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Abstract
We consider Geanakoplos and Polemarchakis’s generalization of Aumman’s famous result on “agree-
ing to disagree”, in the context of imprecise probability. The main purpose is to reveal a connection
between the possibility of agreeing to disagree and the interesting and anomalous phenomenon
known as dilation. We show that for two agents who share the same set of priors and update by
conditioning on every prior, it is impossible to agree to disagree on the lower or upper probability
of a hypothesis unless a certain dilation occurs. With some common topological assumptions, the
result entails that it is impossible to agree not to have the same set of posterior probabilities unless
dilation is present. This result may be used to generate sufficient conditions for guaranteed full
agreement in the generalized Aumman-setting for some important models of imprecise priors, and
we illustrate the potential with an agreement result involving the density ratio classes. We also
provide a formulation of our results in terms of “dilation-averse” agents who ignore information
about the value of a dilating partition but otherwise update by full Bayesian conditioning.

Keywords: agreeing to disagree; common knowledge; dilation; imprecise probability.

1. Introduction

In a simple but insightful paper, Aumann (1976) famously showed that two (Bayesian) agents who
start with the same (precise) prior cannot agree to disagree on their posteriors of a hypothesis,
in the sense that if the posteriors of the hypothesis (as well as the structures of their respective
information partitions) are common knowledge, then the posteriors must be equal. This result has
been generalized in at least two ways. First, Aumman’s result applies only to those events whose
posteriors happen to be common knowledge. Geanakoplos and Polemarchakis (1982) generalized
the framework to a communication setting where the agents are invited to repeatedly make their
credences public via announcements and update by conditioning on the announced credences, until
no new information is conveyed. They showed that for any hypothesis/event, this communication
procedure is guaranteed to lead to an agreement on the probability of the hypothesis, if the agents
start with the same (precise) prior (and each agent’s information partition is finite).

Second, Kajii and Ui (2005, 2009) and Carvajal and Correia-da-Silva (2010) generalized Aum-
man’s result in the setting of multiple priors. In this line of work, “agreement” is taken to mean
“partial agreement”, in the sense that two sets of probabilities agree if they have a non-empty in-
tersection. These authors established several sufficient conditions under which two agents who
(partially) agree on their priors are guaranteed to (partially) agree on their posteriors of a hypothesis
if these posteriors are common knowledge.
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In this paper, we combine the two more general settings and establish a connection between
the possibility of agreeing to disagree and the interesting and anomalous phenomenon known as
dilation (Good, 1974; Seidenfeld, 1981; Walley, 1991; Seidenfeld and Wasserman, 1993; Herron et
al., 1997). Dilation occurs when conditioning on each element of a partition, the lower and upper
probabilities of a hypothesis become more divergent than the unconditional ones. In such a case,
for agents who use full Bayesian conditioning as the updating rule, their credences on a hypothesis
become less precise or determinate after learning the value of the dilating partition, no matter which
value they learn! This counterintuitive phenomenon is often interpreted as a distinctive challenge to
the orthodox Bayesian doctrine on the value of information and to the Bayesian merging of opinions,
but as far as we know, it has never been discussed in connection to Aumman’s result. We shall show
that it is the key obstacle to reaching agreements via communicating posteriors by Bayesian agents
with imprecise priors.

We will establish the following. After introducing the setting and reviewing the special case of
precise probability in Section 2, we show in Section 3 that dilation is the only obstacle for agents
with the same (imprecise) prior to reaching agreements on lower and upper probabilities of a hy-
pothesis by communicating their posteriors on the hypothesis. Without dilation, the two agents in
our setting are guaranteed to end up agreeing on lower and upper probabilities of the hypothesis of
interest. An immediate consequence of this result, as we note in Section 4, is that under common
topological assumptions, dilation is the only obstacle to reaching a full agreement, full in the sense
that the sets of probability values representing the agents’ credences on the hypothesis of interest are
identical. This result opens the door to generating sufficient conditions for reaching full consensus
in the generalized Aumman-setting by plugging in sufficient conditions for the absence of dilation
in common and important models of imprecise probabilities. As an example, we include a corollary
about density ratio classes, which are shown to be dilation-immune by Seidenfeld and Wasserman
(1993). In Section 5, we provide another perspective on our results and reformulate the theorems
in terms of “dilation-averse” agents, who update by full Bayesian conditioning unless the informa-
tion is about the value of a dilating partition (in which case they ignore the information). For such
agents, they are guaranteed to end up agreeing on lower and upper probabilities, and, under some
common assumptions, end up fully agreeing.

