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Although the globally attractive sets of a hyperchaotic system have important applications in the fields of engineering, science,
and technology, it is often a difficult task for the researchers to obtain the globally attractive set of the hyperchaotic systems due
to the complexity of the hyperchaotic systems. Therefore, we will study the globally attractive set of a generalized hyperchaotic
Lorenz–Stenflo system describing the evolution of finite amplitude acoustic gravity waves in a rotating atmosphere in this paper.
Based on Lyapunov-like functional approach combining some simple inequalities, we derive the globally attractive set of this system
with its parameters. The effectiveness of the proposed methods is illustrated via numerical examples.

1. Introduction

In 1963, Lorenz found the well-known three-dimensional
Lorenz model when he studied the dynamics of the atmo-
sphere [1]. Since then, various complex dynamical behaviors
of the Lorenz system have been studied by mathematicians,
physicists, and engineers from various fields due to vari-
ous applications in the fields of engineering, science, and
technology [2–14]. In order to improve the stability or pre-
dictability of the Lorenz system, Stenflo and Leonov derived
the following four-dimensional Lorenz–Stenflo system with
four parameters to describe the dynamics of the atmosphere
[15, 16]:

𝑑𝑥
𝑑𝑡 = 𝑎 (𝑦 − 𝑥) + 𝑑𝑤,
𝑑𝑦
𝑑𝑡 = 𝑐𝑥 − 𝑦 − 𝑥𝑧,
𝑑𝑧
𝑑𝑡 = 𝑥𝑦 − 𝑏𝑧,
𝑑𝑤
𝑑𝑡 = −𝑥 − 𝑎𝑤.

(1)

In order to give a better description of the atmosphere,
Chen and Liang propose a generalized Lorenz–Stenflo system

with six parameters according to the Lorenz–Stenflo system
[17]:

𝑑𝑥
𝑑𝑡 = 𝑎 (𝑦 − 𝑥) + 𝑠𝑤,
𝑑𝑦
𝑑𝑡 = 𝑐𝑥 − 𝑑𝑦 − 𝑥𝑧,
𝑑𝑧
𝑑𝑡 = 𝑥𝑦 − 𝑏𝑧,
𝑑𝑤
𝑑𝑡 = −𝑥 − 𝑟𝑤,

(2)

where 𝑥, 𝑦, 𝑧, and 𝑤 are state variables and 𝑎, 𝑏, 𝑐, 𝑑, 𝑟,
and 𝑠 are positive parameters of system (2). System (2) can
describe the dynamic behavior of finite amplitude acoustic
gravity waves in a rotating atmosphere.

The Lyapunov exponents of the dynamical system (2) are
calculated numerically for the parameter values 𝑎 = 19.42,𝑏 = 1.91, 𝑐 = 29.45, 𝑑 = 2.86, 𝑟 = 0.23, and 𝑠 = 9.64 with
the initial state (𝑥0, 𝑦0, 𝑧0, 𝑤0) = (2.2, 2.0, 10.5, 20). System
(2) has Lyapunov exponents as 𝜆LE1 = 0.0696, 𝜆LE2 = 0.0359,𝜆LE3 = 0.0002, and 𝜆LE4 = −24.5176 for the parameters
listed above (see [18, 19] for a detailed discussion of Lyapunov
exponents of strange attractors in dynamical systems). Thus,
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Figure 1: Projection of hyperchaotic attractor of system (2) onto the
xOyz space with 𝑎 = 19.42, 𝑏 = 1.91, 𝑐 = 29.45, 𝑑 = 2.86, 𝑟 = 0.23,
and 𝑠 = 9.64.
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Figure 2: Projection of hyperchaotic attractor of system (2) onto the𝑥𝑂𝑦𝑤 space with 𝑎 = 19.42, 𝑏 = 1.91, 𝑐 = 29.45, 𝑑 = 2.86, 𝑟 = 0.23,
and 𝑠 = 9.64.

system (2) has two positive Lyapunov exponents and the
strange attractor, whichmeans system (2) can exhibit a variety
of interesting and complex chaotic behaviors. System (2) has
a hyperchaotic attractor with 𝑎 = 19.42, 𝑏 = 1.91, 𝑐 = 29.45,𝑑 = 2.86, 𝑟 = 0.23, and 𝑠 = 9.64, as shown in Figures 1–4.

