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Abstract

Originally appeared in the field of thermodynamics, the concept of entropy, especially in its
statistical acceptation, has found applications in many different disciplines, both inside and
outside science. In this work we focus on the possibility of drawing an isomorphism between
the entropy of Boltzmann’s statistical mechanics and that of Xenakis’s stochastic music theory.
We expose the major technical aspects of the two entropies and then consider affinities and
differences between them, both at syntactic and at semantic level, hereto particularly referring
to the philosophical problem of the asymmetry of time.
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1 Introduction

The concept of entropy firstly appeared at the beginning of the 19th century
in the field of thermodynamics (see [Müller 2007], [Uffink 2007]). The notion was
introduced in 1865 by the German physicist Rudolf Clausius and Later developed, in a
probabilistic and statistical acceptation, by James Clerk Maxwell, Ludwig Boltzmann
and Josiah Willard Gibbs, which made of it one of the core notions of the newborn
discipline of statistical mechanics. Since then, methods, concepts and mathematical
formalism of this new discipline have proven to be powerful theoretical means also
for analyzing and explaining different phenomena than for example thermodynamic
ones. Among them, especially the statistical and probabilistic interpretation of the
concept of entropy as a measure of uncertainty, randomness, disorder, disorganization,
unpredictability – with its relative mathematical formalism – has been recognized
as having great theoretical efficacy within a large and heterogeneous number of
disciplines, from cosmology, logic, biology, informatics and economics to hermeneutic,
philosophy and the arts. So, for instance, Ralph Hartley and Claude Shannon used it
as a probabilistic measure of the quantity of information contained in a given number
of messages flowing from a source – laying, in so doing, the groundwork of modern
information theory. And still, outside science, the Greek-French architect, engineer,
music theorist and composer Iannis Xenakis, father of stochastic music, applied it
in his theory of sound and of music composition for describing (or prescribing) the
development of sounds and musical compositions.

From the philosophical point of view, it appears very interesting that a single
concept like that of entropy has been suitable for being applied in so many heteroge-
neous fields and for so many different phenomena. Still, even more astonishing is the
fact that this concept – traditionally a scientific one – has been suitable for being
applied in music, a discipline for centuries now no longer regarded as scientific – and
this not just in the form a blurry poetical metaphor, but in that of a consistent and
rigorous mathematical notion. However, although lots of words have been spent about
the concepts of thermodynamic entropy, informational entropy, etc. and about the
relationship between them, as a clear lack of literature thereon confirms, no thorough
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epistemological analysis has been ever made about musical entropy and about the
relationship it has with other entropies. Indeed, such an analysis is needed in order to
deepen our general understanding of the concept of entropy and of why it works for
so many different phenomena, even outside science. Therefore we shall undertake this
epistemological analysis in the following, in particular, focusing on the relationship
between the entropy of stochastic music theory and that of statistical mechanics.

More specifically, this analysis will be aimed at ascertaining the possibility of
drawing an isomorphism between the two entropies. Thus, after a summarized
exposition, in [Section 2], of the most important technical aspects of the concept of
entropy as it is applied in Boltzmann’s statistical mechanics and Xenakis’ stochastic
music theory, we will compare in [Section 3] the two applications both at formal and
syntactic and at semantic and philosophical level. In particular, in [Section 3.2] we
will consider whether one of the philosophical problems traditionally connected with
the concept of entropy in statistical mechanics, namely that of the asymmetry of
time, also applies in a similar way for musical entropy and, if so, to what extent. In
[Section 4] we will finally derive an explicit conclusion from this comparison, namely
that an isomorphism between the two entropies is possible – both at formal and at
philosophical level, even if not a total one.

2 Entropy in Science and Music

2.1 A Brief Historical and Contextual Introduction to the
Concept of Entropy

As mentioned above, the concept of entropy firstly appeared in the field of
thermodynamics. Curiously, it did not emerge in the context of the pure scientific
research, but in that of an engineering problem, namely how, and how far it is possible
to improve the efficiency of a heat engine [Müller 2007, Ch. 3].

Since the first empirical observations – allegedly during the 17th century – about
the relationship between heat and mechanical work, the realization of a perfect heat
engine – an engine capable of wholly transforming heat in useful work – had been
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challenging many technologists and inventors. The first who gave an answer to this
problem and found a “limit” for the improvement of a heat engine was the French
engineer and physicist Sadi Carnot [Carnot 1824]. He stated – in what is today
known as “Carnot theorem” – that a heat engine which acts by transferring heat
from a warmer body to a cooler one and converting some of the absorbed heat
into mechanical work cannot ever have efficiency (ratio between absorbed heat and
produced work) greater than that of a particular ideal engine – the “Carnot engine” –
operating on an ideal reversible thermodynamic cycle – the “Carnot cycle”. Being
able to transfer heat from the cooler body to the warmer one, this ideal machine has
in fact maximum efficiency: the whole amount of heat exchanged in the system is
equal to that of useful work done by it.

After Carnot’s research, the German physicist Rudolf Clausius could demonstrate
[Clausius 1854] that in the case of such an ideal heat engine with maximum efficiency,
the sum of the ratios of the heat exchanged between the bodies and their respective
temperatures is always equal to zero, whereas in the case of any other actual – i.e.
less efficient – heat engine, it is (generally) less than zero, for the Carnot engine
represents the upper limit of the efficiency of all heat engines. From this statement –
which today bears the name of “Clausius Inequality” – important implications can be
derived. Firstly, an actual heat engine cannot produce a quantity of work greater than
the total amount of heat exchanged (First Law of Thermodynamics). Furthermore,
heat transfers between two bodies do not leave the total amount of heat in the system
unchanged: part of the heat exchanged in the system get irremediably lost and cannot
be converted into useful work (Second Law of Thermodynamics, after the formulation
of Kelvin-Plank). This statement has been demonstrated to be (also mathematically)
equivalent to Clausius’ own formulation of the Second Law of Thermodynamics: if
only in an ideal reversible engine the work produced in the system by transferring
heat from the warmer body to the cooler one can exactly correspond to the amount
of work needed by the system for cyclically allowing a thermal transfer from the
cooler body to the warmer one, in a real engine, in which not the whole amount of
heat is converted into work, this kind of reverse path would be impossible without
additional work from outside the system. The result of this is namely that, unless
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external work is done on the system, it is impossible to have an actual engine whose
sole result1 is the transfer of heat from a body of lower temperature to a body of
higher temperature [Clausius 1854, 486].

Thus, only in a Carnot engine, independently from the “direction” of the thermal
exchange, the aforementioned ratio between exchanged heat and temperature would
remain constant. Now, exactly at this point Clausius introduced the word “entropy”
(symbolized with “S”) for indicating this quantity which in reversible (and isothermal)
thermal processes does not undergoes changes [Clausius 1865, 390]. On the contrary,
since, as said, in the heat transfer taking place in irreversible engines part of the heat
gets lost, entropy is never conserved in actual thermal processes and instead always
bound to increase – that being one of the most important consequences of the Second
Law of Thermodynamics.

Clausius’ thermodynamic entropy is a state function. This means, it just measures
the ratio between exchanged heat and temperature in relation to individual states of a
thermal system, states in which the system is in thermodynamic equilibrium. In other
words, it does not regard its non-equilibrium states, the states in which it instead
undergoes changes. Furthermore, this concept of entropy refers to macroscopic
aspects of a thermodynamic system (like for example the temperature), without
mentioning its microscopic ones (for example the behavior of the molecules). It is
a non-probabilistic concept and offers «no intuitive interpretation as a measure of
disorder, disorganization, or randomness (as is often claimed)» [Frigg and Werndl
2011, 117].

Fundamentally different was the approach to thermodynamics which had been
developing not from an engineering problem, but from a truly scientific hypothesis:
that the macroscopic properties of a thermodynamic system depend on, and are
explainable by, the mechanical behavior of its microscopic components2. So, for
example, changes in the pressure of a gas in a container are made dependent on
changes of the momentum of the molecules composing it – a change occurring due
the continuous collisions of them with the walls of the container; or still, changes
1 Sole result means here spontaneously, i.e. without an external work.
2 The first scientist to propose this hypothesis was Daniel Bernoulli in [Bernoulli 1738].
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in the temperature on the (mean) kinetic energy of the molecules, etc. Already
Clausius – though anticipated by August Karl Krönig [Krönig 1856] – tried to
interpret thermodynamic processes in such kinetic terms [Clausius 1857], actually
laying the groundwork of modern kinetic theory of gases. However, a genuine turning
point within this new approach to thermodynamics came with the research of James
Clerk Maxwell and Ludwig Boltzmann.

With the development of kinetic (or mechanical) theory of heat, concepts and
tools of Newtonian mechanics began to be employed with regard to the microscopic
constituents of a thermodynamic system in order to explain its macroscopic behavior.
Yet, even if Newtonian mechanics was basically deterministic, the new “laws” of
thermodynamics appeared to have rather a probabilistic and statistical character. So
was Maxwell’s final formulation [Maxwell 1867] of his distribution function – later
improved and extended by Boltzmann (see [Boltzmann 1868], [Müller 2007, 92-94] and
[Uffink 2007, Sec. 3-4]), which gives the probability that a certain number of particles
(atoms or molecules) of a gas in a container have a certain velocity (where the system
is supposed to be in a state of thermodynamic equilibrium at a specific time). This
number, in fact, cannot be deterministically set, for the particles, due to incessant
collisions, undergo a continuous change of their velocities. The only way in which it
is possible to interpret that number is then just as a mean or expectation value, so
that the distribution function rather amounts to a probability distribution3. Moreover,
starting from the presuppositions of the new kinetic approach, a first probabilistic
interpretation was given by Boltzmann also to the concept of thermodynamic entropy
[Boltzmann 1872], which now began to be related not only, as in Clausius, to the
macroscopic properties of a thermodynamic system, but also (in a mathematically
equivalent way4) to the microscopic objects composing it (see [Section 2.2]).

So, with Maxwell and Boltzmann, who firstly introduced probability in physics, a
new discipline was born: that of statistical mechanics – label coined by Josiah Willard
Gibbs, who systematized and generalized their results [Gibbs 1902]. As pointed out
3 On the possible ways of interpreting the Maxwell-Boltzmann distribution see [Frigg and Werndl
2011, 123-124].

4 See [Frigg and Werndl 2011, 127] and [Section 2.2].
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above, many concepts of this new discipline turned out to be good theoretical means
for explaining and describing different phenomena in other disciplines. And thus
was the concept of entropy after the statistical and probabilistic interpretation by
Boltzmann and Gibbs, which has then become a fundamental notion in Shannon’s
information theory and Xenakis’ theory of music.

In the following two sections we shall analyze in detail how in particular Boltz-
mann and Xenakis intended the concept of entropy in their respective fields and
theories. This will later allow us to follow the epistemological aim of this work
of ascertaining if an isomorphism can possibly be drawn between these different
applications of it.

2.2 Entropy in Boltzmann’s Statistical Mechanics

Boltzmann gave essentially two formulations of the concept of entropy: in
[Boltzmann 1872] and in [Boltzmann 1877]. In both papers, his aim was to justify
the Second Law of Thermodynamics in the terms of the new paradigm represented
by the kinetic theory of gases. This also meant to attempt to justify Clausius’s
thermodynamic entropy in kinetic and probabilistic terms. In the following we shall
analyze these two formulations in all their technical details5.