2. A Procedure of Communicating Posteriors

In Geanakoplos and Polemarchakis (1982)’s setup, two agents share a common measurable space
(Ω,A) and have possibly different information partitions of Ω, P1 and P2, which are assumed to be
finite. Henceforth we use i ∈ {1, 2} to index the two agents, and when i is used in a statement we
always intend that the statement is true for both i = 1 and i = 2. For any w ∈ Ω, let P i(w) denote
the member of P i that contains w; intuitively, P i(w) represents agent i’s initial information at state
w. Both the space and the partitions are assumed to be common knowledge, in the standard sense of
the term used in game theory: some proposition is common knowledge just in case agent i knows
it, agent j (where j = 3 − i) knows that agent i knows it, agent i knows that agent j knows that
agent i knows it, ... and so on. Let P = P1 ∧ P2 be the meet of the two partitions (i.e., the finest
common coarsening of P1 and P2). As Aumann (1976, p. 1237) explained, at state w, P(w) — the
member of P that containsw — is the finest event inA that is common knowledge: any event that is
common knowledge is a superset of P(w). In Geanakoplos and Polemarchakis’s setting, common
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knowledge may grow as the agents communicate their posteriors of a hypothesis. So we call P(w)
the initial common knowledge and denote it by C0.

Instead of a common precise prior, we assume that the two agents have a common, (possibly)
imprecise prior, i.e., a common, non-empty set of priors, denoted by Q. Let P1 ∨ P2 denote
the join (i.e., the coarsest common refinement) of P1 and P2. We assume that every member of
P1∨P2 receives a positive probability under every measure in Q, so that all the relevant conditional
probabilities are well defined as ratios of unconditional probabilities. Let H ∈ A be a hypothesis of
interest. Henceforth by credences or posteriors we mean the agents’ credences or posteriors of H .
Let Q(H) denote the set of prior probabilities of H: Q(H) = {p(H) | p ∈ Q}. For any E ∈ A
such that p(E) > 0 for every p ∈ Q, let Q(H|E) = {p(H|E) = p(H∩E)/p(E) | p ∈ Q}. Unless
otherwise noted (in Section 5), we assume that the agents update their credences by full Bayesian
conditioning, where each and every prior in Q is updated by conditioning.

Suppose the true state is w. At step 0, agent i’s information is P i(w)∩C0 = P i(w). Thus agent
i updates her credence of H to Qi

0(H) = Q(H|P i(w)). Let P i
0 = {E ∈ P i | E ∩ C0 6= Ø}, which

is the set of those members of P i that are not ruled out by the initial common knowledge.
At step 1, the agents announce Q1

0(H) and Q2
0(H), respectively.1 Consider N i

1 = {E ∈ P i
0 |

Q(H|E) = Qi
0(H)}. Intuitively, N i

1 is the set of those members of P i
0 that are compatible with

Qi
0(H), and the effect of agent i’s announcement of Qi

0(H) is that it becomes common knowledge
thatP i(w) ∈ N i

1, or thatw ∈
⋃
N i

1 (where
⋃
N i

1 denotes the union of all the sets inN i
1). Therefore,

after the announcements at this step, C1 =
⋃
N 1

1 ∩
⋃
N 2

1 becomes common knowledge. Let
P i
1 = {E ∈ N i

1 | E ∩ C1 6= Ø}, which is the set of those members of N i
1 that are not ruled out

by the common knowledge at this step. Clearly P i
1 ⊆ N i

1 ⊆ P i
0 and C1 =

⋃
P1
1 ∩

⋃
P2
1 . Now, if

P i
1 = P i

0, or equivalently, if C1 = C0, neither agent learns new information and their credences will
stay the same no matter how many more exchanges take place; so the procedure stops. Otherwise,
agent i updates credence of H to Qi

1(H) = Q(H|P i(w) ∩ C1), and enters the next step.
In general, at step n+ 1, the agents announce Q1

n(H) and Q2
n(H), respectively. Let

N i
n+1 = {E ∈ P i

n | Q(H|E ∩ Cn) = Qi
n(H)}

Cn+1 =
⋃
N 1

n+1 ∩
⋃
N 2

n+1

P i
n+1 = {E ∈ N i

n+1 | E ∩ Cn+1 6= Ø}.