In this paper, all the simulations are carried out by using
fourth-order Runge-Kutta Method with time-step ℎ = 0.005.

The rest of this paper is organized as follows. In Section 2,
the globally attractive set for the chaotic attractors in (2)
is studied using Lyapunov stability theory. To validate the
ultimate bound estimation, numerical simulations are also
provided. Finally, the conclusions are drawn in Section 3.

2. Bounds for the Chaotic Attractors in
System (2)

Theorem 1. For any 𝑎 > 0, 𝑏 > 0, 𝑐 > 0, 𝑑 > 0, 𝑟 > 0, 𝑠 > 0,
there exists a positive number𝑀 > 0, such that

Ω𝜆,𝑚 = {𝑋 | 𝜆 (𝑥 − 𝑚1)2 + 𝑚𝑦2

+ 𝑚(𝑧 − 𝑎𝜆 + 𝑐𝑚𝑚 )2 + 𝜆𝑠 (𝑤 − 𝑚3)2 ≤ 𝑀, ∀𝜆

> 0, ∀𝑚 > 0}

(3)
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Figure 3: Projection of hyperchaotic attractor of system (2) onto the𝑥𝑂𝑧𝑤 space with 𝑎 = 19.42, 𝑏 = 1.91, 𝑐 = 29.45, 𝑑 = 2.86, 𝑟 = 0.23,
and 𝑠 = 9.64.
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Figure 4: Projection of hyperchaotic attractor of system (2) onto the𝑦𝑂𝑧𝑤 space with 𝑎 = 19.42, 𝑏 = 1.91, 𝑐 = 29.45, 𝑑 = 2.86, 𝑟 = 0.23,
and 𝑠 = 9.64.

is the ultimate bound set of system (2), where 𝑋(𝑡) = (𝑥(𝑡),𝑦(𝑡), 𝑧(𝑡), 𝑤(𝑡)).
Proof. Define the following Lyapunov-like function:

𝑉𝜆,𝑚 (𝑋) = 𝑉𝜆,𝑚 (𝑥, 𝑦, 𝑧, 𝑤)
= 𝜆 (𝑥 − 𝑚1)2 + 𝑚𝑦2 + 𝑚(𝑧 − 𝑎𝜆 + 𝑐𝑚𝑚 )2

+ 𝜆𝑠 (𝑤 − 𝑚3)2 ,
(4)

where ∀𝜆 > 0, ∀𝑚 > 0,𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), V(𝑡), 𝑢(𝑡),𝜔(𝑡)), and𝑚1 ∈ 𝑅,𝑚3 ∈ 𝑅 are arbitrary constants.
And we can get

𝑑𝑉𝜆,𝑚 (𝑋 (𝑡))𝑑𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2) = 2𝜆 (𝑥 − 𝑚1)

𝑑𝑥
𝑑𝑡 + 2𝑚𝑦

𝑑𝑦
𝑑𝑡

+ 2𝑚(𝑧 − 𝑎𝜆 + 𝑐𝑚𝑚 ) 𝑑𝑧𝑑𝑡
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+ 2𝜆𝑠 (𝑤 − 𝑚3) 𝑑𝑤𝑑𝑡
= 2𝜆 (𝑥 − 𝑚1) (𝑎𝑦 − 𝑎𝑥 + 𝑠𝑤)
+ 2𝑚𝑦 (𝑐𝑥 − 𝑑𝑦 − 𝑥𝑧)
+ 2𝑚(𝑧 − 𝑎𝜆 + 𝑐𝑚𝑚 ) (𝑥𝑦 − 𝑏𝑧)
+ 2𝜆𝑠 (𝑤 − 𝑚3) (−𝑥 − 𝑟𝑤)

= −2𝑎𝜆𝑥2 + 2 (𝑎𝜆𝑚1 + 𝜆𝑠𝑚3) 𝑥
− 2𝑑𝑚𝑦2 − 2𝑎𝜆𝑚1𝑦 − 2𝑏𝑚𝑧2
+ 2𝑏𝑚𝑚2𝑧 − 2𝜆𝑠𝑟𝑤2
− 2 (𝜆𝑠𝑚1 − 𝜆𝑠𝑟𝑚3) 𝑤.