With regard to the 1872-formulation, let us examine an isolated thermodynamic
system like a gas of n particles of mass m in a container of volume V . Given that
each particle of the system has three degrees of freedom with respect to position and
momentum, the system and its evolution over time can be mathematically described
by considering a 6n-dimensional phase space6, that we will call the γ-space (Xγ), in
which each specific microstate of the system (i.e. all its particles’ having a certain
positions and momenta at a certain instant of time) will be denoted by a vector
5 Given the intricate and old-fashioned form in which Boltzmann presented his results in the original
papers (acknowledged among others even by [Müller 2007, 95]) we will follow in this analysis –
rather systematically than historically aimed – [Frigg and Werndl 2011] and [Uffink 2007], which
in turn refer back mostly to [Ehrenfest and Ehrenfest-Afanassjewa 1911] and [Tolman 1938].

6 This “geometrical” language for describing thermodynamic systems was introduced by [Gibbs
1902] on the idea that changes in the system are “changes in phase” (see [Tolman 1938, 43 and
ff.]).
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xγ ∈ Xγ . Xγ is the Cartesian product of n copies of the 6-dimensions phase space Xµ

(µ-space), relative to one single particle. The microstate of one single particle will be
thus denoted by the vector xµ ∈ Xµ, where xµ = (x, y, z, px, py, pz), with ~r = (x, y, z)
and ~p = (px, py, pz), respectively, for position and momentum coordinates. From
the kinetic theory of gases, we know that a given macrostate of the system at a
certain time t (like the gas’ having specific pressure and temperature) is describable
by considering its microstate at that same time, that is, by individuating positions
and momenta at time t of the particles. To this aim, Boltzmann refers to his improved
and extended7 version of the theoretical and mathematical means for the analysis
of the microstates of a thermodynamic system which was already developed in the
decade before by Maxwell, namely the previously mentioned Maxwell distribution, in
modern form:

f (xµ, t) = χV (~r ) (2πmkT )− 3
2

||V ||
exp

(
− ~p 2

2mkT

)
, (1)

where χV (~r ) is the characteristic function of the set V , k the Boltzmann’s constant,
T the temperature of the gas, ||V || the volume of the container and ~p 2 := p2

x+p2
y +p2

z.
Today known as Maxwell-Boltzmann distribution, f (xµ, t) gives the (mean)

number of particles in the system with a position and momentum value lying within
the infinitesimal interval (xµ, xµ+dxµ) at time t. The study of the overall dynamic of
the system can be carried out considering the evolution of f (xµ, t) over time, namely

HB (f) :=
∫
Xµ
f (xµ, t) log f (xµ, t) dxµ, (2)

7 As mentioned before, the Maxwell distribution [Maxwell 1867] describes only the speeds of
the particles of a thermodynamic system, whereby the system is supposed to be at time t in
thermodynamic equilibrium and the particles not interacting with each other except for very
brief collisions without consequences on the overall microstate of the system. Later, Boltzmann
extended the Maxwell distribution also to the description of the energies of the particles and to
states of non-equilibrium of the system. The result was a nonlinear integro-differential equation,
the so-called Boltzmann equation, which expresses – always in terms of probability distribution –
how the number of particles having a certain energy (as well as a certain momentum and position)
at time t varies within an infinitesimal time interval as consequence of collisions (Stöße) between
particles (see [Boltzmann 1868], [Boltzmann 1872, 345 (Abh.)] and, for an overview, [Müller 2007,
Ch. 4] and [Uffink 2007, Sec 4.2]).
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Relying on mechanical arguments, Boltzmann then moves on in his 1872 paper
with the discussion of one of the most important results proposed in that work,
namely the meaning of his famous H-theorem: due to incessant collisions of the
particles with each other, the quantity HB (f)8 can only decrease towards a minimum
value, after whose reaching it remains constant. This value is reached when f (xµ, t)
becomes the Maxwell-Boltzmann distribution [Equation 1], i.e. exactly when the
system reaches the state of equilibrium, where collisions have no longer effect on
the positions and momenta distribution of the particles. He then passes to highlight
the close connection existing between HB (f) and the thermodynamic entropy in
equilibrium states, which takes the modern mathematical form of:

SB,f (f) := −knHB(f), (3)

where SB,f is the fine-grained (or continuous) Boltzmann entropy9 (therefore “B” and
“f” in subscript). SB,f can only increase during the dynamic evolution over time of
the system towards equilibrium, and reaches its maximum – remaining then constant
– once the system has finally reached it and its microscopic distribution has thus
become the Maxwell-Boltzmann distribution [Equation 1].

In this way, Boltzmann provides a first kinetic proof of why entropy can only
increase (or at least remain constant), delivering, in so doing, the coveted «mikroskopis-
che Deutung des zweiten Hauptsatzes der Thermodynamik» 10. Moreover, as we
have seen, the kinetic interpretation of the Second Law of Thermodynamics and of
8 Boltzmann calls this quantity E.
9 More in particular, the connection between Boltzmann entropy SB,f and the thermodynamic

entropy can be can be better recognized considering the Sackur–Tetrode Formula which describes
the thermodynamic entropy of a monatomic ideal gas:

STD = nk log
((

T
T0

)3/2
V
V0

)
,

where STD is the thermodynamic entropy, T0 the temperature of the gas and V0 its vol-
ume. It can be shown that SB,f = STD up to an additive constant. It remains open to question if
this result remains also valid for systems different from ideal gases (see [Frigg and Werndl 2011],
[Emch and Liu 2013], [Reiss 1965], [Uffink 2007]).

10 [Boltzmann 1872, 116 (Brush 1976)]. See also [Boltzmann 1872, 313-314 (Abh.)] and [Uffink 2007,
46] on the comparison between Boltzmann’s and Clausius’ entropy.
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the concept of entropy expressed in [Equation 2] and [Equation 3] crucially rests
in itself upon a probabilistic and statistical notion, namely the Maxwell-Boltzmann
distribution. In his paper, in fact, Boltzmann appears very aware of the fact that
a kinetic explanation of the behavior of a thermodynamic system cannot but be a
statistical and probabilistic one, for

« [...] die Moleküle der Körper sind ja so zahlreich und ihre Bewegungen so rasch, daß
uns nie etwas anderes als jene Durchschnittswerte wahrnehmbar wird. [...] Denn die
Moleküle sind gleichsam ebenso viele Individuen, welche die verschiedensten Bewe-
gungszustände haben, und nur dadurch, daß die Anzahl derjenigen, welche durchschnit-
tlich einen gewissen Bewegungszustand haben, konstant ist, bleiben die Eigenschaften
des Gases unverändert. Die Bestimmung von Durchschnittswerten ist Aufgabe der
Wahrscheinlichkeitsrechnung. Die Probleme der mechanischen Wärmetheorie sind
daher Probleme der Wahrscheinlichkeitsrechnung»11.

The validity of Boltzmann’s 1872 conclusion was however criticized12 already by
his contemporaries, which questioned many aspects and theoretical presuppositions
of that research: from the specific role of probability in the argumentation and the
exact mechanical characterization of the particles collisions to the generality of his
H-theorem – pivotal for making his notion of entropy work – which is actually still
today regarded as problematic13. For this reason, Boltzmann reformulated his kinetic
theory of gases and, with it, the fundamental concept of entropy. He did this in an
important paper of 1877 which will become, as we will see in the next sections, a true
source of inspiration for several generations of scientists and mathematicians, from
Max Plank and Albert Einstein to Claude Shannon and indirectly, on the boarder
with the “mathematized” arts, even to Iannis Xenakis.

In his 1877 paper, Boltzmann intended to highlight even more the role of
probability theory in thermodynamics, as well as the link between probability and
entropy/Second Law14. Let us see briefly how in the following.
11 [Boltzmann 1872, 316 (Abh.)], my italics.
12 See [Uffink 2007, 974-983] and [Ehrenfest and Ehrenfest-Afanassjewa 1911, 35-36] for an overview.
13 See [Emch and Liu 2013, 92-105] and [Uffink 2007, 962-974].
14 This is also the reason why many commentators (see [Uffink 2007, 55], [Klein 1973, 83] and [ter

Haar 1955]) consider this paper as clearly marking the transition from kinetic theory to statistical
mechanics.
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We take again the 6n-dimensional phase spaceXγ for describing a thermodynamic
system consisting of a gas in a vessel, as well as the phase space Xµ relative to one
single particle of it. Since the system is completely isolated with constant energy and
volume V , the state of each particle (its position and momentum at time t) can be
represented only by points from a limited region of the phase space Xµ, which we
will call the accessible region of Xµ, Xµ,a.

We consider now a finite number of partitions15 ω = { ωi | i = 1, . . . , l } of Xµ,a

defined in the following way: ∀i, j ∈ {1, . . . , l} with i 6= j, ωi 6= ∅, ωi ∩ ωj = ∅, and⋃l
i=1 ωi = Xµ,a. These partitions define cells on the 6-dimensional accessible region

Xµ,a, which are taken to be rectangular with respect to the position and momentum
coordinates and to have fixed volume δω, defined through the Lebesgue measure µ
on Xµ, µ(ωi) = δω for all i = {1, . . . , l}. Now, for each xµi ∈ Xµ,a, i.e. for each
microstate of the system, we define a distribution of state as follow: Z := {n1, . . . , nl}.
This distribution indicates the number ni of particles that, at a certain time ti, are in
a state (i.e. have certain position and momentum) which is represented by points
of Xµ,a contained in the cell ωi. It indicates, simply said, how many particles are
in which cell ω of the accessible region Xµ,a at a certain instant of time. Obviously
is ∑l

i=1 ni = n the total number of the particles of the system, and, for different
time instants ti, there are different Zi distributions, where the ratio Zi/n can be
interpreted as being equivalent to the Maxwell distribution – f (xµ, ti) [Equation 1].
Moreover, different distributions Zi individuate univocally different macrostates of the
system. Now, the association between the microstates xµi ∈ Xµ,a and a macrostate
of the system depending on the particles distribution Zi is defined in these terms:
Zi := { xµi ∈ Xµ,a | Z(xµi) = Zi }. What it is important to notice here is that Z(xµi)
is however not a bijective function. This means that possibly many microstates with
the same distribution can correspond at time ti to a same macrostate. In fact, the
microstates can have different internal arrangements: even if the distribution (i.e.
the number ni of particles being in the cell ωi) remains unchanged, the state of the
15 Boltzmann considered this kind of discretization as a mere mathematical tool and not as a physical
hypothesis, as Max Plank will soon do (see [Müller 2007, 99]). This idea will be very important
also for Xenakis, as we shall see in [Section 2.3].
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particles within the cells can undergo rearrangements, for example by permutation.
The number W of the possible arrangements compatible with a given distribution of
state Z is determined in general by using ordinary combinatorics:

WZ = n!∏l
i=1 ni!

. (4)

Now, we can finally define a new concept of entropy, namely as:

SB,c := k logWZ , (5)

which is called combinatorial (or coarse-grained) Boltzmann entropy16 (therefore
“c” in subscript), which is thus directly proportional to the number WZ of possible
arrangements of a particles state distribution corresponding to a given macrostate
of the system. This means that the more arrangements are compatible with a given
particle distribution, the greater the entropy value will be.

