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On the Energy-Inertial Mass Relation:
II. Kinematic and Geometrical Aspects
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Kinematic and geometrical aspects of the connection between energy and inertial mass are considered.
Transformations of coordinate and time are obtained in a two-dimensional flat space. For this case the
Euclidean, pseudo-Euclidean and Galilean kinematics are considered. A new interval in a flat four-
dimensional anisotropic Finsler space is found. Under certain assumptions the known results follow
from the derived relations.

Introduction

In a previous paper (Zaripov 1996) the author used the
dynamic approach and the expression for the total energy
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to obtain the general inertial mass-velocity relation
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By varying the parameters α  and ε , different possible
relativistic expressions for the energy and mass were de-
rived. The case with a mathematical singularity was exam-
ined where the functions E E v= ( )  and m m v= ( )  lost

their continuity under certain conditions. A matter of
particular interest was the case where the functions were
continuous. Several classes of objects were defined for
these classes.

The purpose of this work is to continue the investiga-
tion and consider the kinematic and geometric aspects of
the problem. The kinematic aspects arise from a study of
the motion of inertial systems. The geometric aspects
emerge from the problem of geometrization of the La-
grange formalism in analytical mechanics.

For the relativistic case of special relativity, we substi-
tute value α ε= = 1 into the Lagrange function:
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and get L m c v c= − −0
2 2 2 1 21( / ) , where 

r rp mv=  is the

momentum of an object. Geometrization of the variational
problem is governed by variation of the following opera-
tion

δ δ δI Ldt m c ds= = − zz 0 . (4)

The physical meaning of the expression (4) is determined
by the value of the proper time of a moving object

d
c

dsτ =
1

. Free trajectories of object motion are geodesic

lines in a four dimensional flat space with the indefinite
metric

ds c dt dx dy dz2 2 2 2 2 2= − − − . (5)

The kinematic aspects are governed by Lorentz transfor-
mations:
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which retain the length element (5) form-invariant.
In the case of Newtonian dynamics we substitute the

value ε = 1 2  into (3) and get L m c m v= − +0
2

0
2 2( ) / .

The problem of geometrizing the Lagrange formalism is
described in earlier work (Schouten 1951). A line element
of a flat space is ds c dt2 2 2=  and the kinematic aspects are
determined by the Galilean transformations:

′ = −x x vt , ′ =t t , ′ =y y , ′ =z z . (7)

Finally we may consider the motion of an object in a
four-dimensional flat space with the definite metric

ds c dt dx dy dz2 2 2 2 2 2= + + + . (8)

The kinematic aspects are governed by the transformations
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For this relativistic case, by substituting the value
α ε= − = −1  in (3), we obtain
L m c v c m c= + −0

2 2 2 1 2
0

21 2( / ) . A constant term does

not enter into the equations of motion in the problem of
variation of operation (4).

These three flat geometries for the two-dimensional
case ( , )ct x  and kinematics are desribed in earlier work

(Liebscher 1977). The parallel axiom holds true only for
these three geometries. In the general case, there are nine
plane geometries (Klein 1928).

It follows from the above consideration that relativistic
cases with the metrics (5) and (8) correspond to the Rie-
mann approach to geometrization of the Lagrange formal-
ism. This approach, with ds g dx dxij

i j2 =  ( , , , )i = 1 2 3 4 , is

possible only at ε = 1  in the expression for the total en-
ergy (1).

Let us first consider the Riemann approach. Later, we
shall study the general case with ε ≠ 1  and other ap-
proaches to geometrization.
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Coordinate and time transformations in a
two-dimensional flat space.

K x t( , )  and K x t( , )′ ′ . According to the principle of rela-

tivity these systems are equivalent. The system K x t( , )′ ′
moves about the system K x t( , )  with the constant velocity

v . A transformation of coordinates between the systems
can be written in the form

′ = −x x vtΩ( ) , x x vt= ′ + ′Ω( ) (10)

where Ω Ω Ω= = −( ) ( )v v . Transformations (10) general-

ize the Galilean transformations (7), for which we have the
equality Ω =1 .

We can obtain the transformations of time between the
systems from the relation (10)
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Thus, forward and reverse transformations are carried out

with the aid of the transition matrix $ $( , )A A v= Ω and its

inverse $ $ ( , )A A v− −= −1 1 Ω
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Let us now consider a third inertial system K x t( , )′′ ′′
which moves about the systems K x t( , )  and K x t( , )′ ′ . with

the velocities ′v  and ′′v . We use the group properties of
transformations as the product of the transitional matrices

$( , ) $( , ) $( , )A v A v A v′′ ′′ = ′ ′Ω Ω Ω , (14)

where ′ = ′Ω Ω( )v , ′′ = ′′Ω Ω( )v . For the Galilean trans-

formations (7) the velocity addition law ′′ = + ′v v v  fol-
lows from (14). In the case under consideration we have
the following relations
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In the relation (15), a constant value is written taking into
account the dimensions of the velocities of the systems.
The velocity value c should be determined from experi-
ments. The value of the parameter ξ  is obtained from

different agreements concerning synchronization. The
problem of defining simultaneity in time was considered
by the author in earlier work (Zaripov 1978, 1980, 1984,
1992).

Using the value of the universal constant c  we shall
consider events in a two-dimensional geometric space. We
can then get the transformations of coordinates between
the systems K x ct( , )  and K x ct( , )′ ′  from (12) and (13)
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At ξ = −1 , ξ = 0  and ξ = 1 , the transformations (6), (7)

and (9) follow, correspondingly, from (18). In Figure 1 the
geometric presentation of the transformations is given.
The dashed line corresponds to the isotropic signal with
the velocity c . For the transformations (9) the ′x axis is
perpendicular to the ct′ axis . The slopes of different axis
are of the same angle ψ .

