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The boiler-turbine unit is really a complex system in thermal power engineering due to its large-scale nonlinearity, unmeasured
state, unknown disturbances, and constraints imposed on both controls and outputs. To design a controller with appropriate
performance in above synthetical cases, this paper intends to propose an adaptively receding Galerkin optimal controller design
method, in which, the mathematical dynamics of unit can be directly used as a predictive model without any linearization, and
the unmeasured state in the predictive model is adaptively estimated using a predesigned state observer. With the help of a
mathematical predictive model, optimal control law is then obtained based on a Galerkin optimization algorithm. Due to the
application of the useful information measured at every sampling time instant, the proposed method can deal with the tracking
problem with constraints rather than the stabilization problem that can be only done by the traditional Galerkin optimal
control. Furthermore, it can also be easily extended to estimate and thus eliminate constant disturbances in an output channel
using an independent model strategy. Some simulations suggest that satisfactory tracking performance can be achieved even
when the unit experiences wide-range load change.

1. Introduction

The boiler-turbine unit plays a critical role in a thermal
power plant. Due to its genuine nonlinearity, serious cou-
plings among state variables, and physical constraints, it is
difficult to design a controller with appropriate transient
performance for the boiler-turbine unit [1]. In particular,
some key unmeasured state variables as well as unknown dis-
turbances bring much more difficulties in controlling the
boiler-turbine unit.

Conventionally, the boiler-turbine unit was usually oper-
ated in a local load range. In this way, the proportional-
integral-differential (PID) controller can achieve acceptable
performance [2]. However, the unit should be run now in
a large-scale load range, which leads the unit’s dynamics
to be inherently nonlinear [3]. In this case, it is challenging
to design a PID controller with appropriate performance,

especially when some physical constraints are required for
a safe and correct functioning of the unit. To achieve better
performance, recent years witness a surge of interests on
designing an advanced controller for the popular oil-fired
drum-type boiler-turbine unit [1], for example, see [3–19]
and the literature therein. As for the boiler-turbine unit, it
is interesting and imperative to derive new control strategy
that can maximize or minimize a specified control perfor-
mance index while honoring the constraints imposed on
the unit. Until now, several optimal controllers such as model
predictive control have been investigated and achieved better
performances for the unit [4, 10–13, 15, 16]. Nevertheless,
most of these controllers were designed on the basis of
either the black-box nonlinear model identified from run-
ning data of the unit or linear models obtained by lineariz-
ing the unit’s mathematical model. More attentions recently
have been paid to optimal controller design, for example,
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see [20]. How to design an optimal controller directly based
on the unit’s mathematical model with appropriate tracking
performance is still open.

When designing an optimal controller for either the unit
or other nonlinear systems, it has been well recognized as an
extremely challenging problem to analytically solve a state-
and control-constrained nonlinear optimal control problem
in particular in real-time applications. As a matter of fact,
due to the genuine large-scale nonlinearity of the unit, it is
widely considered to be difficult to solve an optimal control-
ler for the unit even in nonreal time. The main difficulty
arises in seeking a closed-form solution to the Hamilton-
Jacobi equation or in solving the canonical Hamiltonian
equations resulting from an application of the minimum
principle [21]. Alternatively, a Galerkin pseudospectral
method [22, 23] is one of the most efficient computational
approaches, intending to solve the optimal state and control
sequences through transforming the state- and control-
constrained nonlinear optimal control problems into a non-
linear programming problem [18, 24]. There are some obsta-
cles on the path to design a Galerkin optimal controller to
make the unit track large-scale load demand/reference.
Firstly, either the Galerkin method or other pseudospectral
methods usually pay much more attentions to the stabiliza-
tion problem rather than the tracking problem. To solve
the tracking problem, the Galerkin method should be reced-
ing or rolling in some sense by making use of the useful infor-
mation measured at every sampling time instant. Secondly,
to make use of information at every sampling time instant,
it requires all state variables to be measurable. It will be seen
that the key unmeasured state fluid density in the drum of the
unit is unmeasurable. Finally, some unknown (constant) dis-
turbances in the output channels bring much more difficul-
ties. How to compensate uncertainties/disturbances so as to
enhance control performance can be referred, for example,
to [25–27].