(5)

Let 𝑑𝑉(𝑋(𝑡))/𝑑𝑡 = 0.Then, we can get the surface Γ:
𝑋 | −𝑎𝜆𝑥2 + (𝑎𝜆𝑚1 + 𝜆𝑠𝑚3) 𝑥 − 𝑑𝑚𝑦2 − 𝑎𝜆𝑚1𝑦

− 𝑏𝑚𝑧2 + 𝑏𝑚𝑚2𝑧 − 𝜆𝑠𝑟𝑤2 − (𝜆𝑠𝑚1 − 𝜆𝑠𝑟𝑚3) 𝑤
= 0

(6)

is an ellipsoid in 𝑅4 for ∀𝜆 > 0, ∀𝑚 > 0, 𝑎 > 0, 𝑏 >0, 𝑐 > 0, 𝑑 > 0, 𝑟 > 0, 𝑠 > 0. Outside Γ, 𝑑𝑉𝜆,𝑚(𝑋(𝑡))/𝑑𝑡 <0, while inside Γ, 𝑑𝑉𝜆,𝑚(𝑋(𝑡))/𝑑𝑡 > 0. Thus, the ultimate
boundedness for system (2) can only be reached on Γ. Since
the Lyapunov-like function 𝑉𝜆,𝑚(𝑋) is a continuous function
and Γ is a bounded closed set, then the function (4) can
reach its maximum value max𝑋∈Γ𝑉𝜆,𝑚(𝑋) = 𝑀 on the
surface Γ that is defined in (6). Obviously, {𝑋 | 𝑉𝜆,𝑚(𝑋) ≤
max𝑋∈Γ𝑉𝜆,𝑚(𝑋) = 𝑀,𝑋 ∈ Γ} contains solutions of system
(2). It is obvious that the set Ω𝜆,𝑚 is the ultimate bound set
for system (2).

This completes the proof.

Theorem 2. Suppose that ∀𝑎 > 0, 𝑏 > 0, 𝑑 > 0, 𝑟 > 0, 𝑐 >0, 𝑠 > 0, 𝜆 > 0,𝑚 > 0.
Let (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑤(𝑡)) be an arbitrary solution of system

(2) and

𝐿2𝜆,𝑚 = 1
𝜃 [(

𝑎2𝜆2
𝑚𝑑 + 𝜆𝑠𝑟 + 𝑎𝜆)𝑚21 + 𝑏𝑚𝑚22

+ (𝜆𝑠2𝑎 + 𝜆𝑠𝑟)𝑚23] , 𝜃 = min (𝑎, 𝑏, 𝑑, 𝑟) > 0,
𝑉𝜆,𝑚 (𝑋) = 𝑉𝜆,𝑚 (𝑥, 𝑦, 𝑧, 𝑤) = 𝜆 (𝑥 − 𝑚1)2 + 𝑚𝑦2

+ 𝑚(𝑧 − 𝑎𝜆 + 𝑐𝑚𝑚 )2 + 𝜆𝑠 (𝑤 − 𝑚3)2 ,
∀𝜆 > 0, ∀𝑚 > 0, ∀𝑚1 ∈ 𝑅, ∀𝑚3 ∈ 𝑅.

