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DYNAMIC HYPERINTENSIONAL BELIEF REVISION
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Arché, University of St. Andrews

Abstract. Wepropose a dynamic hyperintensional logic of belief revision for non-omniscient
agents, reducing the logical omniscience phenomena affecting standard doxastic/epistemic logic
as well as AGM belief revision theory. Our agents don’t know all a priori truths; their belief
states are not closed under classical logical consequence; and their belief update policies are such
that logically or necessarily equivalent contents can lead to different revisions. We model both
plain and conditional belief, then focus on dynamic belief revision. The key idea we exploit to
achieve non-omniscience focuses on topic- or subject matter-sensitivity: a feature of belief states
which is gaining growing attention in the recent literature.

§1. Introduction: topicality and non-omniscience. We can have different attitudes
toward necessarily equivalent contents:

1. Bachelors are unmarried.
2. Barium has atomic number 56.

3. 2+2 = 4.
4. No three positive integers x, y, and z satisfy xn+yn = zn for integer value of n
greater than 2.

These sentences are (pairwise) intensionally equivalent: the contents they express
are true at the same possible worlds. However, one may believe, or come to believe,
the odd items only: one may, for instance, be fluent enough in English to grasp the
meaning of ‘bachelor’ while having little competence in chemistry. One may be on
top of enough basic arithmetic while having no clue on Diophantine equations and
their solvability in integers. Such phenomena suggest the topic-sensitivity of doxastic
states, a phenomenon that has recently attracted researchers’ attention (see [8, 52]):
we may (come to) believe different things given pieces of information true at the same
possible worlds, due to differences in what they talk about—their topic, or subject
matter.
It has long been known that our (propositional)mental states—believing, imagining,

supposing, hoping, fearing—can be sensitive to hyperintensional distinctions, treating
intensionally equivalent contents in different ways. We can think that equilateral
triangles are equiangular without thinking that manifolds are topological spaces (we
may just have never heard about topological notions). The two contents correspond to
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2 AYBÜKE ÖZGÜN AND FRANCESCO BERTO

the same proposition in standard possible worlds semantics. Only the former, however,
is about equilateral triangles, and made true by how they are.
Hyperintensionality is obviously connected to the issue of logical omniscience,

a cluster of closure conditions on knowledge and/or belief. Since Hintikka [22],
we’ve learned to model these as quantifiers over worlds, restricted by an accessibility
relation:

(H) Bϕ is true at world w iff ϕ is true at all w1, such that wRw1.

Focusing on belief: agents turn out to believe all logical (a priori) truths, all logical (a
priori) consequences of what they believe, and (given that R is serial) never to have
inconsistent beliefs. It is generally agreed [13, pp. 34–35], [30, p. 186] that this gives
an idealized notion of belief. It is at times suggested that one should read the ‘B’ in
(H), not as expressing belief, but rather some derivative attitude: ‘following logically
from what the agent believes’, or ‘from its total information’. A similar idealization is
found in AGM belief revision theory when interpreted as modeling an agent revising
beliefs in the light of new information. Among [1]’s postulates, (K*1) claims thatK ∗ϕ
(belief set K after revision by ϕ) is closed under full classical logical consequence;
(K*5), that, if ϕ is a logical inconsistency, then K ∗ϕ =K⊥, the trivial belief set; and
(K*6), that K ∗ϕ =K ∗ø for logically equivalent ϕ and ø. Our belief states, instead,
needn’t be closed under classical (perhaps under any monotonic: see [24]) logical
consequence relation; we don’t believe all things knowable a priori; nor do we believe
everything just by being exposed, aswe all occasionally are, to inconsistent information;
and it can be the case that we believe ϕ but don’t believe ø for logically equivalent
ϕ and ø.
The issue persists in epistemic/doxastic logics more sophisticated than the original

Hintikkan approach, which recapture AGM dynamically. Works such as [2, 6, 11, 27,
28, 34, 37, 44, 45] feature operators for conditional belief or (static) belief revision,
Bϕø (‘If the agent were to learn ϕ, they would come to believe that ø was the case’
[6, p. 12]), and for dynamic belief revision, [⇑ϕ]Bø (‘After revision by ϕ, the agent
believes that ø’), satisfying principles such as:

• From ϕ↔ ø infer Bϕ÷↔ Bø÷
• From ϕ↔ ø infer B÷ϕ↔ B÷ø
• From ϕ↔ ø infer [⇑ϕ]÷↔ [⇑ø]÷

Such operators are, thus, insensitive to hyperintensional differences. The issue
persists in approaches resorting to Scott–Montague neighborhood semantics [12, 32,
33]. These allow operators that defy most closure features: agents are not modeled as
believing all logical truths and all logical consequences of their beliefs. Such semantics
have thus been used to provide (dynamic) epistemic logics for realistic agents, e.g., [3],
and also to model allegedly logically anarchic notions such as imagination [50]. But
when ϕ and ø are logically or necessarily equivalent in that they have the same set of
worlds as their truth set, theywill inevitably have the sameneighborhoodandas a result,
belief in either will automatically entail belief in the other. So even neighborhood-based
approaches don’t deliver the desired hyperintensionality.
This paper aims at improving on the situation. We proceed as follows: in §2,

we introduce a basic theory of the topics or subject matters of propositional
contents. In §3 we put the theory to work, providing a language and logic for plain,
topic-sensitive hyperintensional belief, forwhichweprove soundness and completeness.
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DYNAMIC HYPERINTENSIONAL BELIEF REVISION 3

In §4 we model hyperintensional belief revision in two forms: conditional belief
and dynamic belief revision. Both notions turn out to be hyperintensional due to
their topic-sensitivity; we provide a sound and complete logic for the former, and
a reduction of the latter to the former via reduction principles. In §5, we conclude.
Since the technical details are not essential to the main philosophical arguments of the
paper, several of the longer proofs are omitted from the main body and collected in
appendices.

§2. Topics. Arguably, a topic-sensitive account of the content of (de dicto)
intentional states should flow from a general theory of propositional content. In
various works [7, 8, 9], we have developed a theory of such content in the vicinity
of Yablo [51]’s aboutness theory and Kit Fine [16]’s truthmaker semantics. Here’s a
short recap.
Treating propositional contents as sets of possible worlds gives too coarse-grained

an individuation of propositions: ‘2+2= 4’ and ‘Equilateral triangles are equiangular’
are true at the same worlds (all of them), but speak of different things: only one is
about equilateral triangles, and made true by how they are. So we need to supplement
truth conditions with an account of aboutness, ‘the relation that meaningful items bear
to whatever it is that they are on or of or that they address or concern’ [51, p. 1]: this
is their subject matter or topic. What a sentence is about can be properly included
in what another one is about. Contents, thus, can stand in mereological relations
[16, sec. 3–5, 51, sec. 2.3]: they can have other contents as their parts and can be
fused into wholes which inherit the proper features from the parts. The content of an
interpreted sentence is the thick proposition it expresses [51, sec. 3.3]. This has two
components: (i) intension and (ii) topic or subject matter. ϕ and ø express the same
thick proposition when (i) they are true at the same worlds, and (ii) they have the same
topic.
In theories of partial content [15, 16, 51], there is broad agreement that the truth-

functional logical connectives must be topic-transparent, i.e., they must add no subject
matter of their own. The topic of ¬ϕ must be the same as the topic of ϕ. ‘Jane is not a
lawyer’ must be just about what ‘Jane is a lawyer’ is about: it is hard to come up with a
discourse context where ‘Jane is a lawyer’ is on-topic, but ‘Jane is not a lawyer’ would
be off-topic, or vice versa.What subject matter might ‘Jane is not a lawyer’ add to ‘Jane
is a lawyer’? ‘Jane is not a lawyer’ may speak about Jane, Jane’s profession, what Jane
does and doesn’t do, but doesn’t speak about not. Similarly, the topic of ϕ ∧ø must
be the same as that of ϕ∨ø: a fusion of the topic of ϕ and that of ø. ‘Bob is tall and
handsome’ and ‘Bob is tall or handsome’ must both be about the same topic, namely
the height and looks of Bob; neither can be about and, or or.
This view grounds patterns of logical validities and invalidities applicable to

propositional attitudes. Believing that ϕ requires not only (i) having information or
evidence ruling out the non-ϕ worlds (pick your favourite evidence-based theory of
belief, see, e.g., [4, 6, 31, 38, 40, 41, 43]), but also (ii) grasping ϕ’s topic: what it is
about. A first work, [8], presented a topic-sensitive hyperintensional conditional belief
operator. This paper will deal not only with conditional belief, but also with plain
belief (see, e.g., [6]) and with full-fledged dynamic belief revision operators that work
as model-transformers, in the tradition of Dynamic Epistemic Logic [5, 38, 39, 45].
A topic will be assigned to the whole doxastic state of an agent, representing the subject
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matter they have grasped already, and a dynamic of topic-expansions will model how
a non-omniscient agent can come to master new subject matter.
Before we venture into formal work, a word on the sense in which the agents we

model are still logically idealized: they are computationally unbounded. As we will
see, they turn out not to believe all a priori truths, and not to treat logical or a
priori equivalents equally. Their beliefs are not closed under full, classical logical
consequence. Once they receive an amount of information and they are on top of
its topic, however, nothing stands in the way of their working out all the relevant
consequences. Computational time and space limits are one, and perhaps the most
compelling, source of non-omniscience for real, finite, and fallible agents. Modeling
them is difficult, for these seem to have vague boundaries: they are contingent on time,
memory size, psychological resources, attention, efficiency of the available algorithms,
etc.We do not rule out the possibility of capturing this source of non-omniscience using
Dynamic Epistemic Logic (work in this direction is already being carried out, e.g.,
[35, 36]). But this lies beyond the scope of the current paper.

§3. Plain hyperintensional belief. Learning does not only change the possible
worlds space, but—we argue, following Yalcin [52]—also affects the subject matters
the agent has grasped. Based on their current information, an agent can believe
propositions they are on top of qua subject matter and not propositions about topics
they have not grasped yet. We now propose a semantics for plain hyperintensional
belief based on this thought. We endow a standard plausibility model for belief with
a join semilattice, representing the mereological structure of topics together with the
subject matter of the whole doxastic state of a single agent.

3.1. Syntax and semantics. We have a countable set of propositional variables
Prop = {p1,p2, ...}. The language LPHB of plain hyperintensional belief is defined by
the grammar:

ϕ := pi | ⊤ | ¬ϕ | (ϕ∧ϕ) |✷ϕ | Bϕ

where pi ∈ Prop. We often use p,q,r, ... for propositional variables. We employ the
usual abbreviations for propositional connectives ∨, → , ↔ as ϕ ∨ø := ¬(¬ϕ ∧¬ø),
ϕ→ø := ¬ϕ∨ø, and ϕ↔ø := (ϕ→ø)∧ (ø→ ϕ); and for the duals✸ϕ := ¬✷¬ϕ
and B̂ϕ := ¬B¬ϕ. As for ⊥, we set ⊥ := ¬⊤. We will follow the usual rules for the
elimination of the parentheses.
For anyϕ ∈LPHB,Var(ϕ) denotes the set of propositional variables and⊤ occurring

in ϕ. In the metalanguage we use variables x,y,z (x1,x2, ...) ranging over elements of
Var(ϕ). Another abbreviation will matter in the following: we will use ‘ϕ’ to denote
the tautology

∧

x∈Var(ϕ)(x ∨¬x)1, following a similar idea in [18]. Do not confuse ϕ
with ⊤: they will turn out to be logically equivalent for all ϕ ∈ LPHB, but our belief

1 In order to have a unique definition of each ϕ, we set the convention that elements of
Var(ϕ) occur in

∧

x∈Var(ϕ)(x ∨¬x) from left-to-right in the order they are enumerated

in Prop = {p1,p2, ...}. If ⊤ ∈ Var(ϕ), take ⊤∨¬⊤ as the first conjunct. For example, for
ϕ :=✷(p3→ p2)∨Bp5,ϕ is (p2∨¬p2)∧(p3∨¬p3)∧(p5∨¬p5), and not (p5∨¬p5)∧(p3∨
¬p3)∧ (p2∨¬p2) or (p3∨¬p3)∧ (p5∨¬p5)∧ (p2∨¬p2) etc. For ø := B⊤∧✷(p1∧p3), ø
abbreviates (⊤∨¬⊤)∧ (p1∨¬p1)∧ (p3∨¬p3). This convention will eventually not matter
since our logics cannot differentiate two conjunctions of different order: ϕ∧ø provably and
semantically equivalent to ø∧ϕ.
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operator will discern them. What ⊤ means will become clearer when our semantics is
in, but youmay already read it as standing for the total propositional content the agent
is (already) on⊤op of, qua information and subject matter. We read Bϕ as ‘The agent
believes that ϕ’, ✷ϕ as a normal epistemic modality (analyticity, or a more generic a
priori modality).
The first component of the semantics deals with topicality:

Definition 1 (Doxastic Topic Model for LPHB). A doxastic topic model (dt-model) T
is a tuple 〈T,⊕ ,b,t〉 where

1. T is a nonempty set of possible topics;
2. ⊕ : T ×T → T is a binary idempotent, commutative, associative operation: topic
fusion. We assume unrestricted fusion, that is, ⊕ is always defined on T: ∀a,b ∈
T ∃c ∈ T (c = a⊕b);

3. b ∈ T is a designated topic, the topic of the agent’s belief state representing the
totality of subject matter the agent has grasped already;

4. t : Prop∪{⊤}→ T is a topic function assigning a topic to each element in Prop∪
{⊤}, such that t(⊤) = b. t extends to the whole LPHB by taking the topic of a
sentence ϕ as the fusion of the elements in Var(ϕ):

t(ϕ) =⊕Var(ϕ) = t(x1)⊕···⊕ t(xk)

where Var(ϕ) = {x1, ...,xk}.

In the metalanguage we use variables a,b,c (a1,a2, ...) ranging over possible topics.
We define topic parthood, denoted by ⊑, in a standard way as

∀a,b(a ⊑ b iff a⊕b = b).

Thus, (T,⊕) is a join semilattice and (T, ⊑) a poset. The strict topic parthood, denoted
by ⊏, is defined as usual as a ⊏ b iff a ⊑ b and b 6⊑ a. The topic of a complex sentence
ϕ, defined from its primitive components in Var(ϕ) (see Definition 1.4), makes all the
logical connectives and modal operators in LPHB topic-transparent:

• t(✷ϕ) = t(Bϕ) = t(¬ϕ) = t(ϕ);
• t(ϕ∧ø) = t(ϕ)⊕ t(ø).

Topic fusion and parthood capture the mereological conception of subject matters
sketched in §2. Topic-transparency has been advocated there for the truth-functional
connectives. It is less straightforward to motivate it for the modal operators ✷ and,
especially, B. The subject matter of Bϕ and that of ϕ don’t look quite the same:
‘John believes that Jane is a lawyer’ is about what John believes, ‘Jane is a lawyer’ is
not. We propose the following story. Call the set Var(ϕ) of propositional variables
and ⊤ occurring in a sentence ϕ its ontic component. Given ϕ, the assigned subject
matter t(ϕ) represents its ontic topic: the fusion of the topics of the elements in its
ontic component Var(ϕ). Now believing ϕ requires having grasped the topic of its
ontic component and having enough available information/evidence supporting it.
Once the agent has grasped the topic of ϕ, reasoning about Bϕ—their own doxastic
attitude toward the proposition expressed by ϕ—does not require grasping further
topics. However, it might require acquiring more information to support the agent’s
belief in ϕ. Our non-omniscient agent can grasp the subject matter of a belief sentence
about their own beliefs as long as they have mastered the subject matter of its ontic
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component. This idealization we can live with. Still, we have assigned a topic to ⊤
(what the agent is on ⊤op of), as t(⊤) = b, representing the subject matter the agent
has already grasped. This will play a role in the semantics of B.
The second component in our semantics is familiar:

Definition 2 (Standard Plausibility Frame). A standard plausibility frame S is a tuple
〈W, ≥〉, where

• W is a nonempty set of possible worlds;
• ≥:W ×W is a well-preorder, called the plausibility order. A well-preorder on W
is a reflexive and transitive binary relation such that every nonempty subset of
W has a minimal element, where the set of minimal elements Min≥(P) for any
P ⊆W is defined as

Min≥(P) = {w ∈ P : v ≥ w for all v ∈ P}.

v ≥w means ‘w is at least as plausible as v’. (Every well-preorder≥⊆W ×W is
a total order: either w ≥ v or v ≥ w for all w,v ∈W .)

Such ordering gives an arrangement of worlds, taken as epistemic scenarios, by the
degree towhich the agent finds themplausible asways things could be. Thus,Min≥(W )
represents the set of states the agent considers most plausible. Now we merge the two
components:

Definition 3 (Topic-sensitive plausibilitymodel forLPHB). Atopic sensitive plausibility
model (tsp-model) M is a tuple 〈W, ≥ ,T, ⊕ ,b,t,í〉 where 〈W, ≥〉 is a standard
plausibility frame, 〈T,⊕,b,t〉 is a dt-model forLPHB, and í :Prop→P(W ) is a valuation
function that maps every propositional variable in Prop to a set of worlds.

We define the satisfaction relation 
 recursively. The intension of ϕ with respect
toM is |ϕ|M := {w ∈W :M,w 
 ϕ}. We omit the subscriptM when the model is
contextually clear.

Definition 4 (
-Semantics forLPHB). Given a tsp-modelM= 〈W, ≥ ,T,⊕,b,t,í〉 and
a state w ∈W , the 
-semantics for LPHB is defined recursively as:

M,w 
⊤ iff always
M,w 
 p iff w ∈ í(p)
M,w 
 ¬ϕ iff notM,w 
 ϕ

M,w 
 ϕ∧ø iffM,w 
 ϕ andM,w 
 ø

M,w 
✷ϕ iffM,u 
 ϕ for all u ∈W
M,w 
 Bϕ iffMin≥(W )⊆ |ϕ| and t(ϕ)⊑ b.

When it is not the case thatM,w 
 ϕ, we simply writeM,w 6
 ϕ.
A priori truth, ✷, is truth at all worlds. Belief is topic-sensitive: in order for ‘Bϕ’ to

be true, two things must happen: (i) ϕ is true at all worlds in Min≥(W ) (the worlds
considered most plausible); (ii) the topic of ϕ is in b, i.e., the agent has grasped such
subject matter.2

2 Notice that neither of these requirements is state-dependent, therefore, the state of the world
has no effect on the agent’s beliefs. This is rather standard in single-agent belief logics based
on plausibility models as the possible worlds in w are taken to be epistemically possible ones
which cannot be distinguished with absolute certainty [6]. We could as well interpret ✷ as
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The standard plausibility models with the usual semantics for the language LPHB

are modally equivalent to the tsp-models when the set of possible topics is a singleton.
Next comes the definition of logical consequence (with respect to 
): with Σ ⊆ LPHB

and ϕ,ø ∈ LPHB,

• Σ � ϕ iff for all modelsM = 〈W, ≥ ,T,⊕ ,b,t,í〉 and all w ∈W : ifM,w 
 ø

for all ø ∈ Σ, thenM,w 
 ϕ.
• For single-premise entailment, we write ø � ϕ for {ø} � ϕ.
• As a special case, logical validity, � ϕ, truth at all worlds of all models, is ∅ � ϕ,
entailment by the empty set of premises. ϕ is called invalid, denoted by 6� ϕ, if it
is not a logical validity, that is, if there is a tsp-modelM= 〈W, ≥ ,T,⊕ ,b,t,í〉
and a possible world w ∈W such thatM,w 6
 ϕ.

