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The purpose of this paper is to develop an approach to multiattribute group decision making under interval-valued hesitant fuzzy
environment. To do this, this paper defines some new operations on interval-valued hesitant fuzzy elements, which eliminate the
disadvantages of the existing operations. Considering the fact that elements in a setmay be interdependent, two generalized interval-
valued hesitant fuzzy operators based on the generalized Shapley function and the Choquet integral are defined.Then, somemodels
for calculating the optimal fuzzy measures on the expert set and the ordered position set are established. Because fuzzy measures
are defined on the power set, it makes the problem exponentially complex. To simplify the complexity of solving a fuzzy measure,
models for the optimal 2-additive measures are constructed. Finally, an investment problem is offered to show the practicality and
efficiency of the new method.

1. Introduction

The socioeconomic environment becomes more and more
complex; it is impractical to require an expert to give his/her
exact attribute values of every alternative. Based on fuzzy
set theory [1], decision making under fuzzy environment
is rapidly developed [2–6]. Since Zadeh [1] first introduced
fuzzy sets, many extending forms are developed such as
interval-valued fuzzy sets [7], type-2 fuzzy sets [8], interval
type-2 fuzzy sets [9], and fuzzy multiset [10]. With the devel-
opment of fuzzy set theory, the corresponding fuzzy decision-
making theory is developed such as interval-valued fuzzy
decision making [11, 12], type-2 fuzzy decision making [13,
14], interval type-2 fuzzy decision making [15, 16], and fuzzy
multiset decision making [17].

Although there are several families of fuzzy sets, all of the
above-mentioned fuzzy sets only consider the membership
information. As Atanassov [18] noted, in some situations, it is
insufficient to only know themembership degree for a certain

fuzzy concept. Thus, Atanassov [18] introduced the concept
of intuitionistic fuzzy sets (IFSs), which are characterized by
a membership degree, a nonmembership degree, and a hesi-
tancy degree. Since then, many intuitionistic fuzzy decision-
making methods are proposed [19–21]. To further extend
the application of IFSs, Atanassov and Gargov [22] intro-
duced the concept of interval-valued intuitionistic fuzzy sets
(IVIFSs), which are characterized by an interval membership
function and an interval nonmembership function rather
than real numbers. Such a generalization is further facilitated
effectively to represent inherent imprecision and uncertainty
in the human decision-making analysis. Many theories and
methods on IVIFSs have been put forward and used to
solve decision-making problems [23–27].

Recently, Torra and Narukawa [28] noted when an expert
makes a decision, theremay be several possible values for one
thing. To deal with this situation, Torra [29] introduced the
concept of hesitant fuzzy sets (HFSs) that permit the mem-
bership to have a set of possible values. Later, Xia and Xu [30]
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defined some operational laws on HFSs and presented
some aggregation operators for hesitant fuzzy elements.
Furthermore, Xia et al. [31] defined a series of hesitant
fuzzy aggregation operators with the aid of quasi-arithmetic
means and developed an approach to hesitant fuzzy multiple
attribute decision making. Motivated by the ideal of priori-
tized aggregation operators, Wei [32] developed the hesitant
fuzzy prioritized weighted average (HFPWA) operator and
the hesitant fuzzy prioritized weighted geometric (HFPWG)
operator, whilst Zhu et al. [33] introduced the weighted
hesitant fuzzy geometric Bonferroni mean (WHFGBM)
operator. More researches can be seen in the literature [34–
37]. Just as interval type-2 fuzzy sets and IVIFSs, in some
situations, it is still difficult to require an expert to give the
exact possible values for one thing. Very recently, Chen et
al. [38] introduced the concept of interval-valued hesitant
fuzzy sets (IVHFSs) and defined some aggregation operators.
Farhadinia [39] investigated the relationship between the
entropy, the similarity measure, and the distance measure
for HFSs and IVHFSs. Wei and Zhao [40] presented several
induced hesitant interval-valued fuzzy Einstein aggregation
operators and applied them to multiattribute decision mak-
ing. Meanwhile, Wei et al. [41] defined two hesitant interval-
valued fuzzy Choquet operators and studied their application
in interval-valued hesitant multiattribute decision making.
Meng and Chen [42] introduced two induced generalized
interval-valued hesitant fuzzy hybrid Shapley operators that
globally consider the interactions between the weights of
elements in a set. It is noteworthy that all these aggregation
operators are based on the operational laws presented by
Chen et al. [38]. These operations cannot preserve the order
relationship under multiplication by a scalar. It means that
monotonicity is not always true. Thus, when these operators
are used in decision making, it cannot guarantee to obtain
the best choice. Furthermore, Meng et al. [43] researched
the correlation coefficients of IVHFSs that need not consider
the lengths of interval-valued hesitant fuzzy elements (IVH-
FEs). However, the correlation coefficients only consider the
weights of attributes and disregard that of orders.

To address the above-mentioned issues for decision
making with IVHFSs, this paper continues to study group
decision making under interval-valued hesitant fuzzy envi-
ronment. First, some new operations that eliminate the
existing issues are defined. To deal with the situation where
the elements in a set are correlative, two generalized interval-
valued hesitant fuzzy dependent operators are defined, which
can be seen as an extension of some hesitant fuzzy operators.
Then, a distance measure on IVHFSs is defined, which does
not consider the length of IVHFEs and the arrangement
of their possible interval membership degrees. Based on
the Shapley function and the defined distance measure,
models for the optimal fuzzy measures and the optimal
2-additive measures are constructed, respectively. Finally,
approach to interval-valued hesitant fuzzy multiattribute
group decision making is developed. Comparing the existing
methods, the new approach includes the following four
features: (i) it uses the new defined operations that avoid
the nonmonotonic problem; (ii) it applies the aggregation
operator based on fuzzy measures that can address the

interactive situations; (iii) when the weighting vector is
partly known, models for the optimal fuzzy measure and
the optimal 2-additive measure are built; (iv) because the
experts’ knowledge, skills, and experiences are different, the
new method gives the experts’ weights with respect to each
attribute.

The paper is organized as follows: In Section 2, some
basic concepts related to IVHFSs are reviewed, and some
new operations on IVHFSs are defined. In Section 3, some
generalized interval-valued hesitant fuzzy Choquet operators
are defined, and some special cases are examined.Meanwhile,
to simplify the complexity of solving a fuzzy measure, a
generalized interval-valued hesitant fuzzy operator based
on 2-additive measures is introduced. In Section 4, a new
distance measure is defined, and then models for the optimal
fuzzy measure and the optimal 2-additive measure on the
associated set are built, respectively. After that, an approach
to multiattribute group decision making under interval-
valued hesitant fuzzy environment is developed. In Section 5,
an illustrative example is provided to show the concrete
application of the proposed procedure. Conclusions aremade
in the last section.

2. Some Basic Concepts

To address the situation where the membership degree of an
element has several possible interval values, Chen et al. [38]
presented the concept of interval-valued hesitant fuzzy sets
(IVHFSs), which is an extension of hesitant fuzzy sets (HFSs)
[29].

Definition 1 (see [38]). Let𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a finite set,
and IVHFS in 𝑋 is in terms of a function that when applied
to𝑋 returns a subset of𝐷[0, 1], denoted by𝐴 = {⟨𝑥𝑖, ℎ𝐴 (𝑥𝑖)⟩ | 𝑥𝑖 ∈ 𝑋} , (1)

where ℎ𝐴(𝑥𝑖) is a finite set of all possible interval-valued
membership degrees of the element 𝑥𝑖 ∈ 𝑋 to the set 𝐴 with𝐷[0, 1] being the set of all closed subintervals in [0, 1]. For
convenience, Chen et al. [38] called ℎ = ℎ𝐴(𝑥𝑖) an interval-
valued hesitant fuzzy element (IVHFE) and𝐻 is the set of all
IVHFEs.

If all possible interval-valuedmembership degrees of each
element 𝑥𝑖 ∈ 𝑋 degenerate to real numbers, it derives an HFS
[29].

Similar to the operational laws on HFEs [30], Chen et al.
[38] defined the following operations on IVHFEs. Let ℎ, ℎ1,
and ℎ2 be any three IVHFEs in𝐻, then

(i) ℎ𝜆 = ⋃𝑟=[𝑟𝑙 ,𝑟𝑢]∈ℎ{[𝑟𝑙𝜆, 𝑟𝑢𝜆]} 𝜆 > 0;
(ii) 𝜆ℎ = ⋃𝑟=[𝑟𝑙 ,𝑟𝑢]∈ℎ{[1 − (1 − 𝑟𝑙)𝜆, 1 − (1 − 𝑟𝑢)𝜆]} 𝜆 > 0;
(iii) ℎ1 ⊕ ℎ2 = ⋃𝑟1=[𝑟

𝑙
1 ,𝑟
𝑢
1 ]∈ℎ1,𝑟2=[𝑟

𝑙
2 ,𝑟
𝑢
2 ]∈ℎ2

{[𝑟𝑙1 + 𝑟𝑙2 − 𝑟𝑙1𝑟𝑙2, 𝑟𝑢1 +𝑟𝑢2 − 𝑟𝑢1 𝑟𝑢2 ]}.;
(iv) ℎ1 ⊗ ℎ2 = ⋃𝑟1=[𝑟

𝑙
1 ,𝑟
𝑢
1 ]∈ℎ1 ,𝑟2=[𝑟

𝑙
2 ,𝑟
𝑢
2 ]∈ℎ2

{[𝑟𝑙1𝑟𝑙2, 𝑟𝑢1 𝑟𝑢2 ]}.
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Let 𝑎 = [𝑎𝑙, 𝑎𝑢] and 𝑏 = [𝑏𝑙, 𝑏𝑢] be any two intervals; their
order relationship is given using the possible degree formula
as follows [42]:

𝑝 (𝑎 ≥ 𝑏) = max{1 −max( 𝑏𝑢 − 𝑎𝑙𝑑 (𝑎) + 𝑑 (𝑏) , 0) , 0} , (2)

where 𝑑(𝑎) = 𝑎𝑢 − 𝑎𝑙 and 𝑑(𝑏) = 𝑏𝑢 − 𝑏𝑙.
If 0 ≤ 𝑝(𝑎 ≥ 𝑏) < 0.5, then 𝑎 < 𝑏; if 𝑝(𝑎 ≥ 𝑏) = 0.5, then𝑎 = 𝑏; if 0.5 < 𝑝(𝑎 ≥ 𝑏) ≤ 1, then 𝑎 > 𝑏.
Based on this possible degree formula on intervals, Chen

et al. [38] introduced the following order relationship on
IVHFEs.

Definition 2 (see [38]). For an IVHFE ℎ, 𝑆(ℎ) = ∑𝑟=[𝑟𝑙 ,𝑟𝑢]∈ℎ[𝑟𝑙/
#ℎ, 𝑟𝑢/#ℎ] is called the score function of ℎ with #ℎ being the
number of interval-valuedmembership degrees in ℎ, and 𝑆(ℎ)
is an interval value in [0, 1]. For any two IVHFEs ℎ1 and ℎ2,
if 𝑆(ℎ1) > 𝑆(ℎ2), then ℎ1 > ℎ2; if 𝑆(ℎ1) = 𝑆(ℎ2), then ℎ1 =ℎ2.

However, the operations given by Chen et al. [38] have
some undesirable properties. For example, (𝜆ℎ)𝛽 = 𝜆𝛽ℎ𝛽 and(ℎ1 ⊕ ℎ2)𝜆 = ℎ1𝜆 ⊕ ℎ2𝜆 are not always true. See Example 3.

Example 3. Let ℎ = ([0.2, 0.3], [0.5, 0.7]), 𝜆 = 0.2, and 𝛽 =0.3; it derives(𝜆ℎ)𝛽 = ([0.39, 0.45] , [0.54, 0.63]) ,𝜆𝛽ℎ𝛽 = ([0.45, 0.52] , [0.64, 0.76]) . (3)

It means (𝜆ℎ)𝛽 ̸= 𝜆𝛽ℎ𝛽.
Furthermore, take ℎ1 = ℎ and ℎ2 = ([0.3, 0.5]); it gets(ℎ1 ⊕ ℎ2)𝜆 = ([0.85, 0.92] , [0.92, 0.97]) ,ℎ1𝜆 ⊕ ℎ2𝜆 = ([0.11, 0.19] , [0.19, 0.32]) . (4)

It means (ℎ1 ⊕ ℎ2)𝜆 ̸= ℎ1𝜆 ⊕ ℎ2𝜆.
In addition, as Beliakov et al. [19] noted for intuitionistic

fuzzy sets, the operations given by Chen et al. [38] cannot
preserve the order relationship under multiplication by a
scalar: ℎ1 < ℎ2 does not necessarily imply 𝜆ℎ1 < 𝜆ℎ2, where𝜆 is a scalar. See Example 4.

Example 4. Take ℎ1 = ([0.21, 0.48]), ℎ2 = ([0.31, 0.39]), and𝜆 = 0.3. Because 𝑝(𝑆(ℎ1) ≥ 𝑆(ℎ2)) = 0.4857, ℎ1 < ℎ2. How-
ever, 𝜆ℎ1 = ([0.0683, 0.1781]), 𝜆ℎ2 = ([0.1053, 0.1378]), and𝑝(𝑆(𝜆ℎ1) ≥ 𝑆(𝜆ℎ2)) = 0.5114, so 𝜆ℎ1 > 𝜆ℎ2. Thus, ℎ1 < ℎ2,
does not imply 𝜆ℎ1 < 𝜆ℎ2.

