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1. Introduction

Computational cognitive neuroscience lies at the intersection of computational 
neuroscience, which aims to describe structures and processes in the brain through 
computational modeling and mathematical analysis, and cognitive neuroscience, which aims
to explain behavior and cognition through the identification and description of neural 
mechanisms. Computational cognitive neuroscience invokes the descriptive tools of the 
former to achieve the explanatory aims of the latter: Computational models and 
mathematical analyses are used to identify and describe not just any structures and 
processes in the brain, but just those structures and processes that constitute the 
mechanisms of behavior and cognition.

Like investigators in other branches of neuroscience, computational cognitive 
neuroscientists rely on neuroscientific measurement techniques such as single-cell 
recording, functional magnetic resonance imaging (fMRI), and electroencephalography 
(EEG). Much more so than their colleagues in other branches of the discipline, however, 
computational cognitive neuroscientists additionally invoke formal methods developed in 
theoretical disciplines such as artificial intelligence, machine learning, statistics, 
mathematical physics, and the science of complex systems. These formal methods 
contribute to the aims of computational cognitive neuroscience in at least two ways. For 
one, they allow researchers to describe mechanisms not merely as consisting of certain 
neural structures and processes, but also as possessing particular computational, dynamical,
and/or topological properties. For another, these formal methods facilitate the task of 
discovering such mechanisms in the first place. For example, if an algorithm is known to be 
particularly effective for simulating behavior and cognition on a computer, it may inspire 
computational cognitive neuroscientists to look for implementations of similar algorithms in
the brain.

This chapter provides a methodological overview of computational cognitive 
neuroscience, centering on a distinction between two widely-used research strategies. On 
the one hand, top-down (or “reverse-engineering”) strategies are used to infer, from formal 
characterizations of behavior and cognition, the function and structure of neural 
mechanisms. On the other hand, bottom-up strategies are used to identify and describe 
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neural mechanisms and their formal properties, and to reconstruct their contributions to 
specific kinds of behavior and cognition. Although both research strategies simultaneously 
rely on neuroscientific measurement techniques and formal methods, they do so in 
markedly different ways. Moreover, both strategies can be used to understand cognitive 
systems at several different levels of analysis (Marr 1982), and to thereby deliver 
mechanistic explanations of these systems’ behavioral and cognitive capacities (Bechtel 
2008; Craver 2007; Zednik 2017).1

In what follows, the top-down and bottom-up research strategies will be contrasted 
through a series of examples. These examples also illustrate the diversity of formal methods 
being used, including methods to approximate Bayesian inference, methods to characterize 
stochastic processes, artificial neural network models, and analytic techniques from graph 
theory, dynamical systems theory, and information theory. Each example shows how 
computational cognitive neuroscientists go about discovering and describing the 
mechanisms responsible for specific behavioral and cognitive phenomena. At the same 
time, these examples reveal the characteristic limitations of the top-down and bottom-up 
strategies. Ultimately, explanatory success in computational cognitive neuroscience may in 
fact require a bidirectional approach.

2. Starting with behavior: Top-down strategies

One of the most widespread research strategies in computational cognitive neuroscience is 
a top-down (or “reverse-engineering”) strategy inspired by David Marr’s influential work on 
visual perception (Marr 1982). Marr sought to understand the visual system by analyzing it 
at three distinct levels of analysis (see also Chapter 15). At the computational level of 
analysis, he sought to answer questions about what the system is doing and why it is doing 
it. These questions are answered by specifying a mathematical function that describes the 
system’s behavior, and by determining the extent to which this function reflects a relevant 
property or regularity in the environment (Shagrir 2010). At the algorithmic level, Marr 
considered questions about how the system does what it does. These questions can be 
answered by specifying the individual steps of an algorithm for computing or approximating 
the mathematical function that describes the cognitive system’s behavior. Finally, at the 
implementational level of analysis, Marr was concerned with questions about where in the 
brain the relevant algorithms are actually realized, by identifying individual steps of an 
algorithm with the activity of particular neural structures. By analyzing the visual system at 
all three levels of analysis, Marr sought to simultaneously describe the physical and 

1 It will be assumed that (many) computational cognitive neuroscientists aim to deliver mechanistic 
explanations in the sense recently explored in the philosophy of neuroscience (Bechtel 2008; Craver 2007),
and that the use of formal methods is in no way antithetical to this aim (see also Bechtel and Shagrir 2015; 
Piccinini and Craver 2011; Zednik 2017).
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computational properties of the mechanism responsible for visual perception (see also 
Bechtel and Shagrir 2015; Piccinini and Craver 2011; Zednik 2017).