Again, N i
n+1 is the set of those members of P i

n that are compatible with Qi
n(H).2 Hence,

after the announcements at this step, Cn+1 becomes common knowledge, and P i
n+1 is the set of

those members of N i
n+1 that are not ruled out by Cn+1. Clearly, P i

n+1 ⊆ N i
n+1 ⊆ P i

n and
Cn+1 =

⋃
P1
n+1 ∩

⋃
P2
n+1. If P i

n+1 = P i
n, or equivalently, if Cn+1 = Cn, neither agent learns

new information and the procedure stops; otherwise, agent i updates credence of H to Qi
n+1(H) =

Q(H|P i(w) ∩ Cn+1), and enters the next step.
We will refer to this procedure as the (Bayesian) procedure of communicating posteriors (of

H). Obviously, since P1 and P2 are assumed to be finite, the procedure is guaranteed to stop at step
m + 1 for some m ≥ 0. Aumann’s original setting — where Q1

0(H) and Q2
0(H) are assumed to

be common knowledge at step 0 (i.e., it is assumed that N i
1 = P i

0) — is a special case in which the

1. In Geanakoplos and Polemarchakis’s design, at each step, agent 2 announces her prior after agent 1’s announcement,
already taking into account whatever information is conveyed in agent 1’s announcement. This feature is immaterial,
at least for the purpose of this paper.

2. Note that the definition ofN i
n+1 also applies to n = 0, as for every E ∈ Pi

0, E ∩ C0 = E.
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procedure stops at step 1. In general, the procedure stops at step m+ 1 if and only if both Q1
m(H)

and Q2
m(H) are already common knowledge at step m (i.e., before they are announced).

We adapt an example from Geanakoplos and Polemarchakis (1982) to illustrate this procedure.

Example 1 Let Ω = {w1, w2, w3, w4, w5, w6, w7, w8, w9} and A be the power set of Ω. Let P1 =
{{w1, w2, w3}, {w4, w5, w6}, {w7, w8, w9}} andP2 = {{w1, w2, w3, w4}, {w5, w6, w7, w8}, {w9}}.
Let H = {w3, w4}, and suppose the true state of the world is w1. For the common set of priors,
suppose Q is a density ratio class (Seidenfeld and Wasserman, 1993; see also Section 4):

Q = {(q1, q2, q3, q4, q5, q6, q7, q8, q9) |
∑

1≤j≤9
qj = 1, and

1

2
≤ qk
ql
≤ 2, 1 ≤ k, l ≤ 9.}.

It is easy to calculate that the lower probability of H is: Q(H) = infp∈Q p(H) = 1/8 (obtained
at (1/8, 1/8, 1/16, 1/16, 1/8, 1/8, 1/8, 1/8, 1/8)), and the upper probability of H is: Q(H) =
supp∈Q p(H) = 4/11 (obtained at (1/11, 1/11, 2/11, 2/11, 1/11, 1/11, 1/11, 1/11, 1/11)). Since
Q is closed and connected, Q(H) = [1/8, 4/11].

Suppose the two agents in this example carry out the procedure of communicating posteriors.
Here is a summary of the execution:

Step 0 C0 = (P1 ∧ P2)(w1) = Ω. P1(w1) = {w1, w2, w3} and Q1
0(H) = Q(H|P1(w1)) =

[1/5, 1/2]; P2(w1) = {w1, w2, w3, w4} and Q2
0(H) = Q(H|P2(w1)) = [1/3, 2/3].