Now, in order to understand the inherent probabilistic character of combinatorial
entropy is moreover decisive to say that all arrangements of a given distribution are
regarded as equiprobable. Thus, entropy is, more precisely, the measure of the number
of possible arrangements coherent, with equal probability, to a given distribution. Now,
Boltzmann states [Boltzmann 1877, 164-167 (Abh.)] that the system spontaneously
tends to evolve always toward states with more arrangements coherent with a same
distribution, until it reaches the state with most arrangements, namely the equilibrium,
where entropy is therefore at maximum. If, within the evolution of the system toward
equilibrium, the number of equally probable arrangements coherent with a distribution
increase, this also means that the randomness, the unpredictability, the disorganization
and the disorder of the system grow, reaching the maximum at equilibrium. Entropy
is in fact a measure of such disorder and randomness in the sense that the greater it
becomes, the less it is possible to know about the actual arrangement of the particles
of the system on the basis of their distribution (where, we repeat, all arrangements
16 It can be shown that SB,c is formally (nearly) equivalent to SB,f (see [Uffink 2007, 56-57], [Frigg
and Werndl 2011, 126-127] and [Müller 2007, 99-101]).
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compatible with a distribution are equiprobable). At the same time, however, entropy
can be identified, Boltzmann says, with the probability of the total state of the system:
in fact, equilibrium is also the most probable state – since the largest number of
arrangements correspond to its distribution – to the effect that the evolution of open
thermodynamic systems always and spontaneously takes place from less probable to
more probable states and never in the opposite way.

Recapitulating, a thermodynamic system generally evolves towards an equilibrium
state, i.e. the most disordered and, at the same time, the the most probable one,
whereby entropy is the measure of these disorder and probability. All this eventually
amounted for Boltzmann to providing a new kinetic and probabilistic justification of
the Second Law of Thermodynamics and of why entropy has constantly to increase17.

Boltzmann’s entropy formula [Equation 5] can also take another form inasmuch
as it is applied not to arrangements with respect to distributions, but, in a formally
equivalent way18, to distributions (i.e. microstates) with respect to macrostates, where
by distribution is meant how the particles-points of the phase space of the system
are distributed in the cells. In this new form, it can represent the probability to find,
given a macrostate of the system at a certain time, the corresponding distribution of
the particles-points within the cells of the system phase space. Thus, assuming that
in most systems ni � 1 and using Stirling’s approximation formula for the factorials,
17 Yet, if [Müller 2007, in pt. 101] presents this conclusion as a more or less direct and explicit
consequence of Boltzmann’s research, [Frigg and Werndl 2011, 125], drawing on [Ehrenfest and
Ehrenfest-Afanassjewa 1911] and other commentators, regards it rather as a postulation in need
of further assumptions and justifications (such as ergodicity or tipicality).

18 See [Frigg and Werndl 2011, 125-127], [Uffink 2007, 56-57], [Müller 2007, 99-103], [Ehrenfest and
Ehrenfest-Afanassjewa 1911, Ch. 2], [Tolman 1938, Ch. 4].
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log n! ≈ n log n− n, we can derive from [Equation 5]:

SB,c = k logWZ

= k log
(

n!∏l
i=1 ni!

)
= k log(n!)− k log (n1!)− . . .− k log (n`!)

≈ (nk log n− n)− (n1k log n1 − n1)− . . .−

− (n`k log n` − n`)

= −k
∑̀
i=1

ni log ni,

whereby, letting pi = ni/n be the probability of finding a randomly chosen particle in
the cell ωi, we therefore have:

SB,c = −nk
∑̀
i=1

pi log pi, (6)

which links the macrostates of the system with the possible microstates of it (i.e. pos-
sible distributions of the particles in the cells), expressing, for a given macrostate, the
probability to find at the microlevel its correspondent distribution19. At equilibrium,
the probability to find a randomly chosen particle in a given cell is equal for all cells,
since the particles-points are distributed uniformly within the phase space. As in
the case of arrangements and distributions, however, to a same macrostate several
different microstates can correspond. In fact, due to the uniform distribution of the
particles in the phase space and hence the equiprobability of all possible particles
microstates (i.e. the equiprobability to find a particle in each of the cells of the phase
space), at equilibrium a very large number of microstates are compatible with this
19 The two formulations of entropy are equal up to the additive constant nk log (δω) relative to the
volume of the cells of the phase space, which we omitted for simplicity and irrelevance to the
next argumentations. For the same reasons we avoided to derive this entropy formula in terms
of proportionality between the number of microstates and the volume of the phase space. For
a detailed derivation of the formula in current terms, see [Frigg and Werndl 2011, 125-127] or
[Uffink 2007, 56-57].
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macrostate of system, indeed the largest, and this is also the reason why the entropy
of the system at equilibrium is at maximum. For non-equilibrium states, where the
particles do not occupy quite homogeneously all regions of the phase space, but rather
have all a specific and uniform value for position and momentum (i.e. they occupy a
specific region or cell of the phase space), the probability to find the microstate of
the system corresponding to a given macrostate of it is ascertainable again through
[Equation 6], i.e. through finding out how many particles occupy which cells. And,
the less all cells have the same probability to contain particles with position and
momentum values compatible with that given macrostate, the lower the entropy and
the more ordered the system will be.

[Equation 6] never appears in the original scientific production by Boltzmann in
the form in which we presented it. However, as it can be observed in some of his later
writings [Boltzmann 1898], the idea behind it should have been already clear to him.
The modern formula was proposed later by Gibbs [Gibbs 1902], who generalized it to
different kinds of systems and system states, even more highlighting its statistical and
probabilistic character. As a measure of the disorder and unpredictability of a system,
the probabilistic notion of entropy expressed in [Equation 6] became a powerful tool
also in order to account for other kinds of phenomena.

This was for example the case of Shannon and his information theory (see
[Shannon 1948] and [Shannon and Weaver 1949]). Shannon’s aim was to provide
a mathematical law for quantifying (and predicting) the quantity of information
contained in a certain number of messages flowing from a source. Relaying on
some previous ideas by Hartley, [Hartley 1928] he proposed to make this quantity
(mathematically) dependent on the probability of each message. The more probable
a message is, the less information we gain from its reception. From messages flowing
from a source with exactly the same probability, we gain no information, since all
messages have equal probability to contain information. As in the case of thermal
equilibrium, where all microstates are equiprobable, when all messages have the
same probability to contain the same amount of information the entropy (Shannon
information entropy) is at maximum. On the contrary, the less probable a message is,
the more uncertainty there is about its information content, the more information
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we gain from its reception removing the uncertainty. Information and uncertainty
are for Shannon, in fact, two sides of the same coin. Shannon noticed that the
only mathematical equation able to represent this relation between probability and
information, as well as to satisfy other important formal requirements20, was

H = −K
n∑
i=1

pi log2 pi, (7)

where H is the entropy, named by Shannon after Boltzmann’s H-theorem21, K
a positive constant, pi the probability of the messages, and the binary logarithm
referring to the fact that the entropy is expressed in bits, unit of measurement of
information [Sedgewick and Wayne 2011, 185]. [Equation 7], as we can see, is formally
very similar to Boltzmann’s entropy formula in the form of [Equation 6]. And also
the probabilistic concept of entropy it expresses, giving probabilities not to particles
microstates but to messages, is by and large comparable to that expressed by the
latter.

A lot of words have been spent until now about the relationship between Boltz-
mann’s and Shannon’s entropy. In particular, in epistemology, questions have been
investigated such as if they both can be considered isomorphic concepts, if they
interpret and apply probability in the same way, and still, if physical system as the
thermodynamic ones are accountable in terms of information22. It would be surely
very interesting to go over these epistemological and philosophical analyses and then
also consider if a relationship evem exists between Shannon’s information theory
and the stochastic theory of music by Xenakis’ we will present in the next section.
Furthermore, such considerations would allow us to spot possible differences in the
20 Continuity, additivity, monotonicity, branching and bit normalization (see [Shannon 1948, 10-11],
[Frigg and Werndl 2011, 118]).

21 In Boltzmann thermodynamics, it can be in fact shown that if [Equation 1] does not vary very
much with respect to each cell of the phase space, [Equation 6] and [Equation 2] - i.e. the
H-theorem - can be considered approximately equal up to the additive constant relative to the
volume of the cells [Footnote 19] (see [Frigg and Werndl 2011, 127]).

22 Remarkable in this respect are for example the pioneering papers by Edwin Thompson Jaynes
(in particular and [Jaynes 1957a] and [Jaynes 1957b]), who argued that Boltzmannian statistical
mechanics can be seen just a particular application of Shannon’s information theory
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ways in which the concept of entropy is extended both inside science (e.g. from ther-
modynamics to information theory) and outside science (e.g. from thermodynamics
to music theory). Some remarks will be done about these subjects in [Section 3]. Yet,
since such analysis would require more space than that we presently have, they will
not pretend to be exhaustive. Rather, we shall concentrate in this work more on the
relationship between Boltzmann’s statistical mechanics and Xenakis’ stochastic music
theory.

2.3 Entropy in Xenakis’ Stochastic Music Theory

Iannis Xenakis has been one of the most important avant-guard composer of
the 20th century. Known for having integrated mathematics into music theory and
music composition – especially stochastics and probability theory, statistics and set
theory – he was also one of the firsts to employ computers and algorithms in music
composition. Trained architect and engineer, he often “translated” his architectural
into musical works and vice versa on the basis of the mathematical models and
structures underlying them23. The synthesis of his lifelong research through music,
mathematics and philosophy is expressed in the book Formalized music [Xenakis
1992], partly appeared in French language during the Sixties and containing other
papers published in different specialized journals of music and mathematics. In the
following we will have an overview of the main principles underlying his music theory
and observe what role which kind of concept of entropy plays in it.

The history of the relationship between mathematics and music traces back
at least to classical antiquity. Still in early modern times, scientists used to deal
with music-theoretical problems, and music theoreticians and composers borrowed
from mathematics principles and concepts for their works. Some of these principles
even belonged to areas of mathematics such as the combinatorics or the developing
probability theory and were applied by modern composers in the attempt to evade the
strict determinism of tonal music and to randomize the process of music composition
23 See for example Xenakis’ Philips Pavilion at Brussels World’s Fair of 1958, whose design was
«pin-pointed» [Xenakis 1992, 10] from Metastasis, a musical work premiered in 1955.
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[Gardner 1970].
Considering the role of chance in sound phenomena and bringing chance in itself

into music composition has been also Xenakis’ own major aim. Indeed, one of his
first observation in [Xenakis 1992, Ch. 1] is that most of the theories of sound and
of music – tonal, serial or dodecaphonic music – rely on deterministic assumptions
and models. This has as consequence that, on the one hand, the evolution in time of
complex and disordered sound events (indeed the most common in our experience,
like for example the sound made by a car or the song of the cicadas) cannot be
comprehensively described in any way, and that, on the other, it is impossible to
produce musical compositions whose structure and evolution in time are truly ruled
by randomness and chance, i.e. truly outside the deterministic constraints those
theories impose. Even serial and dodecaphonic music, that have purported to have
broken the tradition of the determinism of tonal music by introduction of atonality,
falls again, after Xenakis, into a new form of determinism, namely that of the series.
Thus, a new theory of sound, of music and music composition is needed, which must
be able to account, in terms of description or “prescription”, for the randomized
and stochastic evolution of complex sonic events and musical compositions. This
theory should contain pure sound or tonal music just as particular cases. And the
way for providing this new theory is referring to mathematics, and in particular to
probability theory and logic. In fact, Xenakis considers the application of probabilistic
and statistical methods to sound phenomena and music – i.e. nothing but sound
phenomena which can be created by the composer – a natural consequence of their
introduction into the sciences (in particular, statistical mechanics and quantum
theory) as powerful tools for explaining the world, which apparently behaves in some
respects not deterministically. As sound is part of this world, it is reasonable to think
that a probabilistic, stochastic theory of music can offer some useful insights into
its nature and the way it behaves, as well as some effective hints to composers for
making sound evolve in their compositions in a truly stochastic and indeterministic
way [Xenakis 1992, 4].