Soundness and completeness with respect to the proposed semantics are defined
standardly (see, e.g., [10, chap. 4.1]).
The abbreviation ϕ :=

∧

x∈Var(ϕ)(x ∨¬x) will play a role in formalizing validities

and invalidities. Given a tsp-modelM= 〈W, ≥ ,T,⊕ ,b,t,í〉, for Bϕ to be true (at w)
we require (i) ϕ to be true at all worlds inMin≥(W ), and (ii) the topic of ϕ to be in
b. Since ϕ is true everywhere and Var(ϕ) =Var(ϕ) for any ϕ ∈ LPHB, formulas of the
form Bϕ (¬Bϕ) express within the language LPHB statements such as ‘the agent has
(not) grasped the subject matter of ϕ’:

M,w 
 Bϕ iffMin≥(W )⊆ |ϕ| and t(ϕ)⊑ b

iffMin≥(W )⊆W and t(ϕ)⊑ b (t(ϕ) = t(ϕ),sinceVar(ϕ) = Var(ϕ))
iff t(ϕ)⊑ b.

Bϕ is true precisely when the topic of ϕ is included in the topic of the whole doxastic
state of the agent. (Of course, ϕ as any arbitrary tautology which is a truth-functional
compound of ϕ, e.g., ϕ ∨¬ϕ, ϕ → ϕ, ¬(ϕ ∧¬ϕ), etc., would do the same job as
∧

x∈Var(ϕ)(x∨¬x).)

3.2. Axiomatization, soundness, and completeness. Table 1 gives a sound and
complete axiomatization PHB of hyperintensional plain belief over LPHB. We focus
on the intuitive readings of the principles presented in Table 1. We then move on to
important invalidities concerning the problem of logical omniscience and the role of
topicality in achieving non-omniscience. The soundness and completeness proofs are
given in Appendices A.2.1 and A.2.2, respectively.
The notion of derivation, denoted by ⊢PHB, in PHB is defined as usual. Thus,

⊢PHB ϕ means ϕ is a theorem of PHB. We omit the subscript PHB when the logic PHB
is contextually clear.

Theorem 1. The following are derivable from PHB:

1. Bϕ↔
∧

x∈Var(ϕ)Bx

2. Bϕ→ Bø, if Var(ø)⊆ Var(ϕ)

a standard S5✷ modality with respect to an equivalence relation and define the plausibility
order in a state dependent way with the requirement that the plausibility ordering of a
possible world w is total within the equivalence class of w (see, e.g., [38] for such a version).
This set-up would lead to the same logic and not add much to our conceptual arguments,
so we opt for simplicity and work with state-independent plausibility orderings and topic
assignments.
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8 AYBÜKE ÖZGÜN AND FRANCESCO BERTO

Table 1. Axiomatization PHB of the logic of plain hyperintensional belief (over LPHB)

(CPL) all classical propositional tautologies and Modus Ponens
(S5✷) S5 axioms and rules for ✷

(I) Axioms for B:
(Ax⊤) B⊤
(CB ) B(ϕ∧ø)↔ (Bϕ∧Bø)
(DB ) Bϕ→¬B¬ϕ
(Ax1) Bϕ→ Bϕ

(II) Axioms connecting B and ✷:
(Ax2) (✷(ϕ→ ø)∧Bϕ∧Bø)→ Bø
(Ax3) Bϕ→✷Bϕ

3. B(ϕ∧ø)↔ B(ϕ∧ø)
4. (B(ϕ→ ø)∧Bϕ)→ Bø
5. Bϕ→✷Bϕ

6. ¬Bϕ→✷¬Bϕ
7. ¬Bϕ→✷¬Bϕ
8. (✷ϕ∧Bϕ)→ Bϕ
9. Bϕ→ BBϕ
10. (¬Bϕ∧Bϕ)→ B¬Bϕ

Proof. See Appendix A.1. �

Given the semantics of✷, the logic of this modality as S5✷ is no surprise. The axioms
of Group (I) regulate belief: Ax⊤ reflects ⊤’s standing for the total propositional
content the agent is (already) on top of, qua information and subject matter. CB says
that belief is fully conjunctive, which imposes some computational idealization on our
agents: there may be a syntactic or computational difference between believing ϕ and
ø together and believing them separately (besides, the principle is under discussion
in mainstream epistemology due to the Lottery Paradox). But this is no difference in
the scenario represented in the mind of an intentional agent: one cannot believe that
Mary is tall and thin without believing that she is tall, and one cannot believe that
Mary is tall and that Mary is thin at the same time without believing that she is tall
and thin. DB is the so-called axiom of consistency of belief, which is widely taken for
granted in recent literature of epistemic logic (see, e.g., [6, 38, 45]). Ax1 expresses in the
language the topic-sensitivity of belief: ‘Bϕ’ is read as ‘the agent has grasped the subject
matter of ϕ’. Thus, the axiom states that to believe ϕ, one must have grasped what it’s
about.
The axioms of Group (II) regulate the interplay between a priori truth ✷ and

hyperintensional belief B. Ax3 (together with Theorem 1.7) has it that Bϕ is state-
independent. We will see in §3.2.1 that our agents’ beliefs are not closed under a priori
consequence. However, Ax2 gives us a more limited topic-sensitive closure principle:
one believes those a priori consequences of one’s beliefs whose subject matters one
has grasped. The principle is a way to phrase the computational idealization of agents
flagged in §2: once they are on top of an amount of information and the relevant topics,
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nothing stands in the way of their working out the logical/a priori consequences and
believing them.

Theorem 2. PHB is a sound and complete axiomatization of LPHB with respect to the
class of tsp-models: for every ϕ ∈ LPHB, ⊢PHB ϕ if and only if � ϕ.

Proof. See Appendix A.2 �

3.2.1. Invalidities. We now turn to important invalidities highlighting the hyperin-
tensionality of plain belief. One doesn’t believe all logical truths and, in general, all a
priori truths, for the following fail3:

1. Omniscience Rule: from ϕ infer Bϕ

2. Apriori Omniscience: 6�✷ϕ→ Bϕ

One also doesn’t believe all logical (a priori) consequences of what one believes, and
one can have different attitudes towards logical equivalents—i.e., the following fail:

3. Closure Under Strict Implication: 6� (✷(ϕ→ ø)∧Bϕ)→ Bø

4. Closure Under Logical Equivalence: from ϕ↔ ø infer Bϕ↔ Bø
[Countermodel: letW = {w}, ≥= {(w,w)}, T = {a,b}, a ⊏ b such that b= a,
t(p) = b, t(q) = a, and í(p) = í(q) = {w}. Therefore, while p∨¬p is valid and
w 
 ✷(p ∨¬p), we have w 6
 B(p ∨¬p) since t(p ∨¬p) = b 6⊑ b. Therefore,
(1) and (2) fail. Moreover, we have (q ∨¬q)↔ (p ∨¬p) valid, in turn, w 


✷((q∨¬q)→ (p∨¬p)), andw 
B(q∨¬q), butw 6
B(p∨¬p). Therefore, (3)
and (4) also fail.]

These fail for the right reason: the topic-sensitivity of belief. The agent does not
believe the proposition in question because they have not grasped its subject matter.
On introspection principles: agents are positively introspective as per Theorems 1.9

and 2, i.e., Bϕ→ BBϕ is valid in tsp-models. This is due to (1) the interpretation of
the informational content of belief as truth in the set of most plausible states plus
invariance of the truth of Bϕ between possible worlds, and (2) the topic transparency
of B. On the other hand,

5. Negative Introspection: 6� ¬Bϕ→ B¬Bϕ

fails due to topicality. As a counterexample, we take the one presented above: ¬Bp→
B¬Bp is not true at w. Given a tsp-modelM= 〈W, ≥ ,T,⊕ ,b,t,í〉, ¬Bϕ is true at w
(or, equivalently, in every state of the model) iff either Min≥(W ) 6⊆ |ϕ| or t(ϕ) 6⊑ b.
Even if the reason for the failure ofBϕwasMin≥(W ) 6⊆ |ϕ|wewouldhaveMin≥(W )⊆
|¬Bϕ|, since |¬Bϕ|=W or |¬Bϕ|= ∅. Therefore, in case ¬Bϕ is true at w, B¬Bϕ is
false at w iff the agent has not grasped the topic of ϕ. In turn, our agent is negatively
introspective with respect to the propositions whose subject matter they have grasped
already. So we have the following validity (see also Theorems 1.10 and 2):

3 We say that an inference rule fails when it is not validity preserving; and a formula schema
fails if it has an invalid instance.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020319000686
https://www.cambridge.org/core


10 AYBÜKE ÖZGÜN AND FRANCESCO BERTO

6. Topic-sensitive Negative Introspection: � (¬Bϕ∧Bϕ)→ B¬Bϕ

This approach to logical omniscience has structural similarities to how explicit
belief is treated in awareness logics [14, 47, 49]. The closest variant is ‘propositionally
determined awareness’ (see [20, p. 327], which focuses on knowledge): one is aware
of ϕ just in case one is aware of all of its atomic constituents taken together. One
believes which formulas one is aware of. Awareness has been criticized for mixing
syntax and semantics [25]. Our approach doesn’t. Whatever topics are (partitions or
divisions of the set of worlds as per [51], states or truthmakers as per [16], or whatnot),
they are going to be nonlinguistic entities. Our topic function assigns such entities,
or constructions thereof, as topics to the formulas in LPHB in a recursive way. And
the same topic can be assigned to different formulas. This is as syntax-free as one
can hope.
Awareness structures are very flexible for they can in principle make as many

hyperintensional distinctions as allowed by the syntax of the language itself. It is
no surprise, thus, that they can simulate our topic-sensitive account. But they don’t
seem to be adequate to semantically represent the mereological relations of contents.
And while plain belief did not make full use of topicality—we do not yet talk about
belief conditional on a piece of explicit input—the importance of the doxastic topic
models will become more apparent once we move on to conditional belief and the
dynamics of belief.

§4. Hyperintensional belief revision. In Dynamic Epistemic Logic (DEL), one
makes a distinction between static and dynamic belief revision (see, e.g., [5, 6, 38,
44, 45]). Static belief revision captures the agent’s revised beliefs about how the world
was before learning new information. Dynamic belief revision captures the agent’s
revised beliefs about the state of the world after the revision. As standard in the DEL
literature, we implement the former by conditional belief modalities Bϕø (‘If one were
to learn that ϕ, one would believe that ø was the case’) and the latter by means of a
dynamic operator [⇑ϕ]ø (‘After revision by ϕ, ø holds’).

4.1. Conditional hyperintensional belief. We now work with the language LCHB of
conditional hyperintensional belief defined by the grammar:

ϕ := pi | ⊤ | ¬ϕ | (ϕ∧ϕ) |✷ϕ | [≥]ϕ | Bϕϕ

where pi ∈Prop. The use of ‘to learn’ in our reading of ‘Bϕø’ above deserves comment:
if conditional (as much as plain) belief is topic-sensitive, learning that ϕ doesn’t
just require that there be information positioning one to rule out the non-ϕ worlds.
One must also have grasped what ϕ is about: its subject matter. [≥]ϕ, instead, is a
standard Kripke modality corresponding to the plausibility relation. It is standardly
used in Dynamic Epistemic Logic to capture a notion of “safe belief” or “indefeasible
knowledge”.4 It will help to provide a complete axiomatization of a logic of conditional
beliefs.

4 [≥]ϕ is read as ‘ϕ is safely believed’ or ‘ϕ is indefeasibly known’ in the sense that no truthful
information gain causes the agent to give up their belief/knowledge of ϕ [6]. It is also a
commonly used modality in preference logics [29, 42].
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DYNAMIC HYPERINTENSIONAL BELIEF REVISION 11

A dt-model for LCHB is just as in Definition 1, with t extended to the new language
the obvious way. [≥]ϕ and Bϕø are topic-transparent: t([≥]ϕ) = t(ϕ) and t(Bϕø) =
t(ϕ)⊕ t(ø). In this section, we only consider doxastic topic models for LCHB.

Definition 5 (
-Semantics forLCHB). Given a tsp-modelM= 〈W, ≥ ,T,⊕,b,t,í〉 and
a state w ∈W , the 
-semantics for LCHB is as in Definition 4 for the components in
LPHB, plus:

M,w 
 [≥]ϕ iff M,u 
 ϕ for all u ∈W such that w ≥ u
M,w 
 Bϕø iff Min≥(|ϕ|)⊆ |ø| and t(ø)⊑ b⊕ t(ϕ).

Conditional belief is topic-sensitive, too. For one to believe ø conditional on ϕ, we
require two things to happen: firstly, all the most plausible ϕ-worlds must makeø true.
Secondly, the topic of ø must be in the fusion of b (the subject matter the agent was
already on top of) with the topic of ϕ, given that conditionalizing on ϕ requires the
agent to have grasped the latter.
Plain belief, Bϕ, is now definable in terms of conditional belief, the usual way, as

Bϕ := B⊤ϕ:

M,w 
 B⊤ϕ iffMin≥(|⊤|)⊆ |ϕ| and t(ϕ)⊑ b⊕ t(⊤) (Definition 5)
iffMin≥(W )⊆ |ϕ| and t(ϕ)⊑ b⊕b (since |⊤|=W and t(⊤) = b)
iffMin≥(W )⊆ |ϕ| and t(ϕ)⊑ b (since ⊕ is idempotent)

Unlike in [8], plain belief is accommodated in the language LCHB of conditional
belief via the subject matter the agent is on ⊤op of. (We can also define ✷ϕ as B¬ϕ⊥
in LCHB; we prefer to take ✷ as a primitive operator.) However, we cannot define
conditional belief in LPHB, so LCHB is strictly more expressive than LPHB. As is well
known, this is also the case for the usual semantics of conditional and plain belief
on the standard plausibility models. All these expressivity results are presented more
formally in Lemma 3.

Lemma 3. LCHB is strictly more expressive than LPHB with respect to tsp-models. In
fact, the language L having only conditional belief operators as its modalities (i.e., LCHB

minus [≥] and ✷) is strictly more expressive than LPHB with respect to tsp-models.

Proof. See Appendix B.1 �

Just like in LPHB, we can express in LCHB what subject matters the agent grasps after
having grasped further subject matters, via formulas of the form B÷ϕ:

M,w 
 B÷ϕ iffMin≥(|÷|)⊆ |ϕ| and t(ϕ)⊑ b⊕ t(÷)
iffMin≥(W )⊆W and t(ϕ)⊑ b⊕ t(÷)
(t(ϕ) = t(ϕ), since Var(ϕ) = Var(ϕ)(similarly for÷))

iff t(ϕ)⊑ b⊕ t(÷).

B÷ϕ is true precisely when the topic ofϕ is included in the topic of thewhole doxastic
state of the agent, expanded by the topic of ÷. A natural reading of B÷ϕ, then, is ‘The
agent would come to grasp the topic of ϕ, were they to grasp the topic of ÷’. If both
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w

a1 = t1(q)

b1 = t1(p)

1

(a)

w

a2 = t2(p)

b2 = t2(q)

2

(b)

Fig. 1. ModelsM1 andM2.

B÷ϕ and Bϕ÷ are the case, we say that the topics of ÷ and ϕ complement each other
with respect to the topic of the agent’s belief state.5

Notice that, since the topic component of the semantic clause for ‘B÷ϕ’ takes into
account the topic of the agent’s belief state, LCHB is not expressive enough to speak of
parthood relations. In LCHB, we cannot say things like ‘The topic of ϕ is included in
the topic of ÷’, or ‘ϕ and ÷ have exactly the same topic’. The opposite is the case in [8]:
since the proposal in [8] does not accommodate the whole doxastic state of the agent,
B÷ϕ there states precisely that the topic of ϕ is included in that of ÷.
To see that LCHB is not expressive enough to state ‘The topic of ϕ is included

in the topic of ÷’, consider the models M1 = 〈{w}, ≥ ,{a1,b1,b1}, ⊕1 ,b1,t1,í〉 and
M2 = 〈{w}, ≥ ,{a2,b2,b2}, ⊕2 ,b2,t2,í〉, where ≥= {(w,w)}, í(p) = í(q) = ∅, and
({a1,b1,b1}, ⊕1 ,t1) and ({a2,b2,b2}, ⊕2 ,t2) are as given in Figure 1. We have ‘The
topic of q is included in the topic of p’ true inM1 at w (since t1(q) = a1 ⊑1 b1 = t1(p))
and false inM2 at w (since b2 = t2(q) 6⊑2 a2 = t2(p)). However, as shown in Lemma
4,M1,w andM2,w are modally equivalent with respect to the language LCHB.

6

Lemma 4. For all ϕ ∈ LCHB,M1,w 
 ϕ iffM2,w 
 ϕ.

Proof. The proof follows by induction on the structure of ϕ, where cases for the
propositional variables, the Boolean connectives, and ϕ := ✷ø are trivial. The case
for ϕ := [≥]ø is the same as the one for ϕ := ✷ø since we have a single possible
world in both models. So assume inductively that the result holds for ø and ÷, and
show that it holds also for ϕ := Bø÷. For the direction left-to-right, suppose that
M1,w 
Bø÷. This means thatMin≥|ø|M1

⊆ |÷|M1
and t1(÷)⊑1 b1⊕1 t1(ø). Observe

that, no matter what the topics of ÷ and ø are, as b2 is the top element in T2, we have
t2(÷)⊑2 b2⊕2 t2(ø). Moreover, either |ø|M1

= {w} or |ø|M1
= ∅. If the former is the

case, then |÷|M1
= {w} as well (sinceMin≥|ø|M1

= {w}⊆ |÷|M1
). Then, by induction

hypothesis, we have |ø|M2
= {w} and |÷|M2

= {w}, therefore,Min≥|ø|M2
⊆ |÷|M2

.
If the latter is the case, then, by induction hypothesis, we have |ø|M2

= ∅. Therefore,

5 It is easy to see that, for any ϕ,÷ ∈ LCHB, sentences B
÷ϕ and B÷ϕ are logically equivalent

with respect to the proposed semantics.We think that the latter is a better fit for the proposed
reading as ‘The agent would come to grasp the topic of ϕ, were they to grasp the topic of ÷’.

6 In figures of tsp-models, circles represent possibleworlds, diamonds represent possible topics.
Valuation and topic assignment are given by labeling each node with propositional variables.
We omit labeling when a node is assigned every element in Prop. Reflexive and transitive
arrows on possible worlds are omitted.
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w

a3 = t3(p) = t3(q)

3

Fig. 2. ModelM3.