Step 1 Agent i announces Qi
0(H). N 1

1 = {{w1, w2, w3}, {w4, w5, w6}} (for Q(H|{w7, w8, w9}) =
{0} 6= Q1

0(H).) N 2
1 = {{w1, w2, w3, w4}} (for Q(H|{w5, w6, w7, w8}) = Q(H|{w9}) =

{0} 6= Q2
0(H).) Thus C1 =

⋃
N 1

1 ∩
⋃
N 2

1 = {w1, w2, w3, w4}, and P i
1 = N i

1. Q1
1(H) =

Q(H|P1(w1) ∩ C1) = [1/5, 1/2]; Q2
1(H) = Q(H|P2(w1) ∩ C1) = [1/3, 2/3].3

Step 2 Agent i announces Qi
1(H). N 1

2 = {{w1, w2, w3}} (for Q(H|{w4, w5, w6} ∩ C1) = {1} 6=
Q1

1(H).) N 2
2 =P2

1 . Thus C2 = {w1, w2, w3}, and P i
2 = N i

2. Q1
2(H) = Q(H|P1(w1)∩C2) =

[1/5, 1/2]; Q2
2(H) = Q(H|P2(w1) ∩ C2) = [1/5, 1/2].

Step 3 Agent i announces Qi
2(H). N i

3=P i
2, and so C3 = C2. The procedure stops.

In this example, the communication ends up making each agent’s private information public.
This is not always the case, as later examples will illustrate. When (at least one agent’s) private
information remains private, it is in general possible to agree to disagree. However, in the case of a
precise prior, that is, if Q = {p̃} is a singleton, Geanakoplos and Polemarchakis (1982, Proposition
1) showed that when the procedure stops at step m + 1, it is necessarily the case that Q1

m(H) =
Q2

m(H). We present a version of the argument here that will facilitate our subsequent discussion.
Suppose the procedure stops at step m + 1. It means that P i

m+1 = P i
m (for both i = 1, 2, as we

always intend). This entails, by the definition of P i
m+1, that

∀E ∈ P i
m,Q(H|E ∩ Cm) = Qi

m(H) = Q(H|P i(w) ∩ Cm). (1)

Since Q = {p̃}, Q(H|E ∩ Cm) = {p̃(H|E ∩ Cm)} and Qi
m(H) = Q(H|P i(w) ∩ Cm) =

{p̃(H|P i(w) ∩ Cm)}. It follows that

∀E ∈ P i
m, p̃(H|E ∩ Cm) = p̃(H|P i(w) ∩ Cm). (2)

3. Although Qi
1(H) = Qi

0(H), the procedure goes on, because some agent still acquires new information in this step.
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Since all members of P i
m are mutually disjoint, (2) entails that

p̃(H|
⋃
P i
m ∩ Cm) = p̃(H|P i(w) ∩ Cm). (3)

Recall that Cm =
⋃
P1
m ∩

⋃
P2
m. Hence

⋃
P i
m ∩ Cm = Cm. It then follows from (3) that

p̃(H|P i(w) ∩ Cm) = p̃(H|Cm). (4)

Therefore, p̃(H|P1(w) ∩ Cm) = p̃(H|P2(w) ∩ Cm); that is, the two agents end up agreeing.
Two comments are in order. First, equation (4) shows that the two agents are driven to the same

posterior because when the communication stops, the resulting common knowledge (Cm) renders
each agent’s private information (P i(w)) irrelevant to H (even if P i(w) remains private). However,
it does not follow that P1(w) and P2(w) are jointly irrelevant to H given Cm. As Geanakoplos and
Polemarchakis (1982, Proposition 3) observed, the consensus reached via the procedure of commu-
nicating posteriors can be different from the consensus that would result from directly exchanging
private information. Clearly, they are different if and only if P1(w) and P2(w) are jointly relevant
to H given Cm, even though each is marginally irrelevant given Cm (see Example 3 in Section 6).