To avoid these disadvantages, we adopt the following
operations on IVHFEs. Let ℎ, ℎ1, and ℎ2 be any three IVHFEs
in𝐻,

(I) ℎ𝜆 = ⋃𝑟=[𝑟𝑙 ,𝑟𝑢]∈ℎ{[(𝑟𝑙)𝜆, (𝑟𝑢)𝜆]} 𝜆 > 0;
(II) 𝜆ℎ = ⋃𝑟=[𝑟𝑙 ,𝑟𝑢]∈ℎ{[𝜆𝑟𝑙, 𝜆𝑟𝑢]} 0 ≤ 𝜆 ≤ 1;
(III) ℎ1 × ℎ2 = ⋃𝑟1=[𝑟

𝑙
1 ,𝑟
𝑢
1 ]∈ℎ1 ,𝑟2=[𝑟

𝑙
2 ,𝑟
𝑢
2 ]∈ℎ2

{[𝑟𝑙1𝑟𝑙2, 𝑟𝑢1 𝑟𝑢2 ]};
(IV) ℎ1+ℎ2 = ⋃𝑟1=[𝑟

𝑙
1 ,𝑟
𝑢
1 ]∈ℎ1,𝑟2=[𝑟

𝑙
2 ,𝑟
𝑢
2 ]∈ℎ2

{[𝑟𝑙1+𝑟𝑙2, 𝑟𝑢1 +𝑟𝑢2 ]}withℎ1 + ℎ2 being an IVHFE, namely, [𝑟𝑙1 + 𝑟𝑙2, 𝑟𝑢1 + 𝑟𝑢2 ] ⊆[0, 1] for all 𝑟1 = [𝑟𝑙1, 𝑟𝑢1 ] ∈ ℎ1 and 𝑟2 = [𝑟𝑙2, 𝑟𝑢2 ] ∈ ℎ2.
It is easy to verify that the new defined operations can
eliminate the issues listed above.Without special explanation,
this paper adopts the operations on IVHFEs defined by
(I)–(IV).

In some cases, the possible degree formula (2) fails to
distinguish two distinct IVHFEs. For example, let ℎ1 ={[0.1, 0.8], [0.3, 0.6]} and ℎ2 = {[0.2, 0.3], [0.6, 0.7]}, then
their scores are respective of 𝑆(ℎ1) = [0.2, 0.7] and 𝑆(ℎ2) =[0.4, 0.5]. From (2), it gets 𝑝(𝑆(ℎ1) ≥ 𝑆(ℎ2)) = 𝑝(𝑆(ℎ2) ≥𝑆(ℎ1)) = 0.5 and ℎ1 = ℎ2. However, they are obviously differ-
ent. To increase the identification of IVHFEs, we here adopt
the following ranking method.

Let 𝑎 = [𝑎𝑙, 𝑎𝑢] and 𝑏 = [𝑏𝑙, 𝑏𝑢] be any two intervals; if(𝑎𝑙 + 𝑎𝑢)/2 ≤ (𝑏𝑙 + 𝑏𝑢)/2 or (𝑎𝑙 + 𝑎𝑢)/2 = (𝑏𝑙 + 𝑏𝑢)/2 and(𝑏𝑢 − 𝑏𝑙)/2 ≤ (𝑎𝑢 − 𝑎𝑙)/2, then 𝑎 ≤ 𝑏; otherwise, 𝑎 ≥ 𝑏.
3. Several Generalized
Interval-Valued Hesitant Fuzzy Dependent
Aggregation Operators

Let us consider the following example: “We are to evaluate
three companies according to three attributes: {economic
benefits, environment benefits, social benefits}, we want
to give more importance to environment benefits than to
economic benefits or social benefits, but on the other hand
we want to give some advantage to companies that are good
in environment benefits and in any of economic benefits and
social benefits”. In this situation, the aggregation operator
based on additive measures seems to be insufficient.

To address the situation where the elements in a set
are correlative, many aggregation operators based on the
Choquet integral [44] are defined [45–52]. Using the Shapley
function [53], Zhang et al. [54] defined the intuitionistic
fuzzy Shapley weighted operator, Meng et al. [55] introduced
some uncertain generalized Shapley aggregation operators,
and Meng et al. [56] defined two linguistic hesitant fuzzy
hybrid Shapley aggregation operators. More researches about
decision making based on the Shapley function can be seen
in the literature [57–60].

To obtain the comprehensive attribute values and reflect
the interactions between attributes as well as the ordered
positions, this section introduces several interval-valued
hesitant fuzzy operators based on the Choquet integral and
the generalized Shapley function. First, let us review the
following definitions.

Definition 5 (see [61]). A fuzzy measure on finite set 𝑁 ={1, 2, . . . , 𝑛} is a set function 𝜇: 𝑃(𝑁) → [0, 1] satisfying
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(i) 𝜇(⌀) = 0, 𝜇(𝑁) = 1,
(ii) If 𝐴, 𝐵 ∈ 𝑃(𝑁) and 𝐴 ⊆ 𝐵, then 𝜇(𝐴) ≤ 𝜇(𝐵),

where 𝑃(𝑁) is the power set of𝑁.

From the definition of fuzzy measures, we know that the
fuzzy measure does not only give the importance of every
element but also consider the importance of all their com-
binations. Corresponding to fuzzy measures, fuzzy integrals
are important tools to aggregate information with interactive
characteristics. The Choquet integral is one of the most
important fuzzy integrals, which can be seen as an extension
the ordered weighted averaging (OWA) operator. Grabisch
[62] gave the following expression of the Choquet integral on
discrete sets.

Definition 6 (see [62]). Let 𝑓 be a positive real-valued
function on 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} and 𝜇 be a fuzzy measure
on𝑁 = {1, 2, . . . , 𝑛}. The discrete Choquet integral of 𝑓 for 𝜇
is defined as𝐶𝜇 (𝑓 (𝑥(1)) , 𝑓 (𝑥(2)) , . . . , 𝑓 (𝑥(𝑛)))

= 𝑛∑
𝑖=1

𝑓 (𝑥(𝑖)) (𝜇 (𝐴 𝑖) − 𝜇 (𝐴 𝑖+1)) , (5)

where (⋅) indicates a permutation on 𝑁 such that 𝑓(𝑥(1)) ≤𝑓(𝑥(2)) ≤ ⋅ ⋅ ⋅ ≤ 𝑓(𝑥(𝑛)), and 𝐴 𝑖 = {𝑖, . . . , 𝑛} with 𝐴 (𝑛+1) = ⌀.

Remark 7. From Definition 6, one can see that the fuzzy
measure 𝜇 only relates to the positions. It does not consider
which element in the position.

From Definition 6, we know that the Choquet integral
only considers the correlations between the ordered subsets𝐴 𝑖 and 𝐴 𝑖+1 (𝑖 = 1, 2, . . . , 𝑛). If there are interdependences,
it seems to be insufficient. To globally reflect the interactions
between the ordered subsets, the generalized Shapley func-
tion [63] seems to be a good choice, denoted as

𝜑𝑆 (𝜇,𝑁) = ∑
𝑇⊆𝑁\𝑆

(𝑛 − 𝑠 − 𝑡)!𝑡!(𝑛 − 𝑠 + 1)! (𝜇 (𝑆 ∪ 𝑇) − 𝜇 (𝑇))
∀𝑆 ⊆ 𝑁, (6)

where 𝜇 is a fuzzy measure on 𝑁 = {1, 2, . . . , 𝑛}, and 𝑠, 𝑡,
and 𝑛 denote the cardinalities of the coalitions 𝑆, 𝑇, and 𝑁,
respectively.

Form (6), we know that it is an expect value of the overall
marginal contributions between the coalition 𝑆 ⊆ 𝑁 and any
coalition in𝑁\ 𝑆. When 𝑆 = {𝑖}, it degenerates to the famous
Shapley function [53]:

𝜑𝑖 (𝜇,𝑁) = ∑
𝑇⊆𝑁\𝑖

(𝑛 − 1 − 𝑡)!𝑡!𝑛! (𝜇 (𝑖 ∪ 𝑇) − 𝜇 (𝑇))
∀𝑖 ⊆ 𝑁. (7)

From (7), we know that when the elements in 𝑁 are
uncorrelated, then their Shapley values equal to their own
importance, namely, 𝜑𝑖(𝜇,𝑁) = 𝜇(𝑖) for all 𝑖 = 1, 2, . . . , 𝑛.
Definition 8. Let 𝑓 be a positive real-valued function on𝑋 ={𝑥1, 𝑥2, . . . , 𝑥𝑛}, and𝜇 be a fuzzymeasure on𝑁 = {1, 2, . . . , 𝑛}.
The discrete generalized Shapley-Choquet integral of 𝑓 for 𝜇
is defined as𝐶𝜇 (𝑓 (𝑥(1)) , 𝑓 (𝑥(2)) , . . . , 𝑓 (𝑥(𝑛)))

= 𝑛∑
𝑖=1

𝑓 (𝑥(𝑖)) (𝜑𝐴𝑖 (𝜇,𝑁) − 𝜑𝐴𝑖+1 (𝜇,𝑁)) , (8)

where (⋅) indicates a permutation on 𝑁 such that 𝑓(𝑥(1)) ≤𝑓(𝑥(2)) ≤ ⋅ ⋅ ⋅ ≤ 𝑓(𝑥(𝑛)), 𝜑 is the generalized Shapley on 𝑁,
and 𝐴 𝑖 = {𝑖, . . . , 𝑛} with 𝐴 (𝑛+1) = ⌀.

From Definition 8, one can see that the generalized
Shapley-Choquet integral overall considers the interactions
between any two adjacent coalitions. Now, let us intro-
duce the generalized interval-valued hesitant fuzzy Shapley-
Choquet weighted averaging (G-IVHFSCWA) operator as
follows.

Definition 9. Let ℎ𝑖 (𝑖 = 1, 2, . . . , 𝑛) be a collection of
IVHFEs in 𝐻 and 𝜇 be a fuzzy measure on the ordered set𝑁 = {1, 2, . . . , 𝑛}. The generalized interval-valued hesitant
fuzzy Shapley-Choquet weighted averaging (G-IVHFSCWA)
operator is defined as

G-IVHFSCWA (ℎ1, ℎ2, . . . , ℎ𝑛) = ( 𝑛∑
𝑖=1

(𝜑𝐴𝑖 (𝜇,𝑁) − 𝜑𝐴𝑖+1 (𝜇,𝑁)) ℎ(𝑖)𝜆)1/𝜆

= ⋃
𝑟(1)∈ℎ(1) ,𝑟(2)∈ℎ(2) ,...,𝑟(𝑛)∈ℎ(𝑛)

[[(
𝑛∑
𝑖=1

(𝜑𝐴𝑖 (𝜇,𝑁) − 𝜑𝐴𝑖+1 (𝜇,𝑁)) (𝑟𝑙(𝑖))𝜆)1/𝜆 , ( 𝑛∑
𝑖=1

(𝜑𝐴𝑖 (𝜇,𝑁) − 𝜑𝐴𝑖+1 (𝜇,𝑁)) (𝑟𝑢(𝑖))𝜆)1/𝜆]] , (9)

where 𝜆 > 0, (⋅) indicates a permutation on𝐴 such that ℎ(1) ≤ℎ(2) ≤ ⋅ ⋅ ⋅ ≤ ℎ(𝑛) and 𝜑𝐴𝑖(𝜇,𝑁) is the generalized Shapley
value of 𝐴 𝑖 = {𝑖, . . . , 𝑛} with 𝐴𝑛+1 = ⌀.

Remark 10. If 𝜆 = 1, then the G-IVHFSCWA operator
degenerates to the interval-valued hesitant fuzzy Shapley-
Choquet weighted averaging (IVHFSCWA) operator
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IVHFSCWA (ℎ1, ℎ2, . . . , ℎ𝑛)
= 𝑛∑

𝑖=1

(𝜑𝐴𝑖 (𝜇,𝑁) − 𝜑𝐴𝑖+1 (𝜇,𝑁)) ℎ(𝑖). (10)

Remark 11. If 𝜆 = 2, then the G-IVHFSCWA operator degen-
erates to the interval-valued hesitant fuzzy Shapley-Choquet
quadratic weighted averaging (IVHFSCQWA) operator

IVHFSCQWA (ℎ1, ℎ2, . . . , ℎ𝑛)
= ( 𝑛∑

𝑖=1

(𝜑𝐴𝑖 (𝜇,𝑁) − 𝜑𝐴𝑖+1 (𝜇,𝑁)) ℎ(𝑖)2)1/2 . (11)

FromDefinition 9, we know that theG-IVHFSCWAoperator
only gives the importance of the ordered positions. To
further consider the importance of elements and reflect
their correlations, we introduce the interval-valued hesitant
fuzzy Shapley-Choquet hybrid operator that considers the
importance of the attributes (or experts) and their ordered
positions as well as reflects their interactions.