Motivated by above statements, this paper aims to pro-
pose an adaptively receding Galerkin optimal control
method for an oil-fired drum-type boiler-turbine unit with
some unmeasured states as well as some unknown constant
disturbances in the output channels. More precisely, a state
observer is first designed to adaptively estimate the key
unmeasured state so as to make the information available at
every sampling time instant; then, a receding Galerkin opti-
mal controller is constructed by sufficiently taking into
account information observed at each sampling time,
through borrowing the basic idea from the model predictive
control method; after this, an independent model strategy is
embedded into the receding Galerkin controller structure to
estimate and thus eliminate the constant disturbances in
the output channels. Evidently, the main contributions of this
paper are in twofold: an adaptively receding Galerkin optimal
control strategy with estimations of unmeasured state and
unknown constant output disturbances and its application
for a boiler-turbine unit.

The rest of the paper is organized as follows. Section 3
briefly recalls the Galerkin method. In Section 5, the receding
Galerkin optimal control strategy is proposed after introduc-
ing the boiler-turbine unit, including the state observer and

the independent model strategy. Simulation results are pre-
sented in Section 4. The last section concludes this paper.

2. Galerkin Method

The main purpose of the optimal control is to solve out the
admissible control sequences minimizing a cost function
based on the mathematical model of an object. The mathe-
matical description of an optimal control problem can be
described as follows: determine the state-control function
pair, t→ x, u ∈ RNx × RNu minimizing the following cost
functional (or called a performance index)

J =
t f

t0

F x t , u t dt + E x t f , 1

subject to the dynamics

x t = f x t , u t , 2

initial conditions

x t0 = x0, 3

endpoint conditions

e x t f = 0, 4

and path constraints

h x t , u t ≤ 0, 5

where the running (or Lagrange) cost F RNx × RNu → R, the
endpoint (or Mayer) cost E RNx × RNx → R, f RNx × RNu

→ RNx , e RNx × RNu → RNe , and h RNx × RNu → RNh are
all Lipschitz continuous.

A Galerkin method transforms the above problem into a
nonlinear programming problem through the following four
steps: approximating state and control variables, discretizing
the system dynamics, integrating the cost function, and dis-
cretizing other constraints.

To realize approximation or discretization, it needs to
introduce the concept of the node. By converting the real-
time domain t ∈ t0, t f into a closed interval τ ∈ −1, 1
according to

τ = 2t − t f + t0
t f − t0

, 6

a series of Legendre-Gauss-Lobatto (LGL) nodes can be cal-
culated as the roots of

ξ τ = 1 − τ2 LN τ , 7

where LN τ is the Nth order Legendre polynomial defined
by LN τ = −1 N /2NN dN /dτN 1 − τ N . Obviously, there
are N + 1 LGL nodes in τ-space such that

τi
N
i=0  τ0 = −1 < τ1 < τ2 <⋯ < τN = 1 , 8

which correspond to t Ni
N
i=0 = t0 = t N0 < t N1 <⋯ <

t NN = t f in the real-time domain.

2 Complexity



In this way, one has x t = x τ , u t = u τ , or more
specifically xNi = x tNi = x τi , u

Ni = u tNi = u τi , i = 0, 1
,… ,N . With the help of LGL nodes, a Galerkin method
approximates the state and control by the Nth order
Lagrange interpolation polynomial defined on LGL nodes
as follows:

x τ ≈ 〠
N

j=0
ϕNj τ ⋅ xN j ,

u τ ≈ 〠
N

j=0
ϕNj τ ⋅ uN j ,

9

where ϕNj τ is the Nth order Lagrange interpolation basis

function defined by ϕNj τ =∏N
i=0,i≠j τ − τi / τj − τi

Using (9), the differential equation (2) can be approxi-
mated using the following integral formulation:

1

−1
ψi τ x τ −

t f − t0
2 f x τ , u τ dτ = 0, 10

with test functions ψi τ . When defining test function as
equal to the basis function ϕNj τ , (10) can be rewritten as

〠
N

j=0

1

−1
ϕi τ

Nϕ
N
j τ dτ ⋅ xN j −

t f − t0
2

1

−1
f x τ , u τ dτ = 0

11

For simplicity, define Dij = 1
−1 ϕi τ

Nϕ
N
j τ dτ and Δi =

t f − t0 /2 1
−1 f x τ , u τ dτ. The following two approxi-

mate equalities can be induced:

Dij ≈ 〠
N

k=0
ϕi τk

Nϕ
N
j τk wk ≈ ϕ

N
j τi wi =Aijwi,

Δi ≈
t f − t0
2 f x τi , u τi wi,

12

where Aij is the Legendre differentiation matrix calculated by
Aij = LN τi /LN τj 1/ τi − τj for i ≠ j, Aij = −N N + 1
/4 for i = j = 0, and Aij = N N + 1 /4 for i = j =N , other-

wise 0, i = j ∈ 1,… ,N − 1 , and wi′s are the quadrature
weights, and the LGL version of quadrature weights can be
calculated as

wi =
2

N N + 1 LN τi
, i = 0, 1,… ,N 13

With the help of Dij and Δi, (11) can thus be finally sim-
plified as

〠
N

j=0
Dij ⋅ x

N j − Δi = 0, i = 0, 1,… ,N 14

In a relatively easy way, the cost function (1) can then be
approximated according to the Gauss-Lobatto integration
rule as follows:

J =
t f

t0

F x t , u t dt + E x t f

= t f − t0
2 〠

N

j=0
F xN j , uN j wj + E xNN

15

Finally, together with the following approximations

xN0 = x0, e xNN = 0, h xNi , uNi ≤ 0, i = 0, 1,… ,N , 16

the Galerkin method transforms the continuous optimal
control problems (2), (3), (4), and (5) into the following dis-
crete nonlinear programming problem:

min
xN j ,uN j

 J = t f − t0
2 〠

N

j=0
F xN j , uN j wj + E xNN

s t   〠
N

j=0
Dij ⋅ xN j − Δi

∞

≤ δN ,

xNo − x0 ∞ ≤ δN ,

eNN
∞ ≤ δN ,

h xNi , uNi ≤ δN , i, j = 0, 1,… ,N ,
17

where δN is a constant tolerance used to guarantee feasibility
of the nonlinear programming problem [21].

To solve a discrete nonlinear programming problem (17),
a nonlinear programming solver such as SNOPT and IPOPT
is usually used [21].

3. Main Results

3.1. Problem Formulations and Adaptively Receding Galerkin
Strategy. This paper considers a 160MW oil-fired drum-type
boiler-turbine unit [1], whose flow diagram is summarized
in Figure 1. The mathematical model of this unit has been
established in a form of

x1 = f1 x, u = −0 0018u2x1 125
1 + 0 9u1 − 0 15u3, 18

x2 = f2 x, u = 0 073u2 − 0 16 x1 1251 − x2, 19

x3 = f3 x, u = 141u3 − 1 1u2 − 0 19 x1
85 , 20

y1 = x1, 21

y2 = x2, 22

y3 = h x, u = 0 05 0 13073x3 + 100αcs +
qe

9 − 67 975
23

where x1 is drum pressure (kg/cm2); x2 is electrical output
(MW); x3 is fluid density in the drum (kg/cm3); outputs
y1, y2, and y3 are, respectively, the drum steam pressure,
electrical output, and drum water level; u1, u2, and u3
are, respectively, the normalized fuel flow rate, control

3Complexity



valve position, and feedwater flow rate; and the coefficient
αcs and evaporation rate of steam qe (kg/s) are defined, respec-
tively, as

αcs =
1 − 0 001538x3 0 8x1 − 25 6
x3 1 0394 − 0 0012304x1

, 24

qe = 0 854u2 − 0 147 x1 + 45 59u1 − 2 514u3 − 2 096
25

For safety consideration, models (18), (19), (20), (21),
(22), and (23) should satisfy the following constraints [1, 5]:

uis ∈ 0, 1 ,
u1 ≤ 0 007,
u2 ≤ 0 02,
u3 ≤ 0 05,
y1 ∈ 70, 150 ,
y2 ∈ 10, 190 ,
y3 ∈ −0 1, 0 1

26

Remark 1. Models (18), (19), (20), (21), (22), and (23) indi-
cate that the unit’s behaviors are genuinely nonlinear and
state variables are seriously coupled. In particular, the state
x3 is unmeasurable. Furthermore, as will be seen, (constant)
output disturbances will be considered. All these facts put
some obstacles on the path to design a receding Galerkin
optimal controller for the unit straightforwardly.