Second, and more importantly for the purpose of this paper, a crucial step in the above argument
is the move from (2) to (3), where what is needed is the following fact: if all members of a (finite)
set of events E are mutually disjoint, and for every E ∈ E , p̃(H|E) = q, then p̃(H|

⋃
E) = q. An

analogous condition for imprecise probabilities would be the following: if all members of a (finite)
set of events E are mutually disjoint, and for every E ∈ E , Q(H|E) = Q (where Q is a set of real
numbers), then Q(H|

⋃
E) = Q. This condition does not hold in general for sets of probabilities.4

3. Dilation and Agreeing to Disagree on Lower and Upper Probabilities

We borrow a simple example from Carvajal and Correia-da-Silva (2010) to illustrate the failure of
the said condition for sets of probabilities.

Example 2 Let Ω = {w1, w2, w3, w4} and A the power set of Ω. Let P1 = {{w1, w2}, {w3, w4}}
and P2 = {Ω}. Suppose Q = {(1/2, 0, 1/2, 0), (0, 1/2, 0, 1/2)}; that is, the common set of
priors consists of just two probability measures, represented by the two probability vectors.5 Let
H = {w2, w3}, and suppose the true state of the world is w1.

This is an Aumann case in that the agents’ posteriors on H are already common knowledge at the
beginning; the procedure of communicating posteriors stops at step 1, for C1 = C0 = Ω. How-
ever, Q1

0(H) = {0, 1} and Q2
0(H) = {1/2}. Not only are the sets non-identical, they are in full

4. Even in the case of precise probability, it is well known that this condition, as a special case of conglomerability, can
fail for finitely but not countably additive probability measures (de Finetti, 1972; Schervish et al., 1984; Hill and Lane,
1985). This does not matter in the setup we are considering, for the partitions are assumed to be finite. However,
the original setup in Aumann (1976) seems to allow denumerable infinite partitions, in which case Aumann’s result
does not necessarily hold for merely finitely additive probabilities. More generally, Schervish et al. (2016) showed
that conglomerability can fail in a partition of cardinality κ for a probability measure that is not κ-additive. Thus, if
uncountable partitions are allowed, Aumann’s result may fail even for countably additive measures.

5. In case readers are concerned that the two probabilities are not positive and are mutually singular, these special
features are not essential. We can also use Q = {(1/2− ε, ε, 1/2− ε, ε), (ε, 1/2− ε, ε, 1/2− ε)}, 0 < ε < 1/4, to
make the same point.
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disagreement in the sense that they do not even intersect and have different lower and upper prob-
abilities. The agents agree to fully disagree. The condition we highlighted at the end of Section 2
fails dramatically in this case for agent 1’s partition P1

1 (which is identical to P1 in this case):
Q(H|{w1, w2}) = Q(H|{w3, w4}) = {0, 1}, while Q(H|{w1, w2, w3, w4}) = {1/2}.

This dramatic failure of the condition is known as dilation (Good, 1974; Seidenfeld, 1981;
Walley, 1991; Seidenfeld and Wasserman, 1993; Herron et al., 1997). No matter which member of
P1
1 is the case, the resulting conditional probability is less precise than the probability conditional

on
⋃
P1
1 . Given a non-empty set of probabilities R, let R(A|E) = infp∈R p(A|E) denote the lower

probability of A conditional on E, and R(A|E) = supp∈R p(A|E) denote the upper probability of
A conditional on E. Here is a definition of dilation that suits the present purpose.

Definition 1 (Dilation) Let R be a non-empty set of probability measures on (Ω,A). Let E be a
finite, non-empty set of mutually disjoint events. E is said to dilate an event A with respect to R
(or R(•|

⋃
E)) if for every E ∈ E , the interval [R(A|E),R(A|E)] strictly contains the interval

[R(A|
⋃
E),R(A|

⋃
E)].

This is a slight generalization of the standard definition of dilation (Seidenfeld and Wasserman,
1993, p. 1141)6, for it considers dilation in a subspace

⋃
E (the definition reduces to the standard

one when
⋃
E = Ω), but the idea and the anomalous feature are exactly the same. Again, in

example 2, P1
1 , which happens to be the same as {E ∩ C1 | E ∈ P1

1}, dilates the hypothesis of
interest with respect to the given prior. This is not a coincidence, as Theorem 3 below shows. It is a
simple consequence of the following lemma, which is a straightforward generalization of Lemma 1
in Carvajal and Correia-da-Silva (2010; also see Kajii and Ui, 2005, Proposition 3).