Although Marr deemed all three levels critical for the purposes of “completely 
understanding” a cognitive system (Marr 1982, 4), he argued that the best way to develop 
such an understanding would be to begin by answering questions at the computational level
and to work downwards:

“Although algorithms and mechanisms are empirically more accessible, it is the top 
level, the level of computational theory, which is critically important from an 
information-processing point of view. The reason for this is that [...] an algorithm is 
likely to be understood more readily by understanding the nature of the problem 
being solved than by understanding the mechanism (and the hardware) in which it is 
embodied.” (Marr 1982, 27; see also Dennett 1994)

Thus, Marr’s top-down strategy involves using answers already available at higher levels of 
analysis to constrain the answers that have might be given to questions at lower levels  
(Zednik and Jäkel 2016). In other words, reverse-engineering is a matter of inferring the 
function and structure of mechanisms from (among others) prior characterizations of the 
behavioral and cognitive phenomena for which they are deemed responsible.2

Many past and present research efforts in computational cognitive neuroscience 
pursue this kind of reverse-engineering strategy. To this end, they often take as their 
starting point characterizations of behavior and cognition previously developed in 
disciplines such as cognitive psychology and psychophysics. Frequently, these 
characterizations take the form of statistical models of behavioral data. For example, the 
investigation of perceptual decision-making introduced below aims to uncover the neural 
mechanisms responsible for the characteristic shape of response-time distributions in 
human subjects (Cao et al. 2016). Similarly, the studies of human categorization reviewed 
later in this section begin with a model in which the explanandum phenomenon is 
characterized as a form of Bayesian probabilistic inference (Anderson 1991b; Sanborn, 
Griffiths, and Navarro 2010). That said, computational-level characterizations of behavior 
and cognition need not be statistical; many reverse-engineers in computational cognitive 
neuroscience begin with characterizations of behavior and cognition as forms of 
information-processing, in which inputs are deterministically transformed into outputs (e.g. 
Marr and Hildreth 1980), or as dynamical trajectories through a multidimensional state-
space with characteristic regions of stability and instability.

2 This top-down inference need not be completely unconstrained by low-level considerations, of course. 
Indeed, Marr himself often appealed to extant knowledge of neurological structures in addition to 
computational-level considerations. Nevertheless, as Marr’s own words illustrate, it is characteristic of the 
top-down approach that the latter be weighted more heavily than the former.
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Investigators often have a choice to make about how to describe an explanandum 
phenomenon at the computational level. For example, an agent’s reaching behavior might 
be characterized probabilistically, as the likelihood of reaching toward a particular target, 
but also dynamically, as a continuous trajectory through space and time. Such descriptive 
choices are not without consequence; the particular way in which a phenomenon is 
described can have a profound effect on the mechanisms that are likely to be discovered. 
This is because, given a formal characterization of the explanandum phenomenon at the 
computational level, the top-down strategy proceeds by identifying one or more algorithms 
with which to compute or approximate the mathematical function used in that 
characterization. Algorithms may be viewed as descriptions of the functional processes that 
contribute to a cognitive system’s behavior: The component operations and functional 
organization of the mechanism responsible for that behavior (Zednik 2017). Unfortunately, 
the identification of algorithms is often hampered by a considerable degree of uncertainty: 
Many different algorithms serve to compute or approximate any particular mathematical 
function, and investigators are tasked with identifying the algorithm that is actually used by 
the relevant cognitive system, from among many possible algorithms that it might possibly 
use (Piccinini and Craver 2011). In order to deal with this kind of uncertainty, many 
advocates of the top-down approach deploy heuristics to constrain the search space of 
possible alternatives (Simon 1998; Zednik and Jäkel 2016). Although fallible—the chosen 
heuristic might highlight an algorithm that is not actually implemented by the target system
—these heuristics are instrumental for the purposes of efficiently formulating testable 
hypotheses at the algorithmic level of analysis.

