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Separated decision-making for maintenance and spare ordering is unrealistic in the industry, so this paper aims to optimize them
together. A joint policy of inspection-based preventive maintenance (PM) and spare ordering considering two modes of spare
ordering, namely, a regular order and an emergency order, is proposed for single-unit systems using a three-stage failure process.
If the system is recognized to be in the minor defective stage, the original inspection interval is shortened and a regular order is
placed. However, replacement is undertaken preventively or correctively if the severe defective stage is identified or a failure occurs.
Depending on the system state and the state of the regular ordered spare when replacement is needed, all possible scenarios are
considered to construct optimizationmodel I.The decision variables are the optimal inspection interval and the times of shortening
the original inspection interval. Additionally, model II on the basis of an assumption that the spare is always ordered at time 0 is
also developed. The results from a numerical example illustrated the applicability and the effectiveness of model 𝐼 compared to
model II, and the irregular inspection policy is validated to be cost-saving compared to the regular inspection policy.

1. Introduction

Condition-based maintenance (CBM) has been the most
common used preventive maintenance policy in the practical
industry [1]. With such a policy, a system can be inspected
online or offline to check the deterioration state and, accord-
ingly, some repair actions can be arranged and performed
in advance to reduce the loss caused by a functional failure.
Depending on whether the system state can be monitored
continuously, different studies are proposed and modeled to
optimize CBM policy. When the deterioration process could
be determined in real time, most papers focus on the opti-
mization of threshold levels, which are relevant to preventive
replacement and corrective replacement [2–4]. However, not
all plants can be checked online; therefore, inspection as
a main PM program has been extensively studied and can

be observed in the industry [5–7]. Based on inspection-
based PM policy, a system is checked regularly or irregularly
such that the deterioration process is usually described as
a discrete state space. In our study, we consider such an
inspection-based PM policy. The objective of inspection-
based PM policy is often to seek for the inspection interval
byminimizing the expected cost per unit time ormaximizing
the availability of the system. Note that an assumption that a
spare used for preventive or corrective replacement is always
available is shared by most previous works [8–10]. This limits
the application of these studies, since the delivery time cannot
be ignored in real case. Consequently, an inspection-based
PM policy will be combined with spare ordering policy
by considering the delivery time in this work, rather than
optimizing them separately.
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Figure 1: A three-stage failure process.

Some works have investigated and presented the joint
optimization model of preventive maintenance policy and
spare ordering policy for single-unit systems.Most of the past
studies modeled the age-based replacement policy and spare
provisioning policy jointly; we can refer toOsaki and Yamada
[11], Sheu and Griffith [12], Jhang [13], Sheu and Chien [14],
and Sheu et al. [15], Sheu et al. [16]. In the proposed models
of these works, only one spare is ordered at time 0, that is, the
initial time of the system operation, and is delivered after a
fixed or random lead time.Then, the system is replaced by an
ordered spare at failure or at preset age 𝑇 whichever occurs
first and the optimization models regard 𝑇 as a decision
variable. Armstrong and Atkins [17, 18] extended the work
of Osaki and Yamada [11] to optimize the age replacement
interval 𝑇 and the ordering time simultaneously, and the
study reported by Park and Sun [19] considered these two
decision variables as well based on the work of Sheu et al.
[15]. To the best of our knowledge, the study of Wang et
al. [20] proposed firstly a joint policy of inspection-based
PM and spare ordering; moreover, the optimization model
is established and used for the determination of the optimal
thresholds related to spare ordering, preventive replacement,
and failure. However, it is assumed that inspections take place
with a regular interval and only one kind of ordering mode
is taken into account. Thus, our study will model a joint
policy of inspection-based PM and spare ordering, in which
inspection is carried out with an irregular interval and two
modes of spare ordering subject to a regular order and an
emergency order are introduced.

This paper is inspired by a plant observed from a steel
industry; that is, the refractory lining of blast furnace dete-
riorates due to high temperature in iron and steel smelt-
ing processes such that an inspection-based PM policy is
effectively utilized by engineers to prevent the occurrence
of a sudden failure. Commonly, on-site personnel measure
the thickness of the refractory lining with a relative longer
inspection interval to judge the deterioration condition, but
as the production continues the refractory lining is usually
measured more frequently and preventive replacement is
required. Since the refractory lining is much more expensive
to purchase, managers order generally a new one at the most
and it is placedwhen the thickness of refractory lining reaches
a threshold. Motivated by this case, we treat the lifetime of a
single-unit system as a three-stage failure process, which is
first introduced by Wang [21] and has been widely applied
to model and optimize an inspection-based policy [22, 23].
In terms of this modeling technique, the degradation process
is divided into the normal stage, the minor defective stage,
and the severe defective stage; thus, a state space involving
four states {normal, minor defect, severe defect, and failed}
is caused. Figure 1 gives the concept of the three-stage failure

process, in which “e” denotes a system failure. Obviously, if
the system is in the normal state at the time of inspection,
then inspection could be performed without any change.
However, once the system is found in the minor defective
stage at some inspection 𝑡𝑖, managers are concerned with the
fact that the forthcoming failuremay result in large economic
losses and may sometimes even bring casualties. Therefore, a
regular order is commonly placed at the time of identifying
the minor defective stage 𝑡𝑖 and the subsequent inspections
are carried out with a shortened interval to have more
opportunities check the degradation state. It is noted that
if inspections miss the identification of the minor defective
stage, then no regular order is placed. It leads to another
spare ordering mode, namely, an emergency order, but with
higher cost and shorter lead time.Thedecision of a preventive
replacement is usually made when the system is found to be
in the severe defective stage by an inspection 𝑡𝑗. Compared
with the previous literature, such a policy is expected to be
able to reduce the inventory-related cost due to hold a spare.
So, we present also another joint policy of inspection-based
PM and spare ordering based on the three-stage degradation
process, in which a spare is ordered at time 0.

The contributions of this paper can be summarized as
follows: (1) a joint policy of inspection-based PM and spare
ordering is proposed for single-unit systems and the corre-
sponding model is constructed to optimize the inspection
policy and the spare ordering policy together; (2) the three-
stage failure process is introduced to describe the lifetime
of the system, based on which different decisions are made
depending on the system state at the time of inspection;
(3) there are two modes of spare ordering in the proposed
model, that is, a regular order and an emergency order; (4)
the proposed policy is compared with a traditional policy in
which the spare is ordered once the system begins to operate.

The remaining part of this study is organized as follows.
Section 2 gives a description of the system deterioration and
the joint inspection-based PM and spare ordering policy,
whilewe formulate the optimizationmodel in Section 3.Next,
the optimization model based on the traditional policy is
presented in Section 4 for comparison with that of Section 3.
In Section 5, we present a numerical example and make
comparison to evaluate the proposed joint policy of Section 2,
and a sensitivity analysis is given. Section 6 concludes the
paper.

2. Problem Description
2.1. The System Deterioration. Some assumptions are firstly
presented and will be used in the following modeling:

(1) A single-unit system subject to a single failure mode
is considered, and the lifetime process from new to
a functional failure is divided into three indepen-
dent stages based on the three-stage failure process,
namely, normal, minor, and severe defective stages.
As such, the state space {normal, minor defect, severe
defect, and failed} can be fixed, rather than only
working and failed states in most previous studies.

(2) An inspection scheme with the initial interval 𝑡 (𝑡 is
a constant) is carried out to check which stage the



Complexity 3

system is in and any state can be recognized perfectly
by inspections, implying perfect inspection.

(3) Do nothing and leave the system as it is when some
inspection identifies the system in the normal state.

(4) If the system is found to be in the minor defective
stage, shortening the inspection interval 𝑡 to be 𝑡/𝑘 (𝑘
is an integer and larger than 1) is allowed to check the
systemmore frequently, preventing the occurrence of
a failure accordingly.

(5) If the system is found to be in the severe defective
stage, replacement needs to be done immediately
by a new and identical one, which is defined as an
inspection replacement.

(6) Failure can be observed immediately once it arises
and replacement is required to be carried out at
the time of failure, which is regarded as a failure
replacement.

(7) When the system is replaced, regardless of the state of
the system, it is brought to a new state at which both
the degradation process and the inspection process
restart.

As discussed in Introduction and in the literature [21–
23], assumption (1) can be explained since it is closer to the
reality and is often observed in the industry. Assumption
(2) can be relaxed by taking consideration of imperfect
inspection to identify the system state exactly with a limited
probability, or a sequential inspection program, rather than
a fixed inspection interval. Assumptions (3)–(7) have been
proposed and used in our previous studies [22, 24]; however,
the inspection interval 𝑡 is assumed to be halved in the work
ofWang et al. [22], so we extend this assumption by changing
the original inspection interval 𝑡 into the 1/𝑘 times of 𝑡 after
the identification of the minor defective state.

2.2. The Joint Inspection-Based PM and Spare Ordering Policy.
It can be seen from assumptions (5) and (6) that a spare
should be prepared in advance to perform replacement
activity. However, whether the spare has been ordered or
available when it is needed is a critical decision-making
problem for managers. Our study assumed that the spare
is placed when the system is found to be in the minor
defective stage and it will be delivered after a determined lead
time 𝑙𝑟, which is termed as the regular order. Nevertheless,
the minor defective stage may be missed by inspections
before a replacement is required due to identifying the severe
defective stage or the appearance of a failure, which leads to
no regular order being placed. In general, an emergency order
is placed with a higher cost than the regular order and the
spare arrives after a random lead time 𝑙𝑒 to do replacement.
Since the spare from an emergency order is characterized by a
shorter lead time, we give the lead time relationship between
the regular order and the emergency order as 𝑙𝑟 > 𝐸(𝑙𝑒), in
which 𝐸(𝑢) returns to the expectation of a variable 𝑢. Besides
that, if the spare resulting from the regular order has been
ordered, but not on delivery, waiting for the regular ordered
spare is only option, meanwhile keeping the system work or

retaining the failed state without detection.There is no doubt
that replacement can be conducted immediately to renew
the system when the spare from the regular order has been
delivered. Consequently, it can be concluded that different
decisions are made in terms of the system state and the
condition of the regular ordered spare, which are summarized
in Table 1.

Based on all possible cases in Table 1, an optimization
model by minimizing the long-run expected cost per unit
time is developed and we intend to seek for the optimal
solutions, that is, 𝑡, 𝑘. However, what we are interested in
is whether the joint policy in Table 1 is preferable to the
commonly used policy used in the literature, that is, placing
the order when the system begins to operate. Consequently,
we will make a comparison by simulations and these two
policies are regarded as policy I and policy II to distinguish
them, and the corresponding models I and II are presented
in Sections 3 and 4, respectively.

2.3. Notations

𝑋𝑛 (𝑛 = 1, 2, 3): Durations of three stages in the
deterioration process
𝑓𝑋1(𝑥), 𝑓𝑋2(𝑦), 𝑓𝑋3(𝑧): Probability density function
(PDF) of𝑋𝑛𝑐𝑖: Cost per inspection𝑐𝑓: Economic loss caused by a failure

𝑐𝑤𝑝 : Penalty cost per unit time due to stockout, but the
system is still working.