Table 2. Axiomatization CHB of the logic of conditional hyperintensional belief (over LCHB)

(CPL) all classical propositional tautologies and Modus Ponens
(S5✷) S5 axioms and rules for ✷
(S4[≥]) S4 axioms and rules for [≥]

(I) Axioms for ✷ and [≥]:
(Inc) ✷ϕ→ [≥]ϕ
(Tot) ✷([≥]ϕ→ ø)∨✷([≥]ø→ ϕ)

(II) Axioms for B:
(Ax⊤) Bϕ⊤
(Ax1) Bϕø, if Var(ø)⊆ Var(ϕ)
(Ax2) (Bϕø∧Bø÷)→ Bϕ÷
(Ax3) (Bϕø∧Bϕ÷)↔ Bϕ(ø∧÷)

(III) Axioms connecting B, ✷, and [≥]:
(Ax4) (✷(ϕ→ ø)∧Bϕø)→ Bϕø
(Ax5) Bϕø→✷Bϕø

(Ax6) Bϕø↔ (✷(ϕ→ 〈≥〉(ϕ∧ [≥](ϕ→ ø)))∧Bϕø)

Min≥|ø|M2
= ∅⊆ |÷|M2

.We can then conclude thatM2,w 
Bø÷. The other direction
follows analogously. �

To see that LCHB is not expressive enough to state ‘ϕ and ÷ have exactly the same
topic’, compare the model M1 given in Figure 1a with M3 = 〈{w}, ≥ ,{a3,b3}, ⊕3
,b3,t3,í〉, where ({a3,b3},⊕3 ,t3) is as given in Figure 2. It is then easy to see that ‘p and
q have exactly the same topic’ is true inM3 at w (since t3(p) = a3 = t3(q)), whereas
it is false in M1 at w (since t1(q) = a1 6= b1 = t1(p)). However, M1,w and M3,w

are modally equivalent with respect to the language LCHB, that is, for all ϕ ∈ LCHB,
M1,w 
 ϕ iffM3,w 
 ϕ (the proof follows similarly to the proof of Lemma 4).

4.1.1. Axiomatization, soundness, and completeness. A sound and complete axiom-
atization CHB of the logic of conditional hyperintensional belief over LCHB with respect
to tsp-models is presented in Table 2. Following the same structure as in §3.2, we
first elaborate on the intuitive readings of the axioms and rules presented in Table 2
together with a few derivable principles given in Theorem 5. We then continue with
further (in)validities of interest concerning the hyperintensional nature of static belief
revision. The soundness and completeness proofs are given in Appendices B.3.1 and
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B.3.2, respectively, where the latter proof involves a canonical model construction
together with a non-trivial topic algebra, as well as a filtration argument.

Theorem 5. The following are derivable from CHB:

1. ✸ϕ→¬Bϕ⊥
2. Bϕϕ
3. from ϕ↔ ÷, Bϕ÷, and B÷ϕ infer Bϕø↔ B÷ø
4. from ϕ↔ ÷, Bϕ÷, and B÷ϕ infer Bøϕ↔ Bø÷

Proof. See Appendix B.2. �

The fragment of CHB having only ✷ and [≥] as modal operators is the well-
known normal modal logic of total preorders extended with the global modality
(here denoted by ✷). Therefore, the axiomatization of ✷ and [≥] as S5✷ and S4[≥],
respectively, together with the so-called inclusion axiom Inc is standard [19]. Axiom
Tot guarantees that the plausibility order is total. Axioms of Group (II) states the
properties of the conditional belief operators. Ax⊤ is a generalization of the axiom of
the same name for plain belief given in Table 1. Ax1 states that learning ϕ involves
having grasped every subject matter that is included in the subject matter of ϕ. This
axiom is keyed to the assumption that the subject matter of a complex sentence is
the fusion of the subject matters of its primitive components. Ax2 simply says that
topic parthood is a transitive relation. Ax3 is the conditional belief counterpart of
CB for plain belief given in Table 1: conditional belief as well is fully conjunctive.
The axioms in Group (III) regulate the relationship between conditional beliefs, ✷,
and [≥]. Ax4 and Ax5 are generalizations of Ax2 and Ax3 of Table 1, respectively.
The last axiom Ax6 on the other hand explicates the link between conditional beliefs,
plausibility ordering, and topic sensitivity of static belief revision: if one were to learn
that ϕ, one would believe that ø was the case (i.e., Bϕø is true) iff ø is true in the
most plausible ϕ-worlds (the first conjunct of the right-hand-side) and the topic of
ø is included in the topic of ϕ (the second conjunct of the right-hand-side, also see
footnote 5).
Finally, we focus on the derivable principles given in Theorem 5. The principle in

Theorem 5.1 is called Consistency of Revision: one would not believe a falsehood was
the case as long as one were to receive consistent information. Moreover, conditional
belief satisfies a counterpart of the AGM Success postulate Bϕϕ (Theorem 5.2): one
who learns that ϕ comes to believe that it was the case (as is well known, Success is
not problematic for static belief revision, whereas it needs to be handled carefully for
dynamic belief revision due to the Moore sentences: see [23]). The last two derivable
inference rules (Theorems 5.3 and 5.4) are topic-sensitive versions of replacement of
provable equivalents rules and are elaborated further in §4.1.2.

Theorem 6. CHB is a sound and complete axiomatization of LCHB with respect to the
class of tsp-models: for every ϕ ∈ LCHB, ⊢CHB ϕ if and only if � ϕ.

Proof. See Appendix B.3 �

4.1.2. Further validities and invalidities. The validities and invalidities we get for
conditional belief are the same as the ones in [8], towhichwe refer for a fuller discussion,
and where one also finds the various semantic proofs/countermodels. Here we limit
ourselves to a few remarks.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020319000686
https://www.cambridge.org/core


DYNAMIC HYPERINTENSIONAL BELIEF REVISION 15

The next two valid principles are often called, respectively, Cut or Limited
Transitivity, and Cautious Monotonicity, in the literature on nonmonotonic logics
and operators [26]:7

1. � (Bϕø∧Bϕ∧ø÷)→ Bϕ÷

2. � (Bϕø∧Bϕ÷)→ Bϕ∧ø÷

They are advocated in [11] as ‘principles of informational economy’ and [17] takes them
as minimal conditions a nonmonotonic entailment ought to obey. It may therefore be
taken as a good feature of our conditional belief operator that, in spite of its being
weaker than its non-hyperintensional counterpart, it still satisfies them.
Conditional belief is, as usual, nonmonotonic:

3. 6� Bϕø→ Bϕ∧÷ø
[Countermodel: letW = {w,u},≥= {(w,w),(u,u),(u,w)}, T = {b}, t(p) = {b}
for allp ∈Prop, and í(p) = {w,u}, í(q) = {w}, and í(r) = {u}. Since themodel
has only one possible topic, the topic component in this particular case does not
play any essential role.We then have thatw 
Bpq sinceMin≥|p|= {w}= í(q).
However, w 6
 Bp∧rq sinceMin≥|p∧ r|= {u} 6⊆ í(q) = {w}.]

Having learned that Franz has been lecturing all day (p), you come to believe that he
must have been at the University of Amsterdam (q). But if you learned that Franz
has been lecturing all day and that he has recently been hired by the University of
St. Andrews (p ∧ r), you would not come to believe that he must have been at the
University of Amsterdam.
The next principle is a notable failure due to topic-sensitivity, and not found in more

standard settings for conditional belief:

4. 6� Bϕ÷→ Bϕ(ø∨÷)

If you learned that Sonja is in Amsterdam, you’d come to believe that she was in the
Netherlands. Youwouldn’t thereby automatically come to believe that Sonja was either
in theNetherlands or on planetKepler-442b (youmay never have heard ofKepler-442b
to begin with!), though the former logically entails the latter. Disjunction Introduction
can fail in this setting because it can take you off-topic.
Further invalidities illustrate conditional belief ’s lack of closure with respect to a

priori implications:

5. 6�✷(ϕ→ ø)→ Bϕø
6. 6� (✷(ϕ→ ø)∧B÷ϕ)→ B÷ø

Non-omniscience is further modeled by our agent’s failing to believe everything
conditional on inconsistent information, and by their failing to conditionally believe
all logical truths:

7. 6� Bϕ∧¬ϕø

7 As per Theorem 6, both of these principles are derivable in CHB. Their derivations use Ax6
(together with other axioms and inference rules) and require tedious syntactic manipulations
involving the operators ✷ and [≥]. As their derivations are quite long and, for our purposes
in this paper, not instructive, we prefer to state them as validities.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020319000686
https://www.cambridge.org/core
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8. 6� Bϕ(¬ø∨ø)
[Countermodel: LetM6 = 〈W, ≥ ,T,⊕ ,b,t,í〉, whereW = {w}, ≥= {(w,w)},
T = {a,b}, b ⊏ a such that b = t(q), t(p) = a, and í(p) = í(q) = {w}. For
invalidities (4), (7), and (8): take ϕ := q, ÷ := q, and ø := p. We then have
w 
 Bqq but w 6
 Bq(p∨q) since t(p∨q) = a 6⊑ b⊕ t(q) = b, therefore, (4) is
invalid. Similarly, t(p) = t(p∨¬p) = a 6⊑ b⊕t(q) = b⊕t(q∧¬q) = b, therefore,
w 6
 Bq∧¬qp and w 6
 Bq(p ∨¬p). Hence, (7) and (8) are also invalid. For
invalidities (5) and (6): take ϕ := q, ÷ := q, and ø := p∨¬p and the argument
follows similarly.]

The remaining (in)validities concerning introspection principles and Replacement
of (provable) Equivalents rules (RE) are not of focus in [8]. In particular, the ones
involving plain belief cannot be formalised in the logic of [8], as it studies only
conditional beliefs.
The reasoning behind the following valid and invalid introspection principles is

similar to the one behind the analogous principles we have for plain belief:

9. Positive Introspection: � Bϕø→ BϕBϕø
Proof : Let M = 〈W, ≥ ,T, ⊕ ,b,t,í〉 be a tsp-model and w ∈W such that
M,w 
 Bϕø. This means that Min≥(|ϕ|) ⊆ |ø| and t(ø) ⊑ b⊕ t(ϕ). By the
latter, we have that t(Bϕø) = t(ø)⊕ t(ϕ)⊑ b⊕ t(ϕ).Moreover, since the truth
of Bϕø is state-independent, we have |Bϕø| =W , therefore, Min≥(|ϕ|) ⊆
|Bϕø|. We then conclude thatM,w 
 BϕBϕø.]

10. Negative Introspection: 6� ¬Bϕø→ Bϕ¬Bϕø
[Countermodel: Consider the tsp-modelM6 given above. We then have w 


¬Bqp, i.e., w 6
 Bqp, since t(p) = a 6⊑ b⊕ t(q) = b. Similarly, t(¬Bqp) =
t(p)⊕ t(q) = a 6⊑ b⊕ t(q) = b, thus w 6
 Bq¬Bqp.]

11. Topic-sensitive Negative Introspection: � (¬Bϕø∧Bø)→ Bϕ¬Bϕø
[Proof : LetM = 〈W, ≥ ,T,⊕ ,b,t,í〉 be a tsp-model and w ∈W such that
M,w 
 ¬Bϕø andM,w 
 Bø. While the former means that |¬Bϕø| =W ,
the latter means t(ø) ⊑ b. Therefore, Min≥(|ϕ|) ⊆ |¬Bϕø| and t(¬Bϕø) =
t(ø)⊕ t(ϕ)⊑ b⊕ t(ϕ). We then conclude thatM,w 
 Bϕ¬Bϕø.]

However, one notable failure of positive introspection involving both plain and
conditional belief is the following, and it fails due to topicality:

12. 6� Bϕø→ BBϕø
[Countermodel: letW = {w},≥= {(w,w)}, T = {a,b}, b⊏ a such that t(q) =
(p)= a, and í(p)= í(q)= {w}.Obviously,w 
Bqp.However, since t(Bqp)=
t(p)⊕ t(q) = a 6⊑ b, w 6
 BBqp.]

Having learned that Achilles tendon rupture causes walking difficulties, you’d come
to believe that Tom cannot run 10km with his ruptured tendon. Nevertheless,
you wouldn’t plainly believe that you’d come to believe that Tom cannot run 10
km with a broken Achilles tendon if you were to learn that such tendon rupture
causes walking difficulties: you may have never heard of Achilles tendon to begin
with.
Hyperintensionality is further displayed by failure of RE both in antecedent and in

consequent position for conditional belief:
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13. REB1: from ϕ↔ ø, infer Bϕ÷↔ Bø÷
14. REB2: from ϕ↔ ø, infer B÷ϕ↔ B÷ø
[Countermodel: See the tsp-model M6 given above, and take ϕ := p ∨¬p,
ø := q∨¬q, and ÷ := p∨¬p for REB1, and ÷ := q∨¬q for REB2.]

Yet we have the following weaker, topic-sensitive versions of RE rules valid (see
Theorems 5.3, 5.4, and 6):

15. Topic-sensitive REB1: from ϕ↔ ÷, Bϕ÷, and B÷ϕ infer Bϕø↔ B÷ø

16. Topic-sensitive REB2: from ϕ↔ ÷, Bϕ÷, and B÷ϕ infer Bøϕ↔ Bø÷

If ϕ and ÷ are logically equivalent and their topics complement each other with respect
to the topic of the agent’s belief state, they are interchangeable both in antecedent and
in consequent position of conditional belief. The validity of this twofold rule allows us
to prove a completeness result for the dynamic extension, by using reduction axioms
(see [45, sec. 7.4] for a detailed presentation of completeness by reduction).

4.2. Dynamic hyperintensional belief revision. Wenow extendLCHB with a dynamic
topic-sensitive lexicographic upgrade operator, [⇑ϕ]. We work with the language LDHB

of dynamic hyperintensional belief defined by the grammar:

ϕ := pi | ⊤ | ¬ϕ | (ϕ∧ϕ) |✷ϕ | [≥]ϕ | Bϕϕ | [⇑ϕ]ϕ

One can read [⇑ϕ]ø as ‘After revision by ϕ, ø holds’ but a less terse reading makes
clear that dynamic belief revision is topic-sensitive, too: ‘After the agent has received
information ϕ and has come to grasp the topic of ϕ, ø holds’. The semantics for
this will require an innovative twofold model-transforming technique: the traditional
dynamic of lexicographic upgrade will be paired with a dynamic of topics.
A dt-model for LDHB is defined as for LCHB, where t extends to LDHB in a similar

way. [⇑] is also taken to be topic transparent: t([⇑ϕ]ø) = t(ϕ)⊕ t(ø). From now on
we only consider doxastic topic models for LDHB. The semantics for ‘[⇑ϕ]ø’ needs
auxiliary definitions:

Definition 6 (Updated dt-Model). Given a dt-model T = 〈T,⊕ ,b,t〉 and a ∈ T , the
update of T by a is the tuple T a = 〈T,⊕ ,ba,ta〉 where

1. ba = b⊕a,

2. ta(ϕ) =

{

t(ϕ)⊕a, if ⊤ ∈ Var(ϕ)

t(ϕ) otherwise.

Lemma 7. Given a dt-model 〈T,⊕ ,b,t〉 and a ∈ T , the update T a = 〈T,⊕ ,ba,ta〉 of
T by a is a dt-model.

Proof. Observe that T and T a share exactly the same join semilattice (T,⊕).
Therefore, as T is a topic model, item 2 of Definition 1 for T a is already satisfied.
Given unrestricted fusion, b⊕ a always exists in T, thus, ba = b⊕ a ∈ T . Now, let
ϕ ∈LDHB such thatVar(ϕ) = {x1, ...,xn}. Observe that, byDefinition 6.2, t

a(x) = t(x)
for all p ∈ Prop and ta(⊤) = b⊕ a = b

a . If ⊤ 6∈ Var(ϕ), we have ta(ϕ) = t(ϕ) =
t(x1)⊕ ··· ⊕ t(xn) = t

a(x1)⊕ ··· ⊕ ta(xn). If ⊤ ∈ Var(ϕ), i.e., (w.l.o.g.) ⊤ = xn,
we obtain that ta(ϕ) = t(ϕ)⊕ a = t(x1)⊕ ··· ⊕ t(xn)⊕ a = t(x1)⊕ ··· ⊕ t(⊤)⊕ a =
t(x1)⊕···⊕ (b⊕a) = t(x1)⊕···⊕b

a = ta(x1)⊕···⊕ ta(⊤) = ta(x1)⊕···⊕ ta(xn). We
therefore conclude that T a satisfies Definition 1.4 as well. �
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Such model-transformation represents the agent’s coming to grasp new subject
matter. The dynamic operation is purely doxastic: it models what further subject
matter the agent grasps after an informative event.

Definition 7 (Upgraded plausibility frame). Given a plausibility frame 〈W, ≥〉 and
P ⊆W , the upgraded frame by P is the tuple S⇑P = 〈W, ≥⇑P〉, where ≥⇑P is the new
ordering such that v ≥⇑P w iff (1) v ≥ w and w ∈ P, or (2) v ≥ w and v ∈W \P, or (3)
(v ≥ w or w ≥ v) and w ∈ P and v ∈W \P.

This is the well-known lexicographic upgrade operator making all P-worlds more
plausible than all W \P-worlds, and keeping the ordering the same within those two
zones.

Definition 8 (
-Semantics forLDHB). Given a tsp-modelM= 〈W, ≥ ,T,⊕,b,t,í〉 and
a state w ∈W , the 
-semantics for LDHB is as before for the components in LCHB, plus:

M,w 
 [⇑ϕ]ø iff M⇑ϕ,w 
 ø

whereM⇑ϕ = 〈W, ≥ϕ ,T,⊕,bϕ,tϕ,í〉 such that≥ϕ=≥⇑|ϕ|M , bϕ = b
t(ϕ), and tϕ = tt(ϕ)

as described in Definition 6.

For [⇑ϕ]ø to hold, ø must hold in the model transformed across two dimensions:
firstly, all the ϕ-worlds must have become more plausible than all the ¬ϕ-worlds.
Secondly, the agent must have grasped the topic of ϕ, merging it with b – the overall
subject matter they were already on ⊤op of before.

Proposition 8. Given a tsp-modelM= 〈W, ≥ ,T,⊕ ,b,t,í〉 and ϕ ∈ LDHB,M
⇑ϕ =

〈W, ≥ϕ ,T,⊕ ,bϕ,tϕ,í〉 is a tsp-model.