One intuitive heuristic for formulating testable hypotheses at the algorithmic level is 
the mirroring heuristic. This heuristic is deployed whenever investigators assume that 
functional processes in the brain exhibit the same mathematical structure as the 
explanandum phenomenon under a particular formal characterization. The use of this 
heuristic ensures that the particular mathematical formalism that is invoked at the 
computational level has a direct influence on the hypotheses that will actually be considered
at the algorithmic level. Perhaps the clearest recent example of the mirroring heuristic at 
work can be observed in recent efforts to motivate the Bayesian coding hypothesis (Knill and
Pouget 2004; Ma et al. 2006). Motivated by characterizations of behavior and cognition as 
forms of optimal probabilistic inference—in which sensory evidence is combined with prior 
beliefs in accordance with Bayes’ rule (Anderson 1991a; Oaksford and Chater 2001)—
proponents of this hypothesis argue that neural mechanisms themselves implement 
probability distributions, and compute over them using (close approximations of) Bayes’ 
rule (see also Colombo and Hartmann 2015; Zednik and Jäkel 2014).

Although the mirroring heuristic may be intuitive and easy to deploy, it is also 
potentially misleading. As has already been stated above, many different algorithms serve 
to compute or approximate any particular mathematical function. Thus, there is no reason 
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to believe, from behavioral evidence alone, that the brain actually implements just the one 
algorithm that most accurately reflects the mathematical structure of the phenomenon 
being explained (see also Maloney and Mamassian 2009). Moreover, in some cases the 
mathematical characterizations used at the computational level are such that the mirroring 
heuristic would yield algorithms that are psychologically or biologically implausible. For 
example, it is well-known that the generic algorithm for solving problems of optimal 
probabilistic inference via Bayes’ rule is, in general, computationally intractable (Kwisthout, 
Wareham, and van Rooij 2011). For this reason, the explanatory success of the top-down 
strategy is likely to depend on the use of heuristics more nuanced than mirroring.

One such heuristic may be the tools-to-theories heuristic (Gigerenzer 1991). This 
heuristic is deployed whenever investigators assume that the algorithms implemented in 
the brain resemble an instrument, tool, or analytic technique that has previously been used 
to measure, study, or describe the behavioral or cognitive phenomenon being investigated. 
Notably, researchers in theoretical disciplines such as computer science, artificial 
intelligence, machine learning, and statistics have over time compiled a large portfolio of 
algorithms with which to compute or approximate many different mathematical functions in
particularly efficient and/or reliable ways. Insofar as some of these functions resemble the 
ones that have been used to characterize behavior and cognition at the computational level,
the tools-to-theories heuristic allows computational cognitive neuroscientists to exploit this 
portfolio for explanatory gains. As Griffiths et al. have remarked, “the best algorithms for 
approximating probabilistic inference in computer science and statistics” may be used as 
“candidate models of cognitive and neural processes” (Griffiths, Vul, and Sanborn 2012, 
264).

Consider a recent example, also from the recently-prominent Bayesian approach. 
Sanborn et al. (2010) advance the hypothesis that the mechanisms for categorization as 
described by Anderson (1991b) implement a particle filtering algorithm—a kind of Monte 
Carlo sampling that has been developed in machine learning to approximate optimal 
Bayesian inference. To this end, Sanborn et al. evaluate the performance of this algorithm 
relative to two alternatives: Gibbs sampling and Anderson’s own iterative algorithm. Like 
particle filtering, these alternatives are also co-opted from applications in machine learning 
and artificial intelligence. Unlike particle filtering, however, Sanborn et al. demonstrate that 
these alternatives do not produce the kinds of order effects that are typically observed in 
human behavior. Therefore, they postulate that the particle-filtering algorithm is more likely
than the two alternatives to correctly describe the operations of the mechanism for human 
categorization.

The tools-to-theories heuristic has also been used within a broadly dynamical 
approach. In a recent study on bistable perception, Cao et al. (2016) evaluate the relative 
merit of four different stochastic processes for explaining the characteristic “reversals”—
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spontaneous changes in the percept—that occur when human subjects encounter 
ambiguous stimuli such as the Necker cube. Each one of the Poisson, Wiener, Ornstein-
Uhlenbeck and generalized Ehrenfest processes (for a review see Cox and Miller 1977) are 
mathematical models previously used in disciplines such as statistical mechanics and 
telecommunications to predict e.g. the emission of particles from a radioactive source and 
the arrival of calls at a telephone exchange. In computational cognitive neuroscience, Cao et
al. show that a generalized Ehrenfest process, unlike the others, reproduces the kind of 
short-tailed and scale-invariant distribution of reversals that is typically observed in human 
behavior. Thus, by starting from a detailed characterization of the relevant behavioral 
dynamics, and evaluating the relative ability of four well-understood stochastic processes to 
reproduce these dynamics, Cao et al. invoke the tools-to-theories heuristic to advance a 
testable algorithmic-level hypothesis, viz. that the neural structures involved in bistable 
perception implement a generalized Ehrenfest process.