Galerkin optimal control for boiler-turbine unit: define
v = v1, v2, v3 ′ such that v1 = u1/c1, v2 = u2/c2, and v3 = u3/c3
with expansion coefficients ci′s, the optimal control problem
for the unit can be formulated as (utilizing (18), (19), (20),
(21), (22), and (23))

min
x,v

 JBT =
t f

to

y − yr ′P y − yr + v′Qv dt

s t  u1 = c1v1,
u2 = c2v2,
u3 = c3v3,

27

where the outputs y = y1, y2, y3 ′, output references yr =
y1r , y2r , y3r ′, and u = u1, u2, u3 ′; u is the controllers’ deriv-
atives; P and Q are positive definite weight matrices. By
introducing c = c1, c2, c3 ′, the states and change of controls
can now satisfy

70 ≤ x1 ≤ 150,
10 ≤ x2 ≤ 190,
0 ≤ u1, u2, u3 ≤ 1,

∣v1∣ ≤
0 007
c1

,

∣v2∣ ≤
0 02
c2

,

∣v1∣ ≤
0 05
c3

,

28
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Figure 1: Structure of a 160MW boiler-turbine unit in a thermal power plant.
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and the path constraints h x, u − 0 1 ≤ 0 and −h x, u −
0 1 ≤ 0.

It is evident that the current Galerkin method interpreted
in Section 3 is only feasible for the stabilization problem
rather than the tracking problem. To deal with the tracking
problem, it should take into account the useful information
measured at each sampling time instant, including the infor-
mation of states, outputs, and references. To solve this prob-
lem, a receding version of Galerkin optimal control strategy
is proposed straightforward by borrowing the basic idea from
model predictive control as below.

(i) At current time instant tk, let the current state x tk
and control u tk be the initial conditions, that is,
x0,k = x tk , u0,k = u tk ; then, obtain the optimal dis-
crete state and control sequences xN j ,k and uN J ,k

by minimizing JBT through the Galerkin method
over the prediction horizon t0, t f = tk, tk + ΔT ,
where ΔT is the length of horizon. More precisely,
we have

min
xN j,k ,uN j,k ,vN j,k  JBT = ΔT

2 〠
N

j=0
yN j ,k − y

N j ,k
r ′P

· yN j ,k − y
N j ,k
r

+ vN j,k′QvN j ,k wj

s t   〠
N

j=0
Dij

xN j ,k

uN j ,k
− Δi

∞

≤ δN ,

xN0,k − x0,k
∞
≤ δN ,

uN0,k − u0,k
∞
≤ δN ,

h xN j ,k, uN j,ki − 0 1 ≤ δN ,

−h xN j ,k, uN j ,ki − 0 1 ≤ δN , i, j = 0, 1,… ,N ,

29

with yN j ,k = x
N j ,k
1 , xN j,k,

2 , h xN j ,k, uN j,k ′ and Δi =
f1 · , f2 · , f3 · , c1v

Ni ,k
1 , c2v

Ni ,k
2 , c3v

Ni ,k
3 ′. Note that

the superscript k in variables such as xN j ,k and uN j ,k

is just used to distinguish optimal solutions at differ-
ent sampling time instants.

(ii) Apply the optimal control law uN1,k on the unit and
repeat the above operations in step (i) at the coming
time instant tk+1.

3.2. Receding Galerkin Optimal Control with a State Observer.
In order to implement the receding Galerkin optimal con-
troller, all the states should be known in advance. However,
the state variable x3, that is, the fluid density in the drum,

cannot be measured online. Therefore, we design a state
observer to estimate the unmeasured state x3 as follows.

Proposition 1. The following observer can render the unmea-
sured state in the unit (18), (19), (20), (21), (22), and (23)
asymptotically to its true value:

x̂3 =
141u3 − 1 1u2 − 0 19 x1

85 + l y3 − ŷ3
, 30

where ŷ3 = 0 05 0 13073x̂3 + 100αcs + qe/9 − 67 975 with
αcs = 1 − 0 001538x̂3 0 8x1 − 25 6 /x̂3 1 0394 − 0 0012304
x1 , and constant l is observer gain.

Proof.Define the error e = x3 − x̂3, whose derivative results in

e = x3 − x̂3 = −l y3 − ŷ3 = −l ⋅ 0 05 0 13073 x3 − x̂3

+ 100 αcs − αcs = −l ⋅ 0 05 0 13073 − β x1
100
x3x̂3

e,

31
with β x1 = 0 8x1 − 25 6 / 1 0394 − 0 0012304x1 .