Proof. It is easy to verify that ≥ϕ is a well-order. Moreover, by Lemma 7, we know
that 〈T,⊕ ,bϕ,tϕ〉 is a dt-model. �

We now turn to the important invalidities and axiomatization of our dynamic logic
for belief revision. As intended, our dynamic operator is sensitive to hyperintensional
differences, that is, the following dynamic RE rule is invalid:

Dynamic RE: from ϕ↔ ÷ infer [⇑ϕ]ø↔ [⇑÷]ø

Note that this is the case only when ø is a doxastic sentence. Therefore, in particular,
the principle

Dynamic REB : from ϕ↔ ÷ infer [⇑ϕ]Bø↔ [⇑÷]Bø

is not valid (see the counterexample for REB1 in §4.1.2). One can come to believe
different things after revising one’s beliefs with equivalent pieces of information which
differ in topic. As expected though, the topic-sensitive version of Dynamic RE is valid:

Topic-sensitive Dynamic RE: from ϕ↔ ÷, Bϕ÷, and B÷ϕ infer [⇑ϕ]ø↔ [⇑÷]ø

Moreover, our topic-sensitive dynamic operator complies with the standard
reduction axiomsof lexicographic upgrade (presented, e.g., in [38, 42, 49]).We therefore
obtain a completeness result for the logic of dynamic hyperintensional belief revision,
DHB:
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Table 3. Reduction Axioms and Inference Rules for ⇑ (over LDHB)

(Nec⇑) from ø infer [⇑ϕ]ø

(R⊤) [⇑ϕ]⊤↔ (⊤∧ϕ)

(Rp) [⇑ϕ]p↔ (p∧ϕ)

(R¬) [⇑ϕ]¬ø↔¬[⇑ϕ]ø

(R∧) [⇑ϕ](ø∧÷)↔ ([⇑ϕ]ø∧ [⇑ϕ]÷)

(R✷) [⇑ϕ]✷ø↔✷[⇑ϕ]ø

(R[≥]) [⇑ϕ][≥]ø↔ ((¬ϕ→ [≥][⇑ϕ]ø)∧ (¬ϕ→✷(ϕ→ [⇑ϕ]ø))∧ [≥](ϕ→ [⇑ϕ]ø))

(RB) [⇑ϕ]B
ø÷↔ ((✸(ϕ∧ [⇑ϕ]ø)∧Bϕ∧[⇑ϕ]ø[⇑ϕ]÷)∨ (¬✸(ϕ∧ [⇑ϕ]ø)

∧B [⇑ϕ]ø[⇑ϕ]÷))

Theorem 9. DHB is soundly and completely axiomatized by the static base logic of
conditional belief CHB in Table 2 plus the set of axioms and rules for [⇑] given in Table 3:

Proof. See Appendix B.4. �

The reduction axioms formalize the effect of the dynamic operator [⇑] on each
component of the language LDHB and give us a recursive rewriting algorithm to step-
by-step translate every formula containing the topic-sensitive lexicographic upgrade
operator to a provably equivalent formula in the language LCHB. Most of the axioms
and rules in Table 3 are standard for lexicographic upgrade, so we refer to [38, p. 143]
for their intuitive readings. However, notice the nonstandard formulations of R⊤ and
Rp. For the reduction procedure to go through, we need both of them to be in the
shape given in Table 3 rather than their standard forms [⇑ϕ]⊤↔⊤ and [⇑ϕ]p↔ p,
respectively. This is due to the fact that the replacement rules REB1 and REB2 are not
valid on tsp-models, however, their topic-sensitive versions are (see Theorems 5.3 and
5.4). R⊤ and Rp in their current form guarantee that the sentences on both sides of
the equivalences have the same topic (see Lemma 46 for the use of topic-sensitive RE
rules). Reduction axiom R[≥] encodes precisely how upgrades change the plausibility
relation: after an upgrade with ϕ all ≥-accessible worlds make ø true iff (1) if the
actual world is a ¬ϕ-world then every ≥-accessible world will become a ø-world after
the upgrade, (2) if the actual world is a ¬ϕ-world then every ϕ-world will become a
ø-world after the upgrade, and (3) all ≥-accesible ϕ-worlds become ø-worlds after
the upgrade [49].
The next interesting reduction axiom is RB . While it seems complicated to parse,

it simply gives us the case distinction determining the resulting upgraded order and
indicates the behavior of topic fusion. Regarding the former, we have the reading given
in [38]: after the ϕ-upgrade all most plausible ø-worlds satisfy ÷ iff if there is a ϕ-state
which makes [⇑ϕ]ø true, then the most plausible [⇑ϕ]ø-worlds with respect to≥ϕ are
the same as the most plausible ϕ∧ [⇑ϕ]ø-worlds with respect to ≥, else the ≥ϕ-order
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among the [⇑ϕ]ø-worlds is the same as the ≥-order. Regarding topicality: on the left-
hand-side we have that after the agent grasps the topic of ϕ, the agent would come to
grasp the topic of ÷, were they to grasp the topic of ø. In other words, the topic of ÷ is
included in the topic of the whole doxastic state of the agent, expanded by the topics of
ϕ and ø. On the right-hand-side, given the topic transparency of ∧ and [⇑], we obtain
the same reading via the conditional belief operators of both disjuncts (see Appendix
B.4 for the soundness proof).
Some features of our topic-sensitive lexicographic upgrade operator might remind

the reader of the explicit upgrade/observation operators of Velázquez–Quesada [46,
48, 49]. In both approaches, well-known DEL methods of modeling information
change, such as lexicographic upgrade and world elimination, are equipped with
additional tools to render the modeled agents non-omniscient. Our approach to
dynamic hyperintensional belief revision departs from that of [49] in various ways.
First, while we use topic-sensitive models, [49] appeals to awareness structures to
account for non-omniscient agents. Next, the dynamic logic presented in [49] does not
contain hyperintensional belief or knowledge operators as primitives. They are, rather,
defined in terms of awareness and normal modal operators. What we are interested in,
on the other hand, is the effect of learning on the static hyperintensional belief operators
taken as primitives.

§5. Conclusion and future work. A first area for further work is philosophical.
Topicality is a general semantic feature of propositional content, whose exploration
is still in its infancy (see [21] for an overview and discussion). If intentional states
are generally hyperintensional because of their having topic-sensitive propositional
content, one can expect frameworks broadly similar to the one explored above to
apply to intentional states ranging from knowledge to supposition and imagination
(see [7, 9] for some initial work in this area). One may conjecture that a
general topic-sensitive semantics for the intentional states of non-omniscient agents
may resort to neighborhood structures [32], given that the topicality filter fixes
precisely the main shortcoming of neighborhoods with respect to hyperintensional
phenomena: its forcing agents to have the same attitudes towards all logical
equivalents.
A more technical area of further investigation is in the ballpark of axiomatization

and completeness results. We have completeness for our hyperintensional plain and
conditional belief logics, and we have a reduction of our dynamics of belief revision
to our static conditional belief. However, completeness for the latter is obtained via
the help of the normal modal operator [≥]ϕ. Whereas this is pretty standard and
well-motivated in the literature on Dynamic Epistemic Logic, one may wish for
a complete axiomatization of the hyperintensional conditional belief logic without
this modality. Moreover, the appropriate topic-sensitive versions of various dynamic
attitudes, such as conservative upgrade and public announcements, are still to be
investigated.
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§A. Proofs of §3.

A.1. Proof of Theorem1. Axiom labels refer to the ones inTable 1 and⊢ abbreviates
⊢PHB.

1. ⊢ Bϕ↔
∧

x∈Var(ϕ)Bx:

Note that Bϕ := B(
∧

x∈Var(ϕ)(x∨¬x)) := B(
∧

x∈Var(ϕ)x). Then, by CB , we have

⊢ B(
∧

x∈Var(ϕ)x)↔ (
∧

x∈Var(ϕ)Bx), i.e., ⊢ Bϕ↔
∧

x∈Var(ϕ)Bx.

2. ⊢ Bϕ→ Bø, if Var(ø)⊆ Var(ϕ):
Follows from Theorem 1.1 and the fact that (ϕ∧ø)→ ϕ is a theorem of CPL.

3. ⊢ B(ϕ∧ø)↔ B(ϕ∧ø):
From left-to-right follows from Theorem 1.2 and CB . From right-to-left follows
from Ax1 and Theorem 1.2.

4. ⊢ (B(ϕ→ ø)∧Bϕ)→ Bø:
1. ⊢ (B(ϕ→ø)∧Bϕ)→ (✷(((ϕ→ø)∧ϕ)→ø)∧B((ϕ→
ø)∧ϕ)∧Bø) S5✷, CB ,Thm 1.2

2. ⊢ (✷(((ϕ→ø)∧ϕ)→ø)∧B((ϕ→ø)∧ϕ)∧Bø)→Bø Ax2
3. ⊢ (B(ϕ→ ø)∧Bϕ)→ Bø 2, 1, CPL.

5. ⊢ Bϕ→✷Bϕ:
An easy instance of Ax3.

6. ⊢ ¬Bϕ→✷¬Bϕ:
1. ⊢ ¬Bϕ→✷¬✷Bϕ S5✷ (⊢ ¬ø→✷¬✷ø)
2. ⊢ Bϕ↔✷Bϕ T✷, Thm 1.5
3. ⊢✷¬✷Bϕ↔✷¬Bϕ 2, S5✷, CPL
4. ⊢ ¬Bϕ→✷¬Bϕ 1, 3, CPL

7. ⊢ ¬Bϕ→✷¬Bϕ:
Similar to the above case: replace Bϕ by Bϕ, and Thm 1.5 by Ax3.

8. ⊢ (✷ϕ∧Bϕ)→ Bϕ:
1. ⊢ (✷(⊤→ ϕ)∧B⊤∧Bϕ)→ Bϕ Ax2
2. ⊢ (✷ϕ∧Bϕ)↔ (✷(⊤→ ϕ)∧B⊤∧Bϕ) Ax⊤, CPL, S5✷
3. ⊢ (✷ϕ∧Bϕ)→ Bϕ 1, 2, CPL

9. ⊢ Bϕ→ BBϕ:

1. ⊢ Bϕ→ (✷Bϕ∧BBϕ) Ax3, Ax1, Thm 1.2
2. ⊢ (✷Bϕ∧BBϕ)→ BBϕ Thm 1.8
3. ⊢ Bϕ→ BBϕ 1, 2, CPL
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10. ⊢ (¬Bϕ∧Bϕ)→ B¬Bϕ

1. ⊢ (¬Bϕ∧Bϕ)→ (✷¬Bϕ∧B¬Bϕ) Thm 1.7, Thm 1.2
2. ⊢ (✷¬Bϕ∧B¬Bϕ)→ B¬Bϕ Thm 1.8
3. ⊢ (¬Bϕ∧Bϕ)→ B¬Bϕ 1, 2, CPL

A.2. Proof of Theorem 2: soundness and completeness of PHB.

A.2.1. Soundness of PHB. Soundness is a matter of routine validity check, so we
spell out only the relatively tricky cases.

Proof. Let M = 〈W, ≥ ,T, ⊕ ,b,t,í〉 be a tsp-model and w ∈W . Checking the
soundness of the system S5 for ✷ is standard: recall that ✷ is interpreted as the global
modality on tsp-models. Validity of B⊤ is keyed to the stipulation t(⊤) = b. Validity
of DB is guaranteed since the plausibility relation ≥ is well-founded. Validity of Ax1 is
an immediate consequence of the semantic clause for B and the definition of ϕ. Ax3
is valid since truth of a belief sentence Bϕ is state independent: it is easy to see that
either |Bϕ|=W or |Bϕ|= ∅, for any ϕ ∈ LPHB. Here we spell out the details only for
CB and Ax2.

CB :

M,w 
 B(ϕ∧ø) iffMin≥(W )⊆ |ϕ∧ø| and t(ϕ∧ø)⊑ b

iffMin≥(W )⊆ |ϕ|∩ |ø| and t(ϕ)⊕ t(ø)⊑ b

iff (Min≥(W )⊆|ϕ| andMin≥(W )⊆|ø|) and (t(ϕ)⊑b and t(ø)⊑b)
iff (Min≥(W )⊆|ϕ| and t(ϕ)⊑b) and (Min≥(W )⊆|ø|and t(ø)⊑b)
iffM,w 
 Bϕ∧Bø

Ax2:
Suppose thatM,w 
✷(ϕ→ø)∧Bϕ∧Bø, i.e., (1)M,w 
✷(ϕ→ø), (2)M,w 
Bϕ,
and (3) M,w 
 Bø. (1) means that |ϕ| ⊆ |ø|, (2) implies that Min≥(W ) ⊆ |ϕ|.
Therefore, (1) and (2) together implies thatMin≥(W )⊆ |ø|. Moreover, (3) is the case
if and only if t(ø)⊑ b. We therefore conclude thatM,w 
 Bø. �

A.2.2. Completeness of PHB. The completeness proof is presented in full detail.
Since the intensional component of the belief operator B is interpreted as truth in the
most plausible states—rather than as a standard Kripke operator—completeness is
proven via a detour into an alternative semantics for LPHB based on, what we call,
topic-sensitive relational models (or, in short, tsr-models). This semantics is closer in
style to the standard relational semantics for modal logic, where ✷ is again interpreted
as the global modality and B as the standard KD45 modality with a topic component
as before. These models will be proven to be equivalent to our tsp-models with respect
to the language LPHB. Therefore, completeness for our intended tsp-models follows
from the completeness for the tsr-models. We then establish the completeness result
via a canonical topic-sensitive relational model construction. Our canonical model
construction is heavily inspired by the one presented in [18].

From topic-sensitive relational to topic-sensitive plausibility models.

Definition 9 (Topic-sensitive relational model for LPHB). A topic-sensitive relational
model (tsr-model) is a tupleM= 〈W,RB,T,⊕ ,b,t,í〉 where W, T,⊕ ,b,t, and í are as
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C

Fig. 3. RB =W ×C , where the top ellipse illustrates the final clusters C and an arrow relates
the state it started from to every element in the cluster via RB .

before, and RB ⊆W ×W is a serial relation such that

for all w,w′ ∈W, RB(w) =RB(w
′) (Const – RB)

where RB(w) = {v ∈W : wRBv}.
8

We recursively define the satisfaction relation ||= with respect to tsr-models as
follows. The reader should note the notational difference between ||= and 
, and
recall that the latter denotes the semantics with respect to topic-sensitive plausibility
models.

Definition 10 ( ||= -Semantics for LPHB on tsr-models). Given a tsr-model M =
〈W,RB,T,⊕ ,b,t,í〉 and a state w ∈W , the ||= -semantics for LPHB is as in Definition
4 for the propositional variables, Booleans, and ✷ϕ, plus:

M,w ||= Bϕ iff ∀v ∈W (if wRBv thenM,v ||= ϕ) and t(ϕ)⊑ b.

We define the intension of ϕ with respect to tsr-models M as [[ϕ]]M := {w ∈W :
M,w ||= ϕ}, omit the subscriptM when the model is contextually clear.
Toward establishing the connection between tsr- and tsp-models, consider the tsr-

modelM= 〈W,RB,T,⊕,b,t,í〉. Due to condition (Const – RB), we haveRB =W ×C
for some nonempty subsetC ofW (see Figure 3). In fact,C =RB(w) for any arbitrary
w ∈W . Therefore, (1) since RB is serial, it is guaranteed that C is nonempty, and (2)
since RB satisfies (Const –RB), every tsr-model has a unique such C and we call it the
final cluster.
Given a tsr-modelM= 〈W,RB,T,⊕ ,b,t,í〉, we can define a well-preorder ≥RB on

W as

≥RB= (W ×C )
︸ ︷︷ ︸

1

∪((W \C )× (W \C ))
︸ ︷︷ ︸

2

,

where C is the final cluster ofM = 〈W,RB,T,⊕ ,b,t,í〉. In other words, ≥RB= RB ∪
((W \C )× (W \C )). Figure 4 illustrates this construction.

Lemma 10. For every tsr-modelM= 〈W,RB,T,⊕ ,b,t,í〉, the relation ≥RB is a well-
preorder on W. Moreover,Min≥RB

(W ) = C .

8 It is easy to prove that RB is also transitive and Euclidean. RB is transitive: let v ∈ RB (w)
and u ∈ RB (v). Since RB satisfies (Const – RB ), we have RB (w) = RB (v). Therefore, u ∈
RB (v) implies that u ∈ RB (w). RB is Euclidean: let v ∈ RB (w) and u ∈ RB (w). Again,
by the property (Const – RB ), we have RB (w) = RB (v). Therefore, u ∈ RB (w) implies that
u ∈RB (v).
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C

(a) RB = (W    C)

CW \ C
RB

(b) (W, RB
)

Fig. 4. Construction of (W, ≥RB ), given a tsr-modelM= 〈W,RB,T,⊕ ,b,t,í〉.

Proof. Let v1,v2,v3 ∈W
reflexivity: if v1 ∈C , the v1 ≥RB v1 by (1) in the definition of≥RB . If v1 ∈W \C , the

v1 ≥RB v1 by (2) in the definition of ≥RB .
transitivity: suppose that v1 ≥RB v2 and v2 ≥RB v3. We then have two cases:

Case 1: v3 ∈ C .
Then, by (1) in the definition of ≥RB , we obtain that v1 ≥RB v3.
Case 2: v3 ∈W \C .
Then, v2 ≥RB v3 means that v2 ∈W \C . Similarly, v1 ≥RB v2 means that v1 ∈W \C .
Therefore, by (2) in the definition of ≥RB , we obtain that v1 ≥RB v3.
well-foundedness: let P ⊆W be nonempty and show thatMin≥RB

(P) 6= ∅. It is not

difficult to see, by the definition of ≥RB , that

Min≥RB
(P) =

{

P∩C, if P∩C 6= ∅

P∩ (W \C ), otherwise.

In both cases Min≥RB
(P) 6= ∅. Therefore, ≥RB is a well-preorder on W. Finally, as

W ∩C = C 6= ∅, we obtain thatMin≥RB
(W ) =W ∩C = C . �

We are now ready to show the correspondence between tsr-models and tsp-models.

Theorem 11. Given a tsr-modelM= 〈W,RB,T,⊕,b,t,í〉, for allw ∈W and ϕ ∈LPHB,

M,w ||= ϕ iffM≥RB
,w 
 ϕ,

whereM≥RB
= 〈W, ≥RB ,T,⊕ ,b,t,í〉 is the corresponding tsp-model.

Proof. The proof follows by induction on the structure of ϕ, where cases for the
propositional variables, the Boolean connectives, and ✷ are elementary. So assume
inductively that the result holds for ø and show that it holds also for Bø. Note that
the induction hypothesis implies that [[ø]]M = |ø|M≥RB

.

Case ϕ := Bø

M,w ||=Bø iff RB(w)⊆ [[ø]]M and t(ø)⊑ b (Definition 10)
iff C ⊆ [[ø]]M and t(ø)⊑ b (where C =RB(w),the final cluster)
iffMin≥RB

(W )⊆ [[ø]]M and t(ø)⊑ b (Lemma 10)

iffMin≥RB
(W )⊆ |ø|M≥RB

and t(ø)⊑ b (induction hypothesis)

iffM≥RB
,w 
 Bø (Definition 4)

�
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For any set of formulas Γ ⊆ LPHB and any ϕ ∈ LPHB, we write Γ ⊢PHB ϕ if there
exists a finitely many formulas ϕ1, ...,ϕn ∈ Γ such that ⊢PHB (ϕ1 ∧ ··· ∧ ϕn) → ϕ.
We say that Γ is PHB-consistent if Γ 6⊢PHB ⊥, and PHB-inconsistent otherwise. A
sentence ϕ is PHB-consistent with Γ if Γ∪{ϕ} is PHB-consistent (or, equivalently,
if Γ 6⊢PHB ¬ϕ). Finally, a set of formulas Γ is a maximally PHB-consistent set (or, in
short, mcs) if it is PHB-consistent and any set of formulas properly containing Γ is
PHB-inconsistent [10].9 We drop mention of the logic PHB when it is clear from the
context.