In a reverse-engineering context, the mirroring and tools-to-theories heuristics are 
used to descend from the computational to the algorithmic level of analysis. But given a 
particular algorithm, investigators still face a question about how that algorithm is 
implemented in the brain. Answering this question is a matter of identifying the steps of the
algorithm with the activity of specific neural structures in the brain, so as to answer a 
question about where in the brain the relevant functional processes are carried out (Bechtel
and Richardson 1993; Zednik 2017). Sometimes, this kind of identification proceeds quite 
directly, by invoking neuroscientific measurement techniques such as single-cell recordings 
or fMRI to identify neural structures that exhibit patterns of activity that can be correlated 
with the ones posited by the algorithm. For example, in one particularly influential study of 
perceptual decision-making, Newsome et al. (1989) show that psychophysical judgments by 
macaque monkeys in a random-dot motion-detection task are well-correlated with 
concurrent single-cell recordings in area MT, and for this reason conclude that single MT-
neurons themselves perform a kind of signal detection. More recently, proponents of the 
Bayesian coding hypothesis have sought to identify the location of probabilistic 
representations in the brain via fMRI imaging (see e.g. Vilares et al. 2012).

In many other cases, however, answering a question at the implementational level 
involves a considerable degree of speculation. Indeed, making an educated guess about 
which structure in the brain might implement a particular algorithm is perhaps the most 
common way in which proponents of the top-down strategy formulate testable hypotheses 
about where in the brain a particular process is carried out. Consider, for example, Marr & 
Hildreth’s (1980) discussion of visual edge-detection, in which they speculate how the 
detection of “zero-crossings” might be implemented in area LGN:

“if an on-centre geniculate cell is active at location P and an off-centre cell is active 
at nearby location Q, then then the value of Δ2G*I passes through zero between P 
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and Q. Hence, by combining the signals from P and Q through a logical AND-
operation, one can construct an operator for detecting when a zero-crossing 
segment (at some unknown orientation) passes between P and Q. By adding 
nonlinear AND-operations in the longitudinal direction, one can, in a similar way, 
construct an operator that detects oriented zero-crossing segments.” (Marr and 
Hildreth 1980, 208–9)

Notably, Marr & Hildreth’s appeal to AND-operations being implemented by geniculate cells
is entirely speculative, being motivated by considerations of how the brain might detect 
zero-crossings rather than by actual knowledge of LGN. In a similarly speculative way, 
Pouget et al. (2013) outline several different ways in which the brain might represent 
probability distributions so as to underwrite the Bayesian coding hypothesis: The firing rate 
of a single neuron could directly code log-probabilities; a population of neurons with 
differing tuning curves may code a probability distribution by a basis function expansion; or 
the activity of pools of neurons might represent samples from a distribution. Finally, in the 
context of bistable perception, Cao et al. (2016) suggest that the neural units most suited 
for implementing a generalized Ehrenfest process may be those that are assembled into so-
called attractor networks, which are known to exist, but whose actual contribution to 
behavior and cognition remains unclear (Amit 1995).

These examples show that, whereas proponents of the top-down approach in 
computational cognitive neuroscience have recourse to a wide array of algorithms with 
which to compute a particular function, they tend to be quite limited in their knowledge of 
how these algorithms are actually implemented in the brain. On the one hand, this 
observation gives credence to Marr’s original suggestion that it is often easier to model an 
algorithm by considering what cognitive systems do, than by reflecting on the neural 
structures in which those algorithms are likely to be implemented. Indeed, as statistics, 
computer science, artificial intelligence, machine learning, and other theoretical disciplines 
provide an increasingly detailed understanding of the relative efficiency and degree of 
optimality of different algorithms, it seems likely that these disciplines’ influence on the 
course of neuroscientific research will continue to grow. On the other hand, the examples 
reviewed here also show why the top-down approach may ultimately prove unsatisfying: 
Although it has become relatively easy to formulate algorithmic-level hypotheses for a wide 
variety of phenomena, it remains difficult to know which of these hypotheses are actually 
true. It is in order to avoid this difficulty that, rather than begin with behavior and work their
way down, many computational cognitive neuroscientists instead begin with the brain and 
work their way up.