Furthermore, as every deterministic or indeterministic theory, the stochastic
theory of music should be subjected, for Xenakis, to the laws of logic, in particular
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general algebra, which operate on individual objects or set of objects with the aid of
some primitive operations (union, intersection, negation), properties and relations
(equivalence, implication, and quantifications) [Xenakis 1992, 4]. Indeed, for Xenakis
«music [...] may be defined as an organization of these elementary operations and
relations between sonic entities or between functions of sonic entities» [Xenakis 1992,
4], where these sonic entities in fact constitute the “empirical objects” of music.

It is thus worth starting our introduction to stochastic theory of music from
Xenakis’ characterization of the primitive material of music, namely the sonic entity,
the sound24. Xenakis basically shares the modern physical account of sound as complex
sound wave as described for example by [Helmholtz 1862]. Thus a complex sound, say
a C3 played on a piano, is composed by a large number of simpler sinusoidal waves
(principal tone, overtones, summational tones, differential tones, etc.) which behave
according to Fourier Analysis in producing the final sound. In particular, the quality
of the sound is determined by the quantity and the amplitude of these simpler sound
waves. Like Boltzmann and Gibbs in thermodynamics, Xenakis chooses to construct
a geometrical representation of “macroscopic” sonic events. To this aim – almost
recalling the particle-wave dualism of quantum physics – he considers the simple
sound waves constituting these sonic events as sound grains, elementary sonic particles
or sonic quanta, represented by points in a three-dimensional space with coordinates
frequency, intensity and duration. Complex sounds are thus assemblages, clouds
or ensemble of simple sound grains evolving over time. The macroscopic condition
of every possible sound event becomes explainable, as in statistical mechanics, by
referring to the microscopic condition of its granular constituents and its evolution
over time. In other words, it suffices to consider the position of the sonic grains in the
grains space relative to the complex sound in terms of their having specific frequency
and intensity coordinates as a function of time.

Like the phase space describing thermodynamic systems, however, the grains
space is not infinite, for sounds are perceivable by human ears up to certain limits
24 By “sound” or “sonic event” Xenakis means not only the “musical sound” distinguished from the

noise, but every possible auditory phenomenon perceivable by the human ear. In the following we
use the word “sound” in this acceptation.
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Figure 1

of duration, frequency and intensity. These limits have been firstly discovered in
1933 by Harvey Fletcher and Wilden A. Munson [Fletcher and Munson 1933], who
proposed the famous equal-loudness contour diagram representing namely the audible
area [Figure 1], which gives for example the thresholds for the minimum perceptible
duration of a sound as a function of its frequency F and its intensity G, or of its
perceivable intensity in decibels compatible with its minimum frequency and duration.
Thus we have to consider only this audible subregion of the grains space, i.e. only
that containing the possible grains configurations microscopically corresponding to
macroscopically audible sounds. For simplicity, we can operate a transformation on
the curved space defined by the Fletcher-Munson diagram in order to gain, without
alterations, a more regular space of rectangular form for representing the audible
subregion of the grains space [Figure 2]. If we now assume that the (limited) duration
of a given macroscopic sonic event can be divided into a large, but finite, number
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Figure 2

of slices of time ∆Ti, with i ∈ [0, n], small at will and invariably equal in size, we
can individuate for each Ti, Ti+1, where Ti+1 − Ti = ∆Ti, a certain microsound
configuration, i.e. a certain distribution of the grains along the two dimensions of
frequency F and intensity G coherent with the macrostate of the sound event in that
interval of time. By flattening for simplicity the grains in the duration slice ∆T on
the two-dimensional frequency-intensity space, we find that the entire macroscopic
evolution of the sound event over time can be described by a finite series of n screens
Si [Figure 3], with i = {0, . . . , n} and ⋃n

i=0 Si = FGT , that succeed one another
in time with different distributions and configurations of grains in25 them. As in
statistical mechanics [Tolman 1938, 43-44], it is not important – if not completely
impossible – considering directly the single microconstituents (single grains) of the
sound and their respective behavior. In fact, we always refer to clouds of grains and
to their evolution over time. Then, what is important for microscopically explaining
the macroscopic condition of a sound at time Ti, is knowing the total number of
the grains at time Ti – what Xenakis calls density – and their distribution over the
i-th screen (i.e. their having specific frequency and intensity values at that instant
of time). In other words, we need to know how many sound grains of the cloud
occupy which region of the screen at time Ti, which means, how many sound grains
25 We use the preposition “in” instead of “on” for speaking about grains with regard to screens even
though, being screens two-dimensional objects, this may be grammatically incorrect. However,
this will help us hereafter to keep well in mind that, as to the screens, we only artificially flattened
their three-dimensionality, and that the grains in them exist in the their “time thickness” ∆T .
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Figure 3

have at this time instant specific frequency and intensity coordinates compatible
with a given macrostate of the sound at that same time. The careful reader will
already notice a certain resemblance between this problem and that answered by
the Maxwell-Boltzmann formula (see [Equation 1]). Xenakis actually considers the
possibility to apply an adjusted version of this equation for calculating the distribution
of the sonic grains within the screens. Yet, he notices that this would require firstly
a reformulation of the geometrical environment of scalar type so far adopted – the
grains space FGT should be indeed construct as a vector space – and secondly the
introduction of the concept of speed [Xenakis 1992, 55-56]. Albeit mathematically
possible, maybe due to practical reasons Xenakis does not further undertake this task
and continues with his arguments based on the scalar grains space. Nevertheless, he
shows that the mathematical26 and probabilistic ideas behind the Maxwell-Boltzmann
distribution are very clear to him. In fact, the distribution of the grains in the screens
at certain instants of time is anyway deterministically detectable [Xenakis 1992, 52],
as the grains of natural sounds27 “fluctuate” around an equilibrium position of mean
26 It can be noticed from [Equation 8], [Equation 9] and [Equation 10], in fact, that the mathematical

idea of the Boltzmann-Maxwell distribution (specifying the mean number of microscopic objects
lying in a certain region of a geometrical space individuated by an infinitesimal interval) is also
applied by Xenakis for calculating the distribution of the grains within the screens with respect
to coordinates D, T , F and G one at a time.

27 An exception to this would be represented by electronic sound, whose grains are characterized by
fixity.
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frequency and intensity. Also the density – i.e. the number of the grains in each
screen – varies from one screen to another around a mean value. This eventually
amount to say that the number of grains occupying at Ti a given region of Si can be
only probabilistically interpreted, just as a mean or expectation value – actually like
in the case of particles distributions in thermodynamic systems.

How, then, does Xenakis account, from the mathematical point of view, for the
distribution of the sound grains in the screens? First of all, he evidently embraces the
theoretical presuppositions of the combinatorial approach of the “second” Boltzmann
and of Gibbs: the distribution of the grains within the screens FG∆T is only
statistically determinable. Moreover, since we are not interested in the single grains,
but in knowing which region of the screen a cloud of grains occupies, in order to
find out that, we can take screens as divided into cells ζ = { ζj | j = 1, . . . , l } with⋃l
j=1 ζj = Si, defined as in [Section 2.2]28 and of equal volume ∆F∆G∆T (remember:

screens have a thickness ∆T ) [Figure 4], and consider the density ∆D of the grains
for each cell, i.e. the (mean29) number of grains in it.

Figure 4

28 The only difference being the possibility that ζj = ∅ for some j ∈ {1, . . . , l}.
29 “Mean”, because, as we said, in natural sound the distribution of the grains in the screens and

therefore also in their relative cells is not deterministically, but only probabilistically definable.

22



It is possible calculate the density ∆D of the cells by the mean density D of
the screen (ratio of the number of grains in it and its total volume) using Poisson’s
formula:

Pµ = µµ0
µ! e

−µ0 (8)

which expresses, given the fixed screen mean density µ0, the probability Pµ for a
specific density µ (i.e. a given number of grains) to occur in a certain cell of the
screen.

At this point, known the (mean) density of the grains per cell, we can calculate –
always in a statistical way – the distribution of the grains along the other dimensions
of the screen: the time T , the frequency F and the intensity G. Instead of giving
a method for calculating this distribution directly with reference to all the three
dimensions of the grains space at one, which would be mathematically very complex,
Xenakis simplifies the calculation proposing stochastic laws – derived from the theory
of continuous probability – for the distribution with reference to one dimension at a
time [Xenakis 1992, 12-16; 52-54; 323-327].

As to the dimension of the time, the law that statistically gives the distribution
of the grains along ∆T , i.e. the portion of the time axis T related to a screen, is

Px = ce−cxdx, (9)

where c is the linear density of the points on the axis, x the length of every possible
segment taken on it and P the probability that the i-th segment will have a length xi
between x and x+ dx. Hereby we consider the points on ∆T to be the projections tj
over this portion of the time axis T of the grains in the “thick” screen FG∆T . These
points thus individuate segments within ∆T of length tj+1− tj = xj , representing the
duration of each grain of the screen. Then, [Equation 9] expresses the probability to
find on ∆T , taken on it any (even infinitesimal) duration δt, segments xj = tj, tj+1

with xj = δt30.
30 This same argument could be generalized from the duration of a single screen to that of the
whole sound event: the statistical distribution of the grains along T can be also described through
[Equation 9].
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With respect to frequency F and intensity G (as well as to each further variable
one wishes to consider as characteristic of sound), the formula for calculating the
distribution of the grains along ∆F and ∆G, the other two dimensions of the cells
[Figure 4], is

θ(γ)dγ = 2
a

(
1− γ

a

)
dγ, (10)

where a is the length of the segments ∆F or ∆G on their respective axes. This
equation thus gives the probability that a certain number of segments within ∆F
and ∆G, defined, as in the case of the time, by points deriving from the projection
of the grains in FG∆T on the frequency F or intensity G axes, and representing
intervals respectively of pitch or intensity, will be found to have a length between γ
and γ + dγ, for any γ with 0 ≤ γ ≤ a.

So, these are the different mathematical tools for statistically calculating the
distribution of the sonic grains in a cell ζj of the screen Si at time Ti with regard
to its four dimensions31 ∆F∆G∆T∆D, provided an overall screen mean density
Di in advance. They allow to individuate, for every chosen δt and γ, sets32 of
durations, frequencies and intensities, δt = {δt1, . . . , δtn} and γ = {γ1, . . . , γn},
containing any possible value of these variables within the range of ∆F∆G∆T∆D
compatible, with a certain probability, with δt or γ. In this sense, by them a probability
distribution is assigned to the elements of these sets, formally in the following way33:
P = (p1, . . . , pn) := (p (δt1) , . . . , p (δtn)), with pi ≥ 0 and p1 + · · · + pn = 1. This
means, every duration segment δtj on ∆T has a certain probability pi to correspond
to a fixed duration segment δt. So, for instance, for δt1 = δt, p1 = p (δt1) = 1,
assuming that this probability is 0 for all the other elements.

There is obviously a correspondence between these sets, so that, for example,
31 We regard density as fourth dimension of the cell.
32 These sets are finite for the following reasons: the number of possible perceivable duration intervals
is limited (see equal-loudness contour diagram); the duration ∆T of the screens is limited; the
overall duration T of complex sonic events is limited; the audible area FG is limited. They are
furthermore totally ordered as subsets of totally ordered sets (respectively T , F and G).