Definition 12. Let ℎ𝑖 (𝑖 = 1, 2, . . . , 𝑛) be a collection of IVHFEs
in 𝐻, V be a fuzzy measure on 𝐴 = {ℎ1, ℎ2, . . . , ℎ𝑛}, and 𝜇
be a fuzzy measure on the ordered set 𝑁 = {1, 2, . . . , 𝑛}. The
generalized interval-valued hesitant fuzzy Shapley-Choquet
hybrid weighted averaging (G-IVHFSCHWA) operator is
defined as

G-IVHFSCHWA (ℎ1, ℎ2, . . . , ℎ𝑛) = (∑𝑛
𝑖=1 (𝜑𝐴𝑖 (𝜇,𝑁) − 𝜑𝐴𝑖+1 (𝜇,𝑁)) (𝜑ℎ(𝑖) (V, 𝐴) ℎ(𝑖))𝜆∑𝑛
𝑖=1 (𝜑𝐴𝑖 (𝜇,𝑁) − 𝜑𝐴𝑖+1 (𝜇,𝑁)) (𝜑ℎ(𝑖) (V, 𝐴))𝜆 )1/𝜆

= ⋃
𝑟(1)∈ℎ(1) ,𝑟(2)∈ℎ(2) ,...,𝑟(𝑛)∈ℎ(𝑛)

[[[[(
∑𝑛

𝑖=1 (𝜑𝐴𝑖 (𝜇,𝑁) − 𝜑𝐴𝑖+1 (𝜇,𝑁)) (𝜑ℎ(𝑖) (V, 𝐴) 𝑟𝑙(𝑖))𝜆∑𝑛
𝑖=1 (𝜑𝐴𝑖 (𝜇,𝑁) − 𝜑𝐴𝑖+1 (𝜇,𝑁)) (𝜑ℎ(𝑖) (V, 𝐴))𝜆 )1/𝜆 ,(∑𝑛

𝑖=1 (𝜑𝐴𝑖 (𝜇,𝑁) − 𝜑𝐴𝑖+1 (𝜇,𝑁)) (𝜑ℎ(𝑖) (V, 𝐴) 𝑟𝑢(𝑖))𝜆∑𝑛
𝑖=1 (𝜑𝐴𝑖 (𝜇,𝑁) − 𝜑𝐴𝑖+1 (𝜇,𝑁)) (𝜑ℎ(𝑖) (V, 𝐴))𝜆 )1/𝜆]]]] ,

(12)

where 𝜆 > 0, (⋅) indicates a permutation on 𝐴 such that𝜑ℎ(1)(V, 𝐴)ℎ(1) ≤ 𝜑ℎ(2)(V, 𝐴)ℎ(2) ≤ ⋅ ⋅ ⋅ ≤ 𝜑ℎ(𝑛)(V, 𝐴)ℎ(𝑛),𝜑ℎ𝑖(V, 𝐴) is the Shapley value of ℎ𝑖, and 𝜑𝐴𝑖(𝜇,𝑁) is the
generalized Shapley value of 𝐴 𝑖 = {𝑖, . . . , 𝑛} with 𝐴𝑛+1 = ⌀.

Remark 13. If 𝜑ℎ𝑖(V, 𝐴) = 1/𝑛 for each 𝑖 ∈ 𝑁, then the
G-IVHFSCHWA operator degenerates to the G-IVHFSCWA
operator.

Remark 14. If 𝜆 = 1, then the G-IVHFSCHWA operator
degenerates to the interval-valued hesitant fuzzy Shapley-
Choquet hybrid weighted averaging (IVHFSCHWA) opera-
tor

IVHFSCHWA (ℎ1, ℎ2, . . . , ℎ𝑛)
= ∑𝑛

𝑖=1 (𝜑𝐴𝑖 (𝜇,𝑁) − 𝜑𝐴𝑖+1 (𝜇,𝑁)) 𝜑ℎ(𝑖) (V, 𝐴) ℎ(𝑖)∑𝑛
𝑖=1 (𝜑𝐴𝑖 (𝜇,𝑁) − 𝜑𝐴𝑖+1 (𝜇,𝑁)) 𝜑ℎ(𝑖) (V, 𝐴) . (13)

Remark 15. If 𝜆 = 2, then the G-IVHFSCHWA operator
degenerates to the interval-valued hesitant fuzzy Shapley-
Choquet quadratic hybrid weighted averaging (IVHFSC-
QHWA) operator

IVHFSCQHWA (ℎ1, ℎ2, . . . , ℎ𝑛)
= (∑𝑛

𝑖=1 (𝜑𝐴𝑖 (𝜇,𝑁) − 𝜑𝐴𝑖+1 (𝜇,𝑁)) (𝜑ℎ(𝑖) (V, 𝐴) ℎ(𝑖))2∑𝑛
𝑖=1 (𝜑𝐴𝑖 (𝜇,𝑁) − 𝜑𝐴𝑖+1 (𝜇,𝑁)) (𝜑ℎ(𝑖) (V, 𝐴))2 )1/2 . (14)

Although the fuzzy measure can address the situation where
the elements in a set are correlative, they define the power

set. It makes the problem exponentially complex. Thus, it
is not easy to solve a fuzzy measure when the set is large.
To reflect the interactions between elements and simplify
the complexity of solving a fuzzy measure, we introduce a
special case of theG-IVHFSCHWAoperator using 2-additive
measures.

Let 𝑓 : {0, 1} → R be a pseudo-Boolean function.
Grabisch [64] noted that any fuzzy measure 𝜇 can be seen as
a particular case of pseudo-Boolean function and put under
a multilinear polynomial in 𝑛 variables:

𝜇 (𝐴) = ∑
𝑇⊆𝑁

[𝑎𝑇∏
𝑖∈𝑇

𝑦𝑖] ∀𝐴 ⊆ 𝑁, (15)

where 𝑎𝑇 ∈ R, 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ {0, 1}𝑛, and 𝑦𝑖 = 1 if and
only if 𝑖 ∈ 𝐴.

The set of coefficients 𝑎𝑇 (𝑇 ⊆ 𝑁) corresponds to
the Möbius transform, denoted by 𝑎𝑇 = ∑𝑆⊆𝑇(−1)𝑡−𝑠𝜇(𝑆).
Because the transform is inversible, 𝜇 can be recovered from𝑎𝑇 by 𝜇(𝐴) = ∑𝐵⊆𝐴 𝑎𝐵.
Definition 16 (see [64]). A fuzzy measure 𝜇 on 𝑁 ={1, 2, . . . , 𝑛} is said to be k-additive if its corresponding
pseudo-Boolean function is a multilinear polynomial of
degree 𝑘, i.e., 𝑎𝑇 = 0 for all 𝑇 such that 𝑡 > 𝑘, and
there exists at least one subset 𝑇 with 𝑘 elements such that𝑎𝑇 ̸= 0.

Particularly, when 𝑘 = 2, it gets a 2-additive measure. For
a 2-additive measure 𝜇, one can easily get [64], for any 𝑆 ⊆ 𝑁,
with 𝑠 ≥ 2,𝜇 (𝑆) = 𝑛∑

𝑖=1

𝑎𝑖𝑥𝑖 + ∑
{𝑖,𝑗}⊆𝑁

𝑎𝑖𝑗𝑥𝑖𝑥𝑗 = ∑
𝑖∈𝑆

𝑎𝑖 + ∑
{𝑖,𝑗}⊆𝑆

𝑎𝑖𝑗
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= ∑
{𝑖,𝑗}⊆𝑆

𝜇 (𝑖, 𝑗) − (𝑠 − 2)∑
𝑖∈𝑆

𝜇 (𝑖) ,
(16)

where 𝜇(𝑖) = 𝑎𝑖 and 𝜇(𝑖, 𝑗) = 𝑎𝑖 + 𝑎𝑗 + 𝑎𝑖𝑗.
For a 2-additive measure, we only need 𝑛(𝑛 + 1)/2

coefficients to determine it for a set with 𝑛 elements.

Theorem 17 (see [64]). Let 𝜇 be a fuzzy measure on 𝑁 ={1, 2, . . . , 𝑛}, then 𝜇 is a 2-additive measure if and only if there
exist coefficients 𝜇(𝑖) and 𝜇(𝑖, 𝑗) for all 𝑖, 𝑗 ∈ 𝑁 that satisfy the
following conditions:

(i) 𝜇(𝑖) ≥ 0 ∀𝑖 ∈ 𝑁,
(ii) ∑{𝑖,𝑗}⊆𝑁 𝜇(𝑖, 𝑗) − (𝑛 − 2)∑𝑖∈𝑁 𝜇(𝑖) = 1,
(iii) ∑𝑖⊆𝑆\𝑘(𝜇(𝑖, 𝑘) − 𝜇(𝑖)) ≥ (𝑠 − 2)𝜇(𝑘) ∀𝑆 ∈ 𝑁 s.t. 𝑘 ∈ 𝑆

and 𝑠 ≥ 2.
Theorem 18 (see [46]). Let 𝜇 be a 2-additive measure on𝑁 = {1, 2, . . . , 𝑛}, then the generalized Shapley function 𝜑with
respect to 𝜇 can be expressed as𝜑𝑆 (𝜇,𝑁) = ∑

{𝑖,𝑗}⊆𝑆

𝜇 (𝑖, 𝑗) + 12 ∑
𝑖∈𝑆,𝑗∈𝑁\𝑆

(𝜇 (𝑖, 𝑗) − 𝑠𝜇 (𝑗))
− 𝑛 + 𝑠 − 42 ∑

𝑖∈𝑆

𝜇 (𝑖) (17)

for any 𝑆 ⊆ 𝑁 such that 𝑠 ≥ 2 and for any {𝑖} = 𝑆 ⊆ 𝑁,𝜑𝑖 (𝜇,𝑁) = 3 − 𝑛2 𝜇 (𝑖) + 12 ∑
𝑗∈𝑁\𝑖

(𝜇 (𝑖, 𝑗) − 𝜇 (𝑗)) . (18)

In Definition 12, if V and 𝜇 are both a 2-additive measure,
then it derives the generalized interval-valued hesitant fuzzy
2-additive Shapley-Choquet hybrid weighted averaging (G-
IVHF2SCHWA) operator.

4. An Approach to Multiattribute Group
Decision Making

Because of various reasons, the weighting information may
be incompletely known. To solve this situation, this section
first establishes models for the optimal fuzzy measure and
the optimal 2-additive measure on the associated sets. Then,
an approach to multiattribute group decision making under
interval-valued hesitant fuzzy environment with incomplete
weighted information and interactive characteristics is devel-
oped.

Let 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑚} be the set of alternatives, let 𝐶 ={𝑐1, 𝑐2, . . . , 𝑐𝑛} be the set of attributes, and let 𝐸 = {𝑒1,𝑒2, . . . , 𝑒𝑞} be the set of experts. Assume that ℎ𝑘𝑖𝑗 is the IVHFE
of the alternative 𝑎𝑖 for the attribute 𝑐𝑗 given by the expert 𝑒𝑘
(𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛; 𝑘 = 1, 2, . . . , 𝑞). By 𝐻𝑘 =(ℎ𝑘𝑖𝑗)𝑚×𝑛, we denote the interval-valued hesitant fuzzy deci-
sion matrix given by the expert 𝑒𝑘 (𝑘 = 1, 2, . . . , 𝑞). Let 𝑁 ={1, 2, . . . , 𝑛} and 𝑄 = {1, 2, . . . , 𝑞} be respective of the ordered
sets for the attribute set 𝐶 and the expert set 𝐸.

4.1. Models for the Optimal Fuzzy Measure. Before building
models for the optimal fuzzy measure, let us first introduce
a new distance measure. Let ℎ1 and ℎ2 be any two IVHFEs,
Chen et al. [38] defined the following distance measures for
IVHFEs, denoted as𝑑1𝐶 (ℎ1, ℎ2)

= 12𝑙 𝑙∑
𝑗=1

(󵄨󵄨󵄨󵄨󵄨󵄨𝑟𝑙ℎ1(𝑗) − 𝑟𝑙
ℎ2(𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨󵄨𝑟𝑢ℎ1(𝑗) − 𝑟𝑢
ℎ2(𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨) , (19)

𝑑2𝐶 (ℎ1, ℎ2)
= √ 12𝑙 𝑙∑

𝑗=1

(󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟𝑙ℎ1(𝑗) − 𝑟𝑙
ℎ2(𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟𝑢ℎ1(𝑗) − 𝑟𝑢
ℎ2(𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨2), (20)

where (⋅) is a permutation on the possible interval value in ℎ1
and ℎ2 with 𝑟ℎ1(𝑗) = [𝑟𝑙

ℎ1(𝑗)
, 𝑟𝑢

ℎ1(𝑗)
] and 𝑟ℎ2(𝑗) = [𝑟𝑙

ℎ2(𝑗)
, 𝑟𝑢

ℎ2(𝑗)
]

being the 𝑗th largest values in ℎ1 and ℎ2, respectively; let𝑙 = max{𝑙(ℎ1), 𝑙(ℎ2)} with 𝑙(ℎ1) and 𝑙(ℎ2) being the numbers
of possible interval-valued membership degrees in ℎ1 andℎ2. For 𝑙(ℎ1) ̸= 𝑙(ℎ2), the authors adopted the method that
extends the shorter one until both of them have the same
length by adding the biggest interval several times.

Different from this distance measure, we define another
one that need not consider the length of IVHFEs.

Definition 19. Let ℎ1 and ℎ2 be any two IVHFEs, then the
generalized distance measure between ℎ1 and ℎ2 is defined
as𝑑𝑝 (ℎ1, ℎ2)

= [[12 {{{∑𝑟1∈ℎ1
min𝑟2∈ℎ2 (󵄨󵄨󵄨󵄨󵄨𝑟𝑙1 − 𝑟𝑙2󵄨󵄨󵄨󵄨󵄨𝑝 + 󵄨󵄨󵄨󵄨𝑟𝑢1 − 𝑟𝑢2 󵄨󵄨󵄨󵄨𝑝)2#ℎ1

+ ∑𝑟2∈ℎ2
min𝑟1∈ℎ1 (󵄨󵄨󵄨󵄨󵄨𝑟𝑙2 − 𝑟𝑙1󵄨󵄨󵄨󵄨󵄨𝑝 + 󵄨󵄨󵄨󵄨𝑟𝑢2 − 𝑟𝑢1 󵄨󵄨󵄨󵄨𝑝)2#ℎ2 }}}]]

1/𝑝 ,
(21)

where 𝑝 > 0 and #ℎ1 and #ℎ2 denote the number of the
possible interval value in ℎ1 and ℎ2, respectively.