3. Starting with the brain: Bottom-up strategies
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When Marr professed the benefits of the reverse-engineering approach, he could not have 
predicted the degree to which technological advances would eventually transform the 
bottom-up strategy into a viable alternative. Rather than infer the function and structure of 
neural mechanisms from characterizations of the phenomena being explained, bottom-up 
strategies in computational cognitive neuroscience aim to explain these phenomena by 
reproducing them in models and simulations that incorporate functional and structural 
details from several levels of brain organization.3 As such, these strategies rely on single-cell-
recording, fMRI imaging, EEG and other neuroscientific measurement techniques that 
provide insight into the behavior, composition and organization of mechanisms at the level 
of individual neurons, neural populations, and/or cortical columns and regions. Moreover, 
they invoke computational modeling methods and methods of mathematical analysis to 
illuminate the relevant mechanisms’ statistical, dynamical, topological, and/or 
computational properties. Insofar as these techniques and methods can be used to discover 
and describe mechanisms, and to show how these mechanisms give rise to specific 
behavioral and cognitive phenomena, they yield mechanistic explanations of these 
phenomena (Bechtel 2008; Craver 2007).

Because the bottom-up strategy is driven by the insights provided by neuroscientific 
measurement techniques, this strategy tends to be most effective when the relevant 
techniques are most reliable. Among the most reliable measurement techniques is the 
single-cell recording, a measure of electrical activity at the level of individual nerve cells. At 
least since the 1950s, neuroscientists have appealed to the activity of single cells to explain 
the behavioral and cognitive capacities of whole organisms. This approach has been 
particularly influential in the domain of visual perception, in which feature detector cells 
have been discovered whose activity correlates with specific environmental features such as
moving edges (Lettvin et al. 1959), oriented bars (Hubel and Wiesel 1959), and (famously) 
bugs (Barlow 1953). Motivated by these results, Horace Barlow advanced a single neuron 
doctrine, according to which the computational capacities of individual nerve cells suffice to 
explain an organism’s perceptual abilities: “The subtlety and sensitivity of perception results
from the mechanisms determining when a single cell becomes active, rather than from 
complex combinatorial rules of usage of nerve cells” (Barlow 1972, 371).

Barlow’s doctrine resonates even today. In an example briefly introduced above, 
Newsome et al. (1989) have found that recordings of individual MT neurons predict the 
performance of macaque monkeys in a random-dot motion-detection task. Motivated by 
this finding, the authors hypothesize that individual MT neurons solve the very same kind of 

3 Levels of organization should not be confused with levels of analysis. Whereas the former are individuated 
by the kinds of questions an investigator might ask about a particular cognitive system, the latter are 
individuated by constitution-relations within a mechanism (Bechtel 2008; Craver 2007). Insofar as many 
mechanisms are hierarchical it is often profitable to apply each one of the three levels of analysis at any 
single level of organization.
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signal-detection task that is solved by the monkey as a whole. Although it may be 
questioned whether correlations between the activity of single cells and the behavior of 
whole organisms are really all that significant (Stüttgen, Schwarz, and Jäkel 2011), such 
correlations are still frequently appealed to in the context of the bottom-up approach in 
computational cognitive neuroscience: Investigators attempt to explain the behavior of 
whole organisms by showing how that behavior can be reproduced by mechanisms at the 
level of individual neurons.

That said, it is fair to question whether the computational capacities of individual 
neurons suffice to explain behavioral and cognitive phenomena in general. Indeed, it is now 
a commonplace to assume that performance in a wide variety of tasks—especially tasks 
further removed from the sensorimotor periphery such as planning, reasoning, language 
learning, and attention—requires the computational capacities of neural networks (Yuste 
2015). Neural networks took center stage in computational cognitive neuroscience with the 
development of sophisticated connectionist modeling methods in cognitive science, in which
networks of artificial “neural” units, arranged in layers and interconnected with weighted 
“synaptic” connections, are used to replicate various behavioral and cognitive capacities 
(see also Chapters 5 and 8). Of course, early connectionists stressed the fact that their 
models were highly idealized, and that they should for this reason be considered “neurally 
inspired” rather than biologically plausible (Thorpe and Imbert 1989). Nevertheless, many 
computational cognitive neuroscientists today rely on connectionist models that 
incorporate an ever-increasing degree of biological realism4, thus allowing them to view 
these models as plausible descriptions of the mechanisms responsible for specific behavioral
and cognitive phenomena.