Lemma 12. For every mcs w of PHB and ϕ,ø ∈ LPHB, the following hold:

1. w ⊢PHB ϕ iff ϕ ∈ w,
2. if ϕ ∈ w and ϕ→ ø ∈ w, then ø ∈ w,
3. if ⊢PHB ϕ then ϕ ∈ w,
4. ϕ ∈ w and ø ∈ w iff ϕ∧ø ∈ w,
5. ϕ ∈ w iff ¬ϕ 6∈ w.

Proof. Standard. �

In the following proofs, we make repeated use of Lemma 12 in a standard way and
often omit mention of it.

Lemma 13 (Lindenbaum’s Lemma). Every PHB-consistent set can be extended to a
maximally PHB-consistent one.

Proof. Standard. �

Let Wc be the set of all maximally consistent sets of PHB. Define ∼✷ and →B on
Wc as

w ∼✷ v iff {ϕ ∈ LPHB :✷ϕ ∈ w} ⊆ v,
w→B v iff {ϕ ∈ LPHB : Bø∧✷(ø→ ϕ) ∈ w for some ø ∈ LPHB} ⊆ v.

Since ✷ is an S5 modality, ∼✷ is an equivalence relation. Moreover, due to Ax⊤, we
also have→B⊆∼✷ (see the proof Lemma 15, item (1)).
To simplify the notation in the following proofs, letw[B] := {ϕ ∈LPHB :Bø∧✷(ø→

ϕ) ∈ w for some ø ∈ LPHB}, where w ∈Wc . Therefore, we can equivalently write

w→B v iff w[B]⊆ v.

Definition 11 (Canonical tsr-model for w0). Let w0 be a mcs of PHB. The canonical
tsr-model for w0 is a tupleM

c = 〈W c,RcB,T
c,⊕c ,bc,tc,íc〉 where

• W c = {w ∈Wc : w0 ∼✷ w},
• RcB =→B ∩(W c ×W c),
• T c = {a,b}, where a = {x ∈ Prop∪{⊤} :¬Bx ∈w0} and b = {x ∈ Prop∪{⊤} :
Bx ∈ w0},

• ⊕c : T c ×T c → T c such that a⊕c a = a, b⊕c b = b, a⊕c b = b⊕c a = a,
• b

c = b, and

9 Notions of derivation, (in)consistent, and maximally consistent sets for the systems studied
in §4 are defined similarly.
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b = 

a

Fig. 5. The canonical topic model 〈T c,⊕c ,bc,tc〉 for w0, where b ⊏
c a.

• tc : LPHB → T c such that, for every a ∈ T c and x ∈ Prop∪{⊤},

tc(x) = a iff x ∈ a,

and tc extends to LPHB by t
c(ϕ) =⊕cVar(ϕ) (see Figure 5).

• w ∈ íc(p) iff p ∈ w, for all p ∈ Prop.

The canonical topic parthood on T c , denoted by ⊑c , is defined in a standard way as in
Definition 1.

Lemma 14. Given a mcs w,
∧

i≤nϕi ∈ w[B] for all finite {ϕ1, ...,ϕn} ⊆ w[B].

Proof. Let {ϕ1, ...,ϕn} ⊆ w[B]. This means that, for each ϕi with i ≤ n, there is a
øi ∈ LPHB such that Bøi ∧✷(øi → ϕi) ∈w. Thus,

∧

i≤nBøi ∧
∧

i≤n✷(øi → ϕi) ∈w.

Then, by CB , we obtain that B(
∧

i≤nøi) ∈ w. By S5✷, we also have ✷(
∧

i≤nøi →∧

i≤nϕi). Therefore,
∧

i≤nϕi ∈ w[B]. �

Lemma 15. M
c = 〈W c,RcB,T

c,⊕c ,bc,tc,íc〉 is a tsr-model.

Proof.

1. RcB is serial, i.e., that for allw ∈W c there is a mcs v ∈W c such thatwRcBv: to show
this, we need to show that (a)→B⊆∼✷, and (b) w[B] is a consistent set.
to prove (a): let w,v ∈Wc such that w→B v, i.e., that w[B]⊆ v. Now, let ÷ ∈ LPHB

such that ✷÷ ∈ w. Then, we have that ✷(⊤ → ÷) ∈ w (by S5✷). By Ax⊤, we also
have that B⊤ ∈w. Hence, we obtain ÷ ∈w[B]⊆ v, implying that ÷ ∈ v. Therefore,
w ∼✷ v.
to prove (b): let w ∈W c and suppose, toward contradiction, that w[B] is not
consistent, i.e., w[B] ⊢ ⊥. This means that there is a finite subset A= {ϕ1, ...,ϕn} ⊆
w[B] such that⊢

∧

A→¬ϕi for some i ≤ n. ByLemma14,wehave that
∧

A∈w[B],
thus, there is a ø such that Bø ∈ w and ✷(ø →

∧

A) ∈ w. Since ⊢
∧

A→ ¬ϕi ,
by S5✷, we also have ✷(ø→¬ϕi) ∈ w. Hence, ¬ϕi ∈ w[B] too. As ϕi ∈ w[B], we
also have a ø′ with Bø′ ∈ w and ✷(ø′ → ϕi) ∈ w. From ✷(ø → ¬ϕi) ∈ w and
✷(ø′ → ϕi) ∈ w, by S5✷, we obtain that ✷(ø→ ¬ø′) ∈ w. As Bø′ ∈ w, by Ax1
and Theorem 1.2, B¬ø′ ∈w. Therefore, B¬ø′ ∈w, ✷(ø→¬ø′) ∈w, Bø ∈w, by
Ax2, implies that B¬ø′ ∈ w, contradicting the consistency of w: Bø′ ∈ w implies
¬B¬ø′ ∈ w, by DB . Therefore, w[B] is consistent. By Lindenbaum’s Lemma, we
can then extend it to a mcs v. Asw[B]⊆ v, we obtain thatw→B v. Then, by (a), we
know thatw ∼✷ v. Therefore, asw ∈W c , we also have v ∈W c (by the definition of
W c and since∼✷ is transitive). Hence, we conclude thatwR

c
Bv, that is,R

c
B is serial.

2. RcB(v) = R
c
B(v

′) for all v,v′ ∈ W c : let u ∈ RcB(v), i.e., that v[B] ⊆ u. Suppose
÷ ∈ v′[B]. This implies that there is a ø ∈ LPHB such that Bø ∧✷(ø → ÷) ∈ v′.
By Ax3 and S5✷, we also have that ✷Bø ∈ v′ and ✷✷(ø→ ÷) ∈ v′. Since v′ ∼✷ v

(as v,v′ ∈W c and ∼✷ is an equivalence relation), we obtain that Bø ∈ v and
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✷(ø→ ÷) ∈ v. Hence, ÷ ∈ v[B]. Therefore, by the first assumption, we have ÷ ∈ u,
implying that v′[B]⊆ u, i.e., u ∈RcB(v

′). The opposite direction is analogous.
3. ⊕c is idempotent, commutative, and associative: easy to see from the definition
of ⊕c .

4. tc is well-defined: Observe that, since w0 is consistent and by Ax⊤, we have a 6= b.
Let ϕ1,ϕ2 ∈ LPHB such that t

c(ϕ1) 6= t
c(ϕ2). This means, wlog, that t

c(ϕ1) = a and
tc(ϕ2) = b. I.e., ⊕

cVar(ϕ1) = a and ⊕
cVar(ϕ2) = b. While the former means that

there is ax ∈Var(ϕ1) such that¬Bx ∈w0, the latter implies that for all y ∈Var(ϕ2),
we have By ∈ w0. Since w0 is consistent, x 6∈ Var(ϕ2). Therefore, ϕ1 6= ϕ2.

5. tc(⊤) = b
c : By Ax⊤ and Ax1, we have B⊤ ∈ w0. And, Var(⊤) = {⊤}. Hence,

Var(⊤) ⊆ b = b
c . Then, by the definition of tc , we have that tc(⊤) = b

c . And,
obviously, ∀a,b ∈ T c ∃b′ ∈ T c(b′ = a⊕c b). �

Lemma 16. Given the canonical tsr-model Mc = 〈W c,RcB,T
c,⊕c ,bc,tc,íc〉, for any

w ∈W c and ϕ ∈ LPHB, Bϕ ∈ w iff Bx ∈ w for all x ∈ Var(ϕ).

Proof. The direction from left-to-right follows from Theorem 1.2. For the opposite
direction, let Var(ϕ) = {x1, ...,xn} and observe that ϕ := x1∧ ···∧xn. If Bxi ∈ w for
all xi ∈ {x1, ...,xn}, then

∧

i≤nBxi ∈w (by Lemma 12.4). Then, by CB , we obtain that

B(
∧

i≤n xi) ∈ w, i.e., Bϕ ∈ w. �

Corollary 17. Given the canonical tsr-model Mc = 〈W c,RcB,T
c,⊕c ,bc,tc,íc〉, for

any w ∈W c , and ϕ ∈ LPHB, Bϕ ∈ w iff tc(ϕ)⊑ b
c .

Proof.

Bϕ ∈ w iff Bx ∈ w for all x ∈ Var(ϕ) (Lemma 16)
iff Bx ∈ w0 for all x ∈ Var(ϕ) (Ax3 and the definition ofW c)
iff tc(x) = b for all x ∈ Var(ϕ) (by the definitions of b and tc)
iff tc(ϕ) = b (by the definition of (T c,⊕c) and tc(ϕ))
iff tc(ϕ)⊑ b

c (since b = b
c and b ⊑ a for all a ∈ T c)

�

Lemma 18. For every mcs w and ϕ ∈ LPHB, if w[B] ⊢ ϕ and Bϕ ∈ w, then Bϕ ∈ w.

Proof. Suppose w[B] ⊢ ϕ and Bϕ ∈ w. Then, there is a finite set A ⊆ w[B] such
that ⊢

∧

A→ ϕ. By Lemma 14, we know that
∧

A ∈ w[B]. This means that there is a
ø such that Bø∧✷(ø→

∧

A) ∈w. Then, by S5✷, we obtain that ✷(ø→ ϕ) ∈w. We
also have Bϕ ∈ w and Bø ∈ w. Therefore, by Ax2, we conclude that Bϕ ∈ w. �

Lemma 19 (Truth Lemma). Let w0 be a mcs of PHB and M
c = 〈W c,RcB,T

c,⊕c ,
b
c,tc,íc〉 the canonical tsr-model for w0. Then, for all ϕ ∈ LPHB and w ∈W c , we have

M
c,w ||= ϕ iff ϕ ∈ w.

Proof. The proof follows by induction on the structure of ϕ. The cases for the
propositional variables, Booleans, and ϕ := ✷ø are standard. We here prove the case
ϕ := Bø.
(⇐) Suppose Bø ∈ w. Since Bø ∈ w, by Ax1, Bø ∈ w. Thus, by Corollary 17,

tc(ø) ⊑ b
c . Now let v ∈ RcB(w), i.e., w[B] ⊆ v. As Bø ∈ w and ✷(ø→ ø) ∈ w (the

latter is byS5✷),wehave thatø ∈w[B]. Therefore, sincew[B]⊆ v, we haveø ∈ v. Then,
by the induction hypothesis, we haveMc,v ||= ø. As v has been chosen arbitrarily, we
obtain thatMc,w ||= Bø.
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(⇒) SupposeMc,w ||= Bø, i.e., for all v ∈RcB(w),M
c,v ||= ø and tc(ø)⊑ b

c . By
Corollary 17, the latter means that Bø ∈ w. Moreover, the former, by the induction
hypothesis, implies that ø ∈ v for all v ∈ RcB(w). In other words, for all v ∈W

c with
w[B] ⊆ v, we have that ø ∈ v. This implies that w[B] ⊢ ø. Otherwise, w[B]∪{¬ø}
would be consistent, thus, by Lemma 13, there exists a mcs v′ such thatw[B]∪{¬ø} ⊆
v′. As w[B]⊆ v′, we have w→B v

′. Since→B⊆∼✷ and w ∈W c , we obtain that v′ ∈
W c , therefore, v′ ∈ RcB(w). Therefore, that ¬ø ∈ v′ contradicts with the assumption
that ø ∈ v for all v ∈RcB(w). Since Bø ∈w, by Lemma 18, we obtain that Bø ∈w. �

Corollary 20. PHB is complete with respect to the class of tsr-models.

Proof. Let ϕ ∈ LPHB such that 6⊢ ϕ. This mean that {¬ϕ} is consistent. Then, by
Lindenbaum’s Lemma (Lemma 13), there exists a mcs w such that ϕ 6∈ w. Therefore,
by Lemma 19, we conclude that Mc,w 6 ||= ϕ, where Mc is the canonical tsr-model
for w. �

Corollary 21. PHB is complete with respect to the class of tsp-models.

Proof. Let ϕ ∈ LPHB such that 6⊢ ϕ. Then, by Corollary 20, there is a tsr-modelM=
〈W,RB,T,⊕ ,b,t,í〉 and w ∈W such thatM,w 6 ||= ϕ. Therefore, by Theorem 11, we
conclude thatM≥RB

,w 6
ϕwhereM≥RB
= 〈W, ≥RB ,T,⊕,b,t,í〉 is the corresponding

tsp-model. �

§B. Proofs of §4.

B.1. Proof of Lemma 3. LetL be the language defined in Lemma 3.More precisely,
L is the language defined by the grammar

ϕ := pi | ⊤ | ¬ϕ | (ϕ∧ϕ) | Bϕϕ

where pi ∈ Prop.

Definition 12 (Translation from LPHB to L). Let e : LPHB →L be the map such that

e(p) = p

e(⊤) =⊤

e(¬ϕ) = ¬e(ϕ)

e(ϕ∧ø) = e(ϕ)∧ e(ø)

e(✷ϕ) = B¬e(ϕ)⊥

e(Bϕ) = B⊤e(ϕ)

Lemma 22. Given a tsp-model M = 〈W, ≥ ,T, ⊕ ,b,t,í〉 and ϕ ∈ LPHB, t(ϕ) ⊑
b iff t(e(ϕ))⊑ b.

Proof. The proof is by induction on the structure of ϕ. The cases for the
propositional variables and Booleans straightforwardly follow from the definition of
e and the fact that Boolean connectives are topic transparent. Cases for ϕ := ✷ø and
ϕ := Bø follow similarly to each other so we give the details of only the former case.
Suppose inductively that the statement holds for ø.
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Case ϕ :=✷ø:

t(✷ø)⊑ b iff t(ø)⊑ b (t(ø) = t(✷ø))
iff t(e(ø))⊑ b (induction hypothesis)
iff t(e(ø))⊕b⊑ b (by the definition of ⊕)
iff t(e(ø))⊕ t(⊥)⊑ b (t(⊥) = t(¬⊤) = b)
iff t(¬e(ø))⊕ t(⊥)⊑ b (t(¬e(ø)) = t(e(ø)))

iff t(B¬e(ø)⊥)⊑ b (t(B¬e(ø)⊥) = t(¬e(ø))⊕ t(⊥))
iff t(e(✷ø))⊑ b (by the definition of e) �

Lemma 23. For all ϕ ∈ LPHB, we have � ϕ↔ e(ϕ).

Proof. The proof is by induction on the structure of ϕ. The cases for the
propositional variables and Booleans straightforwardly follow from the definition of
e. Towards showing the cases for ϕ := ✷ø and ϕ := Bø, suppose inductively that the
statement holds for ø. LetM= 〈W, ≥ ,T,⊕ ,b,t,í〉 be a tsp-model and w ∈W .
Case ϕ :=✷ø:

M,w 
 e(✷ø) iffM,w 
 B¬e(ø)⊥ (by the definition of e)
iffMin≥|¬e(ø)| ⊆ |⊥| and t(⊥)⊑ b⊕ t(e(ø)) (Definition 5)
iffMin≥|¬e(ø)| ⊆ |⊥| (since t(⊥) = b)
iff |¬e(ø)|= ∅ (since |⊥|= ∅ and ≥ is well-founded)
iff |e(ø)|=W (by Definition 5)
iff |ø|=W (induction hypothesis)
iffM,w 
✷ø

Case ϕ := Bø:

M,w 
 e(Bø) iffM,w 
 B⊤e(ø) (by the definition of e)
iffMin≥|⊤| ⊆ |e(ø)| and t(e(ø))⊑ b⊕ t(⊤) (by Definition 5)
iffMin≥(W )⊆ |e(ø)| and t(e(ø))⊑ b (since t(⊤) = b and ⊕

is idempotent)
iffMin≥(W )⊆ |ø| and t(ø)⊑ b (induction hypothesis,

Lemma 22)
iffM,w 
 Bø (Definition 4)

Corollary 24. For every ϕ ∈ LPHB, there exists ø ∈ L such that � ϕ↔ ø. In other
words, L is at least as expressive as LPHB with respect to tsp-models.

Proof of Lemma 3: Corollary 24 shows that L is at least as expressive as LPHB with
respect to tsp-models. To show that it is indeed strictly more expressive, consider the
modelsM4 = 〈{w,u,v}, ≥4 ,{b},⊕,t,í〉 andM5 = 〈{w,u,v}, ≥5 ,{b},⊕,t,í〉 such that
t(p) = {b} for all p ∈ Prop, posets 〈{w,u,v}, ≥4〉 and 〈{w,u,v}, ≥5〉 are as given in
Figure 6, í(p)= {v,u}, í(q)= {w,v}. Since themodels have only onepossible topic, the
topic component in this particular case does not play any essential role. The twomodels
differ only in their plausibility ordering, while having exactly the same most plausible
world, namely w. It is then easy to see thatM4,w 
 Bpq (sinceMin≥|p|M4

= {v} ⊆
{w,v} = |q|M4

), whereasM5,w 6
 Bpq (since Min≥|p|M5
= {u} 6⊆ {w,v} = |q|M5

).
So, L can distinguish M4,w from M5,w. However, for all ϕ ∈ LPHB and w

′ ∈W ,
M4,w

′ 
 ϕ iffM5,w
′ 
 ϕ, i.e., |ϕ|M4

= |ϕ|M5
. This follows easily by an inductive

proof on the structure of ϕ. Therefore, L is strictly more expressive than LPHB. Since
L ⊆ LCHB, it also follows that LCHB is strictly more expressive than LPHB.
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30 AYBÜKE ÖZGÜN AND FRANCESCO BERTO

u

p

v

p, q

w

q

(a)

v

p, q

u

p

w

q

(b)

Fig. 6. ModelsM4 andM5. Circles represent possible worlds, diamonds represent possible
topics. Valuation and topic assignment are given by labelling each node with propositional
variables. We omit labelling when a node is assigned every element in Prop. Arrows represent
the plausibility relation ≥ and point to more plausible worlds. Reflexive and transitive arrows
are omitted.