𝑐𝑓𝑝 : Penalty cost per unit time due to stockout and the
system is in the failed state, 𝑐𝑓𝑝 > 𝑐𝑤𝑝𝑐ℎ: Holding cost per unit time
𝑐𝑟𝑅: Replacement cost by a regular ordered spare
𝑐𝑒𝑅: Replacement cost by an emergency ordered spare
𝑙𝑟, 𝑙𝑒: The lead times from the regular order and the
emergency order
𝑇𝑅: Replacement time for the deterioration system.

3. Model I of the Joint Inspection-Based PM
and Spare Ordering Policy

Note that, from the problem description, two types of orders
subject to the regular order and the emergency order are
introduced in policy 𝐼, in which the regular order is placed
if and only if the system is found to be in the minor defective
stage and the emergency order is placed if there is no regular
order. The following presents the probability expression of
each case firstly, and then the objective function is given.

3.1. The Probability Calculation

(1) Case 1: Figure 2 shows that the system fails at 𝑇𝑓,𝑇𝑓 ∈ (𝑡𝑖−1, 𝑡𝑖), and before 𝑇𝑓 no inspection reveals
theminor and severe defective stages, which indicates
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Table 1: Renewal scenarios of the joint inspection-based PM and spare ordering policy.

Number The system state The spare state Decision

Case 1

The system deteriorates to a
failure at 𝑇𝑓 before any

defective stage is identified
by either inspection.

The spare is not ordered.

Place an emergency order
and replace the failed
system until the spare

arrives.

Case 2
A failure occurs at 𝑇𝑓 after
the minor defective stage is

detected.

The spare from the regular
order is not on delivery at

the time of failure.

Delay the replacement until
the arrival time of the
regular ordered spare.

Case 3
The system fails after the
minor defective stage is

detected.

The spare from the regular
order is available.

An immediate failure
replacement

Case 4

The severe defective stage is
identified by an inspection,
but no minor defective
stage is found previously.

The spare is not ordered.

Place an emergency order,
keep the system work, and
perform replacement at the

arrival time of the
emergency ordered spare.

Case 5

The severe defective stage is
identified by an inspection
after the minor defective

stage is found.

The spare is ordered but
unavailable.

Keep the system work and
delay the replacement until

the arrival time of the
regular ordered spare.

Case 6

The severe defective stage is
identified by an inspection
after the minor defective

stage is found.

The spare is available. An immediate inspection
replacement

· · ·
le

tiTf0 ti−1 Tf + le

Figure 2: A delayed failure replacement with an emergency ordered
spare.

that no regular order is heretofore placed. Thus, an
emergency order is immediately placed at 𝑇𝑓 and
the system has to be replaced until the spare arrives,
which leads to a delayed failure replacement at𝑇𝑓+𝑙𝑒.

The occurrence probability of such an event can be
formulated as

𝑃𝐼1 (𝑡𝑖−1 < 𝑇𝑓 < 𝑡𝑖) = 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖−1 < 𝑋1 + 𝑋2
< 𝑡𝑖, 𝑡𝑖−1 < 𝑋1 + 𝑋2 + 𝑋3 < 𝑡𝑖) = 𝑃 (𝑡𝑖−1 < 𝑥 < 𝑡𝑖, 0
< 𝑦 < 𝑡𝑖 − 𝑥, 0 < 𝑧 < 𝑡𝑖 − 𝑥 − 𝑦)
= ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖−𝑥
0

∫𝑡𝑖−𝑥−𝑦
0

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥,
(1)

where 𝑖 = 1, . . . ,∞ and 𝑓(𝑥, 𝑦, 𝑧) = 𝑓𝑋1(𝑥) ⋅ 𝑓𝑋2(𝑦) ⋅ 𝑓𝑋3(𝑧)
since these three stages are assumed to be independent.

(2) Case 2: a minor defect is first found at an inspection𝑡𝑖, thereby giving rise to an immediately regular order
and the implementation of a shortened inspection
interval scheme. As the system deteriorates seriously,
a failure occurs eventually at 𝑇𝑓 and since the regular
ordered spare has not been delivered, 𝑇𝑓 must not be

· · · · · ·

lr

ti−1 ti,j Trati,j−1ti0

Figure 3: A delayed failure replacement with a regular ordered
spare.

longer than the arrival time of the spare 𝑇𝑟𝑎 (𝑇𝑟𝑎 =𝑡𝑖 + 𝑙𝑟); namely, 𝑡𝑖 < 𝑇𝑓 < 𝑇𝑟𝑎. As shown in Figure 3, a
failure replacement has to be delayed due to shortage
and will be performed at 𝑇𝑟𝑎 when the spare caused
by the regular order is delivered.

Clearly, we can observe from Figure 3 that if there exits
inspection between 𝑡𝑖 and𝑇𝑟𝑎, that is, 𝑙𝑟 ≥ 𝑡/𝑘, then the failure
may fall into either some inspection interval (𝑡𝑖,𝑗−1, 𝑡𝑖,𝑗) (𝑖 =1, . . . ,∞; 𝑗 = 1, . . . , 𝐽; 𝑡𝑖,𝑗−1 = 𝑡𝑖 +(𝑗−1)𝑡/𝑘, 𝑡𝑖,𝑗 = 𝑡𝑖 +𝑗𝑡/𝑘),
in which 𝐽 = int(𝑘𝑙𝑟/𝑡) and int(𝑢) returns to the integer part
of a variable 𝑢. In particular, the system is also more likely
to shut down in the interval (𝑡𝑖,𝐽, 𝑇𝑟𝑎) depending on whether
there is an inspection activity at the arrival time 𝑇𝑟𝑎 or not.
Under this situation, we obtain the renewal probability as
follows:

𝑃𝐼2 (𝑡𝑖 < 𝑇𝑓 < 𝑇𝑟𝑎) = 𝑃 (𝑡𝑖,𝑗−1 < 𝑇𝑓 < 𝑡𝑖,𝑗) ⋅ 𝐼 (𝑙𝑟)
∪ 𝑃 (𝑡𝑖,𝐽 < 𝑇𝑓 < 𝑇𝑟𝑎 | 𝐽𝑡𝑘 ̸= 𝑙𝑟) ⋅ 𝛿 (𝐽) = 𝑃 (𝑡𝑖−1 < 𝑋1
< 𝑡𝑖, 𝑡𝑖,𝑗−1 < 𝑋1 + 𝑋2 < 𝑡𝑖,𝑗, 𝑡𝑖,𝑗−1 < 𝑋1 + 𝑋2 + 𝑋3
< 𝑡𝑖,𝑗) ⋅ 𝐼 (𝑙𝑟) ∪ 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖,𝐽 < 𝑋1 + 𝑋2
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· · · · · · · · ·
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Figure 4: An immediate failure replacement with a regular ordered
spare.

< 𝑇𝑟𝑎, 𝑡𝑖,𝐽 < 𝑋1 + 𝑋2 + 𝑋3 < 𝑇𝑟𝑎 | 𝐽𝑡𝑘 ̸= 𝑙𝑟) ⋅ 𝛿 (𝐽)
= ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖,𝑗−𝑥
𝑡𝑖,𝑗−1−𝑥

∫𝑡𝑖,𝑗−𝑥
0

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥 ⋅ 𝐼 (𝑙𝑟)
+ ∫𝑡𝑖
𝑡𝑖−1

∫𝑇𝑟𝑎−𝑥
𝑡𝑖,𝐽−𝑥

∫𝑇𝑟𝑎−𝑥
0

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥 ⋅ 𝛿 (𝐽)
= 𝑃𝐼21 (𝑡𝑖,𝑗−1 < 𝑇𝑓 < 𝑡𝑖,𝑗) + 𝑃𝐼22 (𝑡𝑖,𝐽 < 𝑇𝑓 < 𝑇𝑟𝑎) ,

(2)

where we define

𝐼 (𝑙𝑟) = {{{
1 𝑙𝑟 ≥ 𝑡𝑘0 otherwise,

𝛿 (𝐽) = {{{{{
1 𝐽𝑡𝑘 ̸= 𝑙𝑟
0 𝐽𝑡𝑘 = 𝑙𝑟,

(3)

in which the condition 𝐽𝑡/𝑘 ̸= 𝑙𝑟 shows that no inspection
takes place at 𝑇𝑟𝑎. It can be seen from (2) that if there is no
inspection within the interval (𝑡𝑖, 𝑇𝑟𝑎), only the second term
in (2) is computed to obtain the probability that a failure
occurs in (𝑡𝑖,𝐽, 𝑇𝑟𝑎).

(3) Case 3: when the system fails at 𝑇𝑓, the spare from
the regular order has been delivered and is waiting for
replacement in stock, as shown in Figure 4. It can be
concluded that the arrival time of the regular ordered
spare must be earlier than the failure time; namely,𝑇𝑟𝑎 < 𝑇𝑓. Consequently, the decision of an immediate
replacement is made at the time of failure to restore
the failed system to an as-good-as-new state. Similar
to the derivation of (2), the failure may occur within
some inspection interval,

(𝑡𝑖,𝑗−1, 𝑡𝑖,𝑗)
(𝑖 = 1, . . . ,∞, 𝑗 = 𝐽low, . . . ,∞, 𝐽low = {{{

𝐽 + 1 𝛿 (𝐽) = 0
𝐽 + 2 𝛿 (𝐽) = 1) , (4)

within (𝑇𝑟𝑎,∞) or the interval (𝑇𝑟𝑎, 𝑡𝑖,𝐽+1) when the
inequality 𝐽𝑡/𝑘 ̸= 𝑙𝑟 is satisfied.

· · · le

ti−1 ti + leti0

Subcase 4.1
Subcase 4.2

Figure 5: A delayed inspection replacement with an emergency
ordered spare.