Consider a recent attempt to explain C. elegans klinotaxis, a form of goal-directed 
locomotion in which the nematode worm approaches a chemical source by way of a regular 
oscillatory motion. Beginning with a complete description of the connectome—a graphical 
representation of the C. elegans nervous system at the level of individual neurons (White et 
al. 1986)—Izquierdo & Beer (2013) derive a minimal network that includes only those 
chemosensory, motor, and inter-neurons that, due to graph-theoretical considerations, are 
deemed most likely to contribute to the production of klinotaxis. By inserting the minimal 
network into a simulated C. elegans body model, and in turn situating that body model 
within a simulated environment (see also Izquierdo and Lockery 2010), Izquierdo & Beer 
artificially evolve network parameters suitable for the production of reliable and efficient 
klinotaxis. By comparing the klinotaxis produced in simulation to the klinotaxis produced in 

4 Many, but not all. Motivated in no small part by the finding that connectionist models with highly idealized
and simplified “neural” units and connections are universal function approximators (Hornik 1991), these 
models have become widespread in engineering disciplines such as artificial intelligence and machine 
learning (see e.g. Schmidhuber 2014). Investigators working in these disciplines traditionally value 
computing power, efficiency, and optimality over biological realism.
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the real world, Izquierdo & Beer advance the hypothesis that the minimal network is 
“appropriate for the generation of testable predictions concerning how the biological 
network functions” (Izquierdo and Beer 2013, 5). Indeed, in a subsequent study, Izquierdo, 
Williams and Beer (2015), propose that some of the interneurons in the minimal network 
constitute “informational gates” through which chemosensory information is allowed to 
flow and thereby influence motor neuron activity, but only at specific moments in time. This
“informational gating” is postulated to be a crucial feature of the mechanism for the 
oscillatory nature of C. elegans klinotaxis not only in simulation, but also in the real world 
(for discussion see also Zednik, in press).

Of course, it is unclear whether Izquierdo and colleagues’ approach will eventually 
scale up; investigators are still a long way away from having a comparable model of the 
human connectome (but cf. Sporns 2012). Nevertheless, computational cognitive 
neuroscientists have made great progress in adding biological detail to many different 
connectionist models. For example, rather than deploy networks whose units exhibit a 
sigmoidal activation function, many investigators today deploy networks of spiking units 
which exhibit time-varying response profiles reminiscent of biological neurons (Maass 
1997). Moreover, many others deploy networks whose weights are determined by learning 
algorithms more biologically plausible than the backprogation algorithm developed in the 
1980s (see also Chapter 5). Finally, reminiscent of the aforementioned work on C. elegans 
klinotaxis, some investigators no longer model generic neural network mechanisms, but 
rather aim to describe specific networks in well-defined areas of the brain (e.g. the 
hippocampus: Gluck and Myers 1997). In general, insofar as connectionist models can be 
used to reproduce specific behavioral or cognitive capacities while incorporating an ever-
increasing degree of biological realism, they deliver plausible mechanistic explanations of 
these capacities.

Connectionist models are traditionally viewed as describing networks of 
interconnected neurons. A different family of network models aims to describe networks of 
interconnected columns and regions, distributed across the brain as a whole (Sporns 2011). 
Like other bottom-up approaches in computational cognitive neuroscience, the 
development of network models of this kind is grounded in knowledge of biological reality. 
Unfortunately, at this high level of brain organization, there is considerable disagreement 
about the reliability and informativeness of the measurement techniques that are used to 
acquire such knowledge. For example, there is still no agreed-upon method of individuating 
brain regions; investigators rely on a variety of parcellation schemes with which to identify 
individual network elements. Whereas some of these schemes may be quite principled—as 
when network elements are identified with Brodmann areas, themselves individuated on 
the basis of cytoarchitectural principles—other schemes are quite pragmatic, such as when 
network elements are identified with the location of electrodes in EEG recordings or with 
voxels in fMRI data. Similarly, investigators also rely on a variety of connectivity schemes for 
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determining the extent to which any two network elements are connected. Whereas the 
elements of structural networks are connected anatomically, the elements of so-called 
functional networks have activity that is connected statistically, i.e. that is correlated over 
time. Most intriguingly, perhaps, the connections of effective networks correspond to the 
presumed causal interactions between network elements (Friston 2011), often 
operationalized in terms of information-theoretic measures such as Granger causality. Not 
surprisingly, the use of such a wide variety of parcellation and connectivity schemes has led 
to the proliferation of whole-brain network models, with little certainty about how these 
models actually contribute toward specific explanatory goals (Craver 2016; Miłkowski 2016; 
Zednik, in press). Thus, although bottom-up strategies at the level of the brain as a whole 
are grounded in an abundance of neuroscientific measurement data, it remains unclear to 
what extent this data constitutes genuine knowledge of the mechanisms responsible for 
behavior and cognition.