B.2. Proof of Theorem 5. Axiom labels refer to the ones in Table 2.

1. ⊢✸ϕ→¬Bϕ⊥

1. ⊢ Bϕ⊥→ (✷(ϕ→ 〈≥〉(ϕ∧ [≥](ϕ→⊥)))) Ax6
2. ⊢ (✷(ϕ→ 〈≥〉(ϕ∧ [≥](ϕ→⊥))))↔ (✷(ϕ→

〈≥〉(ϕ∧ [≥]¬ϕ)))
(⊢ (ϕ→⊥)↔¬ϕ)

3. ⊢ (✷(ϕ → 〈≥〉(ϕ ∧ [≥]¬ϕ))) ↔ (✷(ϕ →
〈≥〉⊥))

(⊢ (ϕ∧ [≥]¬ϕ)↔⊥)

4. ⊢✷(ϕ→ 〈≥〉⊥)↔✷¬ϕ (⊢ 〈≥〉⊥↔⊥)
5. ⊢ Bϕ⊥→✷¬ϕ 1-4, CPL
6. ⊢✸ϕ→¬Bϕ⊥ 5, CPL

2. ⊢ Bϕϕ
An easy consequence of Ax1 and Ax6, together with S5✷ and S4[≥].

3. from ⊢ ϕ↔ ÷, ⊢ Bϕ÷, and ⊢ B÷ϕ infer ⊢ Bϕø↔ B÷ø
First observe that ⊢ Bøϕ↔ Bøϕ. This is an easy consequence of Ax1 and Ax2 (use
⊢ Bøø and ⊢ Bøø). Let us denote this theorem by ⋆. Then:

1. ⊢ ϕ↔ ÷ ass. 1
2. ⊢ Bϕ÷ ass. 2
3. ⊢ B÷ϕ ass. 3
4. ⊢ Bϕø↔ B÷ø ass. 2-3, ⋆, Ax2
5. ⊢ Bϕø↔ (✷(ϕ→ 〈≥〉(ϕ∧ [≥](ϕ→ ø)))∧Bϕø) Ax6
6. ⊢ (✷(ϕ→ 〈≥〉(ϕ∧ [≥](ϕ→ ø)))∧Bϕø)↔
(✷(÷→ 〈≥〉(÷∧ [≥](÷→ ø)))∧Bϕø) S5✷, S4[≥], ass. 1

7. ⊢ (✷(÷→ 〈≥〉(÷∧ [≥](÷→ ø)))∧Bϕø)↔
(✷(÷→ 〈≥〉(÷∧ [≥](÷→ ø)))∧B÷ø) 4, CPL

8. (✷(÷→ 〈≥〉(÷∧ [≥](÷→ ø)))∧B÷ø)↔ B÷ø Ax6
9. ⊢ Bϕø↔ B÷ø 5–8, CPL

4. from ⊢ ϕ↔ ÷, ⊢ Bϕ÷, and ⊢ B÷ϕ infer ⊢ Bøϕ↔ Bø÷
Similar to the proof of Theorem 5.3.

B.3. Proof of Theorem 6: soundness and completeness of CHB.

B.3.1. Soundness of CHB. Soundness is a matter of routine validity check, so we
spell out only the relatively tricky cases.

Proof. LetM = 〈W, ≥ ,T,⊕ ,b,t,í〉 be a tsp-model and w ∈W . The validity of
Inc is due to the fact that ✷ is the global modality. Validity of Bϕ⊤ follows from the
stipulation t(⊤) = b. Validity of Ax1 follows immediately from the semantic clause
for Bϕø and the definition of t. Ax2 is valid since ⊑ is a transitive relation. Validity
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of Ax3 and Ax4 follow similarly to those of CB and Ax2 in Table 1, respectively (see
the proof of Theorem 2 in Appendix A.2.1). Ax5 is valid since truth of a conditional
belief sentence Bϕø is state independent: it is easy to see that either |Bϕø| =W or
|Bϕø|= ∅, for any ϕ,ø ∈ LCHB. The validity proofs of Tot and Ax6 are spelled out.

Tot: Suppose that M,w 6
 ✷([≥]ϕ → ø) and let v ∈W such that M,v 
 [≥]ø.
The former means that there is v0 ∈W such that v0 
 [≥]ϕ ∧¬ø. AsM,v 
 [≥]ø
andM,v0 
 ¬ø, we have v 6≥ v0. Thus, as ≥ is a total order, we obtain that v0 ≥ v.
Therefore, since v0 
 [≥]ϕ, we conclude thatM,v 
 ϕ.

Ax6: We first show that

M,w 
✷(ϕ→ 〈≥〉(ϕ∧ [≥](ϕ→ ø))) iffMin≥(|ϕ|)⊆ |ø| (1)

(⇒) Suppose thatM,w 
 ✷(ϕ → 〈≥〉(ϕ ∧ [≥](ϕ → ø))) and let v ∈Min≥(|ϕ|). As
Min≥(|ϕ|)⊆ |ϕ|, we obtain by the first assumption thatM,v 
 〈≥〉(ϕ∧ [≥](ϕ→ø)).
This means that there is u ∈W such that v ≥ u and M,u 
 ϕ ∧ [≥](ϕ → ø). As
v ∈Min≥|ϕ|, u ∈ |ϕ|, and v ≥ u, we have u ∈Min≥|ϕ|. Therefore, u ≥ v. Hence, as
M,u 
 [≥](ϕ→ ø) andM,v 
 ϕ, we conclude thatM,v 
 ø.
(⇐) Suppose thatMin≥(|ϕ|)⊆ |ø| and let v ∈W such thatM,v 
 ϕ. Since≥ is well-
founded and |ϕ| 6= ∅, we haveMin≥(|ϕ|) 6= ∅, i.e., there is a u ∈Min≥(|ϕ|). Since≥ is a
total order, we obtain that v ≥ u. Moreover, as u ∈Min≥(|ϕ|), if u ≥ u

′ andM,u′ 
ϕ,
we have u′ ∈Min≥(|ϕ|). Therefore, since Min≥(|ϕ|) ⊆ |ø|, we obtain that M,u 

[≥](ϕ→ø). As u ∈Min≥(|ϕ|), we moreover have thatM,u 
 ϕ∧ [≥](ϕ→ø). Since
v ≥ u, we obtain thatM,v 
 〈≥〉(ϕ ∧ [≥](ϕ→ ø)). As v has been chosen arbitrarily
fromW, we conclude thatM,w 
✷(ϕ→ 〈≥〉(ϕ∧ [≥](ϕ→ ø))). To conclude,

M,w 
 Bϕø iffMin≥(|ϕ|)⊆ |ø| and t(ø)⊑ b⊕ t(ϕ)
iffM,w 
✷(ϕ→ 〈≥〉(ϕ∧ [≥](ϕ→ ø))) andM,w 
 Bϕø

(By (1) above and the semantics of Bϕø)
iffM,w 
✷(ϕ→ 〈≥〉(ϕ∧ [≥](ϕ→ ø)))∧Bϕø

�

B.3.2. Completeness of CHB. We first show completeness with respect to quasi tsp-
models via a canonical model construction. Building the canonical quasi tsp-model
involves a non-trivial topic algebra construction. A quasi tsp-model is like a tsp-model
except that its plausibility ordering is not guaranteed to be a well-order. We then
continue proving the finite quasi tsp-model property for CHB via a filtration argument.
As every finite quasi tsp-model is a tsp-model, we establish the completeness of CHB
with respect to the class of tsp-models.

Definition 13 (Quasi tsp-model for LCHB). A quasi tsp-model is a tuple 〈W, ≥ ,T,⊕
,b,t,í〉 where 〈W, ≥〉 is a total preorder, 〈T, ⊕ ,b,t〉 is a dt-model for LCHB, and í :
Prop→P(W ) is a valuation function that maps every propositional variable in Prop to
a set of worlds.

So, a quasi tsp-model for LCHB is just like a tsp-model except that the order≥ is not
guaranteed to be a well-order, that is, it is not guaranteed that Min≥(P) 6= ∅ for all
nonempty P ⊆W .
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Lemma 25. For every mcs w of CHB and ϕ,ø ∈ LCHB, the following hold:

1. w ⊢CHB ϕ iff ϕ ∈ w,
2. if ϕ ∈ w and ϕ→ ø ∈ w, then ø ∈ w,
3. if ⊢CHB ϕ then ϕ ∈ w,
4. ϕ ∈ w and ø ∈ w iff ϕ∧ø ∈ w,
5. ϕ ∈ w iff ¬ϕ 6∈ w.

Proof. Standard. �

Lemma 26 (Lindenbaum’s Lemma). Every CHB-consistent set can be extended to a
maximally CHB-consistent one.

Proof. Standard. �

Let X c be the set of all maximally consistent sets of CHB. Define ∼✷ and ≥ on X
c

as
w ∼✷ v iff {ϕ ∈ LCHB :✷ϕ ∈ w} ⊆ v,
w ≥ v iff {ϕ ∈ LCHB : [≥]ϕ ∈ w} ⊆ v.

Since ✷ is an S5 modality, ∼✷ is an equivalence relation. Similarly, since [≥] is an
S4 modality, ≥ is a preorder. Moreover, Inc guarantees that ≥ is a subset of ∼✷, and
axiom Tot that ≥ is a total order within each equivalence class induced by ∼✷ (see
Lemma 28, item (1)).
To define the canonical quasi tsp-model, we need some auxiliary definitions and

lemmas. For w ∈ X c , let ≈w⊆ LCHB×LCHB such that

ϕ ≈w ø iff B
ϕø,Bøϕ ∈ w.

In the following proofs, we make repeated use of Lemma 25 in a standard way and
omit mention of it.

Lemma 27. For all w ∈ X c ,≈w is an equivalence relation. Moreover, for all w,v ∈ X c

such that w ∼✷ v, we have ≈w=≈v .

Proof. Let w ∈ X c and ϕ,ø,÷ ∈ LCHB.

• reflexivity: By Ax1, we have ⊢CHB B
ϕϕ, thus, ϕ ≈w ϕ.

• symmetry: Suppose that ϕ ≈w ø. This means, by the definition of ≈w , that
Bϕø,Bøϕ ∈ w. Therefore, Bøϕ,Bϕø ∈ w, i.e., ø ≈w ϕ.

• transitivity: Suppose that ϕ ≈w ø and ø ≈w ÷. This means that (a) B
øϕ ∈ w,

(b) Bϕø ∈ w, (c) Bø÷ ∈ w, and (d) B÷ø ∈ w. Then, by Ax2, (b), and (c),
Bϕ÷ ∈ w. Similarly, by Ax2, (a), and (d), B÷ϕ ∈ w. Therefore, ϕ ≈w ÷.

For the last part, let w,v ∈ X c such that w ∼✷ v and suppose that ϕ ≈w ø. The
latter means that Bϕø,Bøϕ ∈w. Then, by Ax5, we obtain that ✷Bϕø,✷Bøϕ ∈w. As
w ∼✷ v, we conclude that B

ϕø,Bøϕ ∈ v, i.e., ϕ ≈v ø. For the other direction, use the
fact that ∼✷ is symmetric. �

Let [ϕ]w = {ø ∈ LCHB : ϕ ≈w ø}, i.e., [ϕ]w is the equivalence class of ϕ with respect
to ≈w .

Definition 14 (Canonical quasi tsp-model for w0). Let w0 be a mcs of CHB. The
canonical model for w0 is the tupleM

c = 〈W c, ≥c ,T c,⊕c ,bc,tc,íc〉, where
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• W c = {w ∈ X c : w0 ∼✷ w},
• ≥c=≥ ∩(W c ×W c),
• T c = {[ϕ]w0 : ϕ ∈ LCHB} (we omit the subscript w0 when it is clear from the
context),

• ⊕c : T c ×T c → T c such that [ϕ]⊕c [ø] = [ϕ∧ø],
• b

c = [⊤],
• tc : LCHB → T c such that, for all x ∈ Prop∪ {⊤}, tc(x) = [x] and tc(ϕ) =

⊕cVar(ϕ),
• íc : Prop→P(W c) such that íc(p) = {w ∈W c : p ∈ w}.

The canonical topic parthood on T c , denoted by ⊑c , is defined in a standard way as in
Definition 1.

Lemma 28. For any mcs w0 of CHB, the canonical model Mc = 〈W c, ≥c ,
T c,⊕c ,bc,tc,íc〉 for w0 constructed as in Definition 14 is a quasi tsp-model for LCHB.

Proof.

1. ≥c is a total preorder onW c :
That ≥c is reflexive and transitive follows from the fact that [≥] is an S4 modality.
To prove that ≥c is total inW c , let w,v ∈W c and assume, toward contradiction,
that w 6≥c v and v 6≥c w. Then, by the definition of ≥c , there exist ø,÷ ∈ LCHB

such that [≥]ø ∈ w but ø 6∈ v; and [≥]÷ ∈ v but ÷ 6∈ w. Therefore, [≥]ø∧¬÷ ∈ w
and [≥]÷ ∧¬ø ∈ v. By Tot, we have that ✷([≥]ø → ÷)∨✷([≥]÷ → ø) ∈ w, i.e.,
that ✷([≥]ø→ ÷) ∈ w or ✷([≥]÷ → ø) ∈ w. If ✷([≥]ø→ ÷) ∈ w, then (by T✷)
[≥]ø→ ÷ ∈ w, contradicting consistency of w. If ✷([≥]÷ → ø) ∈ w, then (since
w ∼✷ v), [≥]÷→ø ∈ v, contradicting consistency of v. Therefore, for allw,v ∈W c ,
we obtain that either w ≥c v or v ≥c w.

2. ⊕c is idempotent, commutative, and associative: Follows easily from Ax1 and the
fact that [ϕ]w0 is an equivalence class for each ϕ ∈ LCHB.

3. ⊕c is always defined on T c , that is, ∀a,b ∈ T c ∃c ∈ T c(c = a⊕c b) : Let a,b ∈ T c .
By the definition of T c , we have that a = [ϕ]w0 and b = [ø]w0 for some ϕ,ø ∈LCHB.
As ϕ∧ø ∈ LCHB and a⊕

c b = [ϕ∧ø] ∈ T c , we obtain the result.
4. tc(⊤) = b

c : Easy to see by the definitions of tc and bc . �

Lemma 29. The following are derivable in CHB:

1. Bϕ(ϕ∧⊤)
2. Bϕø→ Bϕø.

Proof.

1. ⊢ Bϕ(ϕ∧⊤)

1. ⊢ Bϕϕ∧Bϕ⊤ Theorem 5.2, Ax⊤
2. ⊢ (Bϕϕ∧Bϕ⊤)→ Bϕ(ϕ∧⊤) Ax3
3. ⊢ Bϕ(ϕ∧⊤) 1, 2, CPL

2. ⊢ Bϕø→ Bϕø: An easy consequence of Ax6. �

Lemma 30. For all ϕ ∈ LCHB, we have

1. tc(ϕ) = [ϕ], and
2. [ϕ∧⊤] = [ϕ].
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Proof. Let ϕ ∈ LCHB such that Var(ϕ) = {x1, ...,xn}.

1. By the definitions of tc and ⊕c , we have

tc(ϕ) =⊕cVar(ϕ) = tc(x1)⊕
c ···⊕c tc(xn) = [x1]⊕

c ···⊕c [xn] = [x1∧···∧xn].

Therefore, as [x1 ∧ ··· ∧xn] is an equivalence class, it suffices to show that ϕ ∈
[x1 ∧ ··· ∧xn]. It follows by Ax1 that B

ϕ(x1∧···∧xn),B
x1∧···∧xnϕ ∈ w0. Therefore,

[ϕ] = [x1∧···∧xn] = t
c(ϕ).

2. By Ax1, we have Bϕ∧⊤ϕ ∈w0. Moreover, by Lemmas 29.1 and 29.2, we obtain that
Bϕ(ϕ∧⊤) ∈ w0. Hence, ϕ ≈w0 (ϕ∧⊤), i..e., [ϕ] = [ϕ∧⊤]. �

Lemma 31. For all w ∈W c and ϕ,ø ∈ LCHB, t
c(ø)⊑c tc(ϕ)⊕c bc iff Bϕø ∈ w.

Proof. Observe that

tc(ø)⊑c tc(ϕ)⊕c bc iff tc(ø)⊕c (tc(ϕ)⊕c bc) = tc(ϕ)⊕c bc

(by the definition of ⊑c)
iff [ø]⊕c ([ϕ]⊕c bc) = [ϕ]⊕c bc (Lemma 30.1)
iff [ø]⊕c ([ϕ]⊕c [⊤]) = [ϕ]⊕c [⊤] (by the definition of bc)
iff [(ø∧ϕ)∧⊤] = [ϕ∧⊤] (by the definition of ⊕c)
iff [ø∧ϕ] = [ϕ] (Lemma 30.2)
iff Bϕ(ø∧ϕ),Bø∧ϕϕ ∈ w0
iff Bϕ(ø∧ϕ),Bø∧ϕϕ ∈ w for all w ∈W c

(Ax5 and the definition ofW c)

Let w ∈W c :
(⇒) Assume that tc(ø) ⊑c tc(ϕ)⊕c bc . Then, by the above reasoning, we have
Bϕ(ø∧ϕ) ∈w. Moreover, by Ax1, we also have Bø∧ϕø ∈w. Then, by Ax2, we obtain
that Bϕø ∈ w.
(⇐) Assume thatBϕø ∈w. ByAx1, we also haveBϕϕ ∈w. Then, byAx3, we obtain

that Bϕ(ø∧ϕ) ∈ w. By Ax1, we also that Bø∧ϕ(ø∧ϕ) ∈ w. Thus, by Ax2, we obtain
Bϕ(ø∧ϕ)∈w. Moreover, by Ax1, Bø∧ϕϕ ∈w. Therefore, by the above reasoning, we
conclude that tc(ø)⊑c tc(ϕ)⊕c bc . �

Lemma 32 (Existence Lemma for ✷). Let w be a mcs and ϕ ∈ LCHB. Then, ✷ϕ 6∈ w
iff there is v ∈ X c such that w ∼✷ v and ϕ 6∈ v.

Proof. Suppose that ✷ϕ 6∈ w. This implies that {ø ∈ LCHB : ✷ø ∈ w}∪{¬ϕ} is a
consistent set. Otherwise, as the standard argument goes (see, e.g., [10, Lemma 4.20]),
we could prove that✷ϕ ∈w, contradicting the first assumption. Therefore, by Lemma
26, there is a mcs v such that {ø ∈ LCHB : ✷ø ∈ w}∪ {¬ϕ} ⊆ v. Thus ϕ 6∈ v and,
since {ø ∈ LCHB :✷ø ∈w} ⊆ v, we have w ∼✷ v. The other direction follows from the
definition of ∼✷. �

Lemma 33 (Existence Lemma for [≥]). Letw be amcs andϕ ∈LCHB. Then, [≥]ϕ 6∈w
iff there is v ∈ X c such that w ≥ v and ϕ 6∈ v.