Lemma 2 Suppose the procedure of communicating posteriors stops at step m+ 1. Then

Q(H|Cm) ⊆ [Q(H|P i(w) ∩ Cm),Q(H|P i(w) ∩ Cm)]

for both i = 1, 2.
Proof As already mentioned, when the procedure stops at stepm+1, we have equation (1), namely,

∀E ∈ P i
m,Q(H|E ∩ Cm) = Q(H|P i(w) ∩ Cm).

Consider i = 1 first. Let P1
m = {E1, ..., Ek}. Notice that {E1 ∩ Cm, ..., Ek ∩ Cm} forms a partition

of
⋃
P1
m ∩ Cm. Hence, for every p ∈ Q, by the law of total probability

p(H|Cm) = p(H|
⋃
P1
m ∩ Cm) =

∑
1≤j≤k

p(H|Ej ∩ Cm)p(Ej ∩ Cm|
⋃
P1
m ∩ Cm). (5)

Given equation (1), we have that for every 1 ≤ j ≤ k, p(H|Ej ∩ Cm) ∈ Q(H|Ej ∩ Cm) =
Q(H|P1(w) ∩ Cm). It follows that for every 1 ≤ j ≤ k,

Q(H|P1(w) ∩ Cm) ≤ p(H|Ej ∩ Cm) ≤ Q(H|P1(w) ∩ Cm). (6)

6. Herron et al. (1997, p. 412) gave a weaker definition of dilation, requiring only that all conditional intervals contain
and some of them strictly contain the unconditional interval. This definition (similarly generalized) would work
equally well for our purpose. We thank an anonymous referee for this point.
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Equation (5) and (6) together entail that

p(H|Cm) ≥ Q(H|P1(w) ∩ Cm)
∑

1≤j≤k
p(Ej ∩ Cm|

⋃
P1
m ∩ Cm) = Q(H|P1(w) ∩ Cm), (7)

and

p(H|Cm) ≤ Q(H|P1(w) ∩ Cm)
∑

1≤j≤k
p(Ej ∩ Cm|

⋃
P1
m ∩ Cm) = Q(H|P1(w) ∩ Cm). (8)

Since (7) and (8) hold for every p ∈ Q, the desired conclusion is established for i = 1. The case of
i = 2 is of course entirely parallel.

Lemma 2 shows that although equation (1) does not entail that Q(H|Cm) = Q(H|P i(w) ∩ Cm), it
does entail that Q(H|Cm) is bounded by the infimum and supremum of Q(H|P i(w) ∩ Cm). The
following theorem is then immediate.

Theorem 3 Suppose the procedure of communicating posteriors stops at step m + 1. If for both
i = 1, 2, {E ∩ Cm | E ∈ P i

m} does not dilate H , then Q(H|P1(w) ∩ Cm) = Q(H|P2(w) ∩ Cm)

and Q(H|P1(w) ∩ Cm) = Q(H|P2(w) ∩ Cm).

Proof Lemma 2 entails that for both i = 1, 2,

Q(H|P i(w) ∩ Cm) ≤ Q(H|Cm),Q(H|Cm) ≤ Q(H|P i(w) ∩ Cm).

Since Cm =
⋃
P i
m ∩ Cm, if either of the inequality is strict, then {E ∩ Cm | E ∈ P i

m} dilates H ,
because of equation (1). Therefore, if {E ∩ Cm | E ∈ P i

m} does not dilate H , then

Q(H|P i(w) ∩ Cm) = Q(H|Cm),Q(H|Cm) = Q(H|P i(w) ∩ Cm).

The desired conclusion follows.

Thus, the two agents can agree to disagree on the lower or upper probability of a hypothesis only if
a certain dilation takes place. Without dilation, the two agents are guaranteed to reach consensus on
lower and upper probabilities by communicating posteriors.