33 We consider in the following only the case of δt, which is however completely similar to that of γ.
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grains with a given frequency and intensity have a certain duration, etc. If in a
natural sound these correspondences are clearly independent of us, in music they can
be set, even randomly, by the composer, who derives those values and correspondences
by specifying the initial parameters, i.e. giving, for example, concrete values to D
(mean screen density), j (number of cells the screens are divided into), δt, γ etc. and
applying the above formulas to them [Xenakis 1992, 54; Ch. 1; Ch. 3]. In any case,
by calculating with the same statistical procedures the grains distribution for all
cells along their respective dimensions, and then considering the arithmetic means
of the obtained values, we should be able to generalize our knowledge about the
distribution of the grains at a certain “thick” instant of time to the whole screen. In
this way, we would have a statistical, microscopic, description of the macroscopic
state of a complex sonic event at that same instant of time, may this sound be natural
or musical34. But, as said, the composer could use these mathematical procedures
also for actively building screens. In so doing, he would be able to prescribe, through
a manipulation of the microscopic components of the sound, the macroscopically
perceivable properties of a (musical) sound event at specific instants of time of it.
Examining in depth how stochastic music composition exactly works, how the values
of the variables are concretely calculated and how the correspondences between
them are set would however lead us too far away from the aim of the present work.
Nevertheless, what has been generally said about that is already sufficient in order to
introduce Xenakis’ concept of entropy.

Entropy is defined, with respect to each of the four dimensions ∆F∆G∆T∆D
of a screen cell, as

H = −K
n∑
i=1

pi log pi. (11)

As for the time, the minimum entropy is given in the case of simultaneity or isochrony
(if they are emitted at regular intervals of time) of the grains. In such a case, in
fact, we would have that δt1 = . . . = δtn = δt, that is, only one element in the set δt,
34 These mathematical methods are useful, in fact, not only for describing sonic events in general or
composing new music, but, as Xenakis points out, also for analyzing and describing in a more
accurate way musical works of the past [Xenakis 1992, 4].
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namely δt. Its variety (the number of distinct elements in a set or group) would be 1.
Correspondingly, we would have p (δt1) = . . . = p (δtn), thus p1 = . . . = pn = 1 (since
the probability of the duration is pi = 1/n and the set has n = 1 elements), hence

H = −K
n∑
i=1

pi log pi = −K log 1 = 0.

On the contrary, if the variety of the set is different from 1 and, theoretically35,
n→∞, then also H →∞, inasmuch as p (δt1) = . . . = p (δtn) = 1/n, i.e. inasmuch
as all durations of the grains, emitted according to [Equation 9] become, in a fairy
long succession of screens (see [Footnote 31]), equiprobable.

As to the other dimensions, the argument unfolds quite similarly. The overall
entropy of the cell is given by the arithmetic mean entropies calculated for each
dimension, and that of the whole screen by the arithmetic mean of the entropies of
the single cells composing it. For mean entropy H = 0, the cell or the screen will
contain just one single sonic grain corresponding to a pure sound, with specific and
constant frequency and intensity and emitted at regular intervals of time (the variety
of the sets δt and γ will be 1) [Figure 5A]. In the case of maximum mean entropy
(theoretically∞, see [Footnote 35]), cells or screens will contain grains homogeneously
distributed over all their regions, i.e. will have each one a different value for frequency,
intensity and duration. The state of maximum entropy will thus correspond to a
white sound [Figure 5C] – that of malfunctioning (analog) radios and televisions.
35 This is however impossible in practice: in fact, firstly, there is a limit, as already pointed out, for

the perceptibility of duration intervals, and secondly, a sonic event or a musical composition always
has a finite number of grains and screens (see [Footnote 32]). So, all in all, n will always depend,
in a real sonic event, on the overall duration of this latter, and thus will also the probability
distribution over the set δt of the duration intervals.
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Figure 5

And now something very fascinating: «Between these two limits the grains may be
distributed in an infinite number of ways with mean entropies between 0 and the
maximum and able to produce both the Marseillaise and a raw, dodecaphonic series»
[Xenakis 1992, 64]. Between these two limits (e.g. [Figure 5B]), with the means of
statistics, every possible perceivable natural sonic event is describable or prescribable,
every musical work of the past is explainable and every new musical work can be
composed.

So far we have discussed just about single screens, as descriptions at the microlevel
of the state of a complex sonic event at a certain instant of time. Nothing has been
said about the evolution in time of complex sonic events, that is, about the succession
of the screens and how this happens and works. Xenakis distinguishes between causes
and modes of this succession. The cause of a transition from a screen to another is to
be traced back to the physical structure of the sound – which has been analyzed for
example by [Helmholtz 1862] – or the logical structure of a musical composition –
which Xenakis thoroughly analyzes in [Xenakis 1992, Ch. 6-8] using linear algebra, in
particular interpreting these transitions as operations on vectors from a vector space
with dimensions F , G and T . Again, an examination of these structures is something
that can and need not be undertaken here. Rather than in the causes, what we are
instead interested in modes in which the transitions between screens generally take
place.

First of all, speaking about transitions between screens means speaking about
transitions between different configurations of sonic grains along frequency, intensity
and duration. Thus, we can describe or prescribe a transition from these three
different points of view. A transition is formally a succession of two terms, whereby
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the second one is called the transform. The terms can be denoted for instance by
the letters of the alphabet (a, b, c, . . .). A transformation is finally a collection of
transitions and can take the following form:

y a b c · · ·
a c c · · ·

where (a, b, c, . . .) are for example pitches, intensities, durations, etc. A transformation
can be also represented by a matrix. Taking the previous example:

↓ a b c

a 1 0 0
b 0 0 0
c 0 1 1

So, transformations of screens are generally the result of transformations of pitches,
intensity, durations, etc, correspondingly represented by matrices. In music compo-
sition, in order to prescribe a certain overall evolution of the sound, the composer
will construct a protocol for such transformations and engender the relative matrices,
which may be independent from each other or possibly coupled.

Screen transformations represented by matrices wherein only values 1 and 0
appear are actually just a particular case of transformations, namely determined ones,
with univocal and closed transitions. The general case is in fact that of stochastic
transformations, whose transitions are many-valued and depend on probabilities.
In the corresponding matrices, the values 1 and 0 are namely replaced by relative
frequencies which specify the probability of a certain transition. Are these probabilities
constant over a long period of time and dependent only on the first term of each
transition, then we have a particular case of stochastic transformation, called Markov
chain:

a b a b b b a b a a b a b a b a b b b b a b a a b a b b a a b a b b a b a a a b a b b a a b b a b b a
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The real frequencies of each transition occurring in the transformation are:

a→ b 17 times
a→ a 6 times

23 times

b→ a 17 times
b→ b 10 times

27 times

from which we can construct a matrix of transition (i) as in the example above,
and also a matrix of transition probabilities (ii) by converting the real into relative
frequencies:

(i)
↓ a b

a 6 17
b 17 10

(ii)

↓ a b

a 0.26 0.63
b 0.74 0.37

1.00 1.00

Now, the mode in which a screen transformation – and thus the evolution over
time of a sonic event – take place, always implies certain changes in the overall
value of the entropy of the screens of this event. If a transformation takes place in a
determined mode (with regard to all the dimensions of the screens), that is, if all
transitions in it occur according to a matrix of transition probabilities of the form

↓ a b

a 0 1
b 1 0

the overall entropy of the screens within the transformation remains unchanged. Since
all transitions occur deterministically, the transformation brings about neither an
increase nor a decrease of disorder along the temporal evolution of the sonic event36.
In the opposite case, if all transitions occur with the same probability, thus according
36 A case in which all transitions (must) always occur deterministically is that, for example, of tonal
music.
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to a matrix of transition probabilities of the form

↓ a b

a 0.5 0.5
b 0.5 0.5

the transformation would be completely indeterminate and totally ruled by chance.
The transitions would be all equally unpredictable and thus the disorder and the
entropy of the transformation at maximum.

As said, transformations of screens are the result of transformations of pitches,
intensities, durations, etc. Then, the overall entropy of the former (the extent to
which they bring about changes in the entropy of the screens over time) corresponds
to nothing but a mean entropy of the latter. Thus, a musical composition might
develop, for example, deterministically as to time, towards disorder as to frequency,
and so on, whereby the overall entropy of the composition, and of the general
screen transformation involved in it, would be a mean value of the entropies of the
transformations occurring along each of its three dimensions.

Hence, between the two limits set by determined and indeterminate transforma-
tions, we have stochastic transformation, in which transitions take place each with a
different probability (see [Matrix (ii)] above). From the point of view of the entropy,
these transformations are classifiable under three groups:

1. “Neutral” transformations, i.e. those in which the overall value of entropy does
not change;

2. Transformation towards order, i.e. those bringing about decreases in the overall
value of entropy;

3. Transformation towards disorder, i.e. those bringing about increases in the
overall value of entropy.

Group (1) is that of determined and indeterminate transformations, which keep the
value of entropy unchanged, respectively, at its minimum (zero) and its maximum
(theoretically ∞). Conversely, to group (2) or (3) belong stochastic transformations
inasmuch as the probabilities of their transitions are set as, or develop towards, those
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of the transitions in determined or indeterminate transformations. Differently – in
most cases – from natural sound, in music compositions many kinds of transformations
can be applied to screens in the course of the same composition. Thus, in this respect,
the variation of entropy over time becomes for the composer an additional aesthetic
criterion for shaping music [Xenakis 1992, 75-78].

3 Epistemological Analysis of a Possible Isomor-
phism

After having examined from the technical point of view the applications that
Boltzmann’s statistical mechanics and Xenakis’ music theory provide of the concept of
entropy, we are ready to consider more nearly the problem posed in the introduction,
namely, whether and to what extent it is possible to consider them isomorphic. An
explicit conclusion on this will be reached in [Section 4], after that the affinities and
differences between the two applications will be highlighted both on the syntactic
and formal [Section 3.1], and on the semantic and philosophical [Section 3.2] level.

3.1 Formal Affinities and Differences

Already in the previous section some remarks have been done about the formal
affinities between statistical mechanics and stochastic music, not only as to the
concept of entropy in itself, but also with regard to the formal mechanisms used
in those theories for describing different kinds of phenomena, on the basis of which
this concept is established. Now we shall more closely discuss whether and to what
extent, from the formal point of view, an “isomorphism” between entropy in statistical
mechanics and entropy in music can be drawn. Obviously, this discussion cannot be
exhaustive and extensive here. In fact, the analysis of the formal affinities between
different theories always requires great amounts of effort and time. However, since in
the case of statistical mechanics and music this analysis has not yet been undertaken
– as a lack of literature thereon also confirms – we firmly believe that the few hints
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we will give in the following on this subject may be a good theoretical starting point
for further research.

Our discussion will especially focus on these four aspects: the geometric descrip-
tion of the systems, the concept of distribution/density, the mathematical formalism
and the use of probability.

As we saw in [Section 2.2], one of the great intuitions of Boltzmann, later further
and more rigorously articulated by Gibbs, was that of using a geometrical language
for the microdynamical representation of the states and the evolution over time of
macroscopic systems such as the gases. Thermodynamic systems, for example, can be
represented by a so-called phase space whose points correspond to their microstates
with their particles having a specific coordinate for position and momentum at a
specific time. Is a system isolated, with constant number of particles, volume and
energy, then only a subspace of this phase space can represent it, namely its accessible
region, containing all possible microstates compatible with that system in terms of
position and momentum of its particles. For studying the distribution of the particles
of the system as points within this bounded phase space – or of the microstates,
insofar as we refer to a 6-dimensions or a 6n-dimensions phase space – it is finally
useful to discretize it in a finite number of equal cells.

From this point of view, the influence of statistical mechanics on Xenakis’ music
theory is very clear. Firstly, a macroscopic sonic event is explained by referring to its
microscopic constituents, the sonic grains. Then, this sonic event is also geometrically
representable, in particular by a three-dimensional space whose points correspond to
sonic grains with specific duration, frequency and intensity coordinates. This space is
also bounded, since the range of the audible frequencies, intensities and durations is
limited, as the Fletcher-Munson diagram shows. The microscopical explanation of a
sound event can only take place in a probabilistic and statistical way. To this aim, it
is useful to discretize this space in equal cells. Moreover, in order to account for the
evolution of the sound over time, it is also useful to consider screens, i.e. sets of cells
in succession along one axis of the space, that of the time.