2. Representation of transformations in
terms of binary numbers

Let an event in the inertial system K x ct( , )  correspond

to the binary number X x ex= +0  ( )x ict0 = . The binary

system with operations of addition and multiplication is
one of three:

1) e2 1= −
2) e2 1= (19)
3) e2 0=

The properties of a binary system, for which x0  is the real
number, are considered in several books (for instance,
Kantor and Solodovnikov 1973, Madelung 1957). A system
of complex numbers ( e2 1= − ) has the property of divi-
sion. Division cannot be performed for all numbers in
systems of double ( e2 1= ) or dual ( e2 0= ) numbers.
However, such systems play a large role in mathematics as
well.

Transformations of coordinate and time between sys-
tems K x t,a f  and K x ct( , )′ ′  are represented by the trans-

formations of binary numbers
′ =X AX , ′ = ′ + ′X x ex0 , X x ex= +0 , A a eb= + (20)

or between their conjugate quantities

′ =X X A , ′ = ′ − ′X x ex0 , A a eb= − . (21)
Let us consider transformations of binary numbers,

Figure 1



Page 116 APEIRON Vol.4 Nr. 4, October 1997

which keep invariant a magnitude of the number

′ ′ =X X XX , ( )ct e x c t e x′ + ′ = +2 2 2 2 2 2 2 . (22)

From (20) and (21) we get the equality
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and the inverse transformations
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To determine a and b we can consider the relation
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We will use the equality x vt=  at ′ =x 0  (or ′ = − ′x vt  at
x = 0 ). We then obtain values iv c b a/ /=  and
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Making use of the group properties of transformations as a
product of binary numbers

A v A v A v( ) ( ) ( )′′ = ′ . (27)

we obtain the law of addition of velocities
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At e2 1= − , e2 1=  and e2 0=  the transformations (6),
(7) and (9) follow, correspondingly, from (20). The cases
with e2 1= −  and e2 0=  were studied earlier by the
author (Zaripov 1979).

3. Finsler’s approach to geometrization of
the Lagrange formalism

Let us consider the case with ε = 0 , for which the in-
ertial mass and total energy
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depend on only one parameter. This case describes ordi-
nary real objects with infinite velocity of motion
0 ≤ ≤ ∞v  (Zaripov 1996). For the Lagrange function we
have the expression
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For α = 1  we obtain the following formulae from (30)
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mulae of the special relativity with the Riemann metric (5)
accurate to 0 ( )c−2 . This is easily seen in the general case.

We now generalize the relation (31) and get the interval in
a flat four-dimensional space
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where gij = − − −( , , , )1 1 1 1 , νi  is the vector of anisotropy

with the norm ν ν ν= =( )g ij
i j

1 2 1 . In the case of the

formula (31) we have ν = ( , , , )1 0 0 0 .

Trajectories of free motion of objects are geodesic
lines in a Finsler space with the interval (32). When the
inequalities are satisfied

g dx dx dxij
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we can obtain the following expansion
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It follows from (34) that in the first approximation we
have a pseudo-Euclidean space of the special relativity.
Analogous calculations can be carried out for the case
α = −1 . In the first approximation we get Euclidean space
with the metric (8).

Conclusions

Thus, the dynamic approach and analysis of the expres-
sion for the total energy (1) yield the flat Riemann and
anisotropic flat Finsler geometry in the case of geometri-
zation. Experimental investigation of the spectra of pri-
mary cosmic-ray protons of superhigh energy require the
assumption that the Lorentz transformations (6) are not
satisfied at ( )1 2 2 1 2− −v c ~ 5 1010⋅  (Bogoslovsky 1977).

Finsler geometry was suggested with the interval

ds
dx

g dx dx
g dx dx

i
i

ij
i j

r

ij
i j2

2

=
L

N
MM

O

Q
PP

νc h
( ) , (35)

where νi  is a vector of anisotropy with the norm

ν ν ν= =( )g ij
i j

1 2 0 . At r → 0  we have the pseudo-

Euclidean space of special relativity. A generalization of
(35) to the case of nonstandard clock timing according to
Reichenbach-Grünbaum (Reichenbach 1958, Grünbaum
1973) is given in earlier work by the author (Zaripov 1992).

Different kinds of Finsler spaces show anisotropy (see,
for example, Asanov 1979, Pimenov 1987, Rund 1959). The
following analysis favours the expression (32). We con-
sider accelerated motion in a gravitational field, as dis-
cussed by Einstein (1907). Let an object fall in the gravita-
tional field of another object. We then have
( )v c c2 2 22= Φ , where Φ  is a gravitational potential.

The effect of a gravitational force on time is described,
according to (31), by the relation

t e c= τ 
Φ

2 (36)
The formula (36) was first presented by Einstein (1907)
and has not been used since. In the above paper only the
approximation value was used

t
c

= +F
HG

I
KJτ 1 2

Φ
, (37)

which further led to the Riemann approach to the gravita-
tion theory. The relation (36) follows from the Finsler
approach to gravitation theory with the interval (32) at
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g c00
21= −( )Φ , ν0 1= , dx dy dz= = == = =ν ν1 2

ν3 0= . In the general case it is necessary to consider a
curved anisotropic Finsler space with the fields g xij ( )  and

ν i x( ) . This is an interesting and separate problem.

In conclusion we note that the experimental determi-
nation of the effect of a gravitational force on a clock
moving according to the formulae (36) and (37) will en-
able us to determine which kind of geometry should be
considered.
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