For example, let ℎ1 = {[0.2, 0.3], [0.4, 0.6], [0.7, 0.8]} andℎ2 = {[0.1, 0.4], [0.5, 0.6]}. From (19), it derives 𝑑1𝐶(ℎ1, ℎ2) =0.1167. By (20), it gets 𝑑2𝐶(ℎ1, ℎ2) = 0.1353. Furthermore, by
(21) it gives 𝑑1(ℎ1, ℎ2) = 0.0958 for 𝑝 = 1 and 𝑑2(ℎ1, ℎ2) =0.1136 for 𝑝 = 2.
4.1.1. Models for the Optimal Fuzzy Measure on the Expert Set
E. For each interval-valued hesitant fuzzy decision matrix𝐻𝑘 = (ℎ𝑘𝑖𝑗)𝑚×𝑛 (𝑘 = 1, 2, . . . , 𝑞), we calculate the score matrix𝑆(𝐻𝑘) = (𝑆(ℎ𝑘𝑖𝑗))𝑚×𝑛 with 𝑆(ℎ𝑘𝑖𝑗) = ∑

𝑟𝑘𝑖𝑗=[(𝑟
𝑘
𝑖𝑗)
𝑙 ,(𝑟𝑘𝑖𝑗)
𝑢]∈ℎ
𝑘

𝑖𝑗

[(𝑟𝑘𝑖𝑗)𝑙/#ℎ𝑘𝑖𝑗,
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(𝑟𝑘𝑖𝑗)𝑢/#ℎ𝑘𝑖𝑗] = [𝑆(𝑟𝑘𝑖𝑗)𝑙, 𝑆(𝑟𝑘𝑖𝑗)𝑢]. Because the experts’ knowl-
edge, skills, and experiences are different, it is unreasonable
to give the same weight of an expert for different attributes.

Let𝑑𝑘𝑖𝑗 = |𝑆(𝑟𝑘𝑖𝑗)𝑙−(∑𝑞

𝑘=1
𝑆(𝑟𝑘𝑖𝑗)𝑙)/𝑞|+|𝑆(𝑟𝑘𝑖𝑗)𝑢−(∑𝑞

𝑘=1
𝑆(𝑟𝑘𝑖𝑗)𝑢)/𝑞|. With respect to the attribute 𝑐𝑗, 𝑗 = 1, 2, . . . , 𝑛, if the

weighting information on the expert set is partly known, the
following model is established:

min
𝑞∑

𝑘=1

𝑚∑
𝑖=1

𝜑𝑒𝑘 (V𝐸𝑗 , 𝐸) 𝑑𝑘𝑖𝑗
s.t. 𝐵𝑗 (V𝐸𝑗 (𝑆1) , . . . , V𝐸𝑗 (𝑆𝑘1)) ≤ 𝛼𝑗,𝑆𝑙 ⊆ 𝐸, 𝑙 = 1, 2, . . . , 𝑘1𝐺𝑗 (V𝐸𝑗 (𝑇1) , . . . , V𝐸𝑗 (𝑇𝑘2)) = 𝛽𝑗,𝑇𝑙 ⊆ 𝐸, 𝑙 = 1, 2, . . . , 𝑘2

V𝐸𝑗 (𝐸) = 1
V𝐸𝑗 (𝑆) ≤ V𝐸𝑗 (𝑇) ∀𝑆, 𝑇 ⊆ 𝐸 s.t. 𝑆 ⊆ 𝑇
V𝐸𝑗 (𝑒𝑘) ∈ 𝑊𝑗

𝑒𝑘
, V𝐸𝑗 (𝑒𝑘) ≥ 0, 𝑘 = 1, 2, . . . , 𝑞,

(22)

where 𝐵𝑗 and 𝐺𝑗 are the coefficient matrices, 𝛼𝑗 and 𝛽𝑗 are
the constant vectors, 𝐵𝑗(V𝐸𝑗 (𝑆1), V𝐸𝑗 (𝑆2), . . . , V𝐸𝑗 (𝑆𝑘1)) ≤ 𝛼𝑗

and 𝐺𝑗(V𝐸𝑗 (𝑇1), V𝐸𝑗 (𝑇2), . . . , V𝐸𝑗 (𝑇𝑘2)) = 𝛽𝑗 are the known
constraints, V𝐸𝑗 is the fuzzy measure on the expert set 𝐸
with respect to the attribute 𝑐𝑗, 𝜑𝑒𝑘(V𝐸𝑗 , 𝐸) is the Shapley
value of the expert 𝑒𝑘, and 𝑊𝑗

𝑒𝑘
is the known weighting

information.
If V𝐸𝑗 is a 2-additive measure, by (18) it gets the following

model:

min
𝑚∑
𝑖=1

𝑞∑
𝑘=1

𝑑𝑘𝑖𝑗2 ((3 − 𝑛) V𝐸𝑗 (𝑒𝑘) + ∑
𝑒𝑙∈𝐸\𝑒𝑘

(V𝐸𝑗 (𝑒𝑘, 𝑒𝑙) − V𝐸𝑗 (𝑒𝑙)))
s.t. 𝐵𝑗 (V𝐸𝑗 (𝐸𝑗) , V𝐸𝑗 (𝐸𝑖, 𝐸𝑗) , 𝑖, 𝑗 = 1, . . . , 𝑞, 𝑖 ̸= 𝑗) ≤ 𝛼̃𝑗

𝐺𝑗 (V𝐸𝑗 (𝐸𝑗) , V𝐸𝑗 (𝐸𝑖, 𝐸𝑗) , 𝑖, 𝑗 = 1, . . . , 𝑞, 𝑖 ̸= 𝑗) = 𝛽𝑗

∑
𝑒𝑙∈𝑆\𝑒𝑘

(V𝐸𝑗 (𝑒𝑘, 𝑒𝑙) − V𝐸𝑗 (𝑒𝑙)) ≥ (𝑠 − 2) V𝐸𝑗 (𝑒𝑘) , ∀𝑆 ⊆ 𝐸, ∀𝑒𝑘 ∈ 𝑆, 𝑠 ≥ 2
∑

{𝑒𝑘 ,𝑒𝑙}⊆𝐸

V𝐸𝑗 (𝑒𝑘, 𝑒𝑙) − (𝑞 − 2) ∑
𝑒𝑙∈𝐸

V𝐸𝑗 (𝑒𝑙) = 1
V𝐸𝑗 (𝑒𝑘) ∈ 𝑊𝑗

𝑒𝑘
, V𝐸𝑗 (𝑒𝑘) ≥ 0, 𝑘 = 1, 2, . . . , 𝑞,

(23)

where 𝐵𝑗 and 𝐺𝑗 are the coefficient matrices, 𝛼̃𝑗 and 𝛽𝑗 are
the constant vectors,𝐵𝑗(V𝐸𝑗 (𝐸𝑗), V𝐸𝑗 (𝐸𝑖, 𝐸𝑗), 𝑖, 𝑗 = 1, . . . , 𝑞, 𝑖 ̸=𝑗) ≤ 𝛼̃𝑗, and 𝐺𝑗(V𝐸𝑗 (𝐸𝑗), V𝐸𝑗 (𝐸𝑖, 𝐸𝑗), 𝑖, 𝑗 = 1, . . . , 𝑞, 𝑖 ̸= 𝑗) =𝛽𝑗 are the equivalent expressions of the known constraints
given in model (22) with respect to the 2-additive measure
V𝐸𝑗 .

The optimal fuzzy measure obtained from this model has
the following desirable characteristics: the closer an expert’s
evaluation values are to the other experts’, the larger the fuzzy
measure will be.This can decrease the influence of the unduly
high or low evaluation value induced by the experts’ limited
knowledge or expertise.

4.1.2. Models for the Optimal Fuzzy Measure on the Ordered
Set𝑄. To construct the model for the optimal fuzzy measure
on the ordered set 𝑄, the following procedure is needed.
Step 1. Calculate the interval-valued hesitant fuzzy Shapley
weighted decision matrices 𝐻𝑘

𝜑𝑒𝑘 (𝜇
𝐸,𝐸) = (ℎ󸀠𝑘𝑖𝑗 )𝑚×𝑛, 𝑘 ∈ 𝑄,

where

ℎ󸀠𝑘𝑖𝑗 = ⋃
𝑟𝑘𝑖𝑗=[(𝑟

𝑘
𝑖𝑗)
𝑙 ,(𝑟𝑘𝑖𝑗)
𝑢]∈ℎ
𝑘

𝑖𝑗

[𝜑𝑒𝑘 (𝜇𝐸𝑗 , 𝐸) (𝑟𝑘𝑖𝑗)𝑙 , 𝜑𝑒𝑘 (𝜇𝐸𝑗 , 𝐸)
⋅ (𝑟𝑘𝑖𝑗)𝑢] . (24)

Step 2. Calculate the score matrices 𝑆(𝐻𝑘

𝜑𝑒𝑘 (𝜇
𝐸,𝐸)) =(𝑆(ℎ󸀠𝑘𝑖𝑗 ))𝑚×𝑛, 𝑘 ∈ 𝑄, where

𝑆 (ℎ󸀠𝑘𝑖𝑗 ) = ∑
𝑟󸀠𝑘𝑖𝑗 =[(𝑟

󸀠𝑘
𝑖𝑗 )
𝑙 ,(𝑟󸀠𝑘𝑖𝑗 )

𝑢]∈ℎ
󸀠𝑘

𝑖𝑗

[[(𝑟󸀠𝑘𝑖𝑗 )𝑙
#ℎ󸀠𝑘𝑖𝑗 , (𝑟󸀠𝑘𝑖𝑗 )𝑢

#ℎ󸀠𝑘𝑖𝑗 ]]
= [𝑆 (𝑟󸀠𝑘𝑖𝑗 )𝑙 , 𝑆 (𝑟󸀠𝑘𝑖𝑗 )𝑢] .

(25)

Step 3. Calculate the mid-width matrices 𝑃𝑘 = (𝑝𝑘
𝑖𝑗)𝑚×𝑛, 𝑘 ∈𝑄, where
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𝑝𝑘
𝑖𝑗 = 𝑆 (𝑟󸀠𝑘𝑖𝑗 )𝑙 + 𝑆 (𝑟󸀠𝑘𝑖𝑗 )𝑢𝑆 (𝑟󸀠𝑘𝑖𝑗 )𝑙 + 𝑆 (𝑟󸀠𝑘𝑖𝑗 )𝑢 + 𝑆 (𝑟󸀠𝑘𝑖𝑗 )𝑢 − 𝑆 (𝑟󸀠𝑘𝑖𝑗 )𝑙
= 𝑆 (𝑟󸀠𝑘𝑖𝑗 )𝑙 + 𝑆 (𝑟󸀠𝑘𝑖𝑗 )𝑢2𝑆 (𝑟󸀠𝑘𝑖𝑗 )𝑢 . (26)

Step 4. For each pair (𝑖, 𝑗), we rearrange each 𝑝𝑘
𝑖𝑗, 𝑘 ∈ 𝑄, such

that 𝑝(1)
𝑖𝑗 ≤ 𝑝(2)

𝑖𝑗 ≤ ⋅ ⋅ ⋅ ≤ 𝑝(𝑞)
𝑖𝑗 .

Because there is no inferior for the ordered positions
with respect to the different attributes, if the weighting
information on the ordered set 𝑄 is not exactly known, the
following model for the optimal fuzzy measure is built:

max
𝑞∑

𝑘=1

𝑛∑
𝑗=1

𝑚∑
𝑖=1

𝜑𝑘 (𝜇𝑄, 𝑄) 𝑝(𝑘)
𝑖𝑗

s.t. 𝐵 (𝜇𝑄 (𝑆1) , . . . , 𝜇𝑄 (𝑆𝑝1)) ≤ 𝛼,𝑆𝑙 ⊆ 𝑄, 𝑙 = 1, 2, . . . , 𝑝1

𝐺(𝜇𝑄 (𝑇1) , . . . , 𝜇𝑄 (𝑇𝑝2)) = 𝛽,𝑇𝑙 ⊆ 𝑄, 𝑙 = 1, 2, . . . , 𝑝2𝜇𝑄 (𝑄) = 1𝜇𝑄 (𝑆) ≤ 𝜇𝑄 (𝑇) ∀𝑆, 𝑇 ⊆ 𝑄 s.t. 𝑆 ⊆ 𝑇𝜇𝑄 (𝑘) ∈ 𝑊𝑘, 𝜇𝑄 (𝑘) ≥ 0, 𝑘 = 1, 2, . . . , 𝑞,
(27)

where 𝐵 and 𝐺 are the coefficient matrices, 𝛼 and 𝛽 are
the constant vectors, 𝐵(𝜇𝑄(𝑆1), . . . , 𝜇𝑄(𝑆𝑝1)) ≤ 𝛼 and𝐺(𝜇𝑄(𝑇1), . . . , 𝜇𝑄(𝑇𝑝2)) = 𝛽 are the known constraints, 𝜇𝑄 is
the fuzzymeasure on the ordered set𝑄,𝜑𝑘(𝜇𝑄, 𝑄) is the Shap-
ley value of the 𝑘th position, and𝑊𝑘 is the known weighting
information.