By summing over the above two possibilities shown in
Figure 4, the probability of such an event can be constructed
as

𝑃𝐼3 (𝑇𝑓 > 𝑇𝑟𝑎) = 𝑃 (𝑡𝑖,𝑗−1 < 𝑇𝑓 < 𝑡𝑖,𝑗) ∪ 𝑃(𝑇𝑟𝑎 < 𝑇𝑓
< 𝑡𝑖,𝐽+1 | 𝐽𝑡𝑘 ̸= 𝑙𝑟) ⋅ 𝛿 (𝐽) = 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖,𝑗−1
< 𝑋1 + 𝑋2 < 𝑡𝑖,𝑗, 𝑡𝑖,𝑗−1 < 𝑋1 + 𝑋2 + 𝑋3 < 𝑡𝑖,𝑗)
+ [𝑃(𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖,𝐽 < 𝑋1 + 𝑋2 < 𝑇𝑟𝑎, 𝑇𝑟𝑎
< 𝑋1 + 𝑋2 + 𝑋3 < 𝑡𝑖,𝐽+1 | 𝐽𝑡𝑘 ̸= 𝑙𝑟) + 𝑃(𝑡𝑖−1 < 𝑋1
< 𝑡𝑖, 𝑇𝑟𝑎 < 𝑋1 + 𝑋2 < 𝑡𝑖,𝐽+1, 𝑇𝑟𝑎 < 𝑋1 + 𝑋2 + 𝑋3
< 𝑡𝑖,𝐽+1 | 𝐽𝑡𝑘 ̸= 𝑙𝑟)] ⋅ 𝛿 (𝐽)
= ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖,𝑗−𝑥
𝑡𝑖,𝑗−1−𝑥

∫𝑡𝑖,𝑗−𝑥
0

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥
+ [∫𝑡𝑖
𝑡𝑖−1

∫𝑇𝑟𝑎−𝑥
𝑡𝑖,𝐽−𝑥

∫𝑡𝑖,𝐽+1−𝑥−𝑦
𝑇𝑟𝑎−𝑥−𝑦

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥
+ ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖,𝐽+1−𝑥
𝑇𝑟𝑎−𝑥

∫𝑡𝑖,𝐽+1−𝑥−𝑦
0

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥]
⋅ 𝛿 (𝐽) = 𝑃𝐼31 (𝑡𝑖,𝑗−1 < 𝑇𝑓 < 𝑡𝑖,𝑗) + 𝑃𝐼32 (𝑇𝑟𝑎 < 𝑇𝑓
< 𝑡𝑖,𝐽+1) .

(5)

(4) Case 4: the severe defective stage is recognized by
an inspection 𝑡𝑖 (𝑖 = 1, . . . ,∞), before which no
inspection identifies the minor defective stage; there-
fore, it is never possible to remove the defective
system with the spare from the regular order. With
regard to the description in Section 2.2, an emergency
order is placed immediately at the time of identifying
the severe defective state and from the moment 𝑡𝑖
the system continues to operate as it is without
inspection intervention. Once the spare from the
emergency ordering is delivered, a delayed inspection
replacement is performed immediately at 𝑡𝑖 + 𝑙𝑒, as
shown in Figure 5. Interestingly, two subcases 4.1 and
4.2 would arise depending on the possible states of the
system at the arrival time of the emergency ordered
spare, which corresponds to the severe defective state
and the failed state.
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· · ·· · ·
lr

ti−1 ti ti,j−1 Trati,j0

Subcase 5.1

Subcase 5.2

Figure 6: A delayed inspection replacement with a regular ordered
spare.

The probabilities of two subcases in Figure 4 can be
formulated as

𝑃𝐼41 (𝑇𝑅 = 𝑡𝑖 + 𝑙𝑒) = 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖−1 < 𝑋1 + 𝑋2
< 𝑡𝑖, 𝑋1 + 𝑋2 + 𝑋3 > 𝑡𝑖 + 𝑙𝑒, 𝑙𝑒 > 0)
= ∫∞
0

∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖−𝑥
0

∫∞
𝑡𝑖+𝑙𝑒−𝑥−𝑦

𝑓 (𝑥, 𝑦, 𝑧) ⋅ 𝑔 (𝑙𝑒) 𝑑𝑧 𝑑𝑦 𝑑𝑥 𝑑𝑙𝑒,
(6)

𝑃𝐼42 (𝑡𝑖 < 𝑇𝑓 < 𝑡𝑖 + 𝑙𝑒) = 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖−1 < 𝑋1 + 𝑋2
< 𝑡𝑖, 𝑡𝑖 < 𝑋1 + 𝑋2 + 𝑋3 < 𝑡𝑖 + 𝑙𝑒, 𝑙𝑒 > 0)
= ∫∞
0

∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖−𝑥
0

∫𝑡𝑖+𝑙𝑒−𝑥−𝑦
𝑡𝑖−𝑥−𝑦

𝑓 (𝑥, 𝑦, 𝑧) ⋅ 𝑔 (𝑙𝑒) 𝑑𝑧 𝑑𝑦 𝑑𝑥 𝑑𝑙𝑒.
(7)

(5) Case 5: the minor defective stage is detected by an
inspection 𝑡𝑖 and then the system is found to be
in the severe defective stage by an inspection 𝑡𝑖,𝑗;
an inspection replacement is therefore required in
terms of assumption (5). However, the spare from
the regular order placed at 𝑡𝑖 has not been delivered
at time of 𝑡𝑖,𝑗, resulting in a delayed inspection
replacement as soon as the spare is delivered. So we
have the condition 𝑡𝑖,𝑗 < 𝑇𝑟𝑎 to be met, which means
that at least one inspection exists within the interval(𝑡𝑖, 𝑇𝑟𝑎) and from which it is concluded that 𝑙𝑟 > 𝑡/𝑘
and the upper limit of index 𝑗 is

𝐽upp = {{{
𝐽 − 1 𝛿 (𝐽) = 0
𝐽 𝛿 (𝐽) = 1. (8)

Similar to two subcases of Figure 5, there are also
two different subcases depicted in Figure 6. The
first subcase is that the system is still in the severe
defective stage at the arrival time of the regular
ordered spare and the other is that a failuremay occur
randomly during the waiting interval (𝑡𝑖,𝑗, 𝑇𝑟𝑎). Both
replacements of these two subcases will take place at𝑇𝑟𝑎 whatever comes first but with different penalty
costs.

Then, it is not difficult to derive the delayed renewal
probabilities of two subcases 5.1 and 5.2, which are shown
in (9) and (10), respectively. Evidently, the severe defective
stage is longer than the arrival time of the spare from the
regular order in (9); that is,𝑋1 +𝑋2 +𝑋3 > 𝑇𝑟𝑎; alternatively,

the system deteriorates to a failure in (𝑡𝑖,𝑗, 𝑇𝑟𝑎); namely, 𝑡𝑖,𝑗 <𝑋1 + 𝑋2 + 𝑋3 < 𝑇𝑟𝑎.
𝑃𝐼51 (𝑇𝑅 = 𝑇𝑟𝑎) = 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖,𝑗−1 < 𝑋1 + 𝑋2

< 𝑡𝑖,𝑗, 𝑋1 + 𝑋2 + 𝑋3 > 𝑇𝑟𝑎) ⋅ 𝐼󸀠 (𝑙𝑟)
= ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖,𝑗−𝑥
𝑡𝑖,𝑗−1−𝑥

∫∞
𝑇𝑟𝑎−𝑥−𝑦

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥 ⋅ 𝐼󸀠 (𝑙𝑟) ,
(9)

𝑃𝐼52 (𝑡𝑖,𝑗 < 𝑇𝑓 < 𝑇𝑟𝑎) = 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖,𝑗−1 < 𝑋1
+ 𝑋2 < 𝑡𝑖,𝑗, 𝑡𝑖,𝑗 < 𝑋1 + 𝑋2 + 𝑋3 < 𝑇𝑟𝑎) ⋅ 𝐼󸀠 (𝑙𝑟)
= ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖,𝑗−𝑥
𝑡𝑖,𝑗−1−𝑥

∫𝑇𝑟𝑎−𝑥−𝑦
𝑡𝑖,𝑗−𝑥−𝑦

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥 ⋅ 𝐼󸀠 (𝑙𝑟) ,
(10)

where 𝑖 = 1, . . . ,∞; 𝑗 = 1, . . . , 𝐽upp; and we define

𝐼󸀠 (𝑙𝑟) = {{{
1 𝑙𝑟 > 𝑡𝑘0 otherwise. (11)

(6) Case 6: the spare from the regular order is in stock
when the system is detected to be in the severe
defective stage by an inspection 𝑡𝑖,𝑗; consequently, the
system can be replaced immediately by the available
spare, termed as an immediate inspection renewal.
This scenario indicates that the time of identifying the
severe defective state crosses the arrival time of the
regular ordered spare, 𝑡𝑖,𝑗 ≥ 𝑇𝑟𝑎, on basis of which we
have the range of 𝑗 as
𝑗 = 𝐽󸀠low, . . . ,∞, 𝐽󸀠low = {{{

𝐽 𝛿 (𝐽) = 0
𝐽 + 1 𝛿 (𝐽) = 1. (12)

In terms of assumption (5), note that the system has
already been found to be in the minor defective stage
at an inspection 𝑡𝑖 such that the regular ordered spare
is placed and delivered for 𝑙𝑟 units of time for the
requirement of replacing falling system, as shown in
Figure 7.

Consequently, the severe defective system is replaced and
renewed at 𝑡𝑖,𝑗 with the probability given in the following
equation:

𝑃𝐼6 (𝑇𝑅 = 𝑡𝑖,𝑗) = 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖,𝑗−1 < 𝑋1 + 𝑋2
< 𝑡𝑖,𝑗, 𝑋1 + 𝑋2 + 𝑋3 > 𝑡𝑖,𝑗)
= ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖,𝑗−𝑥
𝑡𝑖,𝑗−1−𝑥

∫∞
𝑡𝑖,𝑗−𝑥−𝑦

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥.
(13)

3.2. The Model Construction. By the above analyses of the six
mutually exclusive and exhaustive cases, as shown in (1), (2),
(5), (6), (7), (9), (10), and (13), the expected costs caused by
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Table 2: Expected costs caused by the penalty time and the holding time.

Cost of the penalty time Cost of the holding time
Case 1 𝑐𝑓𝑝 ⋅ ∫∞0 𝑙𝑒𝑔 (𝑙𝑒) 𝑑𝑙𝑒 ⋅ 𝑃𝐼1 (𝑡𝑖−1 < 𝑇𝑓 < 𝑡𝑖) 0
Case 2 𝑐𝑓𝑝 ⋅ (𝑇𝑟𝑎 − 𝑇𝑓) ⋅ 𝑃𝐼2 (𝑡𝑖 < 𝑇𝑓 < 𝑇𝑟𝑎) 0
Case 3 0 𝑐ℎ ⋅ (𝑇𝑓 − 𝑇𝑟𝑎) ⋅ 𝑃𝐼3 (𝑇𝑓 > 𝑇𝑟𝑎)
Subcase 4.1 𝑐𝑤𝑝 ⋅ 𝑙𝑒 ⋅ 𝑃𝐼41 (𝑇𝑅 = 𝑡𝑖 + 𝑙𝑒) 0
Subcase 4.2 [𝑐𝑤𝑝 ⋅ (𝑇𝑓 − 𝑡𝑖) + 𝑐𝑓𝑝 ⋅ (𝑡𝑖 + 𝑙𝑒 − 𝑇𝑓)] ⋅ 𝑃𝐼42 (𝑡𝑖 < 𝑇𝑓 < 𝑡𝑖 + 𝑙𝑒) 0
Subcase 5.1 𝑐𝑤𝑝 ⋅ (𝑇𝑟𝑎 − 𝑡𝑖,𝑗) ⋅ 𝑃𝐼51 (𝑇𝑅 = 𝑇𝑟𝑎) 0
Subcase 5.2 [𝑐𝑤𝑝 ⋅ (𝑇𝑓 − 𝑡𝑖,𝑗) + 𝑐𝑓𝑝 ⋅ (𝑇𝑟𝑎 − 𝑇𝑓)] ⋅ 𝑃𝐼52 (𝑡𝑖,𝑗 < 𝑇𝑓 < 𝑇𝑟𝑎) 0
Case 6 0 𝑐ℎ ⋅ (𝑡𝑖,𝑗 − 𝑇𝑟𝑎) ⋅ 𝑃𝐼6 (𝑇𝑅 = 𝑡𝑖,𝑗)

Table 3: Renewal time.