(7)

Then the estimation

[𝑉𝜆,𝑚 (𝑋 (𝑡)) − 𝐿2𝜆,𝑚] ≤ [𝑉𝜆,𝑚 (𝑋 (𝑡0)) − 𝐿2𝜆,𝑚] 𝑒−𝜃(𝑡−𝑡0) (8)

holds for system (2), and thus Ω𝜆,𝑚 = {𝑋 | 𝑉𝜆,𝑚(𝑋) ≤ 𝐿2𝜆,𝑚}
is the globally exponential attractive set of system (2); that is,
lim𝑡→+∞𝑉𝜆,𝑚(𝑋(𝑡)) ≤ 𝐿2𝜆,𝑚.
Proof. Define the following functions:

𝑓 (𝑥) = −𝑎𝜆𝑥2 + 2𝜆𝑠𝑚3𝑥,
ℎ (𝑦) = −𝑑𝑚𝑦2 − 2𝑎𝜆𝑚1𝑦,
𝑔 (𝑤) = −𝜆𝑠𝑟𝑤2 − 2𝜆𝑠𝑚1𝑤.

(9)

then we can get

max
𝑥∈𝑅

𝑓 (𝑥) = 𝜆𝑠2𝑚23𝑎 ,

max
𝑦∈𝑅

ℎ (𝑦) = 𝑎2𝜆2𝑚21𝑑𝑚 ,

max
𝑤∈𝑅

𝑔 (𝑤) = 𝜆𝑠𝑚21𝑟 .

(10)

Construct the Lyapunov-like function

𝑉𝜆,𝑚 (𝑋) = 𝑉𝜆,𝑚 (𝑥, 𝑦, 𝑧, 𝑤)
= 𝜆 (𝑥 − 𝑚1)2 + 𝑚𝑦2 + 𝑚(𝑧 − 𝑎𝜆 + 𝑐𝑚𝑚 )2

+ 𝜆𝑠 (𝑤 − 𝑚3)2 ,
∀𝜆 > 0, ∀𝑚 > 0, ∀𝑚1 ∈ 𝑅, ∀𝑚3 ∈ 𝑅.

(11)

Differentiating the above Lyapunov-like function 𝑉𝜆,𝑚(𝑋) in
(11) with respect to time 𝑡 along the trajectory of system (2)
yields

𝑑𝑉𝜆,𝑚 (𝑋 (𝑡))𝑑𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2) = 2𝜆 (𝑥 − 𝑚1)

𝑑𝑥
𝑑𝑡 + 2𝑚𝑦

𝑑𝑦
𝑑𝑡

+ 2𝑚(𝑧 − 𝑎𝜆 + 𝑐𝑚𝑚 ) 𝑑𝑧𝑑𝑡
+ 2𝜆𝑠 (𝑤 − 𝑚3) 𝑑𝑤𝑑𝑡

= 2𝜆 (𝑥 − 𝑚1) (𝑎𝑦 − 𝑎𝑥 + 𝑠𝑤)
+ 2𝑚𝑦 (𝑐𝑥 − 𝑑𝑦 − 𝑥𝑧)
+ 2𝑚(𝑧 − 𝑎𝜆 + 𝑐𝑚𝑚 ) (𝑥𝑦 − 𝑏𝑧)
+ 2𝜆𝑠 (𝑤 − 𝑚3) (−𝑥 − 𝑟𝑤)

= −2𝑎𝜆𝑥2 + 2 (𝑎𝜆𝑚1 + 𝜆𝑠𝑚3) 𝑥
− 2𝑑𝑚𝑦2 − 2𝑎𝜆𝑚1𝑦 − 2𝑏𝑚𝑧2
+ 2𝑏𝑚𝑚2𝑧 − 2𝜆𝑠𝑟𝑤2
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− 2 (𝜆𝑠𝑚1 − 𝜆𝑠𝑟𝑚3) 𝑤
= −𝑎𝜆𝑥2 + 2𝑎𝜆𝑚1𝑥 − 𝑎𝜆𝑥2
+ 2𝜆𝑠𝑚3𝑥 − 𝑑𝑚𝑦2 − 𝑑𝑚𝑦2
− 2𝑎𝜆𝑚1𝑦 − 𝑏𝑚𝑧2 − 𝑏𝑚𝑧2
+ 2𝑏𝑚𝑚2𝑧 − 𝜆𝑠𝑟𝑤2
− 2𝜆𝑠𝑚1𝑤 − 𝜆𝑠𝑟𝑤2
+ 2𝜆𝑠𝑟𝑚3𝑤