Although some of the original ideas by Boltzmann are clearly applied in Xenakis’
argumentation – for example the discretization of the geometrical space – no direct
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reference in [Xenakis 1992] is made to the papers of him we have examined before.
Indeed, his name appears just among those of the first scientists who generally spoke
of entropy. From our point of view, this historical unawareness by Xenakis is certainly
not worrisome in itself. [Xenakis 1992] pretends in fact not to be an history of
statistical mechanics. Neither, very probably, Xenakis had access, in the initial phase
of his research (mid-fifties), to a vast literature about the history and the foundations
of statistical mechanics, that has indeed grown only in recent times. Yet, this is
important for us in order to appreciate the extent to which Xenakis’ stochastic theory
of music differs from the statistical mechanics which has developed from Boltzmann’s
approach.

As to the geometrical representation, an important difference is that regarding
the typology of spaces employed. The interpretation by Xenakis of the sound in its
evolution over time as a discrete succession of screens (which could be regarded as its
microstates) is mostly due to the fact that the geometric space used for representing
the sound is a scalar space, containing points and not vectors as the thermodynamic
phase space. This is in fact a vector space with double the degrees of freedom of the
system it represent, in which therefore continue variations for example of particles’
position and momentum can be described as can be described functions of time. As
mentioned, a formulation of stochastic theory of music based on vectors would be
generally possible, and this with no changes in content. Nevertheless, it would be
not very convenient, in Xenakis’ opinion, especially for what concerns the practical
applications of the theory to music composition. Furthermore, a difference also lies
between the space partitions of the phase space in statistical mechanics and those
of the sonic grains space. The former are conceived, at least in the Boltzmannian
framework, as mere theoretical means for mathematically explaining the microstate
of the system. The particles, that is, points in the phase space can occupy equally
all cells, and indeed actually occupy them homogeneously when the system is in
equilibrium. Conversely, it is not a formal requirement for the cells of the grains space
to be occupied by grains. This means, there may be cells of the space which are never
occupied along the entire evolution of the sound. And this actually happens since not
all regions of the audible area, as the Munson-Fletcher diagram shows, are equally
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perceivable by human ears (we are more receptive for frequencies and intensities at
the center of the diagram and less for those on the borders).

From the respective characterization of the geometric space representative of the
systems, other affinities and differences between statistical mechanics and stochastic
music theory derive which especially regard the concept of distribution/density,
and consequently the mathematical formalism and the statistical “laws” used for
explaining macroscopic systems in microscopic terms. In both theories, the concept
of distribution or density refers to the way in which the particles-points occupy the
regions of the geometric space considered. This distribution is only statistically
calculable, since the particles are generally unstable, for different reasons, in their
position in that space. These being the general points in common between the two
theories as to the concept of distribution, important dissimilarities also arise in how
this concept is really intended in both of them, especially from the mathematical
point of view. The most important one is that, whereas in statistical mechanics
the distribution is a function of time and as such is calculated for example through
[Equation 1] or [Equation 2], it is not in stochastic music theory where it is conversely
calculated referring to a discrete and instantaneous state of the macroscopic sonic
event, namely a screen or a cell of a screen. As a result, time does not appear
as a variable in [Equations 8-10] either. As mentioned, this partly depends on a
focused theoretical choice that Xenakis takes due to practical constraints, namely
that of disentangling the dimensions of the grains space within the calculation of the
distribution of the sonic grains. So, the calculation of the distribution of the grains
with respect to time, for example, is reduced to calculating durations, i.e. the (in
itself time-independent) linear density of the punctual projections of the grains on
a limited segment (mono-dimensional by definition) of the axis of time. Radically
different is the approach of statistical mechanics, where no such disentanglement
of the phase space dimensions is present. Again, the reason for this is the kind of
geometric space by which the systems are respectively represented. The vector phase
space of statistical mechanics allows it to calculate the distribution of the particles as
a function of the time, where in stochastic music theory this is not possible unless the
grains space is constructed too as a vector space, to which thus adequately adapted
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mathematical tools of the form for example of [Equation 1] would be applicable, as
Xenakis says.

Continuing on the mathematical formalism, a glaring affinity is that of the
formulas used in both theories for calculating entropy, namely that between [Equation
6] and [Equation 11]. Beyond that, there are however differences in content between
the two. [Equation 6] expresses the probability to find, given a macrostate of a system
at a certain instant of time, the corresponding distribution of the point-particles
in the cells of the phase space, where it is assumed that there are many possible
distributions, i.e. microstates, compatible with that macrostate. [Equation 11], first
of all, does not rest on the same kind of combinatorial arguments, for it is assumed,
as far as emerges form Xenakis’ reasoning, that there is a bijective correspondence
between the microstates, say, of frequencies, intensities, etc. and the macroscopically
perceivable frequencies, intensities, etc37. The equation expresses how much we can
infer about the distribution of the grains along each of the different dimensions of the
grains space, knowing the variety (i.e. the number) of possible duration, frequency,
etc. intervals and how likely they are. Thus, again, entropy regards single dimensions
and is related to time insofar as one calculates it for each of the screens that succeed
each other in the evolution of the sonic event over time. Furthermore, the series in
[Equation 11] is not taken to be an always convergent series. For infinite varieties, in
fact, the sonic event can theoretically evolve with entropy values approaching infinite.
On the contrary, the series of [Equation 6] must always converge towards a maximum
finite value, namely that of the entropy at the system’s equilibrium state. This
eventually amounts to say that not only, depending on what kind of transformations
the evolution of a sonic event takes place after (see [Section 2.3]), we can have a
limitlessly and monotonically increasing entropy, but also that the overall entropy of
the sonic event can (or can be set to) decrease or remain constant. In other words,
a natural evolution of sonic events towards a state of equilibrium does not exists,
37 This is clear considering for example the case of duration: it is impossible to have on the axis of

time two or more segments representing the duration of a single sonic grain, because in this case
the segments would be indistinguishable and the durations they represent necessarily simultaneous.
In other words, we have the possibility to consider that grain as to time always by one single
duration, i.e. one single segment on the axis of time.
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and this evolution has indeed no privileged direction in terms of entropy and time.
This is actually an evident difference between the concepts of entropy in statistical
mechanics and stochastic music theory, as well as a problem worth of philosophic
considerations that will be done in the next [Section 3.2].

[Equation 6] also express the extent to which one can infer about the distribution
of the particles-points in the phase space knowing about the macrostate of the system,
whereby, if the system is in equilibrium and the entropy at maximum, it becomes
impossible to make any such inference, since the largest possible number of distri-
butions are with the same probability compatible with the macrostate. Indirectly,
by interpreting the systems of statistical mechanics through a Shannonian informa-
tional approach, entropy becomes in this sense also the measure of the disorder and
uncertainty connected with a system and of the information we gain removing this
uncertainty. Actually, [Equation 11] seems to conform more to this informational
interpretation of the concept of entropy in statistical mechanics – which is even
clearer if one looks at the direct references Xenakis does in [Xenakis 1992] to the
writings of Shannon and to the ideas by Boltzmann as mediated by the American
information theorist. Indeed, from the formal point of view, the role played by
equiprobability and its connection with the notions of uncertainty and entropy are
the same both in statistical mechanics and in stochastic music theory, if we interpret
them both informationally. Yet, a difference may arise if one considers, in stochastic
music theory, entropy and uncertainty not with respect to single cells or screens
(whereby the notions are related to the distribution of the grains), but, generalizing,
with respect to entire transformations of screens. As we know, transformations are
collections of transitions occurring between screens with a certain probability. The
more equally likely all transition probabilities are, the more uncertainty there is and
the higher the value of the entropy of the entire transformation is. Uncertainty is
thus related here not to possible distributions of microscopic objects compatible,
at a specific time, with the macrostate of a certain system (as clearly in statistical
mechanics and partly in stochastic music theory), but directly to possible evolutions
over time of macroscopic systems, in this case, of sonic events. The uncertainty,
and so the entropy are at maximum when, considering a screen transformation, all
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possible screens38 could succeed in time, with equal probability, a given screen –
when, in other words, every possible evolution of the sonic event is equally probable.
On the contrary, there is no uncertainty when all transitions between screens in a
transformation is completely determined. This means that it is obviously easier to
predict the development of a piece of music, given initial chords or notes, if this is a
classical one (with only determined transitions possible) than if it were a stochastic
one (with transitions ruled by probabilities)39. In the same sense, it would be easier
to predict the information content of messages emitted by a source on the basis of
deterministic principles (hypothetically, for instance: every third time you toss the
coin, it must be tail), than if the source emitted informative messages with certain
probabilities. The possibility of interpreting in an informational way unpredictability
and entropy in stochastic music theory, put it actually nearer to information theory
than to statistical mechanics40. As mentioned above, it would be surely interesting,
from the epistemological point of view, considering the extent to which also these
two theories are syntactically and semantically comparable.

Here we shall however continue with the last point of our inquiry into the formal
affinities and differences between statistical mechanics and stochastic music theory,
namely the interpretation of the notion of probability involved in them. There is
actually plenty of literature in history and philosophy of physics about the notion
of probability in Boltzmann and, in general, in statistical mechanics. Although it is
impossible to review the whole debate about this topic in the present work41, some
general remarks about Boltzmann’s use of probability will allow us to understand
whether probability is namely used in the same way also by Xenakis.

Let us start from the long quotation by [Boltzmann 1872, 116 (Brush 1976)] in
[Section 2.2]. In particular Boltzmann says (my italics):
38 That is, all possible configurations of the grains in the grains space compatible with the macroscopic
sound at a certain instant of time.

39 Interesting experimental research has been done in this respect for confirming this claim (see e.g.
[Manzara et al. 1992]).

40 Obviously, unless an interpretation of statistical mechanics in terms of information theory is taken
into account, like for example that of Jaynes (see [Footnote 23]).

41 See for an overview [Uffink 2007], [Frigg 2008], [Frigg 2009], [Frigg 2010a], [Frigg and Werndl
2011].
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«[...] die Moleküle sind gleichsam ebenso viele Individuen, welche die verschiedensten
Bewegungszustände haben, und nur dadurch, daß die Anzahl derjenigen, welche
durchschnittlich einen gewissen Bewegungszustand haben, konstant ist, bleiben die
Eigenschaften des Gases unverändert».

As it can easily be noticed from the second clause of the quotation, for Boltzmann
the necessary statistical and probabilistic character of the dynamical explanation
of the macroscopic behavior, in this case, of thermodynamic systems is not only
due to our epistemic and empirical limitations in accounting for the exact number,
positions and speeds of the microscopic constituents of the system. Indeed, the
macroscopic properties of the system in themselves are considered to be the result of
observer-independent probabilistic factors, namely of the fact that the number of the
microscopic elements of the system with the same mean speed remain constant. As we
know, this is the meaning of the Maxwell-Boltzmann distribution [Equation 1], which
Boltzmann extends and develops in his H-theorem [Equation 2] and in its definitions
of entropy. Thus, following [Uffink 2007] and [Frigg and Werndl 2011], we also agree
on the fact that the notion of probability in Boltzmann should be interpreted to a
large extent ontically, with the “laws of probability” being actually objective empirical
laws, and more in particular in a frequentist way: drawing repeatedly microscopic
elements from a system, for example molecules from a gas, Boltzmann’s statistical
laws would give us the relative frequencies with which we can find particles randomly
taken from the system with specific position or momentum values. As we have seen,
this is especially clear in Boltzmann’s combinatorial arguments.