Number RT Descriptions
Case 1 𝑇𝑓 + 𝑙𝑒 Arrival time of the emergency ordered spare
Case 2 𝑇𝑟𝑎 (𝑇𝑟𝑎 = 𝑡𝑖 + 𝑙𝑟) Arrival time of the regular ordered spare
Case 3 𝑇𝑓 The failure time due to the availability of the regular ordered spare
Case 4 𝑡𝑖 + 𝑙𝑒 Arrival time of the emergency ordered spare
Case 5 𝑇𝑟𝑎 (𝑇𝑟𝑎 = 𝑡𝑖 + 𝑙𝑟) Arrival time of the regular ordered spare
Case 6 𝑡𝑖,𝑗 The time identifying the severe defective stage due to the available spare from the regular order

· · · · · ·
lr

ti−1 ti ti,j−1 Tra ti,j0

Figure 7: An immediate inspection replacement with a regular
ordered spare.

the penalty time and the holding time associated in different
cases are concluded in Table 2.The lead time of an emergency
order 𝑙𝑒 is a random variable, and obviously 𝑙𝑒 must be a
positive number, 𝑙𝑒 > 0, as we have assumed.

The cost over a renewal cycle is the sum of the inspection
cost, the replacement cost, the failure cost, and the costs
caused by the penalty time and the holding time. We have
therefore the expected renewal cycle cost, 𝐸𝐼𝐶(𝑡, 𝑘), as follows:
𝐸𝐼𝐶 (𝑡, 𝑘) = ∞∑

𝑖=1

{{{[(𝑖 − 1) 𝑐𝑖 + 𝑐𝑓 + 𝑐𝑓𝑝 ⋅ ∫∞
0

𝑙𝑒𝑔 (𝑙𝑒) 𝑑𝑙𝑒 + 𝑐𝑒𝑅]
⋅ 𝑃𝐼1 (𝑡𝑖−1 < 𝑇𝑓 < 𝑡𝑖)
+ 𝐽∑
𝑗=0

[(𝑖 + 𝑗 − 1) 𝑐𝑖 + 𝑐𝑓 + 𝑐𝑓𝑝 ⋅ (𝑇𝑟𝑎 − 𝑇𝑓) + 𝑐𝑟𝑅] ⋅ 𝑃𝐼21 (𝑡𝑖,𝑗−1
< 𝑇𝑓 < 𝑡𝑖,𝑗) + [(𝑖 + 𝐽) 𝑐𝑖 + 𝑐𝑓 + 𝑐𝑓𝑝 ⋅ (𝑇𝑟𝑎 − 𝑇𝑓) + 𝑐𝑟𝑅]
⋅ 𝑃𝐼22 (𝑡𝑖,𝐽 < 𝑇𝑓 < 𝑇𝑟𝑎)
+ ∞∑
𝑗=𝐽low

[(𝑖 + 𝑗 − 1) 𝑐𝑖 + 𝑐𝑓 + 𝑐ℎ ⋅ (𝑇𝑓 − 𝑇𝑟𝑎) + 𝑐𝑟𝑅] ⋅ 𝑃𝐼31 (𝑡𝑖,𝑗−1
< 𝑇𝑓 < 𝑡𝑖,𝑗) + [(𝑖 + 𝐽) 𝑐𝑖 + 𝑐𝑓 + 𝑐ℎ ⋅ (𝑇𝑓 − 𝑇𝑟𝑎) + 𝑐𝑟𝑅]

⋅ 𝑃𝐼32 (𝑇𝑟𝑎 < 𝑇𝑓 < 𝑡𝑖,𝐽+1) + [𝑖𝑐𝑖 + 𝑐𝑤𝑝 ⋅ 𝑙𝑒 + 𝑐𝑒𝑅] ⋅ 𝑃𝐼41 (𝑇𝑅 = 𝑡𝑖
+ 𝑙𝑒) + [𝑖𝑐𝑖 + 𝑐𝑓 + 𝑐𝑤𝑝 ⋅ (𝑇𝑓 − 𝑡𝑖) + 𝑐𝑓𝑝 ⋅ (𝑡𝑖 + 𝑙𝑒 − 𝑇𝑓) + 𝑐𝑒𝑅]
⋅ 𝑃𝐼42 (𝑡𝑖 < 𝑇𝑓 < 𝑡𝑖 + 𝑙𝑒)
+ 𝐽upp∑
𝑗=1

[(𝑖 + 𝑗) 𝑐𝑖 + 𝑐𝑤𝑝 ⋅ (𝑇𝑟𝑎 − 𝑡𝑖,𝑗) + 𝑐𝑟𝑅] ⋅ 𝑃𝐼51 (𝑇𝑅 = 𝑇𝑟𝑎)

+ 𝐽upp∑
𝑗=1

[(𝑖 + 𝑗) 𝑐𝑖 + 𝑐𝑓 + 𝑐𝑤𝑝 ⋅ (𝑇𝑓 − 𝑡𝑖,𝑗) + 𝑐𝑓𝑝 ⋅ (𝑇𝑟𝑎 − 𝑇𝑓) + 𝑐𝑟𝑅]
⋅ 𝑃𝐼52 (𝑡𝑖,𝑗 < 𝑇𝑓 < 𝑇𝑟𝑎)
+ ∞∑
𝑗=𝐽󸀠low

[(𝑖 + 𝑗) 𝑐𝑖 + 𝑐ℎ ⋅ (𝑡𝑖,𝑗 − 𝑇𝑟𝑎) + 𝑐𝑟𝑅] ⋅ 𝑃𝐼6 (𝑇𝑅 = 𝑡𝑖,𝑗)}}} .
(14)

Followed by it, Table 3 lists the renewal time (RT) of
replacing the failed or severe defective system whatever it is
an immediate or delayed renewal and detailed descriptions.

The expected renewal cycle length is therefore expressed
as

𝐸𝐼𝐿 (𝑡, 𝑘) = ∞∑
𝑖=1

{{{[𝑇𝑓 + ∫∞
0

𝑙𝑒𝑔 (𝑙𝑒) 𝑑𝑙𝑒]

⋅ 𝑃𝐼1 (𝑡𝑖−1 < 𝑇𝑓 < 𝑡𝑖) + 𝐽∑
𝑗=0

𝑇𝑟𝑎
⋅ 𝑃𝐼21 (𝑡𝑖,𝑗−1 < 𝑇𝑓 < 𝑡𝑖,𝑗) + 𝑇𝑟𝑎 ⋅ 𝑃𝐼22 (𝑡𝑖,𝐽 < 𝑇𝑓 < 𝑇𝑟𝑎)
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Table 4: All possible cases of model 𝐼𝐼.
Number The system state The spare state Decision

Case 1 The system deteriorates to a failure at 𝑇𝑓
before any defective stage is identified by
either inspection.

The spare has not arrived by the failure
time.

The system will remain failed until the
spare arrives.

Case 2 The spare has been delivered by the
failure time.

An immediate failure replacement is
performed.

Case 3 A failure occurs at 𝑇𝑓 before which the
minor defective stage is revealed by an
inspection, but the severe defective stage
is not found by inspections.

The spare has not arrived by the failure
time.

The system will remain failed until the
spare arrives.

Case 4 The spare has been delivered by the
failure time.

An immediate failure replacement is
performed.

Case 5 The severe defective stage is identified by
an inspection, before which the minor
defective stage is not revealed.

The spare has not arrived at the time of
identifying the severe defective stage.

The system continues to operate and will
be replaced when the spare arrives.

Case 6 The spare has been delivered at the time
of identifying the severe defective stage.

An immediate inspection replacement is
performed.

Case 7 The severe defective stage is identified by
an inspection, before which the minor
defective stage has been revealed.

The spare has not arrived at the time of
identifying the severe defective stage.

The system continues to operate and will
be replaced when the spare arrives.

Case 8 The spare has been delivered at the time
of identifying the severe defective stage.

An immediate inspection replacement is
performed.

+ ∞∑
𝑗=𝐽low

𝑇𝑓 ⋅ 𝑃𝐼31 (𝑡𝑖,𝑗−1 < 𝑇𝑓 < 𝑡𝑖,𝑗) + 𝑇𝑓
⋅ 𝑃𝐼32 (𝑇𝑟𝑎 < 𝑇𝑓 < 𝑡𝑖,𝐽+1) + [𝑡𝑖 + 𝑙𝑒]⋅ 𝑃𝐼41 (𝑇𝑅 = 𝑡𝑖 + 𝑙𝑒) + [𝑡𝑖 + 𝑙𝑒]
⋅ 𝑃𝐼42 (𝑡𝑖 < 𝑇𝑓 < 𝑡𝑖 + 𝑙𝑒) +

𝐽upp∑
𝑗=1

𝑇𝑟𝑎 ⋅ 𝑃𝐼51 (𝑇𝑅 = 𝑇𝑟𝑎)
+ 𝐽upp∑
𝑗=1

𝑇𝑟𝑎 ⋅ 𝑃𝐼52 (𝑡𝑖,𝑗 < 𝑇𝑓 < 𝑇𝑟𝑎) + ∞∑
𝑗=𝐽󸀠low

𝑡𝑖,𝑗
⋅ 𝑃𝐼6 (𝑇𝑅 = 𝑡𝑖,𝑗)}}} .

(15)

The component terms for various probabilities in (14)
and (15) can be calculated using (1), (2), (5), (6), (7), (9),
(10), and (13) and the minimization of the long-run expected
cost per unit time is chosen as the objective of the proposed
joint inspection-based PM and spare ordering policy and
the decisions variables are the inspection interval 𝑡 and the
value of 𝑘. Clearly, the system will be restored to be as good
as new after each replacement. According to the renewal
reward theory and on the basis of (14)-(15) [25], the long-run
expected cost per unit time is equal to the ratio between the
expected renewal cycle cost and the expected renewal cycle
length, as shown in the following equation:

𝐶𝐼 (𝑡, 𝑘) = Lim
𝑡→∞

Total expected cost over 𝑡𝑡
= 𝐸𝐼𝐶 (𝑡, 𝑘)𝐸𝐼𝐿 (𝑡, 𝑘) .

(16)

4. Optimization Model II

This section presents and models an integrated inspection-
based PM policy and spare ordering provisioning policy, in

which an assumption that the regular order is placed when
the system begins to operate, that is, the initial time “0”, is
considered for comparison with the presented model 𝐼 in
(16). We can conclude from this assumption that the spare
must have been definitely ordered when needed; thus an
emergency order due to the absence of a regular order for
replenishment is notmentioned in thismodel.The remaining
assumptions presented and used in this model can refer to
assumptions of model 1, as stated in Section 2.1. Similar to
the derivation of (16), we formulate the optimization model
that minimizes the long-run expected cost per unit time to
determine the optimal inspection interval 𝑡 and the value of𝑘. The eight mutually exclusive and exhaustive cases given
below depending on the system state and the regular ordered
spare state, shown in Table 4, will be described to calculate
the corresponding probabilities.