Proof. Similar to the proof of Lemma 32. �
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Corollary 34. Letw0 be amcs andM
c = 〈W c, ≥c ,T c,⊕c ,bc,tc,íc〉 be the canonical

quasi tsp-model forw0. Then, for allϕ ∈LCHB andw ∈W c , [≥]ϕ 6∈w iff there is v ∈W c

such that w ≥c v and ϕ 6∈ v.

Proof. From left-to-right follows from Lemma 33 and the fact that ≥ ⊆ ∼✷. The
other direction follows from the definition of ≥c and the fact that ≥c ⊆≥. �

Lemma 35 (Truth Lemma). Let w0 be a mcs of CHB and Mc = 〈W c, ≥c ,
T c, ⊕c ,bc,tc,íc〉 be the canonical quasi tsp-model for w0. Then, for all w ∈W c and
ϕ ∈ LCHB,

Mc,w 
 ϕ iff ϕ ∈ w.

Proof. The proof is by induction on the structure of ϕ. The cases for the
propositional variables, Booleans, ϕ := ✷ø, and ϕ := [≥]ø are standard, where the
latter two cases use Lemma 32 and Corollary 34, respectively. Toward showing the case
for ϕ := Bø÷, suppose inductively that the statement holds for ø and ÷.
Case ϕ := Bø÷:

Mc,w 
 Bø÷ iffMin≥c |ø| ⊆ |÷|and tc(÷)⊑c tc(ø)⊕c bc (by the semantics)

iffMin≥c |ø| ⊆ |÷| and Bø÷ ∈ w (Lemma 31)

iffMc,w 
✷(ø→ 〈≥〉(ø∧ [≥](ø→ ÷))) and Bø÷ ∈ w
(by (1) in the soundness proof, Appendix B.3.1)

iff ✷(ø→ 〈≥〉(ø∧ [≥](ø→ ÷))) ∈ w and Bø÷ ∈ w
(induction hypothesis and Lemmas 25, 32, and Corollary 34)

iff ✷(ø→ 〈≥〉(ø∧ [≥](ø→ ÷)))∧Bø÷ ∈ w

iff Bø÷ ∈ w (Ax6)

�

Corollary 36. CHB is complete with respect to the class of quasi tsp-models.

Proof. Let ϕ ∈ LCHB such that 6⊢CHB ϕ. This means that {¬ϕ} is CHB-consistent.
Then, by Lindenbaum’s Lemma (Lemma 26), there exists a mcs w such that ϕ 6∈ w.
Then, by Truth Lemma (Lemma 35), we conclude thatMc,w 6
 ϕ, whereMc is the
canonical quasi tsp-model for w. �

B.3.3. Finite quasi-model property for CHB. Corollary 36 does not yet entail that
CHB is complete with respect to the class of tsp-models since the plausibility order of
a quasi tsp-models is not necessarily a well-preorder. However, as shown below, every
quasi tsp-model is modally equivalent to a finite quasi tsp-model with respect to the
languageLCHB.We establish this result via a filtration argument. Since every finite total
preorder is a well-order, modal equivalence between quasi tsp-models and finite quasi
tsp-models yields that CHB is also complete with respect to the class of tsp-models.
By a finite model 〈W, ≥ ,T,⊕ ,b,t,í〉, we mean a model in which both the set of

possible worlds w and the set of possible topics T are finite. Although we only needW
to be finite to show the completeness of CHB with respect to the class of tsp-models
via Corollary 36, it is nevertheless not too complicated to construct a model whose set
of possible topics is also finite.
For the filtration argument, we need a few auxiliary definitions and lemmas.
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Definition 15 (Subformula closed set). A set of formulasΣ⊆LCHB is called subformula
closed if for all ϕ,ø ∈ LCHB we have

• if ¬ϕ ∈ Σ, then ϕ ∈ Σ (and similarly for ✷ϕ and [≥]ϕ),
• if ϕ∧ø ∈ Σ then ϕ ∈ Σ and ø ∈ Σ (and similarly for Bϕø).

For any ϕ ∈ LCHB, Sub(ϕ) denotes the subformula closure of ϕ. Any formula ø ∈
Sub(ϕ)\{ϕ} is called a proper subformula of ϕ.

LetM= 〈W, ≥ ,T,⊕,b,t,í〉 be a quasi tsp-model and Σ a finite subset of LCHB that
satisfies the following closure conditions:

C1 ⊤ ∈ Σ,
C2 Σ is subformula closed, and
C3 if Bϕø ∈ Σ then ✷(ϕ→ 〈≥〉(ϕ∧ [≥](ϕ→ ø))) ∈ Σ.

For w,v ∈W , put

w!Σ v iff ∀ϕ ∈ Σ (M,w 
 ϕ iffM,v 
 ϕ),

and denote by [w]Σ the equivalence class of w modulo!Σ. We omit the subscript
Σ and write ! and [w] when the corresponding set of formulas Σ is contextually
clear. We define the filtrationMf = 〈W f, ≥f ,Tf,⊕f ,bf,tf,íf〉 ofM through Σ as
follows:

• W f = {[w] : w ∈W },
• For any [w],[v] ∈W f ,

[w]≥f [v] iff for all ϕ ∈ Σ(if [≥]ϕ ∈ Σ andM,w 
 [≥]ϕ thenM,v 
 ϕ∧ [≥]ϕ),

• Tf = {a ∈ T : a =⊕{t(ϕ) : ϕ ∈ Σ′} for some nonempty Σ′ ⊆ Σ},
• ⊕f : Tf ×Tf → Tf such that a⊕f b = a⊕b,
• bf = b,

• tf :LCHB →Tf such that tf(x) =

{

t(x) if x ∈ Σ

b
f, otherwise,

and tf(ϕ) =⊕fVar(ϕ),

• íf(p) =

{

{[w] ∈W f : w ∈ í(p)} if p ∈ Σ

∅, otherwise.

Lemma 37. LetMf = 〈W f, ≥f ,Tf,⊕f ,bf,tf,íf〉 be the filtration of a quasi tsp-
modelM= 〈W, ≥ ,T,⊕,b,t,í〉 through a finite set of formulasΣ that satisfies the closure
conditions (C1)-(C3). Then, for all w,v ∈W and ϕ ∈ LCHB,

1. if w ≥ v then [w]≥f [v],
2. if [w]≥c [v] then for all [≥]ϕ ∈ Σ, ifM,w 
 [≥]ϕ thenM,v 
 ϕ,
3. if ϕ ∈ Σ then t(ϕ) ∈ Tf and t(ϕ) = tf(ϕ),
4. for all a,b ∈ Tf , a ⊑ b iff a ⊑f b.

Proof.

1. Suppose thatw ≥ v and letϕ ∈Σ such that [≥]ϕ ∈Σ andM,w 
 [≥]ϕ. The latter, by
the semantics of [≥], means thatM,v 
 ϕ. Moreover,M,w 
 [≥]ϕ and transitivity
of ≥ entails thatM,v 
 [≥]ϕ. Therefore,M,v 
 ϕ∧ [≥]ϕ. Hence, [w]≥f [v].
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2. Suppose that [w] ≥f [v] and let [≥]ϕ ∈ Σ such that M,w 
 [≥]ϕ. Since Σ is
subformula closed, we also have ϕ ∈ Σ. Therefore, by the definition of ≥f , we
obtain thatM,v 
 ϕ∧ [≥]ϕ. Hence,M,v 
 ϕ.

3. For any ϕ ∈ Σ, that t(ϕ) ∈ Tf follows from the definition of Tf . To show t(ϕ) =
tf(ϕ), suppose Var(ϕ) = {x1, ...,xn}. Then,

t(ϕ) = t(x1)⊕···⊕ t(xn) (by the definition of t(ϕ))

= t(x1)⊕
f ···⊕f t(xn)

(by the definition of ⊕f and t(xi) ∈ T
f (since Σ is subformula closed))

= tf(x1)⊕
f ···⊕f tf(xn) (by the definition of tf and each xi ∈ Σ)

= tf(ϕ) (by the definition of tf)

4. Let a,b ∈ Tf , i.e., a = ⊕{t(ϕ) : ϕ ∈ Σ1} and b = ⊕{t(ϕ) : ϕ ∈ Σ2} for some
nonempty Σ1,Σ2 ⊆ Σ. Then,

a ⊑ b iff a⊕b = b iff a⊕f b = b iff a ⊑f b. �

Lemma 38. Given a quasi tsp-modelM= 〈W, ≥ ,T,⊕,b,t,í〉 and a finite setΣ⊆LCHB

satisfying the closure conditions (C1)-(C3), the filtration Mf = 〈W f, ≥f ,Tf, ⊕f

,bf,tf,íf〉 ofM = 〈W, ≥ ,T,⊕ ,b,t,í〉 through Σ is a quasi tsp-model. Moreover,W f

and Tf are both finite. Therefore,Mf is a tsp-model.

Proof. Wefirst show thatMf = 〈W f, ≥f ,Tf,⊕f ,bf,tf,íf〉 is a quasi tsp-model:

• ≥f is a total preorder: Let ϕ ∈ Σ such that [≥]ϕ ∈ Σ and [w],[v],[u] ∈W f .
For reflexivity, suppose thatM,w 
 [≥]ϕ. Since≥ is reflexive, we also have that
M,w 
 ϕ. Therefore,M,w 
 ϕ∧ [≥]ϕ, i.e., [w]≥f [w].
For transitivity, suppose that [w]≥f [v]≥f [u] andM,[w]
 [≥]ϕ. Then, since
[w]≥f [v], we haveM,v 
 ϕ∧ [≥]ϕ. This implies thatM,v 
 [≥]ϕ. Similarly,
since [v]≥f [u], we conclude thatM,u 
 ϕ∧ [≥]ϕ. Therefore, [w]≥f [u].
Finally, by the totality of ≥ and Lemma 37.1, we obtain that [w] ≥f [v] or
[v]≥f [w]. Therefore, ≥f is a total order.

• For all a,b ∈ Tf , a ⊕ b ∈ Tf and ⊕f is well-defined: Let a,b ∈ Tf . Then,
by the definition of Tf , it is easy to see that a ⊕ b = (⊕{t(ϕ) : ϕ ∈ Σ1})⊕
(⊕{t(ϕ) : ϕ ∈ Σ2}) = ⊕{t(ϕ) : ϕ ∈ Σ1 ∪Σ2}) for some nonempty Σ1,Σ2 ⊆ Σ.
Since Σ1∪Σ2 ⊆ Σ, we obtain that a⊕b ∈ T

f . To prove that⊕f is well-defined,
let (a,b),(c,d ) ∈ Tf ×Tf such that (a,b) = (c,d ). This means that a = c and
b = d . Then,

a⊕f b = a⊕b (by the definition of ⊕f)
= c⊕d (since a = c,b = d, and ⊕ is well-defined )
= c⊕f d (by the definition of ⊕f)

Therefore, ⊕f is well-defined.
• ∀a,b ∈ Tf∃c ∈ Tf(a⊕f b = c): Let a,b ∈ Tf . Then, a⊕f b = a⊕b ∈ Tf (by
the above clause).

• ⊕f is idempotent, commutative, and associative: Let a,b,c ∈ Tf , then:
idempotance: a⊕f a = a⊕ a = a, by the definition of ⊕f and idempotance
of ⊕.
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commutativity: a⊕f b = a⊕b = b⊕a = b⊕f a, by the definition of ⊕f and
commutativity of ⊕.
associativity: (a⊕f b)⊕f c = (a⊕b)⊕c = a⊕ (b⊕c) = a⊕f (b⊕f c), by the
definition of ⊕f and associativity of ⊕.

• tf is well-defined: follows easily since t and ⊕f are well-defined.
• tf(⊤) = b

f ∈ Tf : First observe that t(⊤) ∈ Tf , since ⊤ ∈ Σ (by the closure
condition C1). We then have,

tf(⊤) = t(⊤) (by the definition of tf, since ⊤ ∈ Σ)
= b (by the definition of quasi tsp-models )
= bf (by the definition of bf)

This completes the proof thatMf = 〈W f, ≥f ,Tf,⊕f ,bf,tf,íf〉 is a quasi tsp-model.
Moreover, since Σ is finite, there are only finitely many equivalence classes [w] modulo
!Σ. Therefore,W

f is finite. Similarly, it is easy to observe that Tf can have at most
as many elements as P(Σ). Therefore, since Σ is finite, Tf is finite as well. Finally, since
W f is finite, ≥f is a total preorder onW f . Therefore, as every finite total preorder is
a well-preorder, we conclude thatMf is a tsp-model. �

The Filtration Theorem (Theorem 40) is proved by induction on a complexity
measure defined by means of a measure that counts the B-depth of formulas in LCHB.

Definition 16 (B-depth of formulas inLCHB). TheB-depth d (ϕ) of a formulaϕ ∈LCHB

is a natural number recursively defined as:

d (⊤) = d (p) = 0,

d (¬ϕ) = d (✷ϕ) = d ([≥]ϕ) = d (ϕ),

d (ϕ∧ø) =max{d (ϕ),d (ø)},

d (Bϕø) = 1+max{d (ϕ),d (ø)}.

Lemma 39. There is a well-founded strict partial order ≺ on LCHB such that, for all
ϕ,ø ∈ LCHB,

1. if ø is a proper subformula of ϕ then ø ≺ ϕ, and
2. ✷(ϕ→ 〈≥〉(ϕ∧ [≥](ϕ→ ø)))≺ Bϕø.

Proof. For any ϕ,ø ∈ LCHB, define

ø ≺ ϕ iff either d (ø)< d (ϕ), or d (ø) = d (ϕ) and ø ∈ Sub(ϕ)\{ϕ}, (≺ -order)

where < represents the standard order on natural numbers. It is a routine exercise to
check that ≺ is a well-founded strict partial order on LCHB. To prove the lemma, let
ϕ,ø ∈ LCHB.

1. Suppose that ø is a proper subformula of ϕ, i.e., that ø ∈ Sub(ϕ)\{ϕ}. Then, by
the definition of d (Definition 16), either d (ø)< d (ϕ) or d (ø) = d (ϕ). Therefore,
by the definition of ≺, we obtain that ø ≺ ϕ.

2. It is easy to see, by the definition of d, that d (✷(ϕ → 〈≥〉(ϕ ∧ [≥](ϕ → ø)))) =
max{d (ϕ),d (ø)} and d (Bϕø) = 1+max{d (ϕ),d (ø)}. Therefore, d (✷(ϕ→ 〈≥〉
(ϕ ∧ [≥](ϕ → ø)))) < d (Bϕø). We then immediately conclude that ✷(ϕ → 〈≥
〉(ϕ∧ [≥](ϕ→ ø)))≺ Bϕø. �

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020319000686
https://www.cambridge.org/core


DYNAMIC HYPERINTENSIONAL BELIEF REVISION 39

Theorem 40 (Filtration Theorem for LCHB). LetM
f = 〈W f, ≥f ,Tf,⊕f ,bf,tf,íf〉

be the filtration of a quasi tsp-model M = 〈W, ≥ ,T, ⊕ ,b,t,í〉 through a finite set
Σ ⊆ LCHB which satisfies the closure conditions (C1)–(C3). Then for all w ∈W and
ϕ ∈ Σ, we have

M,w 
 ϕ iffMf,[w] 
 ϕ.

Proof. The proof is by ≺-induction on the structure of ϕ (see the proof of Lemma
39 for the definition of ≺). The cases for the propositional variables, Booleans, and
ϕ :=✷ø are standard. Toward showing the cases forϕ := [≥]ø andϕ :=Bø÷, suppose
inductively that the statement holds for all ø such that ø ≺ ϕ.
Case ϕ := [≥]ø: Observe that ø ∈ Sub(ϕ)\{ϕ}. Thus, by Lemma 39.1, we have

ø ≺ ϕ. Moreover, ø ∈ Σ since Σ is subformula closed. Therefore, we can apply the
induction hypothesis on ø.
(⇒) Suppose thatM,w 
 [≥]ø and let [v] ∈W f such that [w] ≥f [v]. Then, by

Lemma 37.2 and the fact that [≥]ø ∈ Σ, we haveM,v 
ø. Therefore, by the induction
hypothesis, we obtain thatMf,[v]
ø. Since [v] has been chosen arbitrarily fromW f

with [w]≥f [v], we conclude thatMf,[w] 
 [≥]ø.
(⇐) Suppose that Mf,[w] 
 [≥]ø and let v ∈W such that w ≥ v. The latter, by
Lemma 37.1, implies that [w] ≥f [v]. Then, by the first assumption, we obtain that
Mf,[v] 
 ø. Thus, by the induction hypothesis, we haveM,v 
 ø. Since v has been
chosen arbitrarily fromW with w ≥ v, we conclude thatM,w 
 [≥]ø.
Caseϕ :=Bø÷: Observe that d (ϕ)= d (Bø÷)= 1+max{d (ø),d (÷)} and d (✷(ø→

〈≥〉(ø ∧ [≥](ø → ÷)))) = max{d (ø),d (÷)}. Therefore, ✷(ø → 〈≥〉(ø ∧ [≥](ø →
÷))) ≺ ϕ. Moreover, ✷(ø → 〈≥〉(ø ∧ [≥](ø → ÷))) ∈ Σ (by the closure condition
C3, since Bø÷ ∈ Σ). Thus, we can apply the induction hypothesis on ✷(ø → 〈≥〉
(ø∧ [≥](ø→ ÷))).

M,w 
 Bø÷ iffM,w 
✷(ø→ 〈≥〉(ø∧ [≥](ø→ ÷)))∧Bø÷ (validity of Ax6)

iffM,w 
✷(ø→ 〈≥〉(ø∧ [≥](ø→ ÷))) andM,w 
 Bø÷

(by the semantics)

iffM,w 
✷(ø→ 〈≥〉(ø∧ [≥](ø→ ÷))) and t(÷)⊑ t(ø)⊕b

(by the semantics)

iffM,w 
✷(ø→ 〈≥〉(ø∧ [≥](ø→ ÷))) and tf(÷)⊑f tf(ø)⊕f bf

(Lemmas 37.3 and 37.4)

iffMf,[w] 
✷(ø→ 〈≥〉(ø∧ [≥](ø→ ÷))) and tf(÷)⊑f tf(ø)⊕f bf

(induction hypothesis)

iffMf,[w] 
✷(ø→ 〈≥〉(ø∧ [≥](ø→ ÷))) andMf,[w] 
 Bø÷
(by the semantics)

iffMf,[w] 
 Bø÷ (validity of Ax6)
�

Corollary 41. CHB is complete with respect to the class of finite tsp-models.