It is worth noting that for the argument for Theorem 3 to go through, it is not necessary to require
the agents to communicate their sets of posteriors. It is sufficient to ask them to communicate lower
and upper probabilities at each step. Consider the procedure of communicating lower and upper
posteriors: at step n+ 1, agent i announces Qi

n(H) and Qi
n(H). Let

N i†
n+1 = {E ∈ P i†

n | Q(H|E ∩ Cn) = Qi
n(H) and Q(H|E ∩ Cn) = Qi

n(H)}

C†n+1 =
⋃
N 1†

n+1 ∩
⋃
N 2†

n+1

P i†
n+1 = {E ∈ N i†

n+1 | E ∩ C
†
n+1 6= Ø}

If P i†
n+1 = P i†

n , or equivalently, if C†n+1 = C†n, the procedure stops; otherwise, agent i updates
credence to Qi

n+1(H) = Q(H|P i(w) ∩ C†n+1), and enters the next step.
As before, this modified procedure is guaranteed to stop at step m+ 1 for some m ≥ 0, because

P1 and P2 are assumed to be finite. The version of Lemma 2 on this procedure remains valid, for
equation (1) is not necessary for the argument. All that is needed is the weaker condition that

∀E ∈ P i
m,Q(H|E ∩ Cm) = Q(H|P i(w) ∩ Cm) and Q(H|E ∩ Cm) = Q(H|P i(w) ∩ Cm)
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This weaker condition obviously remains true when P i
m is replaced by P i†

m and Cm by C†m. Hence
we also have the following variant of Theorem 3.

Theorem 4 Suppose the procedure of communicating lower and upper posteriors stops at step
m + 1. If for both i = 1, 2, {E ∩ C†m | E ∈ P i†

m} does not dilate H , then Q(H|P1(w) ∩ C†m) =

Q(H|P2(w) ∩ C†m) and Q(H|P1(w) ∩ C†m) = Q(H|P2(w) ∩ C†m).

Proof Extremely similar to that of Theorem 3.

Although both procedures result in consensus on lower and upper probabilities in the absence of
dilation, in general the agreements they lead to may well be different, for in general communicating
lower and upper posteriors conveys less information than communicating the full sets of posteriors.

4. More Agreement Results

Under some common assumptions, however, lower and upper probabilities are sufficient to identify
the full set, in which case the two procedures are equivalent and, more importantly, the consensus
reached in the absence of dilation will be full consensus. For example, if we follow Carvajal and
Correia-da-Silva (2010) to assume that the set of priors is closed and connected (or follow Kajii and
Ui (2005) to assume that the set of posteriors is a closed interval), we obtain the following result.

Theorem 5 Suppose Q is closed and connected (with respect to the total variation topology), and
suppose the procedure of communicating posteriors stops at step m + 1. If for both i = 1, 2,
{E ∩ Cm | E ∈ P i

m} does not dilate H , then Q(H|P1(w) ∩ Cm) = Q(H|P2(w) ∩ Cm).

Proof Given the assumption that all the relevant conditional probabilities are well defined as ratios
of unconditional probabilities, the mapping from Q to Q(H|P i(w) ∩ Cm) is continuous.7 Hence,
since Q is assumed to be closed and connected, Q(H|P i(w) ∩ Cm) is a closed interval. Thus
Q(H|P i(w) ∩ Cm) is identified by Q(H|P i(w) ∩ Cm) and Q(H|P i(w) ∩ Cm). Then Theorem 3
entails that Q(H|P1(w) ∩ Cm) = Q(H|P2(w) ∩ Cm).

To our knowledge, Theorem 5 is the first attempt to formulate a generalization of Aumman’s agree-
ment theorem in the context of imprecise probability that takes agreement to mean full agreement
(identical set of posteriors). In addition to revealing a connection to the important phenomenon of
dilation, Theorem 5 may also be used to generate sufficient conditions for guaranteed full agreement
via communicating posteriors, for important models of imprecise probability, if sufficient conditions
for the absence of dilation in those models are known. As a simple example, consider the density
ratio classes for finite spaces (Wasserman, 1992; Seidenfeld and Wasserman, 1993).

