease over time 
as more data are collected. However, historical data are not enough for a statistical valida-
tion of seismic hazard models.

We compared three approaches to the assessment of seismic hazard models. The first 
approach, which is based on the use of a logic tree, consider an ensemble of models 
weighted on the basis of the degree of confidence of the analyst. In the second approach, 
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a single model is selected by a purely statistical procedure that allows to assess the cred-
ibility of the model itself. Finally, the third approach assesses the predictive power of the 
models and can result either in the selection of single model or in the construction of an 
ensemble using a logic tree.

PSHA can create a “problem of many hands” due to the large number of people that 
commonly take part in a study, in particular individual model proponents, expert evalu-
ators, and integrator team. This can make it difficult to ascertain individual responsibili-
ties. As seen, SSHAC (1997) provides both a definition of scientific responsibility and a 
criterion for attributing responsibility within PSHA. Scientific responsibility is defined as 
“ownership” both for the inputs and the results; according to SSHAC (1997), the scientific 
responsibility for the final hazard curve lies with the integrator. We argued that scientific 
responsibility is still “overly diffused” in PSHA even if the ownership of the final result 
is attributed to the integrator alone; this raises a problem for the ownership of the results 
(“no one’s model” problem) that is yet unexplored in the literature. As we showed, epis-
temic considerations about PSHA are deeply intertwined with non-epistemic considera-
tions; therefore, solving these problems required a close collaboration between geosciences 
and philosophy.
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