(1) Cases 1 and 2 are described by Figures 8(a) and
8(b), respectively, from which we can observe that
the deterioration process of the system may start to
enter the minor defective stage after an inspection𝑡𝑖−1 and the system breaks down before an inspection𝑡𝑖. Obviously, note that there are different values of𝑖 to calculate the probabilities of cases 1 and 2 that
a failure falls in the interval (𝑡𝑖−1, 𝑡𝑖). However, the
situation that a failure occurs in (𝐿, 𝑙𝑟) should be also
considered to sum up the probability of case 1 if
the condition 𝐿 ̸= 𝑙𝑟 is satisfied, in which 𝐿 = 𝐿𝑡
and 𝐿 = int(𝑙𝑟/𝑡). Similarly, the system may fail in(𝑙𝑟, 𝐿) (𝐿 = (𝐿 + 1)𝑡) such that there is an immediate
failure replacement at the occurrence time of a failure,
which is shown in Figure 8(b).

Then, we obtain the probability of case 1, which is
constructed as

𝑃𝐼𝐼1 (𝑇𝑓 < 𝑙𝑟) = 𝑃 (𝑡𝑖−1 < 𝑇𝑓 < 𝑡𝑖) ∪ 𝑃 (𝐿 < 𝑇𝑓 < 𝑙𝑟 | 𝐿
̸= 𝑙𝑟) ⋅ V (𝑙𝑟) = 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖−1 < 𝑋1 + 𝑋2
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· · · · · ·

lrCase 1: lr > Tf

ti−1 ti L lr0

(a)

· · · · · ·

lrCase 2: lr ≤ Tf

Llr ti−1 tiL0

(b)

Figure 8: A failure replacement before either defective stage is identified.

< 𝑡𝑖, 𝑡𝑖−1 < 𝑋1 + 𝑋2 + 𝑋3 < 𝑡𝑖) + 𝑃 (𝐿 < 𝑋1 < 𝑙𝑟, 𝐿
< 𝑋1 + 𝑋2 < 𝑙𝑟, 𝐿 < 𝑋1 + 𝑋2 + 𝑋3 < 𝑙𝑟) ⋅ V (𝑙𝑟)
= ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖−𝑥
0

∫𝑡𝑖−𝑥−𝑦
0

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥
+ ∫𝑙𝑟
𝐿
∫𝑙𝑟−𝑥
0

∫𝑙𝑟−𝑥−𝑦
0

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥 ⋅ V (𝑙𝑟)
= 𝑃𝐼𝐼11 (𝑡𝑖−1 < 𝑇𝑓 < 𝑡𝑖) + 𝑃𝐼𝐼12 (𝐿 < 𝑇𝑓 < 𝑙𝑟) ,

(17)

in which 𝑖 = 1, . . . , 𝐿 and we define the function

V (𝑙𝑟) = {{{
0 𝐿 = 𝑙𝑟
1 𝐿 ̸= 𝑙𝑟. (18)

In a similar way, the probability of case 2 shown in Figure 8(b)
is calculated as

𝑃𝐼𝐼2 (𝑇𝑓 ≥ 𝑙𝑟) = 𝑃 (𝑙𝑟 < 𝑇𝑓 < 𝐿 | 𝐿 ̸= 𝑙𝑟) ⋅ V (𝑙𝑟)
∪ 𝑃 (𝑡𝑖−1 < 𝑇𝑓 < 𝑡𝑖) = [𝑃 (𝐿 < 𝑋1 < 𝑙𝑟, 𝐿 < 𝑋1
+ 𝑋2 < 𝑙𝑟, 𝑙𝑟 < 𝑋1 + 𝑋2 + 𝑋3 < 𝐿) + 𝑃 (𝐿 < 𝑋1
< 𝑙𝑟, 𝑙𝑟 < 𝑋1 + 𝑋2 < 𝐿, 𝑙𝑟 < 𝑋1 + 𝑋2 + 𝑋3 < 𝐿)
+ 𝑃 (𝑙𝑟 < 𝑋1 < 𝐿, 𝑙𝑟 < 𝑋1 + 𝑋2 < 𝐿, 𝑙𝑟 < 𝑋1 + 𝑋2
+ 𝑋3 < 𝐿)] ⋅ V (𝑙𝑟) + 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖−1 < 𝑋1
+ 𝑋2 < 𝑡𝑖, 𝑡𝑖−1 < 𝑋1 + 𝑋2 + 𝑋3 < 𝑡𝑖)
= [∫𝑙𝑟
𝐿
∫𝑙𝑟−𝑥
0

∫𝐿−𝑥−𝑦
𝑙𝑟−𝑥−𝑦

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥
+ ∫𝑙𝑟
𝐿
∫𝐿−𝑥
𝑙𝑟−𝑥

∫𝐿−𝑥−𝑦
0

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥
+ ∫𝐿
𝑙𝑟

∫𝐿−𝑥
0

∫𝐿−𝑥−𝑦
0

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥] ⋅ V (𝑙𝑟)
+ ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖−𝑥
0

∫𝑡𝑖−𝑥−𝑦
0

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥 = 𝑃𝐼𝐼21 (𝑙𝑟
< 𝑇𝑓 < 𝐿) + 𝑃𝐼𝐼22 (𝑡𝑖−1 < 𝑇𝑓 < 𝑡𝑖) ,

(19)

lr

titi−1 lrti,j−1 ti,j−1LLti,j ti,j0

· · · · · · · · · · · ·

Figure 9: A failure replacement before only minor defective stage is
identified.

in which

𝑖 = 𝐼, . . . ,∞, 𝐼 = {{{
𝐿 + 1 V (𝑙𝑟) = 0
𝐿 + 2 V (𝑙𝑟) = 1, (20)

and the first term corresponds to the probability that the
occurrence of a failure is in (𝑙𝑟, 𝐿) but with different durations
for three stages in the deterioration process.

(2) Figure 9 depicts that the system fails after the minor
defective stage has been identified but before which
the severe defective stage is not revealed. Depending
on whether the ordered spare is delivered at the time
of failure 𝑇𝑓, we can observe from Figure 9 that there
are two types of scenario, that is, 𝑇𝑓 < 𝑙𝑟 and 𝑇𝑓 >𝑙𝑟, which represent cases 3 and 4, respectively. More
importantly, 𝑇𝑓 ∈ (𝐿󸀠, 𝑙𝑟) and (𝑙𝑟, 𝐿󸀠) need to be taken
into consideration when the condition 𝐽max = (𝑙𝑟 −𝑡𝑖)/(𝑡/𝑘) (𝐽max = int((𝑙𝑟 − 𝑡𝑖)/(𝑡/𝑘))) is invalid, in
which 𝐿󸀠 = 𝑡𝑖 + 𝑘𝐽max/𝑡 and 𝐿󸀠 = 𝑡𝑖 + 𝑘(𝐽max + 1)/𝑡.

Therefore, the probability of case 3 can be formulated as

𝑃𝐼𝐼3 (𝑇𝑓 < 𝑙𝑟) = 𝑃 (𝑡𝑖,𝑗−1 < 𝑇𝑓 < 𝑡𝑖,𝑗) ⋅ 𝜂 (𝑙𝑟) ∪ 𝑃(𝐿󸀠
< 𝑇𝑓 < 𝑙𝑟 | 𝐽max ̸= 𝑙𝑟 − 𝑡𝑖𝑡/𝑘 ) ⋅ V󸀠 (𝑙𝑟) = 𝑃 (𝑡𝑖−1 < 𝑋1
< 𝑡𝑖, 𝑡𝑖,𝑗−1 < 𝑋1 + 𝑋2 < 𝑡𝑖,𝑗, 𝑡𝑖,𝑗−1 < 𝑋1 + 𝑋2 + 𝑋3
< 𝑡𝑖,𝑗) ⋅ 𝜂 (𝑙𝑟) + 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝐿󸀠 < 𝑋1 + 𝑋2
< 𝑙𝑟, 𝐿󸀠 < 𝑋1 + 𝑋2 + 𝑋3 < 𝑙𝑟) ⋅ V󸀠 (𝑙𝑟)
= ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖,𝑗−𝑥
𝑡𝑖,𝑗−1−𝑥

∫𝑡𝑖,𝑗−𝑥−𝑦
0

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥 ⋅ 𝜂 (𝑙𝑟)
+ ∫𝑡𝑖
𝑡𝑖−1

∫𝑙𝑟−𝑥
𝐿󸀠−𝑥

∫𝑙𝑟−𝑥−𝑦
0

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥 ⋅ V󸀠 (𝑙𝑟)
= 𝑃𝐼𝐼31 (𝑡𝑖,𝑗−1 < 𝑇𝑓 < 𝑡𝑖,𝑗) + 𝑃𝐼𝐼32 (𝐿󸀠 < 𝑇𝑓 < 𝑙𝑟) ,

(21)
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in which

𝑖 = 1, . . . , 𝐼upp, 𝐼upp = {{{
𝐿 − 1 V (𝑙𝑟) = 0
𝐿 V (𝑙𝑟) = 1,

𝑗 = 1, . . . , 𝐽max (𝐽max ≥ 1) ,
𝜂 (𝑙𝑟) = {{{{{

0 𝑙𝑟 − 𝑡𝑖 < 𝑡𝑘1 𝑙𝑟 − 𝑡𝑖 ≥ 𝑡𝑘 ,

V󸀠 (𝑙𝑟) =
{{{{{{{
0 𝐽max = 𝑙𝑟 − 𝑡𝑖𝑡/𝑘
1 𝐽max ̸= 𝑙𝑟 − 𝑡𝑖𝑡/𝑘 .