= −𝑎𝜆 (𝑥2 − 2𝑚1𝑥) − 𝑎𝜆𝑥2
+ 2𝜆𝑠𝑚3𝑥 − 𝑑𝑚𝑦2 − 𝑑𝑚𝑦2
− 2𝑎𝜆𝑚1𝑦 − 𝑏𝑚 (𝑧2 − 2𝑚2𝑧)
− 𝑏𝑚𝑧2 − 𝜆𝑠𝑟 (𝑤2 − 2𝑚3𝑤)
− 𝜆𝑠𝑟𝑤2 − 2𝜆𝑠𝑚1𝑤

= −𝑎𝜆 (𝑥 − 𝑚1)2 + 𝑎𝜆 (𝑚1)2
+ 𝑓 (𝑥) − 𝑑𝑚𝑦2 + ℎ (𝑦)
− 𝑏𝑚 (𝑧 − 𝑚2)2 + 𝑏𝑚 (𝑚2)2
− 𝑏𝑚𝑧2 − 𝜆𝑠𝑟 (𝑤 − 𝑚3)2
+ 𝜆𝑠𝑟 (𝑚3)2 + 𝑔 (𝑤)

= −𝑎𝜆 (𝑥 − 𝑚1)2 − 𝑑𝑚𝑦2
− 𝑏𝑚 (𝑧 − 𝑚2)2
− 𝜆𝑠𝑟 (𝑤 − 𝑚3)2 + 𝑓 (𝑥)
+ ℎ (𝑦) + 𝑔 (𝑤) − 𝑏𝑚𝑧2
+ 𝑎𝜆 (𝑚1)2 + 𝑏𝑚 (𝑚2)2
+ 𝜆𝑠𝑟 (𝑚3)2

≤ −𝜃𝑉𝜆,𝑚 (𝑋) +max
𝑥∈𝑅

𝑓 (𝑥)
+max
𝑦∈𝑅

ℎ (𝑦) +max
𝑤∈𝑅

𝑔 (𝑤)
+ 𝑎𝜆 (𝑚1)2 + 𝑏𝑚 (𝑚2)2
+ 𝜆𝑠𝑟 (𝑚3)2

= −𝜃𝑉𝜆,𝑚 (𝑋) + 𝜆𝑠
2 (𝑚3)2𝑎

+ 𝑎2𝜆2 (𝑚1)
2

𝑚𝑑 + 𝜆𝑠 (𝑚1)
2

𝑟
+ 𝑎𝜆 (𝑚1)2 + 𝑏𝑚 (𝑚2)2

+ 𝜆𝑠𝑟 (𝑚3)2
= −𝜃 [𝑉𝜆,𝑚 (𝑋) − 𝐿2𝜆,𝑚] .

(12)

Thus, we have

[𝑉𝜆,𝑚 (𝑋 (𝑡)) − 𝐿2𝜆,𝑚]
≤ [𝑉𝜆,𝑚 (𝑋 (𝑡0)) − 𝐿2𝜆,𝑚] 𝑒−𝜃(𝑡−𝑡0),

lim
𝑡→+∞

𝑉𝜆,𝑚 (𝑋 (𝑡)) ≤ 𝐿2𝜆,𝑚,
(13)

which clearly shows that Ω𝜆,𝑚 = {𝑋 | 𝑉𝜆,𝑚(𝑋) ≤ 𝐿2𝜆,𝑚} is the
globally exponential attractive set of system (2).

The proof is complete.

Remark 3. (i) In particular, let us take 𝑚1 = 0, 𝑚3 = 0 in
Theorem 2, we can get the conclusions below.