Note that x1 ∈ 70,150 , then one can conclude β x1 ≤
110 43 (when x1 = 150, β x1 takes the maximum value),
which together with x3 ≥ 299 6 leads to

β x1
100
x3x̂3

≤ 110 43 · 100
x3x̂3

≤ 110 43 · 100
299 6x̂3

≤
36 86
x̂3

32
If x̂3 > 299 6, like the real range of the state x3, one has

0 13073 − β x1
100
x3x̂3

> 0 13073 − 36 86
x̂3

> 0 33

It means that as long as x̂3 0 > 299 6, we can achieve
e = −le with a positive coefficient l. In fact, it is reasonable
to preset any initial value for state x̂3 in its practical range.
To this end, the estimated value of state x̂3 can asymptot-
ically converge to its true value.

Remark 2. To show the performance of the above state
observer, a simple simulation is conducted here with x̂3 0 =
440 kg/cm3 and x1 0 = 100 kg/cm2 under constant con-
trol inputs u = 0 2,0 6,0 3 ′. The performance is shown in
Figure 2, where the true trajectory of x3 is obtained according
to (20) with initial condition x3 0 = 449 5 kg/cm3 and other
conditions as the same as the observer. It suggests that the
larger the constant l is, the observer approaches to the true
trajectory faster.

With the help of Proposition 1, the estimated state x̂3 k
at the kth sampling time instant will be taken as the initial
condition for real x3 k to implement the receding Galerkin
method. Figure 3 presents the block diagram of the receding
Galerkin optimal control strategy with the state observer for
the unit.

3.3. Receding Galerkin Optimal Control with an Independent
Model. There are always different versions of disturbances in
practice for the unit. By considering the fact that the unit is
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usually slowly time-varying, we just consider constant distur-
bance d = d1, d2, d3 ′ in the output channels in this paper.
More precisely, we hold (18), (19), (20), and the following

y1 = x1 + d1,
y2 = x2 + d2,

y3 = 0 05 0 13073x3 + 100αcs +
qe

9 − 67 975 + d3

34

In order to estimate the constant output disturbances, an
independent model strategy can be introduced into the
receding Galerkin optimal control strategy with the state
observer, as shown in Figure 4.

It can be seen from Figure 4 that the constant output
disturbance d can be estimated according to

d̂ = yp − ym, 35

where yp = y + d is the practical output and ym is the output
of an independent model. Here, the independent model is
simply defined as the same as models (18), (19), (20), (21),
(22), and (23). To this end, the estimated disturbances d̂ are
fed back instead of d in (33) to implement the receding
Galerkin method.

Remark 3. The existence of constant output disturbance d does
not affect the estimation of unmeasured state x3. This is because
the error ed = d − d̂ in e = −l e + ed will disappear at the com-
ing sampling time instant once the constant output disturbance
d appears. In practice, the mathematic model of the unit is
not accurate, which means (34) cannot estimate d perfectly.
In this case, the error ed cannot be zero but be bounded. In
this way, the estimate error e will just approach zero.

Remark 4. For either the unit (18), (19), (20), (21), (22), and
(23) or the one with constant output disturbances like (18),
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Figure 2: Performance of state observer for x3
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Figure 3: Block diagram used to implement the receding Galerkin method with the state observer.
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(19), (20), (21), (22), (23), (24), (25), (27), (28), (29), (30),
(31), (32), and (33), the solutions of problem (27) do in fact
exist by selecting appropriate feasibility tolerance δN and
the order of approximation N , as remarked in [21, 23]. Pre-
cise bounds for δN can be found experimentally using a
recursive refinement process through increasing the order
of approximation N until all the constraints in a nonlinear
programming problem like (27) are satisfied.

4. Simulation

In this section, some simulations are conducted to validate
the performance of receding Galerkin optimal control strat-
egy for the oil-fired drum-type boiler-turbine unit.

To implement the receding Galerkin optimal control
strategy, a nonlinear programming solver SNOPT is adopted
and some controller parameters should be preset in advance
such as l,N , δN, ci′s, t0, t f , P, and Q. Suppose the sampling
time for the unit is Ts. Due to the fact that only the second
component in the optimal control sequence should be
applied on the unit, the first two approximate time points
in t-time domain should satisfy tN1 − tN0 = Ts. Therefore,
with a given node number N , according to (6), we can deter-
mine the terminal time t f as

t f = t0 + 2 t
N1 − tN0

τ1 − τ0
= t0 +

2Ts
τ1 + 1 , 36

where t0 = tk at the kth sampling time instant, and τ1 can
be calculated by (7). During our simulations, we suggest
Ts = 1 s

We choose l = 30, δN = 10−5 in what follows and will
discuss the influences of N , ci′s, P, and Q on the closed-loop
system in Section 4.1. In Section 4.2, we continuously validate
the controller performance through several study cases.