If 𝜇𝑄 is a 2-additive measure, by (18) it gets the following
model:

max
𝑞∑

𝑘=1

𝑛∑
𝑗=1

𝑚∑
𝑖=1

𝑝(𝑘)
𝑖𝑗2 ((3 − 𝑛) 𝜇𝑄 (𝑘) + ∑

𝑙∈𝑄\𝑘

(𝜇𝑄 (𝑘, 𝑙) − 𝜇𝑄 (𝑙)))
s.t. 𝐵 (𝜇𝑄 (𝑗) , 𝜇𝑄 (𝑖, 𝑗) , 𝑖, 𝑗 = 1, . . . , 𝑞, 𝑖 ̸= 𝑗) ≤ 𝛼̃𝐺 (𝜇𝑄 (𝑗) , 𝜇𝑄 (𝑖, 𝑗) , 𝑖, 𝑗 = 1, . . . , 𝑞, 𝑖 ̸= 𝑗) = 𝛽∑

𝑙∈𝑆\𝑘

(𝜇𝑄 (𝑘, 𝑙) − 𝜇𝑄 (𝑙)) ≥ (𝑠 − 2) 𝜇𝑄 (𝑘) , ∀𝑆 ⊆ 𝑄, ∀𝑘 ∈ 𝑆, 𝑠 ≥ 2
∑

{𝑘,𝑙}⊆𝑄

𝜇𝑄 (𝑘, 𝑙) − (𝑞 − 2)∑
𝑙∈𝑄

𝜇𝑄 (𝑙) = 1
𝜇𝑄 (𝑘) ∈ 𝑊𝑘, 𝜇𝑄 (𝑘) ≥ 0, 𝑘 = 1, 2, . . . , 𝑞,

(28)

where 𝐵 and 𝐺 are the coefficient matrices, 𝛼̃ and 𝛽 are the
constant vectors, 𝐵(𝜇𝑄(𝑗), 𝜇𝑄(𝑖, 𝑗), 𝑖, 𝑗 = 1, . . . , 𝑞, 𝑖 ̸= 𝑗) ≤𝛼̃, and 𝐺(𝜇𝑄(𝑗), 𝜇𝑄(𝑖, 𝑗), 𝑖, 𝑗 = 1, . . . , 𝑞, 𝑖 ̸= 𝑗) = 𝛽 are
the equivalent expressions of the known constraints given in
model (27) with respect to 2-additive measure 𝜇𝑄.
4.1.3. Models for the Optimal Fuzzy Measure on the Attribute
Set C. Next, let us consider the optimal fuzzy measure
on the attribute set 𝐶. Assume that 𝐻 = (ℎ𝑖𝑗)𝑚×𝑛 is
the comprehensive interval-valued hesitant fuzzy decision
matrix. Let ℎ+𝑗 = max𝑚𝑖=1ℎ𝑖𝑗 and ℎ−𝑗 = min𝑚𝑖=1ℎ𝑖𝑗 for each𝑗 = 1, 2, . . . , 𝑛.

By (21), we calculate the distance 𝑑𝑝(ℎ𝑖𝑗, ℎ+𝑗 ) between ℎ𝑖𝑗
and ℎ+𝑗 as well as the distance 𝑑𝑝(ℎ𝑖𝑗, ℎ−𝑗 ) between ℎ𝑖𝑗 and ℎ−𝑗
for each pair (𝑖, 𝑗). Because all alternatives are noninferior, if
the weighting information on the attribute set𝐶 is not exactly

known, the following models for the optimal fuzzy measure
are constructed:

min
𝑛∑
𝑗=1

𝑚∑
𝑖=1

𝜑𝑐𝑗 (V𝐶, 𝐶) 𝑑𝑝 (ℎ𝑖𝑗, ℎ+𝑗 )
s.t. 𝑅 (V𝐶 (𝑆1) , . . . , V𝐶 (𝑆𝑞1)) ≤ 𝜀,𝑆𝑙 ⊆ 𝐶, 𝑙 = 1, . . . , 𝑞1𝐻(V𝐶 (𝑇1) , . . . , V𝐶 (𝑇𝑞2)) = 𝜂,𝑇𝑡2 ⊆ 𝐶, 𝑡2 = 1, . . . , 𝑞2

V𝐶 (𝐶) = 1
V𝐶 (𝑆) ≤ V𝐶 (𝑇) ∀𝑆, 𝑇 ⊆ 𝐶 s.t. 𝑆 ⊆ 𝑇
V𝐶 (𝑐𝑗) ∈ 𝑊𝑐𝑗

, V𝐶 (𝑐𝑗) ≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

(29)



Complexity 9

max
𝑛∑
𝑗=1

𝑚∑
𝑖=1

𝜑𝑐𝑗 (V𝐶, 𝐶) 𝑑𝑝 (ℎ𝑖𝑗, ℎ−𝑗 )
s.t. 𝑅 (V𝐶 (𝑆1) , . . . , V𝐶 (𝑆𝑞1)) ≤ 𝜀,𝑆𝑙 ⊆ 𝐶, 𝑙 = 1, . . . , 𝑞1𝐻(V𝐶 (𝑇1) , . . . , V𝐶 (𝑇𝑞2)) = 𝜂,𝑇𝑡2 ⊆ 𝐶, 𝑡2 = 1, . . . , 𝑞2

V𝐶 (𝐶) = 1
V𝐶 (𝑆) ≤ V𝐶 (𝑇) ∀𝑆, 𝑇 ⊆ 𝐶 s.t. 𝑆 ⊆ 𝑇
V𝐶 (𝑐𝑗) ∈ 𝑊𝑐𝑗

, V𝐶 (𝑐𝑗) ≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

(30)

where 𝑑𝑝(ℎ𝑖𝑗, ℎ+𝑗 ) and 𝑑𝑝(ℎ𝑖𝑗, ℎ−𝑗 ) are defined in Definition 19,𝑅 and 𝐻 are the coefficient matrices, 𝜀 and 𝜂 are
the constant vectors, 𝑅(V𝐶(𝑆1), . . . , V𝐶(𝑆𝑞1)) ≤ 𝜀 and𝐻(V𝐶(𝑇1), . . . , V𝐶(𝑇𝑞2)) = 𝜂 are the known constraints, V𝐶

is the fuzzy measure on the attribute set 𝐶, 𝜑𝑐𝑗(V𝐶, 𝐶) is
the Shapley value of the attribute 𝑐𝑗, and 𝑊𝑐𝑗

is the known
weighting information.

Because models (29) and (30) have the same constraints
and all alternatives are noninferior, they can be combined to
formulate the following linear programming:

min
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝜑𝑐𝑗 (V𝐶, 𝐶) 𝑑𝑝 (ℎ𝑖𝑗, ℎ+𝑗 )𝑑𝑝 (ℎ𝑖𝑗, ℎ−𝑗 ) + 𝑑𝑝 (ℎ𝑖𝑗, ℎ+𝑗 )
s.t. 𝑅 (V𝐶 (𝑆1) , . . . , V𝐶 (𝑆𝑞1)) ≤ 𝜀,𝑆𝑙 ⊆ 𝐶, 𝑙 = 1, . . . , 𝑞1𝐻(V𝐶 (𝑇1) , . . . , V𝐶 (𝑇𝑞2)) = 𝜂,𝑇𝑡2 ⊆ 𝐶, 𝑡2 = 1, . . . , 𝑞2

V𝐶 (𝐶) = 1
V𝐶 (𝑆) ≤ V𝐶 (𝑇) ∀𝑆, 𝑇 ⊆ 𝐶 s.t. 𝑆 ⊆ 𝑇
V𝐶 (𝑐𝑗) ∈ 𝑊𝑐𝑗

, V𝐶 (𝑐𝑗) ≥ 0, 𝑗 = 1, 2, . . . , 𝑛.

(31)

If V𝐶 is a 2-additive measure, then it derives the following
model:

min
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑑𝑝 (ℎ𝑖𝑗, ℎ+𝑗 )2 (𝑑𝑝 (ℎ𝑖𝑗, ℎ+𝑗 ) + 𝑑𝑝 (ℎ𝑖𝑗, ℎ−𝑗 )) ((3 − 𝑛) V𝐶 (𝑐𝑗) + ∑
𝑐𝑖∈𝐶\𝑐𝑗

(V𝐶 (𝑐𝑗, 𝑐𝑖) − V𝐶 (𝑐𝑖)))
s.t. 𝑅̃ (V𝐶 (𝑐𝑗) , V𝐶 (𝑐𝑖, 𝑐𝑗) , 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ̸= 𝑗) ≤ 𝜀𝐻̃ (V𝐶 (𝑐𝑗) , V𝐶 (𝑐𝑖, 𝑐𝑗) , 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ̸= 𝑗) = 𝜂∑

𝑐𝑖∈𝑆\𝑐𝑗

(V𝐶 (𝑐𝑖, 𝑐𝑗) − V𝐶 (𝑐𝑖)) ≥ (𝑠 − 2) V𝐶 (𝑐𝑗) , ∀𝑆 ⊆ 𝐶, ∀𝑐𝑗 ∈ 𝑆, 𝑠 ≥ 2
∑

{𝑐𝑖 ,𝑐𝑗}⊆𝐶

V𝐶 (𝑐𝑖, 𝑐𝑗) − (𝑛 − 2) ∑
𝑐𝑖∈𝐶

V𝐶 (𝑐𝑖) = 1
V𝐶 (𝑐𝑗) ∈ 𝑊𝑐𝑗

, V𝐶 (𝑐𝑗) ≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

(32)

where 𝑅̃ and 𝐻̃ are the coefficient matrices, 𝜀 and 𝜂 are the
constant vectors, and 𝑅̃(V𝐶(𝑐𝑗), V𝐶(𝑐𝑖, 𝑐𝑗), 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ̸=𝑗) ≤ 𝜀 and 𝐻̃(V𝐶(𝑐𝑗), V𝐶(𝑐𝑖, 𝑐𝑗), 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ̸= 𝑗) = 𝜂 are
the equivalent expressions of the known constraints given in
model (30) with respect to 2-additive measure V𝐶.

4.1.4. Models for the Optimal Fuzzy Measure on the Ordered
Set N. Let

𝑧𝑖𝑗 = 𝑑𝑝 (ℎ𝑖𝑗, ℎ+𝑗 )𝑑𝑝 (ℎ𝑖𝑗, ℎ+𝑗 ) + 𝑑𝑝 (ℎ𝑖𝑗, ℎ−𝑗 ) (33)

for each pair (𝑖, 𝑗).

For each 𝑖 = 1, 2, . . . , 𝑚, we rearrange 𝑧𝑖1, 𝑧𝑖2, . . . , 𝑧𝑖𝑛 such
that 𝑧𝑖(1) ≤ 𝑧𝑖(2) ≤ ⋅ ⋅ ⋅ ≤ 𝑧𝑖(𝑛). Similar to model for the optimal
fuzzy measure on the attribute set 𝐶, if the weighting vector
on the ordered set 𝑁 is incompletely known, the following
model is established:

min
𝑛∑
𝑗=1

𝑚∑
𝑖=1

𝜑𝑗 (𝜇𝑁, 𝑁) 𝑧𝑖(𝑗)
s.t. 𝑊(𝜇𝑁 (𝑆1) , . . . , 𝜇𝑁 (𝑆ℎ1)) ≤ 𝜋,𝑆𝑙 ⊆ 𝑁, 𝑙1 = 1, . . . , ℎ1𝑃 (𝜇𝑁 (𝑇1) , . . . , 𝜇𝑁 (𝑇ℎ2)) = 𝜏,
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𝑇𝑙 ⊆ 𝑁, 𝑙 = 1, . . . , ℎ2𝜇𝑁 (𝑁) = 1𝜇𝑁 (𝑆) ≤ 𝜇𝑁 (𝑇) ∀𝑆, 𝑇 ⊆ 𝑁 s.t. 𝑆 ⊆ 𝑇𝜇𝑁 (𝑗) ∈ 𝑊𝑗, 𝜇𝑁 (𝑗) ≥ 0, 𝑗 = 1, 2, . . . , 𝑛,
(34)

where 𝑊 and 𝑃 are the coefficient matrices, 𝜋 and 𝜏 are
the constant vectors, 𝑊(𝜇𝑁(𝑆1), . . . , 𝜇𝑁(𝑆ℎ1)) ≤ 𝜋 and𝑃(𝜇𝑁(𝑇1), . . . , 𝜇𝑁(𝑇ℎ2)) = 𝜏 are the known constraints, 𝜇𝑁
is the fuzzy measure on the ordered set 𝑁, 𝜑𝑗(𝜇𝑁, 𝑁) is the
Shapley value of the 𝑗th position, and and 𝑊𝑗 is the known
weighting information.

If 𝜇𝑁 is a 2-additive measure, then it derives the following
model:

min
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑧𝑖(𝑗)2 ((3 − 𝑛) 𝜇𝑁 (𝑗) + ∑
𝑖⊆𝑁\𝑗

(𝜇𝑁 (𝑖, 𝑗) − 𝜇𝑁 (𝑖)))
s.t. 𝑊̃ (𝜇𝑁 (𝑗) , 𝜇𝑁 (𝑖, 𝑗) , 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ̸= 𝑗) ≤ 𝜋̃𝑃̃ (𝜇𝑁 (𝑗) , 𝜇𝑁 (𝑖, 𝑗) , 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ̸= 𝑗) = 𝜏∑

𝑖∈𝑆\𝑗

(𝜇𝑁 (𝑖, 𝑗) − 𝜇𝑁 (𝑖)) ≥ (𝑠 − 2) 𝜇𝑁 (𝑗) , ∀𝑆 ⊆ 𝑁, ∀𝑗 ∈ 𝑆, 𝑠 ≥ 2
∑

{𝑖,𝑗}⊆𝑁

𝜇𝑁 (𝑖, 𝑗) − (𝑛 − 2) ∑
𝑖∈𝑁

𝜇𝑁 (𝑖) = 1
𝜇𝑁 (𝑗) ∈ 𝑊𝑗, 𝜇𝑁 (𝑗) ≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

(35)

where 𝑊̃ and 𝑃̃ are the coefficient matrices, 𝜋̃ and 𝜏 are the
constant vectors, and 𝑊̃(𝜇𝑁(𝑗), 𝜇𝑁(𝑖, 𝑗), 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ̸=𝑗) ≤ 𝜋̃, and 𝑃̃(𝜇𝑁(𝑗), 𝜇𝑁(𝑖, 𝑗), 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ̸= 𝑗) = 𝜏, are
the equivalent expressions of the known constraints given in
model (34) with respect to 2-additive measure 𝜇𝑁.
Remark 20. In built models, we apply the elements’ Shapley
values as their weights that overall consider their interactions.
Furthermore, if the elements in a set are independent, the
built models degenerate to models for the optimal additive
measure vector on the associated sets.