Suppose that ∀𝑎 > 0, 𝑏 > 0, 𝑑 > 0, 𝑟 > 0, 𝑐 > 0, 𝑠 > 0, 𝜆 >0,𝑚 > 0.
Let (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑤(𝑡)) be an arbitrary solution of

system (2) and

𝑀2𝜆,𝑚 = 𝑏 (𝑎𝜆 + 𝑐𝑚)2
𝜃𝑚 , 𝜃 = min (𝑎, 𝑏, 𝑑, 𝑟) > 0,

𝑉𝜆,𝑚 (𝑋) = 𝑉𝜆,𝑚 (𝑥, 𝑦, 𝑧, 𝑤)
= 𝜆𝑥2 + 𝑚𝑦2 + 𝑚(𝑧 − 𝑎𝜆 + 𝑐𝑚𝑚 )2 + 𝜆𝑠𝑤2,

∀𝜆 > 0, ∀𝑚 > 0.

(14)

Then the estimation

[𝑉𝜆,𝑚 (𝑋 (𝑡)) − 𝑀2𝜆,𝑚]
≤ [𝑉𝜆,𝑚 (𝑋 (𝑡0)) − 𝑀2𝜆,𝑚] 𝑒−𝜃(𝑡−𝑡0)

(15)

holds for system (2), and thus

Σ𝜆,𝑚 = {(𝑥, 𝑦, 𝑧, 𝑤) | 𝜆𝑥2 + 𝑚𝑦2

+ 𝑚(𝑧 − 𝑎𝜆 + 𝑐𝑚𝑚 )2 + 𝜆𝑠𝑤2 ≤ 𝑀2𝜆,𝑚, ∀𝜆

> 0, ∀𝑚 > 0}

(16)

is the globally exponential attractive set and positive invariant
set of system (2); that is,

lim
𝑡→+∞

𝑉𝜆,𝑚 (𝑋 (𝑡)) ≤ 𝑀2𝜆,𝑚. (17)
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Figure 5: Localization of hyperchaotic attractor of system (2) in the𝑥𝑂𝑦𝑧 space defined byΩ1,1.

(ii) Let us take𝑚1 = 0,𝑚3 = 0, 𝜆 = 1,𝑚 = 1; then we can
get

Σ1,1 = {(𝑥, 𝑦, 𝑧, 𝑤) | 𝑥2 + 𝑦2 + (𝑧 − 𝑎 − 𝑐)2 + 𝑠𝑤2

≤ 𝑏 (𝑎 + 𝑐)2
min (𝑎, 𝑏, 𝑑, 𝑟)}

(18)

as the globally exponential attractive set and positive invari-
ant set of system (2) according toTheorem 2.

When 𝑎 = 19.42, 𝑏 = 1.91, 𝑐 = 29.45, 𝑑 = 2.86, 𝑟 =0.23, 𝑠 = 9.64, we can get that

Ω1,1 = {(𝑥, 𝑦, 𝑧, 𝑤) | 𝑥2 + 𝑦2 + (𝑧 − 48.87)2 + 9.64𝑤2
≤ (140.8)2} (19)

as the globally exponential attractive set and positive invari-
ant set of system (2).

Figure 5 shows hyperchaotic attractor of system (2) in
the 𝑥𝑂𝑦𝑧 space defined byΩ1,1. Figure 6 shows hyperchaotic
attractor of system (2) in the 𝑥𝑂𝑦𝑤 space defined by Ω1,1.
Figure 7 shows hyperchaotic attractor of system (2) in the𝑥𝑂𝑧𝑤 space defined by Ω1,1. Figure 8 shows hyperchaotic
attractor of system (2) in the 𝑦𝑂𝑧𝑤 space defined by Ω1,1.
3. Conclusions

In this paper, we have investigated some global dynam-
ics of a generalized Lorenz–Stenflo system describing the
evolution of finite amplitude acoustic gravity waves in a
rotating atmosphere. Based on the Lyapunov method, the
globally attractive sets were formulated combining simple
inequalities. Finally, numerical examples were presented to
show the effectiveness of the proposed method.
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Figure 6: Localization of hyperchaotic attractor of system (2) in the𝑥𝑂𝑦𝑤 space defined byΩ1,1.
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Figure 7: Localization of hyperchaotic attractor of system (2) in the𝑥𝑂𝑧𝑤 space defined byΩ1,1.
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Figure 8: Localization of hyperchaotic attractor of system (2) in the𝑦𝑂𝑧𝑤 space defined byΩ1,1.
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