Although it remains unclear how this epistemological difficulty can be overcome, it is
nevertheless worth understanding the way neuroscientific measurement data at the level of
the brain as a whole can be analyzed using sophisticated mathematical and computational 
methods. These methods illuminate a particular network’s topological, dynamical, and/or 
informational properties, and may also reveal potential interdependencies between 
different kinds of properties. In particular, graphs are frequently used to model a brain 
network’s topology, and graph-theoretic techniques are used to identify the presence of e.g.
hub nodes, modules, and motifs (Bullmore and Sporns 2009). Moreover, the results of 
graph-theoretic analyses are increasingly deployed to constrain network models not unlike 
the connectionist models reviewed above. Although the units in these network models 
correspond to cortical columns or regions (or pragmatically-individuated fMRI voxels) rather
than to individual neurons, they can similarly be used to simulate the relevant network’s 
behavior, and to compare that behavior to the properties of a phenomenon of explanatory 
interest. This kind of comparison is greatly facilitated by information-theoretic measures 
that illuminate e.g. the flow of information through a network (Izquierdo, Williams, and 
Beer 2015), as well as by dynamical systems theoretic techniques that characterize e.g. 
patterns of rhythmic oscillation, stable states, and bifurcations in the activity of individual 
network elements and/or in the behavior of the network as a whole (Uhlhaas et al. 2009). 
Perhaps the most interesting studies of this kind combine the insights of several different 
analytic techniques, thereby revealing dependencies between e.g. a network’s topological 
properties and its behavioral dynamics (e.g. Pérez et al. 2011), or between its dynamical and
informational properties (Beer and Williams 2015). Provided that computational cognitive 
neuroscientists are eventually able to overcome the epistemological difficulties associated 
with the identification of large-scale network mechanisms, these analyses of networks’ 
formal properties are likely to deliver a detailed understanding of the way a network 
mechanism’s behavior depends on its composition and organization. That is, they are poised
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to show how such mechanisms give rise to specific behavioral and cognitive phenomena 
(Craver 2016; Zednik 2014).

In general, these examples show that, no matter the level of brain organization, 
bottom-up strategies in computational cognitive neuroscience depend on the reliability and 
informativeness of neuroscientific measurement techniques, as well as on the descriptive 
power of computational modeling methods and methods of mathematical analysis. Pace 
Marr’s concerns about the viability of the bottom-up approach, these techniques and 
methods render the bottom-up approach increasingly useful for uncovering the mechanisms
for behavior and cognition. Indeed, insofar as they are grounded in knowledge of biological 
reality, bottom-up strategies are likely to be far more constrained than the top-down 
strategies discussed above. At the same time, bottom-up strategies have at least two 
characteristic limitations of their own.

For one, although bottom-up strategies are often more constrained than top-down 
alternatives, the descriptive power of the relevant mathematical and computational models 
still frequently exceeds the available knowledge of biological reality. This problem was 
widely acknowledged in the early days of the connectionist research program, but seems to 
have been mostly overcome due to the newfound ability to incorporate greater biological 
detail. That said, the same problem has once again come to the fore at the level of the brain 
as a whole. As illustrated by the lack of consensus about how to individuate the elements 
and connections of whole-brain networks, it has become relatively easy to identify and 
represent networks in the brain, but comparatively difficult to know which (aspects) of 
these networks should actually be cited in explanations of specific behavioral and cognitive 
phenomena. Indeed, commentators sometimes question the explanatory import of 
structural network modeling initiatives to map the C. elegans connectome, and Craver 
(2016) has recently denied that functional networks of pragmatically-individuated fMRI 
voxels should be viewed as explanations at all. Although these outright dismissals seem 
exaggerated—structural and functional network models might represent certain aspects of 
a mechanism, even if they do not represent the mechanism as a whole (Hochstein 2016; 
Zednik, in press)—bottom-up approaches in computational cognitive neuroscience are likely
to properly get off the ground only when they are rooted in reliable knowledge of 
neurobiological reality.