(22)

Furthermore, the above case 4 arises with the probability

𝑃𝐼𝐼4 (𝑇𝑓 > 𝑙𝑟) = 𝑃(𝑙𝑟 < 𝑇𝑓 < 𝐿󸀠 | 𝐽max ̸= 𝑙𝑟 − 𝑡𝑖𝑡/𝑘 )
⋅ V󸀠 (𝑙𝑟) ∪ 𝑃 (𝑡𝑖,𝑗−1 < 𝑇𝑓 < 𝑡𝑖,𝑗) = [𝑃 (𝑡𝑖−1 < 𝑋1
< 𝑡𝑖, 𝐿󸀠 < 𝑋1 + 𝑋2 < 𝑙𝑟, 𝑙𝑟 < 𝑋1 + 𝑋2 + 𝑋3 < 𝐿󸀠)
+ 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑙𝑟 < 𝑋1 + 𝑋2 < 𝐿󸀠, 𝑙𝑟 < 𝑋1
+ 𝑋2 + 𝑋3 < 𝐿󸀠)] ⋅ V󸀠 (𝑙𝑟) + 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖,𝑗−1
< 𝑋1 + 𝑋2 < 𝑡𝑖,𝑗, 𝑡𝑖,𝑗−1 < 𝑋1 + 𝑋2 + 𝑋3 < 𝑡𝑖,𝑗)
= [∫𝑡𝑖
𝑡𝑖−1

∫𝑙𝑟−𝑥
𝐿󸀠−𝑥

∫𝐿󸀠−𝑥−𝑦
𝑙𝑟−𝑥−𝑦

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥
+ ∫𝑡𝑖
𝑡𝑖−1

∫𝐿󸀠−𝑥
𝑙𝑟−𝑥

∫𝐿󸀠−𝑥−𝑦
0

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥] ⋅ V󸀠 (𝑙𝑟)
+ ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖,𝑗−𝑥
𝑡𝑖,𝑗−1−𝑥

∫𝑡𝑖,𝑗−𝑥−𝑦
0

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥
= 𝑃𝐼𝐼41 (𝑙𝑟 < 𝑇𝑓 < 𝐿󸀠) + 𝑃𝐼𝐼42 (𝑡𝑖,𝑗−1 < 𝑇𝑓 < 𝑡𝑖,𝑗) ,

(23)

where we impose range restriction on the first term of (23)
as 𝑖 = 1, . . . , 𝐼upp; and with regard to the second term, 𝑖 =1, . . . ,∞,

𝐽Low = {{{
1 𝑙𝑟 ≤ 𝑡𝑖
𝜌 (𝐽max) 𝑙𝑟 > 𝑡𝑖,

𝜌 (𝐽max) = {{{
𝐽max + 1 V󸀠 (𝑙𝑟) = 0
𝐽max + 2 V󸀠 (𝑙𝑟) = 1.

(24)

(3) As illustrated by Figure 10, the severe defective stage is
first identified at 𝑡𝑖 before which no inspection reveals
the minor defective stage. Considering that the spare
is unavailable at 𝑡𝑖, the systemwill continue to operate

Tf lrtiti−10

· · ·

Figure 10: A postponed inspection replacement before which the
minor defective stage is not detected.

and will be replaced by the arrival time of the spare,
that is, 𝑙𝑟. This scenario is exactly as described in case5. Note that the system may be either in the severe
defective stage at 𝑙𝑟 or in the failed state, which occur
with various probabilities, and we denote them by𝑃𝐼𝐼51(𝑇𝑅 = 𝑙𝑟) and 𝑃𝐼𝐼52(𝑇𝑅 = 𝑙𝑟).

Details are given by

𝑃𝐼𝐼51 (𝑇𝑅 = 𝑙𝑟) = 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖−1 < 𝑋1 + 𝑋2
< 𝑡𝑖, 𝑋1 + 𝑋2 + 𝑋3 > 𝑙𝑟)
= ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖−𝑥
0

∫∞
𝑙𝑟−𝑥−𝑦

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥,
𝑃𝐼𝐼52 (𝑇𝑅 = 𝑙𝑟) = 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖−1 < 𝑋1 + 𝑋2

< 𝑡𝑖, 𝑡𝑖 < 𝑋1 + 𝑋2 + 𝑋3 < 𝑙𝑟)
= ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖−𝑥
0

∫𝑙𝑟−𝑥−𝑦
𝑡𝑖−𝑥−𝑦

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥,

(25)

where 𝑖 = 1, . . . , 𝐼upp.
(4) Instead, if the spare is on hand at the time of

identifying the severe defective stage, 𝑡𝑖, an immediate
inspection replacement is performed to renew the
system with the following probability:

𝑃𝐼𝐼6 (𝑇𝑅 = 𝑡𝑖) = 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖−1 < 𝑋1 + 𝑋2
< 𝑡𝑖, 𝑋1 + 𝑋2 + 𝑋3 > 𝑡𝑖)
= ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖−𝑥
0

∫∞
𝑡𝑖−𝑥−𝑦

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥,
(26)

in which

𝑖 = 𝐼low, . . . ,∞, 𝐼low = {{{
𝐿 V (𝑙𝑟) = 0
𝐿 + 1 V (𝑙𝑟) = 1. (27)

Equation (26) indicates the occurrence possibility of case 6.
(5) The severe defective stage is found at an inspection 𝑡𝑖,𝑗,

before which an inspection 𝑡𝑖 has detected the minor
defective stage; however, whether the ordered spare
is available or not needs to be measured to make a
decision, namely, waiting for the spare until it arrives
or replacing the defective system by the available
spare immediately. Figure 11(a)means that the former,
namely, the arrival time of the spare, is longer than the
time of identifying the severe defective stage 𝑙𝑟 > 𝑡𝑖,𝑗.
The latter is plotted in Figure 11(b).
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ti−1 ti ti,j−1 ti,j lr0

· · · · · ·

Subcase 7.2
Subcase 7.1

Case 7

(a)

titi−1 lr
ti,j−1 ti,j0

· · · · · ·

Case 8 

(b)

Figure 11: Schematic diagram of case 7 and case 8.

Apparently, there are also two subcases in Figure 11(a)
depending on whether the system is still in the severe
defective stage when the ordered spare arrives; hence, we
obtain the corresponding occurrence probabilities as follows:

𝑃𝐼𝐼71 (𝑇𝑅 = 𝑙𝑟) = 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖,𝑗−1 < 𝑋1 + 𝑋2
< 𝑡𝑖,𝑗, 𝑋1 + 𝑋2 + 𝑋3 > 𝑙𝑟)
= ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖,𝑗−𝑥
𝑡𝑖,𝑗−1−𝑥

∫∞
𝑙𝑟−𝑥−𝑦

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥,
𝑃𝐼𝐼72 (𝑇𝑅 = 𝑙𝑟) = 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖,𝑗−1 < 𝑋1 + 𝑋2

< 𝑡𝑖,𝑗, 𝑡𝑖,𝑗 < 𝑋1 + 𝑋2 + 𝑋3 < 𝑙𝑟)
= ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖,𝑗−𝑥
𝑡𝑖,𝑗−1−𝑥

∫𝑙𝑟−𝑥−𝑦
𝑡𝑖,𝑗−𝑥−𝑦

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥,

(28)

where

𝑖 = 1, . . . , 𝐼󸀠upp,
𝐼󸀠upp = {{{

𝐿 − 1 V (𝑙𝑟) = 0
𝜑 (𝐿) V (𝑙𝑟) = 1,

𝜑 (𝐿) = {{{{{
𝐿 − 1 𝑙𝑟 − 𝐿 ≤ 𝑡𝑘𝐿 𝑙𝑟 − 𝐿 > 𝑡𝑘 ,

𝑗 = 1, . . . , 𝐽UPP,

(29)

𝐽UPP = {{{
𝐽max − 1 V󸀠 (𝑙𝑟) = 0
𝐽max V󸀠 (𝑙𝑟) = 1. (30)

The occurrence probability of case 8 can be readily
obtained as

𝑃𝐼𝐼8 (𝑇𝑅 = 𝑡𝑖,𝑗) = 𝑃 (𝑡𝑖−1 < 𝑋1 < 𝑡𝑖, 𝑡𝑖,𝑗−1 < 𝑋1 + 𝑋2
< 𝑡𝑖,𝑗, 𝑋1 + 𝑋2 + 𝑋3 > 𝑡𝑖,𝑗)
= ∫𝑡𝑖
𝑡𝑖−1

∫𝑡𝑖,𝑗−𝑥
𝑡𝑖,𝑗−1−𝑥

∫∞
𝑡𝑖,𝑗−𝑥−𝑦

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑧 𝑑𝑦 𝑑𝑥,
(31)

where 𝑖 = 1, . . . ,∞,
𝑗 = 𝐽󸀠Low, . . . ,∞,

𝐽󸀠Low = {1 𝑙𝑟 ≤ 𝑡𝑖𝜌󸀠 (𝐽max) 𝑙𝑟 > 𝑡𝑖,
𝜌󸀠 (𝐽max) = {𝐽max V󸀠 (𝑙𝑟) = 0

𝐽max + 1 V󸀠 (𝑙𝑟) = 1.

(32)

Similar to the derivation of (14) and (15) in model 𝐼
and based on the probabilities of all possible cases, shown
in (17), (19), (21), (23), (25), (26), (28), and (31), we obtain
the expected renewal cycle cost and length of policy 𝐼𝐼,𝐸𝐼𝐼𝐶 (𝑡, 𝑘), 𝐸𝐼𝐼𝐿 (𝑡, 𝑘), as follows:
𝐸𝐼𝐼𝐶 (𝑡, 𝑘) = {{{

𝐿∑
𝑖=1

[(𝑖 − 1) 𝑐𝑖 + 𝑐𝑓 + 𝑐𝑓𝑝 ⋅ (𝑙𝑟 − 𝑇𝑓) + 𝑐𝑟𝑅]
⋅ 𝑃𝐼𝐼11 (𝑡𝑖−1 < 𝑇𝑓 < 𝑡𝑖) + [𝐿𝑐𝑖 + 𝑐𝑓 + 𝑐𝑓𝑝 ⋅ (𝑙𝑟 − 𝑇𝑓) + 𝑐𝑟𝑅]
⋅ 𝑃𝐼𝐼12 (𝐿 < 𝑇𝑓 < 𝑙𝑟) + [𝐿𝑐𝑖 + 𝑐𝑓 + 𝑐ℎ ⋅ (𝑇𝑓 − 𝑙𝑟) + 𝑐𝑟𝑅]
⋅ 𝑃𝐼𝐼21 (𝑙𝑟 < 𝑇𝑓 < 𝐿) + ∞∑

𝑖=𝐼

[(𝑖 − 1) 𝑐𝑖 + 𝑐𝑓 + 𝑐ℎ ⋅ (𝑇𝑓 − 𝑙𝑟)
+ 𝑐𝑟𝑅] ⋅ 𝑃𝐼𝐼22 (𝑡𝑖−1 < 𝑇𝑓 < 𝑡𝑖)
+ 𝐼upp∑
𝑖=1

𝐽max∑
𝑗=1

[(𝑖 + 𝑗 − 1) 𝑐𝑖 + 𝑐𝑓 + 𝑐𝑓𝑝 ⋅ (𝑙𝑟 − 𝑇𝑓) + 𝑐𝑟𝑅]

⋅ 𝑃𝐼𝐼31 (𝑡𝑖,𝑗−1 < 𝑇𝑓 < 𝑡𝑖,𝑗) +
𝐼upp∑
𝑖=1

[(𝑖 + 𝐽max) 𝑐𝑖 + 𝑐𝑓 + 𝑐𝑓𝑝
⋅ (𝑙𝑟 − 𝑇𝑓) + 𝑐𝑟𝑅] ⋅ 𝑃𝐼𝐼32 (𝐿󸀠 < 𝑇𝑓 < 𝑙𝑟) +

𝐼upp∑
𝑖=1

[(𝑖 + 𝐽max) 𝑐𝑖
+ 𝑐𝑓 + 𝑐ℎ ⋅ (𝑇𝑓 − 𝑙𝑟) + 𝑐𝑟𝑅] ⋅ 𝑃𝐼𝐼41 (𝑙𝑟 < 𝑇𝑓 < 𝐿󸀠)
+ ∞∑
𝑖=1

∞∑
𝑗=𝐽Low

[(𝑖 + 𝑗 − 1) 𝑐𝑖 + 𝑐𝑓 + 𝑐ℎ ⋅ (𝑇𝑓 − 𝑙𝑟) + 𝑐𝑟𝑅]