4.2. An Approach to Multiattribute Group Decision Making.
Based on the analysis above, this section introduces an
approach to interval-valued hesitant fuzzy multiattribute
group decision making with incomplete weighting infor-
mation and interactive characteristics. The main decision
procedure to obtain the most desirable alternative(s) can be
described as follows.

Step 1. If all attributes are benefits (i.e., the bigger the better),
then the attribute values need not transformation. Otherwise,
we need to transform the interval-valued hesitant fuzzy
decision matrix 𝐴𝑘 = (𝑎𝑘𝑖𝑗)𝑚×𝑛 into 𝐻𝑘 = (ℎ𝑘𝑖𝑗)𝑚×𝑛, 𝑘 ∈ 𝑄,
where

ℎ𝑘𝑖𝑗 = {{{𝑎𝑘𝑖𝑗 for benefit attribute 𝑐𝑗(𝑎𝑘𝑖𝑗)𝑐 for cost attribute 𝑐𝑗(𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛) (36)

with (𝑎𝑘𝑖𝑗)𝑐 = ⋃[(𝑎𝑘𝑖𝑗)
𝑙 ,(𝑎𝑘𝑖𝑗)
𝑢]∈𝑎𝑘𝑖𝑗

[1 − (𝑎𝑘𝑖𝑗)𝑢, 1 − (𝑎𝑘𝑖𝑗)𝑙].

Step 2. Usemodel (22) to calculate the optimal fuzzymeasure
on the expert set 𝐸 with respect to each attribute.

Step 3. Usemodel (27) to calculate the optimal fuzzymeasure
on the ordered set 𝑄.
Step 4. Utilize the G-IVHFSCHWA operator to calculate
the interval-valued hesitant fuzzy element ℎ𝑖𝑗; it derives the
comprehensive interval-valued hesitant fuzzy matrix 𝐻 =(ℎ𝑖𝑗)𝑚×𝑛.

Step 5. Usemodel (31) to calculate the optimal fuzzymeasure
on the attribute set 𝐶.
Step 6. Usemodel (34) to calculate the optimal fuzzymeasure
on the ordered set𝑁.

Step 7. Again utilize the G-IVHFSCHWA operator to cal-
culate the comprehensive interval-valued hesitant fuzzy ele-
ment ℎ𝑖 of the alternative 𝑎𝑖, 𝑖 = 1, 2, . . . , 𝑚.

Step 8. According to the comprehensive value ℎ𝑖 of the
alternative 𝑎𝑖, we calculate the score𝑆 (ℎ𝑖) = ∑

𝑟𝑖=[𝑟
𝑙
𝑖 ,𝑟
𝑢
𝑖 ]∈ℎ𝑖

[ 𝑟𝑙𝑖
#ℎ𝑖 , 𝑟𝑢𝑖#ℎ𝑖] , 𝑖 = 1, 2, . . . , 𝑚. (37)

Then, we rank the comprehensive IVHFEs ℎ𝑖, 𝑖 = 1, 2, . . . , 𝑚,
and select the best alternative(s).

Step 9. End.
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Table 1: The interval-valued hesitant fuzzy matrix 𝐴1.𝑐1 𝑐2 𝑐3 𝑐4𝑎1 ([0.2, 0.3], [0.5, 0.7]) ([0.4, 0.5]) ([0.4, 0.6]) ([0.6, 0.7])𝑎2 ([0.2, 0.4]) ([0.4, 0.5]) ([0.6, 0.8]) ([0.4, 0.6])𝑎3 ([0.3, 0.4], [0.6, 0.7]) ([0.5, 0.6]) ([0.5, 0.7]) ([0.2, 0.4], [0.6, 0.7])𝑎4 ([0.4, 0.6]) ([0.5, 0.7]) ([0.3, 0.4], [0.6, 0.7]) ([0.2, 0.3], [0.5, 0.6])

Table 2: The interval-valued hesitant fuzzy matrix 𝐴2.𝑐1 𝑐2 𝑐3 𝑐4𝑎1 ([0.2, 0.3]) ([0.2, 0.4]) ([0.3, 0.5]) ([0.4, 0.5])𝑎2 ([0.4, 0.5]) ([0.3, 0.6]) ([0.1, 0.3], [0.5, 0.6]) ([0.3, 0.4], [0.6, 0.7])𝑎3 ([0.2, 0.6]) ([0.5, 0.7]) ([0.5, 0.6]) ([0.4, 0.5])𝑎4 ([0.3, 0.5]) ([0.4, 0.6]) ([0.3, 0.5]) ([0.2, 0.4])

Table 3: The interval-valued hesitant fuzzy matrix 𝐴3.𝑐1 𝑐2 𝑐3 𝑐4𝑎1 ([0.4, 0.5]) ([0.4, 0.6]) ([0.3, 0.5]) ([0.1, 0.3], [0.6, 0.8])𝑎2 ([0.3, 0.5]) ([0.2, 0.4]) ([0.1, 0.2]) ([0.7, 0.9])𝑎3 ([0.5, 0.7]) ([0.3, 0.6]) ([0.2, 0.3], [0.5, 0.7]) ([0.6, 0.7])𝑎4 ([0.3, 0.6]) ([0.1, 0.3], [0.6, 0.8]) ([0.3, 0.5]) ([0.4, 0.5])

5. A Practical Example

Let us consider an investment company that wants to invest
a sum of money in the best option [65]. There is a panel with
four possible alternatives in which to invest themoney: 𝑎1 is a
car company, 𝑎2 is a computer company, 𝑎3 is a TV company,
and 𝑎4 is a food company. The investment company must
make a decision according to the following four attributes:𝑐1 is the risk index, 𝑐2 is the growth index, 𝑐3 is the social-
political impact index, and 𝑐4 is the environmental impact
index. The four possible alternatives 𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4}
are evaluated by three experts 𝐸 = {𝑒1, 𝑒2, 𝑒3} using the
IVHFEs under the above four attributes𝐶 = {𝑐1, 𝑐2, 𝑐3, 𝑐4}.The
interval-valued hesitant fuzzy matrices are listed as shown in
Tables 1–3.

Based on the expert’s reputation, experience, and exper-
tise, the weighting information on the expert set 𝐸 with
respect to each attribute is, respectively, given as follows:0.1 ≤ V𝐸1 (𝑒2) ,0.1 ≤ V𝐸1 (𝑒1) − V𝐸1 (𝑒2) ≤ 0.2,0 ≤ V𝐸1 (𝑒1) − V𝐸1 (𝑒3) ≤ 0.1,0.6 ≤ V𝐸1 (𝑒1, 𝑒2) ≤ 0.8,

V𝐸1 (𝑒2, 𝑒3) ≤ V𝐸1 (𝑒1, 𝑒3) ,
V𝐸1 (𝑒1, 𝑒2) ≤ V𝐸1 (𝑒1, 𝑒3) ;0.2 ≤ V𝐸2 (𝑒𝑘) ,0.1 ≤ V𝐸2 (𝑒1) − V𝐸2 (𝑒𝑘) ≤ 0.3, 𝑘 = 2, 3,

V𝐸2 (𝑒2, 𝑒3) ≤ V𝐸2 (𝑒1, 𝑒3) = V𝐸2 (𝑒1, 𝑒2) ,0.4 ≤ V𝐸2 (𝑒2, 𝑒3) ≤ 0.6;0.1 ≤ V𝐸3 (𝑒1) ,0.1 ≤ V𝐸3 (𝑒2) − V𝐸3 (𝑒1) ≤ 0.3,0 ≤ V𝐸3 (𝑒3) − V𝐸3 (𝑒1) ≤ 0.2,0.3 ≤ V𝐸3 (𝑒1, 𝑒2) ≤ 0.5,
V𝐸3 (𝑒1, 𝑒2) ≤ V𝐸3 (𝑒1, 𝑒3) ≤ V𝐸3 (𝑒2, 𝑒3) ;0.15 ≤ V𝐸4 (𝑒1) ,

V𝐸4 (𝑒2) ≤ 0.6,
V𝐸4 (𝑒1) ≤ V𝐸4 (𝑒3) ≤ V𝐸4 (𝑒2) ,

V𝐸4 (𝑒1, 𝑒𝑘) + 0.2 ≤ V𝐸4 (𝑒2, 𝑒3) , 𝑘 = 2, 3,
V𝐸4 (𝑒1, 𝑒2) = V𝐸4 (𝑒1, 𝑒3) ,0.7 ≤ V𝐸4 (𝑒2, 𝑒3) ≤ 0.9.

(38)

In addition to the usual weighting information on experts
taken separately, the weighting information on any combi-
nation of experts is also defined. Take the fuzzy measure
V𝐸1 , for example, with respect to the other two experts; the
importance of the expert 𝑒2 is no less than 0.1. Furthermore,
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Table 4: The interval-valued hesitant fuzzy matrix𝐻1.𝑐1 𝑐2 𝑐3 𝑐4𝑎1 ([0.3, 0.5], [0.7, 0.8]) ([0.4, 0.5]) ([0.4, 0.6]) ([0.3, 0.4])𝑎2 ([0.6, 0.8]) ([0.4, 0.5]) ([0.2, 0.4]) ([0.4, 0.6])𝑎3 ([0.3, 0.4], [0.6, 0.7]) ([0.5, 0.6]) ([0.3, 0.5]) ([0.3, 0.4], [0.6, 0.8])𝑎4 ([0.4, 0.6]) ([0.5, 0.7]) ([0.3, 0.4], [0.6, 0.7]) ([0.4, 0.5], [0.7, 0.8])

the importance of the expert 𝑒1 is no smaller than that of
the expert 𝑒2 or 𝑒3; their differences belong to the intervals[0.1, 0.2] and [0, 0.1], respectively. Moreover, the importance
of the combination of the experts 𝑒1 and 𝑒3 is no less than
that of the combination of the experts 𝑒1 and 𝑒2 as well as the
combination of the experts 𝑒2 and 𝑒3.

Furthermore, the weighting information on the ordered
set 𝑄 is defined as follows:0.2 ≤ 𝜇𝑄 (1) ,𝜇𝑄 (3) ≤ 0.5,𝜇𝑄 (1) ≤ 𝜇𝑄 (2) ≤ 𝜇𝑄 (3)𝜇𝑄 (1, 2) ≤ 𝜇𝑄 (1, 3) ≤ 𝜇𝑄 (2, 3) ,0.5 ≤ 𝜇𝑄 (1, 2) ,𝜇𝑄 (2, 3) ≤ 0.9.

(39)

From the weighting information above, it indicates that
the importance is increasing with respect to the ordered
positions. The range of their individual weights is [0.2, 0.5],
and the range of the combinations of any two ordered
positions’ weights is [0.5, 0.9].

Considering the following facts: “These four companies
belong to one state that has a stable social-political envi-
ronment. Its government always attaches great importance
to environmental protection. In addition, with the help of
the government, they have a certain antirisk ability”. The
weighting information on the attribute set 𝐶 is given as
follows:

V𝐶 (𝑐3) ≥ 0.1,
V𝐶 (𝑐1) − V𝐶 (𝑐3) ≥ 0.1,
V𝐶 (𝑐2) − V𝐶 (𝑐1) ≥ 0.1,
V𝐶 (𝑐4) − V𝐶 (𝑐2) ≥ 0.2,
V𝐶 (𝑐1, 𝑐3) ≤ V𝐶 (𝑐2, 𝑐3) ≤ V𝐶 (𝑐3, 𝑐4) ≤ V𝐶 (𝑐1, 𝑐2)≤ V𝐶 (𝑐1, 𝑐4) ≤ V𝐶 (𝑐2, 𝑐4) ,
V𝐶 (𝑐2, 𝑐4) − V𝐶 (𝑐1, 𝑐3) ≥ 0.3,
V𝐶 (𝑐1, 𝑐2, 𝑐3) ≤ V𝐶 (𝑐1, 𝑐3, 𝑐4) ≤ V𝐶 (𝑐2, 𝑐3, 𝑐4)≤ V𝐶 (𝑐1, 𝑐2, 𝑐4) ,

V𝐶 (𝑐1, 𝑐2, 𝑐4) ≥ 0.8.
(40)

Similar to the weights on𝑄, the weighting information on the
ordered set𝑁 is defined as follows:𝜇𝑁 (1) ≥ 0.1,𝜇𝑁 (4) ≥ 0.3,𝜇𝑁 (3, 4) ≥ 0.6,𝜇𝑁 (2, 3, 4) ≤ 0.9,𝜇𝑁 (𝑗) − 𝜇𝑁 (𝑗 + 1) ≤ −0.1, 𝑗 = 1, 2, 3𝜇𝑁 (1, 2) − 𝜇𝑁 (1, 3) ≤ −0.1,𝜇𝑁 (1, 3) − 𝜇𝑁 (1, 4) ≤ −0.1,𝜇𝑁 (2, 3) − 𝜇𝑁 (2, 4) ≤ −0.1,𝜇𝑁 (2, 4) − 𝜇𝑁 (3, 4) ≤ −0.1,𝜇𝑁 (1, 2, 3) − 𝜇𝑁 (1, 2, 4) ≤ −0.1,𝜇𝑁 (1, 2, 4) − 𝜇𝑁 (1, 3, 4) ≤ −0.1,𝜇𝑁 (1, 3, 4) − 𝜇𝑁 (2, 3, 4) ≤ −0.1.

(41)

In the following, we can utilize the proposed procedure to
obtain the most desirable alternative(s).

Step 1. Because the attributes 𝑐1, 𝑐3, and 𝑐4 are cost and the
attribute 𝑐2 is benefit, it needs to transform the decision
matrix 𝐴𝑘 into 𝐻𝑘, 𝑘 = 1, 2, 3. Take 𝐴1, for example; the
decision matrix𝐻1 is given as shown in Table 4.