For another, our ability to uncover neurobiological detail, and our ability to model 
that detail on a computer, may also often outstrip our ability to understand the mechanisms
whose details are being modeled. Especially at the level of the brain as a whole, it is possible
that computational models of network mechanisms remain opaque (Dudai and Evers 2014). 
That is, these models may be no more easily analyzed and understood than the relevant 
mechanisms themselves. Although it remains unclear to what extent a model’s intelligibility 
is related to its capacity to explain, this harks back to Marr’s original suggestion that it may 
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be easier to identify the computational workings of the brain by considering what it does, 
than by describing what it is made of. Of course, as the preceding examples show, bottom-
up approaches do not only rely on computational models, but also invoke sophisticated 
mathematical techniques to analyze the dynamical, topological, and informational 
properties of the mechanisms being modeled. It remains to be seen whether these 
techniques are sufficiently illuminating to reveal the inner workings of even the most 
complex and large-scale brain mechanisms (see also Zednik 2015).

4. Conclusion: Toward a bidirectional approach?

Many research efforts in computational cognitive neuroscience can be viewed as instances 
of either the top-down or the bottom-up research strategy. Top-down (or reverse-
engineering) strategies aim to infer the function and structure of neural mechanisms from 
prior descriptions of behavior and cognition. In contrast, bottom-up strategies seek to 
reproduce behavioral and cognitive phenomena in computational models that are grounded
in knowledge of biological reality. Both strategies have distinct advantages, but also 
characteristic limitations. Whereas top-down strategies have recourse to a plethora of 
mathematical formalisms and computational algorithms co-opted from disciplines such as 
artificial intelligence, machine learning, and statistics, they still regularly bottom out in 
speculative proposals about how such algorithms might actually be implemented in the 
brain. In contrast, because bottom-up strategies take as their starting point actual 
neuroscientific measurement data, they are not similarly limited by this kind of speculation. 
Nevertheless, these strategies are often limited by insufficiently informative empirical data
—especially at the level of the brain as a whole—and by computational models that may be 
no easier to understand than the mechanisms they are supposed to be models of.

In closing, it is worth considering the possibility that the characteristic limitations of 
the top-down and bottom-up strategies might eventually be overcome by adopting 
something akin to a bidirectional approach. Indeed, practicing scientists are not beholden to
conceptual distinctions, and are free to adopt aspects of both research strategies 
simultaneously. In fact, many investigators do so already. For example, when proponents of 
reverse-engineering speculate about the possible neural implementations of a particular 
algorithm, they do not do so in a vacuum, but actually rely on what they already know about
neurobiological reality to constrain their own speculative proposals. As the available 
knowledge of neural mechanisms increases, the frequency of unconstrained speculation in 
the context of the top-down approach decreases.

In a similar way, top-down considerations may enable researchers to overcome 
some of the characteristic limitations of the bottom-up approach. Theoretical disciplines 
such as artificial intelligence, machine learning and statistics have not only developed a 
large portfolio of algorithms to be used as testable hypotheses, but have also developed 
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sophisticated methods of mathematical analysis to understand how such algorithms actually
work. For example, the popularity of deep learning networks in machine learning 
(Schmidhuber 2014) has led to the development of analytic tools that can be used to 
understand different levels of representational abstraction in hierarchical networks (e.g. 
Montavon, Braun, and Müller 2011). Although deep learning networks are generally 
considered biologically implausible because they, like early connectionist models, rely on 
backpropagation learning, it may be that some of the tools originally developed to 
understand the workings of deep learning networks can be co-opted to understand the 
computational capacities of hierarchical networks in the biological brain. In this way, a 
standard trick from the reverse-engineering toolbox—co-opting developments in theoretical
disciplines such as machine learning—may even allow proponents of the bottom-up 
approach to overcome characteristic limitations such as opacity. More generally, therefore, 
it may be that the most fruitful research strategy for explanatory success in computational 
cognitive neuroscience is a bidirectional one.
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