Proof. Let ϕ ∈ LCHB such that 6⊢CHB ϕ. Then, by Corollary 36, there is a quasi tsp-
modelM = 〈W, ≥ ,T,⊕ ,b,t,í〉 and w ∈W such thatM,w 6
 ϕ. Let Σ be the set of
formulas obtained by closing {ϕ} under the closure conditions (C1)–(C3) andMf =
〈W f, ≥f ,Tf,⊕f ,bf,tf,íf〉 be the filtration ofM through Σ. Then, by Theorem 40,
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we obtain thatMf,[w] 6
 ϕ. By Lemma 38, we know thatMf is a tsp-model, in fact,
it is a finite tsp-model. We therefore conclude that CHB is complete with respect to the
class of finite tsp-models. �

B.4. Proof of Theorem 9: soundness and completeness of DHB.

B.4.1. Soundness of DHB.

Lemma 42. Given a join semi-lattice (T,⊕) and a,b,c ∈ T ,

c ⊑ a⊕b iff a⊕ c ⊑ a⊕b.
Proof.

(a⊕b)⊕ (a⊕ c) = ((a⊕b)⊕a)⊕ c (associativity of ⊕)
= (a⊕ (a⊕b))⊕ c (commutativity of ⊕)
= ((a⊕a)⊕b)⊕ c (associativity of ⊕)
= (a⊕b)⊕ c (idempotence of ⊕)

Therefore, (a⊕ b)⊕ c = a⊕ b iff (a⊕ b)⊕ (a⊕ c) = a⊕ b, i.e., c ⊑ a⊕ b iff a⊕ c
⊑ a⊕b. �

The following observation follows directly from Definition 8.

Observation 43. For all ϕ ∈ LDHB and tsp-modelM= 〈W, ≥ ,T,⊕ ,b,t,í〉, we have

|[⇑ϕ]ø|M = |ø|M⇑ϕ .

For the soundness of DHB, we need to check the validity of the axioms and rules
in Table 3. All the cases except for R[≥] and RB are straightforward. We thus only
spell out the details forR[≥] and RB . LetM= 〈W, ≥ ,T,⊕,b,t,í〉 be a tsp-model and
w ∈W .
R[≥]:
(⇒) Suppose thatM,w 
 [⇑ϕ][≥]ø. This means thatM⇑ϕ,w 
 [≥]ø, i.e., for all

v ∈W such that w ≥ϕ v, we have M⇑ϕ,v 
 ø. To prove M,w 
 ¬ϕ → [≥][⇑ϕ]ø,
suppose thatM,w 
 ¬ϕ. Moreover, let v′ ∈W such that w ≥ v′. AsM,w 6
 ϕ, by
the definition of ≥ϕ , we have that w ≥ϕ v′ as well. Thus, by the first assumption,
we obtain thatM⇑ϕ,v′ 
 ø. Therefore, by the semantics,M,v′ 
 [⇑ϕ]ø. As v′ has
been chosen arbitrarily from W with w ≥ v′, we conclude that M,w 
 [≥][⇑ϕ]ø.
Hence,M,w 
 ¬ϕ→ [≥][⇑ϕ]ø. To show thatM,w 
 ¬ϕ→✷(ϕ→ [⇑ϕ]ø), suppose
thatM,w 
 ¬ϕ and let v ∈W such thatM,v 
 ϕ. Then, by the definition of ≥ϕ ,
we have w ≥ϕ v. Therefore, by the first assumption, we obtain thatM⇑ϕ,v 
 ø, i.e.,
thatM,v 
 [⇑ϕ]ø. Hence,M,v 
 ϕ→ [⇑ϕ]ø. As v has been chosen arbitrarily from
W, we obtain that M,w 
 ✷(ϕ → [⇑ϕ]ø), thus, M,w 
 ¬ϕ → ✷(ϕ → [⇑ϕ]ø). To
proveM,w 
 [≥](ϕ → [⇑ϕ]ø), let v ∈W such that w ≥ v andM,v 
 ϕ. Then, by
the definition of ≥ϕ , we have that w ≥ϕ v. Hence, by the first assumption, we obtain
thatM⇑ϕ,v 
 ø. I.e.,M,v 
 [⇑ϕ]ø. Thus,M,v 
 ϕ→ [⇑ϕ]ø. As v has been chosen
arbitrarily fromW with w ≥ v, we conclude thatM,w 
 [≥](ϕ→ [⇑ϕ]ø). Therefore,
M,w 
 (¬ϕ→ [≥][⇑ϕ]ø)∧ (¬ϕ→✷(ϕ→ [⇑ϕ]ø))∧ [≥](ϕ→ [⇑ϕ]ø).
(⇐) Suppose thatM,w 
 (¬ϕ → [≥][⇑ϕ]ø)∧ (¬ϕ → ✷(ϕ → [⇑ϕ]ø))∧ [≥](ϕ →

[⇑ϕ]ø). So, (1)M,w 
 ¬ϕ → [≥][⇑ϕ]ø, (2)M,w 
 ¬ϕ→ ✷(ϕ → [⇑ϕ]ø), and (3)
M,w 
 [≥](ϕ→ [⇑ϕ]ø).Now let v′ ∈W such thatw ≥ϕ v′ and show thatM⇑ϕ,v′ �ø.
Since ≥ is a total order, we have two case:
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Case w ≥ v′: Then, since w ≥ϕ v′, we obtain by the definition of ≥ϕ that either
M,w 6
 ϕ or bothM,w 
 ϕ andM,v′ 
 ϕ. IfM,w 6
 ϕ, by assumption (1), we have
M,w 
 [≥][⇑ϕ]ø. Therefore, asw ≥ v′, we obtain thatM⇑ϕ,v′ 
ø. If bothM,w 
ϕ

andM,v′ 
 ϕ, since w ≥ v′ andM,w 
 [≥](ϕ→ [⇑ϕ]ø) (assumption (3)), we have
M,v′ � [⇑ϕ]ø, i.e.,M⇑ϕ,v′ � ø.
Case v′ ≥w: Then, sincew ≥ϕ v′, we haveM,w 6
ϕ andM,v′ 
ϕ. SinceM,w 6
ϕ,

by assumption (2), we haveM,w 
 ✷(ϕ → [⇑ϕ]ø). Therefore, sinceM,v′ 
 ϕ, we
obtain thatM,v′ 
 [⇑ϕ]ø, i.e., thatM⇑ϕ,v′ 
 ø.
Since v′ has been chosen arbitrarily from W with w ≥ϕ v′, we conclude that

M⇑ϕ,w 
 [≥]ø, i.e., thatM,w 
 [⇑ϕ][≥]ø.
RB :
(⇒) SupposeM,w 
 [⇑ϕ]Bø÷. We then have

M,w 
 [⇑ϕ]Bø÷ iffM⇑ϕ,w 
 Bø÷ (by the 
-semantics)

iffMin≥ϕ |ø|M⇑ϕ ⊆ |÷|M⇑ϕ and tϕ(÷)⊑ b
ϕ⊕ tϕ(ø)
(by the 
-semantics)

iffMin≥ϕ |[⇑ϕ]ø|M ⊆ |[⇑ϕ]÷|M and t(÷)⊑ (b⊕ t(ϕ))⊕ t(ø)
(Observation 43, the definitions of bϕ and tϕ)

If ⊤ ∈ Var(÷), use Lemma 42 in the last step. We then have two cases due the
definition of ≥ϕ :
IfM,w 
✸(ϕ∧ [⇑ϕ]ø), thenMin≥ϕ |[⇑ϕ]ø|M =Min≥|ϕ∧ [⇑ϕ]ø|M: if there is a

world inW which makes ϕ∧ [⇑ϕ]ø true inM, then the most plausible [⇑ϕ]ø-worlds
with respect to ≥ϕ are the same as the most plausible ϕ ∧ [⇑ϕ]ø-worlds with respect
to ≥, since the lexicographic upgrade with ϕ makes all ϕ-worlds more plausible than
¬ϕ-worlds. For topicality, we have

t([⇑ϕ]÷) = t(ϕ)⊕ t(÷)
⊑ t(ϕ)⊕ ((b⊕ t(ϕ))⊕ t(ø)) (by the assumption)
= (b⊕ (t(ϕ)⊕ t(ø)) (the properties of of ⊕)
= b⊕ t(ϕ∧ [⇑ϕ]ø) (since t(ϕ∧ [⇑ϕ]ø) = t(ϕ)⊕ t(ø))

Therefore,M,w 
 Bϕ∧[⇑ϕ]ø[⇑ϕ]÷.
IfM,w 6
✸(ϕ∧[⇑ϕ]ø), thenMin≥ϕ |[⇑ϕ]ø|M=Min≥|[⇑ϕ]ø|M: if there is no state

that makes ϕ∧ [⇑ϕ]ø true inM, then by the definition of lexicographic upgrade, the
≥ϕ-order among the [⇑ϕ]ø-worlds is the same as the ≥-order. For topicality, we have
t([⇑ϕ]÷) ⊑ (b⊕ t(ϕ))⊕ t(ø) = b⊕ t([⇑ϕ]ø) (similar to the above case). Therefore,
M,w 
 B [⇑ϕ]ø[⇑ϕ]÷.
(⇐) Suppose M,w 
 (✸(ϕ ∧ [⇑ϕ]ø) ∧ Bϕ∧[⇑ϕ]ø[⇑ϕ]÷) ∨ (¬✸(ϕ ∧ [⇑ϕ]ø) ∧

B [⇑ϕ]ø[⇑ϕ]÷). Following a similar reasoning as above, we obtainMin≥ϕ |[⇑ ϕ]ø|M ⊆
|[⇑ϕ]÷|M. For topicality, we need Lemma 42. By spelling out the topicality component
of the assumption, we obtain that t(ϕ)⊕ t(÷) ⊑ (b⊕ t(ϕ))⊕ t(ø). Then, by Lemma
42, we obtain that t(÷)⊑ (b⊕ t(ϕ))⊕ t(ø).

B.4.2. Completeness of DHB.

Definition 17 (Complexity measure for LDHB). The complexity c(ϕ) of a formula
ϕ ∈ LDHB is a natural number recursively defined as

c(⊤) = c(p) = 1
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c(¬ϕ) = c(✷ϕ) = c([≥]ϕ) = c(ϕ)+1

c(ϕ∧ø) = 1+max{c(ϕ),c(ø)}

c(Bϕø) = 1+ c(ϕ)+ c(ø)

c([⇑ϕ]ø) = (6+ |Var(ϕ)|+ c(ϕ)) · c(ø),

where |Var(ϕ)| is the number of elements in Var(ϕ).

Lemma 44. For all ϕ,ø,÷ ∈ LDHB:

1. c(ϕ)> c(ø) if ø is a proper subformula of ϕ,
2. c([⇑ϕ]⊤)> c(⊤∧ϕ),
3. c([⇑ϕ]p)> c(p∧ϕ),
4. c([⇑ϕ]¬ø)> c(¬[⇑ϕ]ø),
5. c([⇑ϕ](ø∧÷))> c([⇑ϕ]ø∧ [⇑ϕ]÷),
6. c([⇑ϕ]✷ø)> c(✷[⇑ϕ]ø),
7. c([⇑ϕ][≥]ø)> c((¬ϕ→ [≥][⇑ϕ]ø)∧ (¬ϕ→✷(ϕ→ [⇑ϕ]ø))∧ [≥](ϕ→ [⇑ϕ]ø)),
8. c([⇑ϕ]Bø÷)>c((✸(ϕ∧[⇑ϕ]ø)∧Bϕ∧[⇑ϕ]ø[⇑ϕ]÷)∨(¬✸(ϕ∧[⇑ϕ]ø)∧B [⇑ϕ]ø[⇑ϕ]÷)).

Proof. Follows by easy calculations using Definition 17. �

Definition 18 (Translation f : LDHB → LCHB). The translation f : LDHB → LCHB is
defines as follows:

f(⊤) =⊤

f(p) = p

f(¬ϕ) = ¬f(ϕ)

f(✷ϕ) =✷f(ϕ)

f(ϕ∧ø) = f(ϕ)∧f(ø)

f(Bϕø) = Bf(ϕ)f(ø)

f([⇑ϕ]⊤) = f(⊤∧ϕ)

f([⇑ϕ]p) = f(p∧ϕ)

f([⇑ϕ]¬ϕ) = f(¬[⇑ϕ]ϕ)

f([⇑ϕ](ø∧÷)) = f([⇑ϕ]ø∧ [⇑ϕ]÷)

f([⇑ϕ]✷ϕ) = f(✷[⇑ϕ]ϕ)

f([⇑ϕ][≥]ø) = f((¬ϕ→ [≥][⇑ϕ]ø)∧ (¬ϕ→✷(ϕ→ [⇑ϕ]ø))∧ [≥](ϕ→ [⇑ϕ]ø))

f([⇑ϕ]Bϕø) = f((✸(ϕ∧[⇑ϕ]ø)∧Bϕ∧[⇑ϕ]ø[⇑ϕ]÷)∨(¬✸(ϕ∧[⇑ϕ]ø)∧B [⇑ϕ]ø[⇑ϕ]÷))

f([⇑ϕ][⇑ø]÷) = f([⇑ϕ]f([⇑ø]÷)).

We need the following lemma in order to be able to use the topic-sensitive RE rules
(Theorems 5.3 and 5.4) in the completeness proof of DHB. For this lemma to go
through, it is crucial that the reduction axioms R⊤ and Rp have occurrences of each
element in Var(ϕ) on the right-hand-side of the equation, where ϕ is the sentence
inside the dynamic operator.

Lemma 45. For all ϕ ∈ LDHB, Var(ϕ) = Var(f(ϕ)).

Proof. The proof follows by an easy c-induction on the structure of ϕ and uses
Lemma 44. Note that the case for ϕ := [⇑ø]÷ requires subinduction on ÷. �
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Lemma 46. For all ϕ ∈ LDHB, ⊢DHB ϕ↔ f(ϕ).

Proof. The proof follows by c-induction on the structure of ϕ and uses Lemma 44
and the reduction axioms given in Table 3. Cases for the propositional variables, the
Boolean connectives, ϕ := ✷ø, and ϕ := [≥]ø are elementary. Here we only show
the cases for ϕ := Bø÷ and ϕ := [⇑ø]÷, where the latter requires subinduction on ÷.
Suppose inductively that ⊢DHB ø↔ f(ø), for all ø with c(ø)< c(ϕ).
Case ϕ := Bø÷
By Lemma 44.1 and the induction hypothesis (IH), we have ⊢DHB ø ↔ f(ø).

Moreover, by Lemma 45, we have Var(ø) = Var(f(ø)). It is therefore easy to

see, by Ax1 in Table 2, that ⊢DHB B
øf(ø) and ⊢DHB B

f(ø)ø. Then, by Theorem
5.3, we obtain ⊢DHB B

ø÷ ↔ Bf(ø)÷. Similarly, we also have ⊢DHB ÷ ↔ f(÷) and

Var(÷) = Var(f(÷)), thus, ⊢DHB B
÷f(÷) and ⊢DHB B

f(÷)÷. Then, by Theorem
5.4, we obtain ⊢DHB B

f(ø)÷ ↔ Bf(ø)f(÷). Therefore, by CPL, we conclude that
⊢DHB B

ø÷↔ Bf(ø)f(÷), with Bf(ø)f(÷) = f(Bø÷) by Definition 18.
Case ϕ := [⇑ø]÷: we prove only the cases ÷ := ⊤ and ÷ := [⇑è]α. All the other

cases follow similarly by using the corresponding reduction axiom, Lemma 44, and
Definition 18.
Subcase ÷ :=⊤

1. ⊢DHB [⇑ø]⊤↔ (⊤∧ø) R⊤

2. ⊢DHB (⊤∧ø)↔ f(⊤∧ø) Lemma 44.2, induction hypothesis
3. ⊢DHB [⇑ø]⊤↔ f(⊤∧ø) 1, 2, CPL

And, f(⊤∧ø) = f([⇑ø]⊤) by Definition 18.

Subcase ÷ := [⇑è]α
By Lemma 44.1 and induction hypothesis, we know that ⊢DHB [⇑è]α↔ f([⇑è]α)

1. ⊢DHB [⇑è]α↔ f([⇑è]α) Lemma 44.1, ind. hyp.
2. ⊢DHB [⇑ø]([⇑è]α↔ f([⇑è]α)) Nec⇑
3. ⊢DHB [⇑ø][⇑è]α↔ [⇑ø]f([⇑è]α) R¬, R∧

4. ⊢DHB [⇑ø]f([⇑è]α)↔ f([⇑ø]f([⇑è]α)) induction hypothesis
5. ⊢DHB [⇑ø][⇑è]α↔ f([⇑ø]f([⇑è]α)) 3, 4, CPL

And, f([⇑ø]f([⇑è]α)) = f([⇑ø][⇑è]α) by Definition 18. �

Corollary 47. For all ϕ ∈ LDHB there is a ø ∈ LCHB such that ⊢DHB ϕ↔ ø.

Proof. Follows from Lemma 46, since f(ϕ) ∈ LCHB. �

The following lemma is straightforward.

Lemma 48. For any tsp-modelM= 〈W, ≥ ,T,⊕,b,t,í〉 forLCHB, there is a tsp-model
M′ = 〈W, ≥ ,T,⊕ ,b,t′,í〉 for LDHB such that for all w ∈W and ϕ ∈ LCHB, we have
M,w � ϕ iffM′,w � ϕ.

Proof. Recall that a tsp-model M = 〈W, ≥ ,T, ⊕ ,b,t,í〉 for LCHB (LDHB) is a
structure as described in Definition 3, where t is defined for the whole language
LCHB (LDHB). Now, given t, define t

′ as an extension of t such that for ϕ ∈ LDHB,
t′(ϕ) = t(x1)⊕···⊕ t(xk) (whereVar(ϕ) = {x1, ...,xk}). It is easy to see that t

′ satisfies
Definition 1.4 for elements of LDHB, soM

′ = 〈W, ≥ ,T,⊕ ,b,t′,í〉 is a tsp-model for
LDHB. Notice that the only difference between the two tsp-modelsM andM′ is that
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topics of sentences of the form [⇑ø]÷ are defined inM′, but not inM. Therefore, we
obtain the result by an easy induction on the structure of ϕ ∈ LCHB. �

Proof of Completeness:Let ϕ ∈LDHB such that 6⊢DHB ϕ. Then, by Corollary 47, there
is a ø ∈ LCHB such that ⊢DHB ϕ ↔ ø. This implies, since CHB ⊆ DHB and 6⊢DHB ϕ,
that 6⊢CHB ø. Then, by Theorem 6, there is a tsp-modelM = 〈W, ≥ ,T,⊕ ,b,t,í〉 for
LCHB and w ∈W such thatM,w 6
 ø. By Lemma 48, we then have thatM′,w 6
 ø,
whereM′ is a tsp-model for LDHB as described in the proof of Lemma 48. Then, by
the soundness of DHB and ⊢DHB ϕ↔ ø, we conclude thatM′,w 6
 ϕ.
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