⋅ 𝑃𝐼𝐼42 (𝑡𝑖,𝑗−1 < 𝑇𝑓 < 𝑡𝑖,𝑗) +
𝐼upp∑
𝑖=1

[𝑖𝑐𝑖 + 𝑐𝑤𝑝 ⋅ (𝑙𝑟 − 𝑡𝑖) + 𝑐𝑟𝑅]
⋅ 𝑃𝐼𝐼51 (𝑇𝑅 = 𝑙𝑟) +

𝐼upp∑
𝑖=1

[𝑖𝑐𝑖 + 𝑐𝑤𝑝 ⋅ (𝑇𝑓 − 𝑡𝑖) + 𝑐𝑓𝑝 ⋅ (𝑙𝑟 − 𝑇𝑓)
+ 𝑐𝑟𝑅] ⋅ 𝑃𝐼𝐼52 (𝑇𝑅 = 𝑙𝑟) + ∞∑

𝑖=𝐼low

[𝑖𝑐𝑖 + 𝑐ℎ ⋅ (𝑡𝑖 − 𝑙𝑟) + 𝑐𝑟𝑅]
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⋅ 𝑃𝐼𝐼6 (𝑇𝑅 = 𝑡𝑖) +
𝐼󸀠upp∑
𝑖=1

𝐽UPP∑
𝑗=1

[(𝑖 + 𝑗) 𝑐𝑖 + 𝑐𝑤𝑝 ⋅ (𝑙𝑟 − 𝑡𝑖,𝑗) + 𝑐𝑟𝑅]
⋅ 𝑃𝐼𝐼71 (𝑇𝑅 = 𝑙𝑟)
+ 𝐼
󸀠
upp∑
𝑖=1

𝐽UPP∑
𝑗=1

[(𝑖 + 𝑗) 𝑐𝑖 + 𝑐𝑤𝑝 ⋅ (𝑇𝑓 − 𝑡𝑖,𝑗) + 𝑐𝑓𝑝 ⋅ (𝑙𝑟 − 𝑇𝑓) + 𝑐𝑟𝑅]
⋅ 𝑃𝐼𝐼72 (𝑇𝑅 = 𝑙𝑟) + ∞∑

𝑖=1

∞∑
𝑗=𝐽󸀠Low

[(𝑖 + 𝑗) 𝑐𝑖 + 𝑐ℎ ⋅ (𝑡𝑖,𝑗 − 𝑙𝑟) + 𝑐𝑟𝑅]

⋅ 𝑃𝐼𝐼8 (𝑇𝑅 = 𝑡𝑖,𝑗)}}} ,

𝐸𝐼𝐼𝐿 (𝑡, 𝑘) = {{{
𝐿∑
𝑖=1

𝑙𝑟 ⋅ 𝑃𝐼𝐼11 (𝑡𝑖−1 < 𝑇𝑓 < 𝑡𝑖) + 𝑙𝑟 ⋅ 𝑃𝐼𝐼12 (𝐿 < 𝑇𝑓
< 𝑙𝑟) + 𝑇𝑓 ⋅ 𝑃𝐼𝐼21 (𝑙𝑟 < 𝑇𝑓 < 𝐿) + ∞∑

𝑖=𝐼

𝑇𝑓 ⋅ 𝑃𝐼𝐼22 (𝑡𝑖−1 < 𝑇𝑓
< 𝑡𝑖) +

𝐼upp∑
𝑖=1

𝐽max∑
𝑗=1

𝑙𝑟 ⋅ 𝑃𝐼𝐼31 (𝑡𝑖,𝑗−1 < 𝑇𝑓 < 𝑡𝑖,𝑗) +
𝐼upp∑
𝑖=1

𝑙𝑟 ⋅ 𝑃𝐼𝐼32 (𝐿󸀠

< 𝑇𝑓 < 𝑙𝑟) +
𝐼upp∑
𝑖=1

𝑇𝑓 ⋅ 𝑃𝐼𝐼41 (𝑙𝑟 < 𝑇𝑓 < 𝐿󸀠) + ∞∑
𝑖=1

∞∑
𝑗=𝐽Low

𝑇𝑓
⋅ 𝑃𝐼𝐼42 (𝑡𝑖,𝑗−1 < 𝑇𝑓 < 𝑡𝑖,𝑗) +

𝐼upp∑
𝑖=1

𝑙𝑟 ⋅ 𝑃𝐼𝐼51 (𝑇𝑅 = 𝑙𝑟) +
𝐼upp∑
𝑖=1

𝑙𝑟
⋅ 𝑃𝐼𝐼52 (𝑇𝑅 = 𝑙𝑟) + ∞∑

𝑖=𝐼low

𝑡𝑖 ⋅ 𝑃𝐼𝐼6 (𝑇𝑅 = 𝑡𝑖) +
𝐼󸀠upp∑
𝑖=1

𝐽UPP∑
𝑗=1

𝑙𝑟
⋅ 𝑃𝐼𝐼71 (𝑇𝑅 = 𝑙𝑟) +

𝐼󸀠upp∑
𝑖=1

𝐽UPP∑
𝑗=1

𝑙𝑟 ⋅ 𝑃𝐼𝐼72 (𝑇𝑅 = 𝑙𝑟) + ∞∑
𝑖=1

∞∑
𝑗=𝐽󸀠Low

𝑡𝑖,𝑗

⋅ 𝑃𝐼𝐼8 (𝑇𝑅 = 𝑡𝑖,𝑗)}}} .
(33)

Then, the optimization model can be constructed as𝐶𝐼𝐼(𝑡, 𝑘) = 𝐸𝐼𝐼𝐶 (𝑡, 𝑘)/𝐸𝐼𝐼𝐿 (𝑡, 𝑘) to find the optimal decision
variables, 𝑡∗, 𝑘∗.
5. Numerical Example

5.1. Initial Modeling Parameters. In order to solve models𝐼 and 𝐼𝐼, the first step is to set modeling parameters,
(i.e., 𝑐𝑖, 𝑐𝑓, 𝑐𝑤𝑝 , 𝑐𝑓𝑝 , 𝑐ℎ, 𝑐𝑟𝑅, 𝑐𝑒𝑅, 𝑙𝑟) that are given in Table 5 by
experience from the industry. The chosen calendar time unit
is here one day and the cost is measured in 10,000 yuan.
Since the lead time of the emergency order is assumed to be
random, the distribution that it follows needs to be preset.
The normal distribution is chosen and used to describe the
distribution of the emergency ordering lead time, so we
adopt it in the numerical example given below with the form𝑔(𝑙𝑒) = (1/𝜎√2𝜋)𝑒−(𝑙𝑒−𝜇)2/2𝜎2 , in which 𝜇 and 𝜎 are the
mean and standard deviation of the random lead time 𝑙𝑒.

Table 5: Initial parameters.

𝑐𝑖 𝑐𝑓 𝑐𝑤𝑝 𝑐𝑓𝑝 𝑐ℎ 𝑐𝑟𝑅 𝑐𝑒𝑅 𝑙𝑟
5 200 1 2 0.5 30 50 60

Table 6: Distribution parameters.

𝛼1 𝛽1 𝛼2 𝛽2 𝛼3 𝛽3 𝜇 𝜎
0.018 1.81 0.015 1.41 0.037 1.70 4 0.5
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Figure 12: The PDF of the lead time 𝑙𝑒.

The random durations of three stages in the deterioration
process are assumed to follow theWeibull distribution, which
is one of the most common distributions in reliability studies
[22]. The probability density function (PDF) of the Weibull
distribution is shown in (34), in which 𝛼𝑛 and 𝛽𝑛 denote the
scale parameter and the shape parameter, respectively. Fur-
thermore, the distribution parameters are shown in Table 6
and on the basis of them the expected lengths of these three
stages are 𝐸(𝑋1) = 52.2972 days, 𝐸(𝑋2) = 60.6945 days,
and 𝐸(𝑋3) = 24.1147 days, respectively. The PDF of the
emergency ordering lead time 𝑙𝑒 is plotted in Figure 12 for
illustration based on the preset parameters in Table 6.

𝑋𝑛 ∼ Weibull (𝛼𝑛, 𝛽𝑛) ;
𝑓𝑋𝑛 (𝑥) = 𝛼𝑛 ⋅ 𝛽𝑛 ⋅ (𝛼𝑛 ⋅ 𝑥)𝛽𝑛−1 ⋅ 𝑒−(𝛼𝑛 ⋅𝑥)𝛽𝑛 ,

𝛼𝑛 > 0, 𝛽𝑛 > 0.
(34)

5.2. Simulation Algorithm Based on Discrete Events. The
calculation of convolution integrals in the presented models𝐼 and 𝐼𝐼 is time-consuming but can be solved. For this, we
design the simulation algorithm based on discrete events in
the light of problem description to reduce the computation
complexity. Figure 13 gives the flow chart of the simulation
algorithm for model 𝐼, and refer to Appendix for that
of model 𝐼𝐼. Naturally, the first step is to set the initial
parameters used in the optimization model, some of which
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e
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Case 5.2: C = C + ci + cf + cwp (z − T)

c
f
p (Tra − z) + crR+

0; let the current renewal time (２４) = 0

；Ｈ＞

Figure 13: The flow chart of the simulation algorithm for model 𝐼.

have been determined in Section 5.1. Let 𝐶 denote the total
cost in the simulation process that includes inspection cost,
failure loss, penalty cost caused by shortage, holding cost, and
replacement costs due to a regular order and an emergency
order. Meanwhile, the simulation starts from the initial time
RT = 0, in which RT is defined as the renewal time. Repeat
the simulation to calculate the long-run expected cost per
unit time until the termination condition, that is, amaximum
number of iteration 𝐼max, is reached. According to the given
distribution parameters, generate the random durations of
three stages 𝑋1, 𝑋2, 𝑋3 and the lead time of an emergency
order 𝑙𝑒, and compute the end points of three stages 𝑥, 𝑦, 𝑧.
As the simulation goes, judge whether the current time 𝑇
is not larger than the end point of the first stage, that is,

𝑇 ≤ 𝑥. If this condition is met, then we have 𝐶 = 𝐶 + 𝑐𝑖
and let 𝑇 = 𝑇+𝑡 continue the simulation; otherwise, we need
to further make a judgment for another condition, 𝑇 ≤ 𝑦.
Obviously, if𝑇 ≤ 𝑦 is met, indicating that theminor defective
stage is identified, then the original inspection interval 𝑡 is
shortened to be 𝑡/𝑘 to have more chances to check the system
according to assumption (4). Additionally, by the discussion
in Introduction and Section 2.2, it also provides the warning
to place the regular order at the time of identifying the minor
defective stage, and the spare arrives at 𝑇𝑟𝑎 = 𝑇 + 𝑙𝑟 after
the delivery time 𝑙𝑟. Followed by it, compute the total cost
by summing up the cost resulting from inspections as long
as the condition 𝑇 ≤ 𝑦 is satisfied. Next, determine whether
the system fails before the next inspection or not, namely,
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(a) Results from the analytical model
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(b) Results from the simulation algorithm

Figure 14: Long-run expected cost per unit time of policy I obtained from model I (16) and the simulation algorithm (Figure 13).