4.1. Influences of Controller Parameters. For simplicity in this
section, the states, outputs, and control inputs are initialized
for all study cases as follows: x 0 = 100,50,449 5 ′, y3 0 = 0,
x̂3 0 = 445, and u 0 = 0 271,0 604,0 337 ′. The outputs
yi′s aim to track constant references y1r = 110, y2r = 55,
and y3r = 0, respectively.

Firstly, we focus on the influence of the node number
N on the performance of the closed-loop system by consid-
ering N = 10,20,30 . Given cj′s = 0 001, i = 1, 2, 3, P = diag
1, 1, 2000 ,Q = diag 2, 1, 2 , where diag · indicates a

diagonal matrix. The simulation results are shown in
Figure 5, from which we can see that too small value of
N (e.g., N = 10 here) usually leads to unappropriate perfor-
mance and that a larger value of N leads to faster responses
as well as control inputs. While N raises up to a certain limit,
the responses and control inputs will change slightly but with
an increasing heavy burden of computation. In what follows,
we prefer to select N = 20. Correspondingly, the length of
prediction horizon can be calculated as ΔT = t f − t0 =
103 63 s

With fixing N = 20, P = diag 1, 1, 2000 , and Q = diag
2, 1, 2 , we can now test the influence of expansion

coefficients ci′s on the performance of the closed-loop sys-
tem. Here, we just consider identical ci′s by taking values in
0 1,0 01,0 001 for all i = 1, 2, 3. Simulation results are illus-

trated in Figure 6, which indicates that larger ci′s usually result
in faster responses with drastic changes of control inputs. To
guarantee the constraints imposed on the changes of con-
trols, we prefer smaller ci′s, that is, we suggest ci′s = 0 001 for
all i = 1, 2, 3.

Besides N and cj′s, matrixes P and Q in the perfor-
mance index JBT also play a critical role. To see an insight,
by fixing N = 20 and cj′s = 0 001, we consider the following
three cases: (1) P = diag 1,1,2000 ,Q = diag 2,1,2 , (2)

yr

Galerkin optimal controller

Constraints

Independent model

Boiler-turbine unit

ym

yp

x1, x2

u

x= f(x,u),

− d

d

y
+

+

+

⌃

.

u = cv,.

x(t0) = x0,
u(t0) = u0,
y =g(x,u)+d.⌃

⌃
d

⌃x ⌃x
.

State observer∫

Figure 4: Block diagram used to implement the receding Galerkin method with the independent model.
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Figure 5: Outputs and controls of the unit when taking different number N of nodes.
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Figure 6: Outputs and controls of the unit when taking different values of expansion coefficients ci′s.
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P = diag 10,10,20000 ,Q = diag 2,1,2 , and (3) P = diag
1,1,2000 ,Q = diag 10,5,10 .

The results are shown in Figure 7. It can be seen from
Figure 7 that the responses of the unit will arrive at their
static setpoints faster by increasing P or relatively decreasing
Q and that smaller control laws can be achieved when taking
a larger value of Q. One can select appropriate P and Q by
considering the trade-off between the constraints on the out-
put and control inputs.

From above discussions, we select the controller parame-
ters as P = diag 1, 1, 2000 , Q = diag 2, 1, 2 , N = 20, and
ci′s = 0 001 for the consequent performance validations in
what follows.

4.2. Performance Validation. This subsection presents the fol-
lowing three different study cases so as to further validate the
performance of the receding Galerkin optimal controller.