Step 2. According to model (22), the following linear pro-
gramming is constructed:

min − 0.022 (V𝐸1 (𝑒1) − V𝐸1 (𝑒2, 𝑒3))+ 0.069 (V𝐸1 (𝑒2) − V𝐸1 (𝑒1, 𝑒3))− 0.047 (V𝐸1 (𝑒3) − V𝐸1 (𝑒1, 𝑒2)) + 0.544
s.t. 0.1 ≤ V𝐸1 (𝑒2)0.1 ≤ V𝐸1 (𝑒1) − V𝐸1 (𝑒2) ≤ 0.2
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Table 5: The optimal fuzzy measures.{𝑒1} {𝑒2} {𝑒3} {𝑒1, 𝑒2} {𝑒1, 𝑒3} {𝑒2, 𝑒3} 𝐸
V𝐸1 0.3 0.1 0.3 0.6 1 0.3 1

V𝐸2 0.5 0.4 0.2 1 1 0.4 1

V𝐸3 0.1 0.4 0.1 0.4 0.4 1 1

V𝐸4 0.15 0.6 0.15 0.676 0.676 0.876 1

Table 6: The experts’ Shapley values.𝑐1 𝑐2 𝑐3 𝑐4𝑒1 0.533 0.6 0.083 0.192𝑒2 0.083 0.25 0.533 0.517𝑒3 0.383 0.15 0.383 0.292

0 ≤ V𝐸1 (𝑒1) − V𝐸1 (𝑒3) ≤ 0.10.6 ≤ V𝐸1 (𝑒1, 𝑒2) ≤ 0.8
V𝐸1 (𝑒2, 𝑒3) − V𝐸1 (𝑒1, 𝑒3) ≤ 0
V𝐸1 (𝑒1, 𝑒2) − V𝐸1 (𝑒1, 𝑒3) ≤ 0
V𝐸1 (𝑆) ≤ V𝐸1 (𝑇)∀𝑆, 𝑇 ⊆ {𝑒1, 𝑒2, 𝑒3} s.t. 𝑆 ⊆ 𝑇.

(42)

Solving the above model, it derives

V𝐸1 (𝑒1) = V𝐸1 (𝑒3) = V𝐸1 (𝑒2, 𝑒3) = 0.3,
V𝐸1 (𝑒2) = 0.1,

V𝐸1 (𝑒1, 𝑒2) = 0.6,
V𝐸1 (𝑒1, 𝑒3) = V𝐸1 (𝑒1, 𝑒2, 𝑒3) = 1.

(43)

Similar to the calculation of the optimal fuzzy measure V𝐸1 ,
the optimal fuzzy measures with respect to each attribute are
obtained as shown in Table 5.

From Table 5, the experts’ Shapley values with respect to
each attribute are obtained as shown in Table 6.

Step 3. Calculating the Shapley weighted matrices𝐻𝑘

𝜑𝑒𝑘 (𝜇
𝐸,𝐸) = (ℎ󸀠𝑘𝑖𝑗 )𝑚×𝑛, 𝑘 ∈ 𝑄, take 𝐻1, for example; the

Shapley weighted matrix 𝐻1

𝜑𝑒1 (𝜇
𝐸,𝐸) is obtained as shown in

Table 7.
According to model (27), the following linear program-

ming is constructed:

max − 0.423 (𝜇𝑄 (1) − 𝜇𝑄 (2, 3))+ 0.03 (𝜇𝑄 (2) − 𝜇𝑄 (1, 3))+ 0.393 (𝜇𝑄 (3) − 𝜇𝑄 (1, 1)) + 13.7
s.t. 0.2 ≤ 𝜇𝑄 (1) , 𝜇𝑄 (3) ≤ 0.50.5 ≤ 𝜇𝑄 (1, 2) , 𝜇𝑄 (2, 3) ≤ 0.9𝜇𝑄 (1) − 𝜇𝑄 (2) ≤ 0𝜇𝑄 (2) − 𝜇𝑄 (3) ≤ 0𝜇𝑄 (1, 2) − 𝜇𝑄 (1, 3) ≤ 0𝜇𝑄 (1, 3) − 𝜇𝑄 (2, 3) ≤ 0𝜇𝑄 (𝑆) ≤ 𝜇𝑄 (𝑇) ∀𝑆, 𝑇 ⊆ {1, 2, 3} s.t. 𝑆 ⊆ 𝑇.

(44)

Solving the above model, it derives

𝜇𝑄 (1) = 0.2,𝜇𝑄 (2) = 𝜇𝑄 (3) = 𝜇𝑄 (1, 2) = 𝜇𝑄 (1, 3) = 0.5,𝜇𝑄 (2, 3) = 0.9,𝜇𝑄 (1, 2, 3) = 1.
(45)

Step 4. Let 𝜆 = 2, by the G-IVHFSCHWA operator
the comprehensive interval-valued hesitant fuzzy matrix is
obtained as shown in Table 8.

Take ℎ11, for example,

G-IVHFSCHWA (ℎ111, ℎ211, ℎ311)
= ⋃

𝑟111∈ℎ
1

11 ,𝑟
2
11∈ℎ
2

11 ,𝑟
3
11∈ℎ
3

11

([[[[[(
0.15 × (0.533 × (𝑟111)𝑙)2 + 0.4 × (0.383 × (𝑟311)𝑙)2 + 0.45 × (0.083 × (𝑟211)𝑙)20.15 × 0.5332 + 0.4 × 0.3832 + 0.45 × 0.0832 )1/2 ,

(0.15 × (0.533 × (𝑟111)𝑙)2 + 0.4 × (0.383 × (𝑟311)𝑙)2 + 0.45 × (0.083 × (𝑟211)𝑙)20.15 × 0.5332 + 0.4 × 0.3832 + 0.45 × 0.0832 )1/2]]]]])
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Table 7: The Shapley weighted matrix𝐻1

𝜑𝑒1 (𝜇
𝐸,𝐸).𝑐1 𝑐2 𝑐3 𝑐4𝑎1 ([0.16, 0.27], [0.37, 0.43]) ([0.24, 0.3]) ([0.03, 0.05]) ([0.06, 0.08])𝑎2 ([0.76, 0.89]) ([0.23, 0.3]) ([0.02, 0.03]) ([0.08, 0.12])𝑎3 ([0.16, 0.21], [0.32, 0.37]) ([0.3, 0.36]) ([0.02, 0.04]) ([0.06, 0.08], [0.12, 0.15])𝑎4 ([0.21, 0.32]) ([0.3, 0.42]) ([0.02, 0.03], [0.05, 0.06]) ([0.08, 0.1], [0.13, 0.15])

Table 8: The comprehensive interval-valued hesitant fuzzy matrix𝐻.𝑐1 𝑐2 𝑐3 𝑐4𝑎1 ([0.44, 0.57], [0.6, 0.69]) ([0.39, 0.5]) ([0.5, 0.7]) ([0.46, 0.56], [0.5, 0.62])𝑎2 ([0.58, 0.78]) ([0.39, 0.5]) ([0.58, 0.67], [0.73, 0.9]) ([0.3, 0.42], [0.56, 0.67])𝑎3 ([0.3, 0.44], [0.52, 0.64]) ([0.5, 0.61]) ([0.37, 0.5], [0.51, 0.61]) ([0.46, 0.56], [0.47, 0.57])𝑎4 ([0.4, 0.62]) ([0.48, 0.68], [0.49, 0.69]) ([0.5, 0.69], [0.5, 0.7]) ([0.53, 0.68], [0.59, 0.73])

= ([(0.15 × (0.533 × 0.3)2 + 0.4 × (0.383 × 0.5)2 + 0.45 × (0.083 × 0.7)20.15 × 0.5332 + 0.4 × 0.3832 + 0.45 × 0.0832 )1/2 ,
(0.15 × (0.533 × 0.5)2 + 0.4 × (0.383 × 0.6)2 + 0.45 × (0.083 × 0.8)20.15 × 0.5332 + 0.4 × 0.3832 + 0.45 × 0.0832 )1/2] ,
[(0.15 × (0.533 × 0.7)2 + 0.4 × (0.383 × 0.5)2 + 0.45 × (0.083 × 0.7)20.15 × 0.5332 + 0.4 × 0.3832 + 0.45 × 0.0832 )1/2 ,
(0.15 × (0.533 × 0.8)2 + 0.4 × (0.383 × 0.6)2 + 0.45 × (0.083 × 0.8)20.15 × 0.5332 + 0.4 × 0.3832 + 0.45 × 0.0832 )1/2])
= ([0.44, 0.57] , [0.6, 0.69]) .

(46)

Step 5. Let 𝑝 = 1; according to model (31), the following
linear programming is constructed:

min − 0.095 (V𝐶 (𝑐1) − V𝐶 (𝑐2, 𝑐3, 𝑐4))+ 0.056 (V𝐶 (𝑐2) − V𝐶 (𝑐1, 𝑐3, 𝑐4))+ 0.072 (V𝐶 (𝑐3) − V𝐶 (𝑐1, 𝑐2, 𝑐4))− 0.034 (V𝐶 (𝑐4) − V𝐶 (𝑐1, 𝑐2, 𝑐3))− 0.019 (V𝐶 (𝑐1, 𝑐2) − V𝐶 (𝑐3, 𝑐4))− 0.011 (V𝐶 (𝑐1, 𝑐3) − V𝐶 (𝑐2, 𝑐4))− 0.064 (V𝐶 (𝑐1, 𝑐4) − V𝐶 (𝑐2, 𝑐3)) + 2.062
s.t. 0.1 ≤ V𝐶 (𝑐3) ,0.8 ≤ V𝐶 (𝑐1, 𝑐2, 𝑐4)

V𝐶 (𝑐3) − V𝐶 (𝑐1) ≤ −0.1
V𝐶 (𝑐1) − V𝐶 (𝑐2) ≤ −0.1

V𝐶 (𝑐2) − V𝐶 (𝑐4) ≤ −0.2
V𝐶 (𝑐1, 𝑐3) − V𝐶 (𝑐2, 𝑐4) ≤ −0.3
V𝐶 (𝑐1, 𝑐3) − V𝐶 (𝑐2, 𝑐3) ≤ 0
V𝐶 (𝑐2, 𝑐3) − V𝐶 (𝑐3, 𝑐4) ≤ 0
V𝐶 (𝑐3, 𝑐4) − V𝐶 (𝑐1, 𝑐2) ≤ 0
V𝐶 (𝑐1, 𝑐2) − V𝐶 (𝑐1, 𝑐4) ≤ 0
V𝐶 (𝑐1, 𝑐4) − V𝐶 (𝑐2, 𝑐4) ≤ 0
V𝐶 (𝑐1, 𝑐2, 𝑐3) − V𝐶 (𝑐1, 𝑐3, 𝑐4) ≤ 0
V𝐶 (𝑐1, 𝑐3, 𝑐4) − V𝐶 (𝑐2, 𝑐3, 𝑐4) ≤ 0
V𝐶 (𝑐2, 𝑐3, 𝑐4) − V𝐶 (𝑐1, 𝑐2, 𝑐4) ≤ 0
V𝐶 (𝑆) ≤ V𝐶 (𝑇)∀𝑆, 𝑇 ⊆ {𝑐1, 𝑐2, 𝑐3, 𝑐4} s.t. 𝑆 ⊆ 𝑇.

(47)
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Solving the above model, it derives

V𝐶 (𝑐1) = 0.2,
V𝐶 (𝑐2) = V𝐶 (𝑐1, 𝑐3) = V𝐶 (𝑐2, 𝑐3) = 0.3,
V𝐶 (𝑐3) = 0.1,
V𝐶 (𝑐4) = V𝐶 (𝑐1, 𝑐2) = V𝐶 (𝑐3, 𝑐4) = V𝐶 (𝑐1, 𝑐2, 𝑐3)= 0.5765,

V𝐶 (𝑐1, 𝑐4) = V𝐶 (𝑐2, 𝑐4) = V𝐶 (𝑐1, 𝑐2, 𝑐4) = V𝐶 (𝑐1, 𝑐3, 𝑐4)= V𝐶 (𝑐2, 𝑐3, 𝑐4) = V𝐶 (𝑐1, 𝑐2, 𝑐3, 𝑐4) = 1.

(48)

Using the Shapley function, it derives𝜑1 (V𝐶, 𝐶) = 0.1833,𝜑2 (V𝐶, 𝐶) = 0.21667,𝜑3 (V𝐶, 𝐶) = 0.03333,𝜑4 (V𝐶, 𝐶) = 0.5667.
(49)

Step 6. According to model (34), the following linear pro-
gramming is constructed:

min − 0.71 (𝜇𝑁 (1) − 𝜇𝑁 (2, 3, 4))− 0.183 (𝜇𝑁 (2) − 𝜇𝑁 (1, 3, 4))+ 0.381 (𝜇𝑁 (3) − 𝜇𝑁 (1, 2, 4))+ 0.513 (𝜇𝑁 (4) − 𝜇𝑁 (1, 2, 3))− 0.447 (𝜇𝑁 (1, 2) − 𝜇𝑁 (3, 4))− 0.165 (𝜇𝑁 (1, 3) − 𝜇𝑁 (2, 4))− 0.099 (𝜇𝑁 (1, 4) − 𝜇𝑁 (2, 3)) + 2.13
s.t. 𝜇𝑁 (𝑗) − 𝜇𝑁 (𝑗 + 1) ≤ −0.1, 𝑗 = 1, 2, 3𝜇𝑁 (1, 𝑙) − 𝜇𝑁 (1, 𝑙 + 1) ≤ −0.1, 𝑙 = 2, 3𝜇𝑁 (2, 3) − 𝜇𝑁 (2, 4) ≤ −0.1𝜇𝑁 (2, 4) − 𝜇𝑁 (3, 4) ≤ −0.1𝜇𝑁 (1, 2, 3) − 𝜇𝑁 (1, 2, 4) ≤ −0.1𝜇𝑁 (1, 2, 4) − 𝜇𝑁 (1, 3, 4) ≤ −0.1𝜇𝑁 (1, 3, 4) − 𝜇𝑁 (2, 3, 4) ≤ −0.10.1 ≤ 𝜇𝑁 (1) ,

0.3 ≤ 𝜇𝑁 (4) ,0.6 ≤ 𝜇𝑁 (3, 4)𝜇𝑁 (2, 3, 4) ≤ 0.9𝜇𝑁 (𝑆) ≤ 𝜇𝑁 (𝑇)∀𝑆, 𝑇 ⊆ {1, 2, 3, 4} s.t. 𝑆 ⊆ 𝑇.
(50)

Solving the above model, it derives𝜇𝑁 (1) = 0.1,𝜇𝑁 (2) = 0.2,𝜇𝑁 (3) = 𝜇𝑁 (2, 3) = 0.3,𝜇𝑁 (4) = 𝜇𝑁 (2, 4) = 0.4,𝜇𝑁 (1, 2) = 0.5,𝜇𝑁 (1, 3) = 𝜇𝑁 (3, 4) = 𝜇𝑁 (1, 2, 3) = 0.6,𝜇𝑁 (1, 4) = 𝜇𝑁 (1, 2, 4) = 0.7,𝜇𝑁 (1, 3, 4) = 0.8,𝜇𝑁 (2, 3, 4) = 0.9,𝜇𝑁 (1, 2, 3, 4) = 1.