The question is now: is probability in Xenakis also interpretable in frequentist
terms? As already pointed out at the top of [Section 2.3], Xenakis’ musical research is
aimed at introducing in music, against the strict deterministic schemes of serialism and
dodecaphony, an extended idea of causality, as it has been finding a place in science
(especially quantum and statistical mechanics) already since the first decades of the
twentieth century, namely the causality involving probabilistic laws and containing
determinism just as a particular case [Xenakis 1992, 8-10]. In this sense, Xenakis
clearly accepts the idea that natural phenomena could be described by empirical
laws of probabilistic form, that is, the idea that nature behaves in some respects
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indeterministically in itself. And this obviously applies also to sonic events: natural
sonic events such as «the collision of hail or rain with hard surfaces or the song of
cicadas in a summer field»42, or still human-dependent sonic event such as those
produced by «a political crowd of dozens or hundreds of thousands of people» or
by «a Geiger counter in the proximity of a radioactive source» share all a stochastic
character and can all be described using the same statistical laws, those that finally the
composer can just take and apply in music in order to run away from the determinism
of the tradition. In this sense, Xenakis generally interprets probability ontically.
For him, probabilities are surely «part of the “furniture of the world”» [Frigg and
Werndl 2011, 119]. Furthermore, from this ontic perspective it becomes also possible
to attribute to Xenakis a frequentist interpretation of probability: he for example
defends the idea that stochastic phenomena (as those just mentioned) evolve, for
the the law of large numbers, asymptotically «towards a stable state», namely a
στόχος, from which the adjective “stochastic”. This law, [Xenakis 1992, 16] points
out, is also that to which densities, durations, frequencies, etc. can be subjected. For
example, as we have seen, taking a sound event with theoretically infinite duration
i.e. infinite number of grains, [Equation 9], the statistical law for calculating the
distribution of the sonic grains along the axis of time, will show an equalization of the
probabilities of the durations. This means that, independently of how one chooses
the reference duration segment δt, the relative frequency with which one will find
duration segments equal to it will be, in this case, always the same.

Yet, if we take the possible informational interpretation of stochastic music
theory, and thus of the probabilistic concepts involved in it in terms of uncertainty
or unpredictability, we may be persuaded to consider Xenakis’ use of probability
understandable in some respects rather within the context of the epistemic theories
of probability (objectivist or subjectivist). Especially in music, where the sound, as
succession in time of screens, is artificially constructed by the composer, it seems that
the probabilities with which the screens succeed each other and the sound evolves
– those appearing in the matrices of [Section 2.3] – are not ontically relative to the
object (sound in itself), but epistemically to the subject, as (rational or subjective)
42 All quotations until the end of the section are from [Xenakis 1992, 8-10] unless otherwise indicated.
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credences conditioned by the musical system considered. The uncertainty about
the next incoming term of a succession of screens can be epistemically taken as
corresponding to the degree of belief of a subject in actually proposing a specific
screen as possible next term. This degree would be at maximum if for example the
succession takes place within tonal harmony, which is a totally determined music
system. In fact, it is a certainty for the subject43 that a screen representing for
instance a leading tone will be always followed by one representing the tonic. This
certainty, however, cannot clearly be regarded as ontic, because it is actually inexistent
outside the specific music system of tonal harmony (and obviously in the sound in
itself either)44.

Thus, the use of the notion of probability in Boltzmann and Xenakis is quite
identical, unless one gives an informational interpretation to stochastic music theory,
which leads to the necessity of acknowledging probability there under epistemic
categories. Indeed, it would be a goal of the aforementioned comparative analysis of
information theory and stochastic music theory that of ascertaining if the informa-
tional interpretation of this latter and a Jaynesian, informational interpretation of
Boltzmann’s statistical mechanics would be also comparable with each other as to
the possibility to understand probability in both theories (only) in epistemic terms.

3.2 Philosophical Affinities and Differences: The Problem
of Asymmetry of Time

In the last section we discussed the formal affinities and differences between
the applications that statistical mechanics and stochastic music theory provide of
the concept of entropy. In this discussion, a philosophically very interesting point
has emerged: sonic phenomena do not tend towards an “equilibrium state” and,
consequently, “musical entropy” does not tend to a finite maximum value, nor has
it necessarily to increase, since there exist simplifying (or neutral) transformations
43 Assuming that he or she has some acquaintance with the system.
44 This indeed suggests that hereto an objectivist epistemic approach would be preferable to a
subjectivist one, since, in the most cases, a music system influences the “musical believes” of all
(rational) subjects in exactly the same manner.

40



(see [Section 2.3]) implying a decrease (or no changes) of the entropy value associated
with the sonic screens as the sound develops over time. In other words, stochastic
music theory does not establish a specific and constrained direction for the evolution
of a sonic event or – even more – of a musical composition, say, a direction from
disequilibrium to equilibrium, from order to disorder, or from lower to higher entropy.

This is eventually what most radically characterizes musical entropy as a concept
in meaning very different from the entropy of statistical mechanics. In fact, as we
have seen in [Section 2.2], statistical mechanics and thermodynamics generally regard
as empirically possible for their target systems only one kind of evolution, namely
that directed at states of always greater equilibrium and higher entropy, whereby
evolutions taking place in other directions are considered as impossible, or rather not
typical or (very) improbable.

That the macroscopic systems of statistical mechanics and thermodynamics
always evolve in a specific direction is something we also experience in our everyday
life. Looking at two photos, the one showing a red cup of milk and a black cup of
coffee, and the other the same red cup full of cappuccino and the black one empty, we
are able without any doubt to put both photos in the correct order, namely, the first
before the second. No other ordering would be possible: in fact, separating coffee
from milk, once they have been mixed, is something we know to be utterly impossible.
The same would apply for a “collection of photos” ideally representing two gases
with different temperatures, thus with their respective molecules having two different
speeds. The photo showing the gases and their molecules still separated from each
other would be ordered by anyone before that taken after the vessels containing each
of the gases have been connected. Here all molecules of both gases would appear
mixed after a certain period of time and it would become impossible, through natural,
non-demoniac45 processes, to separate again the warmer from the cooler gas, i.e. the
45 The reference here is to the so-called Maxwell Demon, a thought experiment conceived by

Maxwell (firstly appeared in 1867 within a private correspondence and then presented in [Maxwell
1871]). It involves a supernatural being, namely a “demon”, able to violate the Second Law of
Thermodynamics by dividing again two previously mixed gases at different temperatures, i.e.
by separating individually the faster from the slower molecules of a system in thermodynamic
equilibrium. Many attempts have been done in order to construct an actual mechanism serving as
such a demon, yet it has been proven that the complex formed by the thermodynamic system and

41



faster from the slower molecules. Hence, again no other ordering of the photos would
be possible.

Now, if we were to assign to all these photos, as we ordered them, points from an
hypothetical time axis, we would then immediately see that the constrained direction
in which thermodynamic systems evolve towards states of greater equilibrium and
higher entropy also has a temporal meaning: it takes places namely asymmetrically
with respect to the time. In other words, this constrained evolution is also bounded
to a constrained direction of the time, in the sense that, as entropy cannot decrease,
time cannot be reversed. For example, given time instants t1 < t2 < t3, we have that
a thermodynamic system in a state of non-equilibrium and low entropy at time t2 has
necessarily to evolve to one closer to equilibrium with higher entropy at t3, where it is
highly improbable that it evolved from an equilibrium state with high entropy at time
t1. In this way, the constrained direction in which both entropy and time increase
eventually individuates a concept which is today know after Sir Arthur S. Eddington
as the “arrow of time” [Eddington 1928], which, for the laws of thermodynamics and
statistical mechanics, can only point in one direction, generally to the future.

As we have seen in [Section 2.3], Boltzmann explained the unidirectionality of the
evolution of thermodynamic systems by referring to microdynamical and probabilistic
arguments, and, in particular, by treating the states of greater equilibrium and higher
entropy as the most probable ones among all possible states. Some believe that he did
it consistently and comprehensively46, but other, already among contemporaries47,
have seen instead a real difficulty (if not, as Loschmidt did, a real paradox) in basing
coherently time-asymmetric descriptions, like those of macroscopic thermodynamical
systems, on dynamic and mechanical laws that are conversely symmetric with respect
to the time, i.e. reversible and quasi-periodical [Callender 1997, 224-225]. In this
sense, deriving the former from the latter would mean to accept firstly that, for
every entropy-increasing evolution of the system, there should also exist an equal and

the mechanism does not violate as a whole the Second Law of Thermodynamics (see [Maroney
2009]).

46 See e.g. [Lebowitz et al. 1993], [Lebowitz 1994].
47 See e.g. [Loschmidt 1876], [Poincaré 1889], [Poincaré 1893], [Zermelo 1896]; see also [Uffink 2007,
64-73].
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opposite entropy-decreasing one, and secondly that each system evolving towards
states with higher entropy will eventually return, given an inconceivably long interval
of time, to some past state with lower entropy.

Such a behavior is, as we know, never observed and, in order to come up with the
theoretical difficulties of Boltzmann’s approach, also other alternative explanations
of the time-asymmetric evolution of thermodynamic systems have been proposed
from within statistical mechanics. Some of these appeal for example to the notion of
typicality (see e.g. [Goldstein 2001]) and argue that this evolution and the direction
in which it takes place are somehow typical of the systems [Frigg and Werndl 2011,
126], [Frigg 2009]. These approaches are not unproblematic either [Frigg 2010b], and
in general that of the asymmetry of time is a problem, in thermodynamics [Callender
2016] and physics in general, still far from having a definitive answer.

In fact, what still remains mostly troubling about the “problem of the arrow of
time” in statistical mechanics is exactly the question of the compatibility between
the symmetrical laws of dynamics and the asymmetrical laws of thermodynamics.
Whereas the former theoretically allow entropy increases in both time directions, the
latter – as everyday experience also confirms – prohibit it. In order to solve this
consistency problem, and have a complete and coherent physical explanation of why
systems evolve only towards equilibrium and higher entropy, we essentially have two
options: change the “rules of the games”, i.e. explain thermodynamic systems no
longer by the reversible dynamical laws we currently use48, or simply assume that
entropy always increases [Callender 1997, 227], as theoretically satisfying as this latter
option might be.

Conversely, some claim that we do not need to solve the problem of the arrow
of time because this is not really a problem, but only the result of an erroneous
understanding of the foundations of statistical mechanics. [Callender 1997, 228-230],
for example, argues that we can regard statistical mechanics and its predictions about
48 This means, in this case we should use non-dynamical laws or alternative dynamical laws, which
are however irreversible. To this respect, lots of theories have been proposed – within both
classical and quantum mechanics – which try to justify the impossibility of entropy-decreasing
processes always in dynamical terms (see e.g. [Sklar 1993], [Albert, D. 1996], [Callender 1996] and
[Callender 1997]).
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the theoretical possibility of past states of higher entropy as holding as generalized in all
models of our fundamental theory only under an ad hoc condition that, in agreement
with observation, indeed excludes this possibility, i.e. only by the assumption that
past states are always states of lower entropy. Since however, from the point of view
of classical mechanics, we are actually allowed not to maintain this condition and
instead to believe that someday entropy may really start to decrease (as for example
cosmologist T. Gold predicted), statistical mechanics should be regarded not as true
in all physically allowed models, and therefore just as a special science, whose laws
are ceteris paribus laws, and whose models are just elements of a proper subset of the
set of models of classical mechanics.