Case 1. Receding Galerkin optimal control versus PID.
In this case, we compare the performances of receding
Galerkin optimal control strategy and PID. We aim to
drive the outputs to yr = 110,55,0 ′ from initial condition
x 0 = 100,50,449 5 ′, y3 0 = 0, x̂3 0 = 445, and u 0 =
0 271,0 604,0 337 ′. The 2-freedom PID controller saturated
in bound 0, 1 is designed as

uPID s = kp kbyr s − y s + ki
s

yr s − y s

+ kd
kN

1 + kN /s
kcyr s − y s ,

37

with the following parameters

kp = 0 7646, 0 0118, 21 0424 ′,

ki = 0 0455, 0 0023, 9 437 ′,
kd = −0 6708, −0 0005, −58 22 ′,
kb = 0 8722, 0 0088, 0 3667 ′,
kc = 01 68, 0 0088, 0 3667 ′,
kn = 0 5917, 22 415, 0 3119 ′

38

The results are shown in Figures 8, which demon-
strates that the receding Galerkin method outperforms
the 2-freedom PID controller. As can be seen from
Figure 8, the outputs of the receding Galerkin method
are much more smooth than that of PID and the control
inputs’ rate of change can be well guaranteed by the
receding Galerkin method. Note that the receding Galer-
kin method can guarantee y3 ∈ −0 1,0 1 , whereas the
PID does not. Furthermore, it is difficult to guarantee
the constraints imposed on the control inputs when apply-
ing PID.

Case 2. Wide-range load tracking.
In the second case, we intend to validate the tracking perfor-
mance of the receding Galerkin method when the unit expe-
riences in a wide-range load change. More precisely, we
suggest here that the electrical output y2 MW tries to track
load demand 80MW from a static condition 60MW with a
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Figure 7: Outputs and controls of the unit when taking different values of P and Q.
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rate of 0 1MW/s and then back to 50MW with the same rate
at time t = 500 s. Correspondingly, the drum steam pressure
y1 (kg/cm

2) rises from 110 (kg/cm2) to 120 (kg/cm2) with a
rate of 0 05 (kg/cm2/s) and descents back to 100 (kg/cm2)
with a rate of 0 067 (kg/cm2). The drum water level y3 has
to vary in range −0 1,0 1 .

The simulation results are shown in Figure 9. It shows
that the electrical output y2 can track the load demands/ref-
erences well and the drum water level y3 satisfies output con-
straint −0 1,0 1 . As well, the drum steam pressure y1 can
also track the predefined reference well during the changes
of load demands.

Case 3. Eliminating constant output disturbances using an
independent model.
In the last case, we intend to show the performance of the
receding Galerkin method with an independent model when
constant disturbances exist in output channels. On the basis
of Case 1, we suggest now that some constant disturbances
appear in output channels at different times. More precisely,
we define d t = d1 t , d2 t , d3 t ′ such that

d t = 0, if t < 400,
d t = 5, 5, 0 03 ′, if 400 ≤ t < 600,
d t = −5, −10, −0 05 ′, otherwise

39

Figure 10 shows that the constant output disturbances d
can be eliminated and the outputs of unit can track back to
their original reference points. However, the control inputs

settle at their new steady points. It suggests that the indepen-
dent model strategy is effective to estimate and thus eliminate
the constant output disturbances.

Remark 5. From above simulations and discussions, we can
see that optimal solutions can be really found by selecting
appropriate tolerance δN and the order of approximation
N , as already stated in Remark 4. The curves of the perfor-
mance index are shown in Figure 11 in the cases of wide-
range load tracking and existing constant output distur-
bances. We can see from Figure 11 that the performance
indexes can finally converge to zero and then the unit arrived
at static setpoints. This fact may suggest the stability of the
closed-loop systems in an intuitive way.

Remark 6. The proposed receding Galerkin optimal control
method can be in fact a general approach for a wide range
of nonlinear systems rather than only for the boiler-turbine
unit. For any nonlinear system, one just needs to design
a state observer to estimate the unmeasurable states for
this nonlinear system and then embed it into the receding
Galerkin optimal controller, as that has been done for the
boiler-turbine unit in this paper.

5. Conclusions

In summary, this paper proposes an adaptively receding
Galerkin optimal control strategy for a nonlinear boiler-
turbine unit. To deal with the problem of unmeasured state
variable fluid density, a state observer is designed and
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Figure 8: Outputs and controls of the unit by comparing with PID.
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embedded into the receding Galerkin strategy. Meanwhile,
an independent model structure is constructed in order
to estimate and thus eliminate constant disturbances in
output channels. Simulation results suggest that the unit
can track load reference during wide-range operations

with satisfactory performance via this receding Galerkin
optimal control strategy.

There are still some further interests. One most possible
interest is to extend the proposed method to deal with
lumped disturbances.
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Figure 10: Outputs and controls of the unit in the case of existing constant output disturbances.
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Figure 9: Outputs and controls of the unit in the case of tracking large-scale load reference.
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