𝑇 < 𝑧. When the inequality 𝑇 < 𝑧 is rejected, a failure
arises before 𝑇, which leads to case 2 and case 3 relying on
the availability of the regular ordered spare at the failure time𝑧. However, when the inequality 𝑇 < 𝑧 holds, implying
that the severe defective stage is detected at 𝑇, it requires
an inspection replacement in terms of assumption (5). But
taking into consideration the availability of the spare, case 5
and case 6 are caused and there are two subcases 5.1 and 5.2 for
case 5, as discussed above. It is noted that the minor defective
stage may be missed by inspection; namely, the condition𝑇 ≤ 𝑦 is not met. Therefore, whether the severe defective
stage can be identified by inspection needs to be judged, that
is,𝑇 < 𝑧. If the simulation time𝑇 is smaller than the endpoint
of the severe defective stage 𝑧, an inspection replacement is
needed, resulting in a delayed inspection replacement at the
arrival time of the emergency ordered spare 𝑇 + 𝑙𝑒, as stated
in case 4. Besides, 𝑇 ≥ 𝑧 shows that the system has been in
the failed state before the next inspection, which requires a
failure replacement. But because no regular order is placed
until 𝑧, an emergency order is placed at 𝑧 and the replacement
is postponed and performed at 𝑧+𝑙𝑒, that is, case 1. Eventually,
the objective function𝐶(𝑡, 𝑘) is calculated under the different
combinations of 𝑡 and 𝑘.
5.3. Results and Analysis of Model I from Different Methods.
Using the above parameters, we calculate the long-run
expected cost per unit time of model 𝐼 under the combi-
nations of different inspection interval 𝑡 and the value of 𝑘
based on the analytical model and the simulation algorithm,
respectively. The corresponding results obtained from them
are given and shown in Figures 14(a) and 14(b), from which
we can observe that there is a slight difference between them.
More specifically, the optimal solutions from the analytical
model (see (16)) are 𝑡∗ = 42 days and 𝑘∗ = 3 with the

minimal expected cost per unit time, 0.9949; meanwhile,
the decision variables optimized by the simulation algorithm
designed in Figure 13 are also 𝑡∗ = 42 days and 𝑘∗ = 3
but with a different minimal expected cost per unit time,
0.9937. Obviously, the proposed simulation algorithm can
be applied to optimize the joint policy of inspection-based
PM and spare ordering. Note that when the value of 𝑘 is
determined, the long-run expected cost per unit time reduces
first and then increases with the increase of the inspection
interval 𝑡. It can be explained that more frequent inspection
actions with smaller inspection 𝑡 lead to higher inspection
costs, but the inspection scheme with longer interval 𝑡 may
miss the identification of defects, resulting in a system failure
and bringing about higher cost loss. It is also in line with our
previous studies and the practice. 𝑘 = 1 means that there
is an inspection plan with a fixed interval which has been
assumed in most studies, and from Figure 14 it can be easily
concluded that when the system has been detected to be in
the minor defective stage, shortening the inspection interval
is a better option compared with keeping it unchanged. Also,
Figure 15 illustrates the long-run expected cost per unit time
against the inspection interval under 𝑘 = 2, 3, 4 according to
the results in Figure 14(b). It is clearly seen from Figure 15
that the objective function is minimized to be 0.9937 when𝑘∗ = 3; that is, if the minor defective is revealed, the original
inspection interval 𝑡∗ = 42 days should be shortened to
be 𝑡∗/𝑘∗ = 42/3 = 12 days. Otherwise, it will cause the
increase of the expected cost per unit time due to either a
failure unrecognized in advance or more frequent inspection
activities.

5.4. Comparative Studies of Model I andModel II. Depending
on whether the regular order is placed at the beginning of
the system operation, the joint policies 𝐼 and II are developed
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Figure 15: Long-run expected cost per unit time against the
inspection interval t.

and the corresponding models are established. Then, we give
the comparative studies for them here. Using the simulation
algorithm of model II in Appendix, the long-run expected
cost per unit time is minimized to find the optimal 𝑡∗, 𝑘∗.
The obtained results are given in Figure 16, based on which
we obtain 𝑡∗ = 34 days and 𝑘∗ = 3 and the minimal long-
run expected cost per unit time is 1.0688. It is not hard to
see that the long-run expected cost per unit time of model II
to be minimized is larger than that of model 𝐼 since 1.0688> 0.9937, 7.56 percent more than model 𝐼. Thus, the more
economical solution is to place the regular order at the time
of identifying the minor defective stage rather than at the
beginning of the system operation. It is most likely because
placing order at time 0 may incur a higher holding cost than
ordering at the identification time of the minor defective
stage by perfect inspections. More interestingly, the optimal
inspection interval under model II is smaller than that of
model I, that is, 34 < 42, which is as we expected. Obviously,
the cost resulting from inspections with a smaller interval
may lead to the increase of the long-run expected cost per
unit time. However, we have to note that the result of this
numerical example is suitable under the given parameters;
recalculation is done if parameters change and it may cause
different optimal solutions.

Note thatmodel 𝐼 andmodel II are developed based on an
assumption that the inspection interval is shortened once the
minor defective stage is identified, as mentioned in assump-
tion (4) of Section 2.1. Such an irregular inspection policy is
optimized and the results of Figures 15 and 16 illustrate the
performance of the inspection policy with irregular interval;
that is, 𝑘∗ = 3, indicating that, after the identification of the
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Figure 16: Long-run expected cost per unit time of model 𝐼𝐼.

minor defective stage, the interval of subsequent inspections
should be one-third of the initial inspection interval 𝑡. To
further check whether the irregular inspection policy is
reasonable, different simulations are conducted by relaxing
the assumption of irregular interval imposed on model 𝐼
and model II. Figure 17 gives the results of the long-run
expected cost per unit time in the case of a joint policy of
regular inspection-based PM and spare ordering; that is to
say, inspections are performed with a constant time interval.
Figure 17(a) corresponds to the situation that two modes of
spare ordering are specialized, but the regular ordering is only
considered in Figure 17(b). It is realized that the irregular
inspection intervals have a better capability of minimizing
the long-run expected cost per unit time than the regular
inspection intervals from 0.9937 < 1.0543 and 1.0688 < 1.1669.
As expected, it can be observed from Figure 17 that the
optimal intervals under regular inspection policy are shorter
than those under irregular inspection policy, that is, 16 < 42
and 15 < 34.

5.5. Sensitivity Analysis. This subsection is contributed to
explore the influence of the change of different parameters
on the decision-making results. Table 7 gives the sensitivity
analyses results, in which the percentage of each parame-
ter’s increase or decrease is +10%, −10%, respectively, while
keeping other parameters unvaried.The last column gives the
percentage of the change of the minimal objective function
after each parameter is adjusted compared to the result
under the original parameters shown in Figure 14, 0.9937.
It is reasonable that the minimal long-run expected cost
per unit time, 𝐶𝐼(𝑡∗, 𝑘∗), increases with the increase of any
cost parameter and decreases as the cost parameter reduces.
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Figure 17: Results from regular and irregular inspections.

It can be concluded from the results in Table 7 that the
greatest influence on 𝐶𝐼(𝑡∗, 𝑘∗) is the average cost due to
failure, 𝑐𝑓; therefore, once there is an obvious change for𝑐𝑓, managers should be concerned with decisions for the
inspection interval 𝑡 and 𝑘. We can observe that the optimal
inspection interval is prolonged to 44 days with the decrease
of 𝑐𝑓; alternatively, it is shortened to 30 days when the failure
cost moves to 220. Followed by it, it can be noted that the
parameters due to inspection and holding the spare have
a relatively large effect on the decision compared to other
parameters.

6. Conclusions

The joint policy of inspection-based PM and spare ordering
is proposed for a single-unit system in this study, in which
the three-stage deterioration process is introduced to depict
the system lifetime. Thus, it is assumed that when the minor
defective stage is found by an inspection, it provides a chance
formanagers to place a regular order and in order to check the
system more frequently, shortening the original inspection
interval is also considered. However, once the system is
detected to be in the severe defective stage, replacing the
systempreventively is required; also, a corrective replacement
should be done to bring the failed system to an as-good-
as-new state. A spare is needed for either replacement, so
in order to model such a joint policy different scenarios are
taken into account relying on the system state and the state
of the regular ordered spare. Moreover, an emergency order
is also introduced once no regular order is placed. Then,

we establish the optimization model of the proposed joint
policy by minimizing the long-run expected cost per unit
time to find the optimal inspection interval and the times
that the original inspection interval is shortened. In order
to illustrate the proposed joint policy, another joint policy
in which the regular order is placed at the beginning of the
system operation is also developed and modeled. The results
from the numerical example show that placing the regular
order at the time of identifying the minor defective stage is
more economical compared to the traditional policy and the
results of the comparison of the proposed policy to the joint
policy with regular inspections illustrate that our joint policy
with irregular inspections performs well. Also, the sensitivity
analysis concluded that the average cost parameter due to
failure is the most sensitive one under the same percentage
change of a cost parameter.

There are some further research topics to which attention
can be paid in the future. The first is to relax the assumption
that a maximum of one spare unit is ordered and stored;
secondly, this work can be extended to the situation of
multiunit complex system; the third direction is to consider
imperfect repair for severe defective systems since it is closer
to the reality.

Appendix

Figures 18–20 show the flow chart of simulation algorithm of
model II, in which the process is designed based on policy
II mentioned and discussed in Section 4. For similarity, the
description is omitted.
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Table 7: Sensitivity analysis results.

Parameter 𝑡∗ 𝑘∗ 𝐶𝐼 (𝑡∗, 𝑘∗)
𝑐𝑖 4.5 −10% 30 2 0.9724 −2.15%

5.5 +10% 30 2 1.0155 2.19%

𝑐𝑓 180 −10% 44 3 0.9597 −3.42%
220 +10% 30 2 1.0281 3.46%

𝑐𝑤𝑝 0.9 −10% 30 2 0.9904 −0.33%
1.1 +10% 40 3 0.9954 0.17%

𝑐𝑓𝑝 1.8 −10% 42 3 0.9963 −0.26%
2.2 +10% 30 3 0.9986 0.49%

𝑐ℎ 0.45 −10% 30 2 0.9827 −1.10%
0.55 +10% 30 2 1.0076 1.40%
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Figure 18: The flow chart of simulation algorithm for model 𝐼𝐼.
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