That the problem of time is the result of a mistaken view in the foundations of
statistical mechanics is also the opinion of [Ben-Naim 2017a] and [Ben-Naim 2017b],
who argues that entropy is (even formally) not associated with the “arrow of time”.
In fact, if we return, within a Jaynesian theoretical framework, to an interpretation of
the entropy of statistical mechanics based on Shannon’s measure of information (see
[Section 2.1] and [Section 3.1]), so that it turns to indicate the uncertainty about the
distribution of the microstates (or particles) of a systems in its corresponding phase
space, we would have a formulation of entropy independent of the time. Shannon’s
measure of information (also known as Shannon entropy) is in fact defined on any
probability distribution and as such is a very general concept. By applying it to the
probability distribution of positions and momenta of the particles of a given system,
Ben-Naim shows that the entropy of statistical mechanics (in all formulations of
[Equation 2], [Equation 5] and [Equation 6]) can be considered as proportional to the
maximum of Shannon’s measure of information, which is in itself not a function of
time. Thus, the constrained direction in which the system of statistical mechanics
evolve would be no longer associated with a constrained direction of the time. In other
words, as it is possible in information theory to remove the uncertainty by gaining
information, and thus to reduce information entropy, by interpreting the entropy of
statistical mechanics in informational terms, we could consistently accept, at least
from the theoretical point of view, that also an entropy decrease or a negentropy49 in
49 Introduced originally by [Schrödinger 1944], the term negentropy – contraction of negative entropy
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thermodynamic systems is possible.
Now, Ben-Naim’s thesis is especially important for us in order to gain isight into

the problem of the arrow of time connected with the concept of entropy in stochastic
music theory. As we said above, the evolution of sonic phenomena does not follow
a constrained direction. There is no evolution towards states of higher entropy and
disorder. On the contrary, sound can evolve towards states of equal or also lower
entropy.

Consider, we are given with a book of screens corresponding to the development
over time of a certain sonic event (including a musical composition of any stile), where
each screen has its mean entropy value. However, the pages of this book – i.e. the
screens – display no numbering and therefore we have to order them. The question
now is: does a “correct” ordering exist, similarly to the case of the photos of the cups
or the gases? Given that the entropy or the degree of disorder of the screens are not
an ordering criterion, the answer can be affirmative just if the book is a descriptive
one – just if, in other words, we know what sonic event the book as a whole refers
to and what kind of transition matrices are related to the screen transformations
commonly occurring in this particular sonic event. If we know, for example, that
the book refers to the noise made by a squeaking door, we would be able – up to a
certain approximation – to arrange the screens in a succession corresponding to the
evolution over time of this kind of sonic event. The same would hold in the case the
book refers to a musical composition and one knows this latter: the screens could be
arranged as to reproduce the development of the composition. Even if less accurately,
also knowing just the style which the composition belongs to would lead to the same
goal: knowing that, for instance, classical music allows deterministically only certain
screen transitions and that stochastic music allows transitions according to certain
probabilities, already amounts to have working criteria for providing a correct ordering
of the screens of the book. Moreover, this ordering would be also constrained and
univocal: arranging the screens differently would yield a description of different sonic

– refers to processes in which a decrease of the entropy is possible. Mathematically, it is nothing but
entropy with negative sign and as such indicates the degree of order, predictability or information
(see also [Wu et al. 2020]).
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events or different musical compositions than the ones actually considered. And if
we were to associate points from the axis of time to the screens which we “correctly”
ordered, we would notice that the constrained evolution of the sonic event, i.e. the
constrained succession of the screens, also imply a time asymmetry, i.e. a constrained
direction of the time. In fact, reversing the time, and thus the succession of the
screens would yield again different sonic events or musical composition than the ones
indeed taken into account.

Yet, as we know, Xenakis’ sonic screens have not only a descriptive, but also
a prescriptive purpose (see [Section 2.3]). Thus, it is possible to create new sonic
events or musical composition by arranging screens in a certain way. For example,
one can construct a new musical composition by reversing the descriptive succession
of screens relative to an existing composition50. In this sense, the reversibility of the
time would be made possible in music51, and consequently also entropy decreases
(negentropy). Suppose in fact that the entropy value associated with each of the
screens of the book relative to the original composition have be set as such to increase
monotonically along the succession: prescribing a new musical composition on the
basis of the reversal of the original composition would mean now to compose a book
of screens in which these succeed each other with a monotonically decreasing entropy
value, equal to that of the original succession, but of opposite sign. Entropy and time
would be reversed: «much like a god, a composer may create the reversibility of the
phenomena [...] and, apparently, invert Eddington’s “arrow of time”» [Xenakis 1992,
255]. Still, one could construct a new sonic event by rearranging and permutating
freely the screens of a descriptive succession relative to a certain initial sonic event52,
producing, for example, a new succession in which screens succeed each other with
50 Classical and dodecaphonic counterpoint, for example, take abundantly advantage of this method of

musical composition: certain melodic lines or harmonic structures are composed, whose retrograde
(or cancrizans) is then taken and employed inside or outside the same composition.

51 Whether the reversal of a musical composition is definable as aesthetically evaluable music or as
still belonging to the musical style of the original composition is a question of music aesthetics
that as such is epistemologically irrelevant. Aesthetics cannot exclude, in fact, the mere theoretic
possibility of such reversibility in music.

52 If the sonic event is a musical composition, the same of [Footnote 51] holds as to the result of this
free rearrangement.
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non-monotonic, irregular changes in the associated entropy values.
Both in the case of the reversal and in that of the rearrangement, no affirmative

answer could be provided to the question of whether something like a “correct” or
empirically constrained screen ordering exists: in fact, every possible permutation,
rearrangement or reversal of the screens of a descriptive succession yield a new sonic
event, and, in general, every possible succession of screens – also not derived from a
descriptive succession and instead freely chosen within the range of audibility – yields
a physically possible sonic event. There are not sonic events, i.e. screen successions,
which are theoretically prohibited, or (within the audible area) empirically impossible
or improbable, and this because there is not a general constrained direction of the
evolution of a sonic event, like that necessarily towards states of higher entropy of
the systems of statistical mechanics. Since screen transformations are not necessarily
entropy-increasing, entropy cannot serve as a criterion for finding the “right” screen
succession. And if there is not constrained direction of the evolution of sonic events,
then there is not in music even a constrained direction of time, an arrow of time.

That musical entropy is not associated with the arrow of time appears ever more
reasonable if one consider the possible informational interpretation of stochastic music
theory we already referred to in [Section 3.1]. As we have seen, musical entropy is
in some respect nearer to the informational notion of entropy than to the entropy
of statistical mechanics. In informational sense, musical entropy can express firstly
the uncertainty about the distribution of the grains in a screen. Hereto, it is just
related to time inasmuch as one calculates it for each of the ∆T ’s (i.e. screens) that
succeed each other in the evolution of the sonic event. Secondly, it can also express
the uncertainty about the possible transformations of a screen, i.e. the uncertainty
about the the next incoming term of a given screen transition. We know that, as
highlighted by Ben-Naim, informational entropy is independent of the time. It is thus
straightforward to see that musical entropy too, if interpreted in such informational
terms, is definitely not a function of time, and – similarly to the case of the entropy
of statistical mechanics if interpreted in the same informational terms – clearly not
associated with the arrow of time.

To sup up: differently from statistical mechanics, entropy-related constraints for
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a specific and necessary direction of the evolution of sonic events are absent in music.
The succession of the screens of a noise could be reversed or repeatedly rearranged
and we would have again (empirically possible) noises. The succession of the screens
corresponding to a musical composition could be similarly reversed or repeatedly
rearranged and we would have new musical compositions. The problem of the arrow
of time does not exists in music as in statistical mechanics, and time can be reversed
in music as far as new sonic events can be constructed, in a theoretically consistent
way, as reversals of descriptive screen successions related to actual sonic events.
Inasmuch as these successions contain entropy-increasing screen transitions, the sonic
events constructed as their reversals will contain correspondent entropy-decreasing
transitions, and vice versa. Expressing it with [Callender 1997], in music and acoustics
in general are thus to be found some of the domains for which models, predictions
and theoretical constraints of statistical mechanics about entropy and time are not
true.

4 Conclusion

We discussed in [Section 2] all the most important technical aspects of the
concept of entropy in both statistical mechanics and stochastic music theory. Then,
in [Section 3.1] we passed to analyze thoroughly the formal and syntactic affinities
and differences between this concept as applied by both disciplines, and in [Section
3.1] the semantic and philosophical ones. In particular, to this respect we found out
that there exists a substantial difference in meaning between the two applications of
entropy. If for statistical mechanics there is generally an empirically univocal and
constrained direction of the evolution of the systems and consequently a univocal
and constrained direction of the time, in music we have nothing like that, and the
problem of the arrow of time itself does not arise.

Having all this in mind, we can finally come to the conclusion of our epistemo-
logical inquiry and thus attempt to give an answer to our initial question, namely if
there exists an isomorphism between the entropy of statistical mechanics and that of
stochastic music theory, and, if so, to what extent. The answer may appear quite

48



straightforward to the reader: an isomorphism exist, but it is not a total isomorphism.
Many formal and philosophical aspects of the statistico-mechanical and musical
application of entropy coincide, but many others – perhaps the majority or/and
the most important ones – do not, unless one accept to interpret both statistical
mechanics and stochastic music theory informationally. In this case, as we have in
fact noticed, characteristics of both theories that otherwise differ, would instead be
more comparable with each other.

Furthermore, even if both theories share some formal aspects and a similar
mathematical framework, they definitely characterize, as to their respective meanings,
their respective target phenomena in different ways. For example, stochastic music
theory applies, surely in a successful way, some formal devices, mathematical tools
and theoretical presuppositions of statistical mechanics: among others, the idea,
that macroscopic systems can be described by their microstates, the idea that this
description can only be a statistical and probabilistic one, etc. However, it does not
characterize its objets in the same sense in which statistical mechanics does for its own:
if, for instance, this latter attributes mechanical properties to the particles, the grains
of stochastic music theory are apparently not characterized in the the same mechanical
sense – and indeed fall short, in general, of a clear (metaphysical) characterization.
This may be perhaps also the reason why several philosophical problems of statistical
mechanics – like for example those connected with the use of reversible dynamical
and mechanical laws at the microlevel for explaining time-asymmetric macroscopic
processes – do not arise in the case of stochastic music theory, being attributed here
to microscopic objects no mechanical nature.

Therefore, in the end, we can say that the entropies of statistical mechanics
and stochastic music theory are not quite the same concept, but rather different
applications, each with its own peculiarities, of a same general idea which partly
refers to the heuristic notion of the measure of disorder and disorganization – or
uncertainty, in informational terms – within the general theoretical context of a
microscopic explanation of macroscopic phenomena.

It however remains very fascinating the fact that this idea can be applied in
domains so different from each other, among which even one generally considered
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extra-scientific, namely music. Indeed, the question arises: does some epistemic gain
or enrichment derive from applying the same concept or idea in different domains
and in different ways? The answer to this question is not easy. Yet, it is very
probably a positive one: extending a concept throughout different domains gives the
opportunity not only to understand more of the concept itself, to discover new aspects
and theoretical possibilities of it, but also to understand more about the nature of
the phenomena this concept refers to and of the characteristics these phenomena
share with each other. Last but not least, the (consistent) application of a concept in
different domains, each with its different language and forms of expression, also opens
the possibility for new, and in some cases “non-conventional”, ways of communicating
and transmitting that concept: is it possible, for example, to understand something
about the general concept of entropy as applied, say, in statistical mechanics or
information theory, maybe just by listening to a stochastic musical composition?

To these and other interesting philosophical questions we shall attempt to give
an answer in a forthcoming work.
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Notes on the Illustrations

All the images used in this work have been taken from [Xenakis 1992]. In [Figure
3] and [Figure 4] some minor and non-altering elements (arrows, symbols for the
name of the axes, etc.) have been added for facilitating the understanding of Xenakis’
arguments as we exposed them.
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