(51)

Step 7. Let 𝜆 = 2, by the G-IVHFSCHWA operator the
comprehensive IVHFEs are obtained as follows:ℎ1 = ([0.46, 0.56] , [0.47, 0.58] , [0.49, 0.6] , [0.51, 0.62]) ;ℎ2 = ([0.35, 0.47] , [0.35, 0.48] , [0.54, 0.66] ,[0.55, 0.67]) ;ℎ3 = ([0.46, 0.56] , [0.47, 0.57] , [0.46, 0.56] , [0.47, 0.57] ,[0.48, 0.57] , [0.47, 0.58] , [0.47, 0.57] , [0.48, 0.58]) ;ℎ4 = ([0.52, 0.68] , [0.57, 0.72] , [0.52, 0.68] , [0.57, 0.72] ,[0.52, 0.68] , [0.57, 0.72] , [0.52, 0.67] , [0.57, 0.72]) .

(52)

Step 8. According to the comprehensive IVHFEs, the scores
are obtained as follows:𝑆 (ℎ1) = [0.4813, 0.5895] ,𝑆 (ℎ2) = [0.45, 0.5735] ,𝑆 (ℎ3) = [0.467, 0.5715] ,𝑆 (ℎ4) = [0.5471, 0.701] .

(53)

Because 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ3) > 𝑆(ℎ2), the best choice is the
food company 𝑎4.
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Table 9: Ranking orders based on the G-IVHFSCHWA operator.𝑆(ℎ1) 𝑆(ℎ2) 𝑆(ℎ3) 𝑆(ℎ4) Ranking orders𝜆 = 0.1 [0.487, 0.626] [0.532, 0.675] [0.464, 0.577] [0.509, 0.69] 𝑆(ℎ2) > 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ3)𝜆 = 0.2 [0.486, 0.621] [0.523, 0.666] [0.465, 0.578] [0.512, 0.69] 𝑆(ℎ4) > 𝑆(ℎ2) > 𝑆(ℎ1) > 𝑆(ℎ3)𝜆 = 0.5 [0.483, 0.608] [0.500, 0.641] [0.467, 0.578] [0.519, 0.692] 𝑆(ℎ4) > 𝑆(ℎ2) > 𝑆(ℎ1) > 𝑆(ℎ3)𝜆 = 1.0 [0.481, 0.596] [0.474, 0.608] [0.468, 0.577] [0.532, 0.695] 𝑆(ℎ4) > 𝑆(ℎ2) > 𝑆(ℎ1) > 𝑆(ℎ3)𝜆 = 2.0 [0.481, 0.59] [0.45, 0.574] [0.467, 0.572] [0.547, 0.701] 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ3) > 𝑆(ℎ2)𝜆 = 5.0 [0.484, 0.591] [0.432, 0.546] [0.464, 0.565] [0.558, 0.706] 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ3) > 𝑆(ℎ2)𝜆 = 10 [0.485, 0.592] [0.429, 0.541] [0.464, 0.565] [0.558, 0.706] 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ3) > 𝑆(ℎ2)𝜆 = 20 [0.485, 0.592] [0.429, 0.541] [0.464, 0.565] [0.558, 0.706] 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ3) > 𝑆(ℎ2)
Table 10: Ranking orders based on the G-IVHF2SCHWA operator.𝑆(ℎ1) 𝑆(ℎ2) 𝑆(ℎ3) 𝑆(ℎ4) Ranking orders𝜆 = 0.1 [0.489, 0.629] [0.544, 0.684] [0.470, 0.583] [0.512, 0.691] 𝑆(ℎ2) > 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ3)𝜆 = 0.2 [0.487, 0.622] [0.531, 0.670] [0.472, 0.585] [0.514, 0.691] 𝑆(ℎ4) > 𝑆(ℎ2) > 𝑆(ℎ1) > 𝑆(ℎ3)𝜆 = 0.5 [0.480, 0.604] [0.496, 0.631] [0.477, 0.588] [0.521, 0.693] 𝑆(ℎ4) > 𝑆(ℎ2) > 𝑆(ℎ1) > 𝑆(ℎ3)𝜆 = 1.0 [0.470, 0.583] [0.456, 0.583] [0.481, 0.592] [0.530, 0.695] 𝑆(ℎ4) > 𝑆(ℎ3) > 𝑆(ℎ1) > 𝑆(ℎ2)𝜆 = 2.0 [0.461, 0.568] [0.426, 0.542] [0.484, 0.593] [0.540, 0.699] 𝑆(ℎ4) > 𝑆(ℎ3) > 𝑆(ℎ1) > 𝑆(ℎ2)𝜆 = 5.0 [0.459, 0.565] [0.423, 0.529] [0.485, 0.592] [0.551, 0.702] 𝑆(ℎ4) > 𝑆(ℎ3) > 𝑆(ℎ1) > 𝑆(ℎ2)𝜆 = 10 [0.462, 0.567] [0.435, 0.538] [0.484, 0.589] [0.557, 0.704] 𝑆(ℎ4) > 𝑆(ℎ3) > 𝑆(ℎ1) > 𝑆(ℎ2)𝜆 = 20 [0.466, 0.57] [0.447, 0.55] [0.483, 0.588] [0.559, 0.704] 𝑆(ℎ4) > 𝑆(ℎ3) > 𝑆(ℎ1) > 𝑆(ℎ2)

Table 11: Ranking results based on the GIVHFHA operator.𝑆(ℎ1) 𝑆(ℎ2) 𝑆(ℎ3) 𝑆(ℎ4) Ranking orders𝜆 = 0.1 [0.524, 0.661] [0.471, 0.628] [0.544, 0.677] [0.515, 0.707] 𝑆(ℎ4) > 𝑆(ℎ3) > 𝑆(ℎ1) > 𝑆(ℎ2)𝜆 = 0.2 [0.612, 0.736] [0.550, 0.705] [0.621, 0.746] [0.592, 0.771] 𝑆(ℎ3) > 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ2)𝜆 = 0.5 [0.617, 0.739] [0.555, 0.707] [0.626, 0.750] [0.598, 0.774] 𝑆(ℎ3) > 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ2)𝜆 = 1.0 [0.626, 0.745] [0.564, 0.712] [0.636, 0.755] [0.606, 0.778] 𝑆(ℎ3) > 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ2)𝜆 = 2.0 [0.643, 0.755] [0.582, 0.720] [0.654, 0.766] [0.623, 0.787] 𝑆(ℎ3) > 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ2)𝜆 = 5.0 [0.688, 0.785] [0.626, 0.743] [0.693, 0.791] [0.661, 0.808] 𝑆(ℎ3) > 𝑆(ℎ1) > 𝑆(ℎ4) > 𝑆(ℎ2)𝜆 = 10 [0.731, 0.818] [0.663, 0.769] [0.729, 0.815] [0.695, 0.828] 𝑆(ℎ1) > 𝑆(ℎ3) > 𝑆(ℎ4) > 𝑆(ℎ2)𝜆 = 20 [0.762, 0.847] [0.691, 0.794] [0.758, 0.840] [0.723, 0.849] 𝑆(ℎ1) > 𝑆(ℎ3) > 𝑆(ℎ4) > 𝑆(ℎ2)
With respect to the comprehensive interval-valued hesi-

tant fuzzy matrix 𝐻, if the different values of 𝜆 are used to
calculate the comprehensive IVHFEs of the alternatives, the
ranking orders are obtained as shown in Table 9.

From Table 9, one can that different ranking orders are
obtained. However, all ranking orders show that the food
company 𝑎4 is the best choice except for 𝜆 = 0.1.

If the G-IVHF2SCHWA operator is applied to calcu-
late the comprehensive IVHFEs of the alternatives, ranking
orders are obtained as shown in Table 10.

Table 10 shows that the different ranking orders are
obtained. However, the best choices are the same as that
obtained from the G-IVHFSCHWA operator.

In this example, if we assume that there are no interac-
tions. Furthermore, if we adopt the operational laws given
by Chen et al. [38], using the generalized interval-valued
hesitant fuzzy hybrid averaging (GIVHFHA) operator [38],
ranking orders are obtained as shown in Table 11.

From Table 11, it can be observed that the best choices
obtained by the GIVHFHA operator are completely

different from that derived by the G-IVHFSCHWA or G-
IVHF2SCHWA operator. It may be caused by the following
two aspects: the GIVHFHA operator does consider the
interactions between elements, and the adopted operations
cannot preserve the order relationship.

Furthermore, if the aggregation operators presented by
Wei and Zhao [40] and Wei et al. [41] are applied in this
example, the ranking results with respect to the comprehen-
sive interval-valued hesitant fuzzy matrix 𝐻 are obtained as
shown in Table 12.

Table 12 indicates that the different ranking results and
optimal choices are obtained too. The main reason is
that they are based on the different point of views. The
ranking order obtained from the HIVFWA operator and
the HIVFCOG operator is the same as that derived from
the G-IVHFSCHWA and G-IVHF2SCHWA operators for𝜆 = 0.2, 0.5. Furthermore, the ranking order obtained
from the HIVFOWA operator, the HIVFOWG operator, the
HIVFCOA operator, the I-HIVFEOWA operator, and the I-
HIVFEOWG operator is the same as that derived from the
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Table 12: Ranking results with respect to different aggregation operators.𝑆(ℎ1) 𝑆(ℎ2) 𝑆(ℎ3) 𝑆(ℎ4) Ranking orders
The HIVFWA operator [0.482, 0.604] [0.495, 0.643] [0.478, 0.588] [0.522, 0.699] 𝑆(ℎ4) > 𝑆(ℎ2) > 𝑆(ℎ1) > 𝑆(ℎ3)
The HIVFWG operator [0.447, 0.567] [0.441, 0.572] [0.444, 0.557] [0.487, 0.672] 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ2) > 𝑆(ℎ3)
The HIVFOWA operator [0.494, 0.643] [0.576, 0.739] [0.455, 0.571] [0.514, 0.691] 𝑆(ℎ2) > 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ3)
The HIVFOWG operator [0.488, 0.633] [0.546, 0.691] [0.445, 0.564] [0.508, 0.689] 𝑆(ℎ2) > 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ3)
The HIVFCOA operator [0.479, 0.620] [0.537, 0.693] [0.449, 0.566] [0.512, 0.689] 𝑆(ℎ2) > 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ3)
The HIVFCOG operator [0.473, 0.608] [0.502, 0.637] [0.439, 0.559] [0.507, 0.688] 𝑆(ℎ4) > 𝑆(ℎ2) > 𝑆(ℎ1) > 𝑆(ℎ3)
The I-HIVFEOWA operator [0.493, 0.642] [0.572, 0.734] [0.453, 0.570] [0.513, 0.690] 𝑆(ℎ2) > 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ3)
The I-HIVFEOWG operator [0.489, 0.635] [0.551, 0.699] [0.446, 0.565] [0.509, 0.689] 𝑆(ℎ2) > 𝑆(ℎ4) > 𝑆(ℎ1) > 𝑆(ℎ3)
G-IVHFSCHWA and G-IVHF2SCHWA operators for 𝜆 =0.1.

If there is no special explanation that the elements in
a set are independent, we recommend that the experts
adopt the aggregation operators based on fuzzy measures.
Furthermore, to eliminate the disadvantages of the existing
operational laws [38], we suggest the experts to use the
operations defined in this paper.

6. Conclusions

With respect to interval-valued hesitant fuzzy multiattribute
group decision making, we first research the issues of the
existing operational laws on IVHFEs. Then, we define some
new operations that can avoid these issues. To consider the
fact that there may be some degree of interactions between
the weights of elements in a set; this paper defines the
generalized interval-valued hesitant fuzzy Shapley-Choquet
weighted averaging (G-IVHFSCWA) operator. Because this
operator only reflects the importance of the ordered posi-
tions, we further introduce the generalized interval-valued
hesitant fuzzy Shapley-Choquet hybrid weighted averaging
(G-IVHFSCHWA) operator, which does not only consider
the importance of elements and the ordered positions but also
reflect their interactions. To reflect the interactions between
elements and reduce the complexity of solving a fuzzy
measure, an aggregation operator using 2-additive measures
is introduced. To cope with the case that the weighting
information is not exactly known, using the defined distance
measure, models for the optimal fuzzy measure and the
optimal 2-additive measure are built. Then, an approach to
interval-valued hesitant fuzzy multiattribute group decision
making is developed. It is noteworthy that the defined
operators and the built models can be directly used in the
setting of hesitant fuzzy sets.
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