Definition 6 (Density Ratio Prior) Let Ω = {w1, ..., wn} and A the power set of Ω. A density
ratio prior is defined by

Dp,k = {(q1, ..., qn) |
∑

1≤j≤n
qj = 1 and

qh
qj
≤ kph

pj
, ∀1 ≤ h, j ≤ n}

where k ≥ 1 and (p1, ..., pn) is a probability vector such that pj > 0 for all 1 ≤ j ≤ n.

7. The mapping is given by: p 7→ p(H ∩Pi(w)∩ Cm)/p(Pi(w)∩ Cm), which is obviously continuous, as long as the
ratio is always defined.

377



ZHANG ET AL.

For instance, Example 1 in Section 2 employs a density ratio prior, where p is the uniform distribu-
tion over the 9-atom algebra and k = 2.

Corollary 7 If two agents start with a common density ratio prior and carry out the procedure of
communicating posteriors, they are guaranteed to reach the same set of posteriors.

Proof Seidenfeld and Wasserman (1993, Theorem 4.1) showed that the density ratio priors are
dilation-immune in the sense that no finite partition of the sample space dilates any event. Note also
that if D is a density ratio prior on (Ω,A), then for every E ∈ A, D(•|E) remains a density ratio
prior on the space restricted to E, which follows easily from Definition 6. Moreover, a density ratio
prior is obviously closed and connected. Then Theorem 5 entails the desired conclusion.

Finally, if we consider just partial agreement, in the sense of a non-empty intersection of sets of
posteriors, we can drop the assumption of connectedness in Theorem 5.

Theorem 8 Suppose Q is closed, and suppose the procedure of communicating posteriors stops at
step m+ 1. If for both i = 1, 2, {E ∩ Cm | E ∈ P i

m} does not dilate H , then Q(H|P1(w)∩ Cm)∩
Q(H|P2(w) ∩ Cm) 6= Ø.

Proof Since Q is closed, Q(H|P i(w)∩Cm) is also closed, for the mapping from Q to Q(H|P i(w)∩
Cm) is continuous. Thus, Q(H|P i(w) ∩ Cm) contains its infimum and supremum. It then follows
from Theorem 3 that Q(H|P1(w) ∩ Cm) ∩Q(H|P2(w) ∩ Cm) 6= Ø.

5. Dilation-Averse Updating

The presence of dilation may alarm some agents, who may be inclined to think that they are per-
mitted or even rationally required to ignore information about the value of a partition that dilates
the hypothesis of interest (Grünwald and Halpern, 2004). Whether dilating information should be
ignored is a matter of debate. For example, Kyburg’s (1974) theory of “epistemological”, interval-
valued probability precludes altogether the possibility of dilation. However, the rule in his theory
that is responsible for the impossibility of dilation was forcefully criticized by Levi (1977) on the
grounds that it runs afoul of some basic Bayesian tenets even when the theory delivers precise prob-
ability values. We do not pretend to resolve the debate here, but we would like to reformulate the
main ideas of this paper in terms of dilation-averse agents, which we believe provides a useful per-
spective to think about our results. An agent participating in the communication procedure is said
to be dilation-averse if she does not condition on her information about the value of a partition
that dilates the hypothesis of interest, but is otherwise happy to update by Bayesian conditioning.
Suppose it is common knowledge that the two agents are dilation-averse. To model this situation,
the procedure of communicating posteriors should be modified as follows.

At step 0, for each agent i, if P i
0 = {E ∈ P i | E∩C0 6= Ø} dilatesH , she updates her credence

by conditioning on the common knowledge C0: Q1
0(H) = Q(H|C0); otherwise, she updates her

credence in the standard way: Q1
0(H) = Q(H|P1(w)).

At step n+ 1, the agents announce Q1
n(H) and Q2

n(H), respectively. Consider the set Ñ i
n+1 =

{E ∈ P i
n | Q(H|E ∩ Cn) = Qi

n(H)}. It is easy to see that Ñ i
n+1 = Ø if and only if there was

dilation at step n. Let

N i
n+1 =

{ P i
n if Ñ i

n+1 = Ø,

Ñ i
n+1 otherwise.
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That is, when Ñ i
n+1 = Ø, no new information is conveyed by the announcement of Qi

n(H). As
before, let Cn+1 =

⋃
N 1

n+1 ∩
⋃
N 2

n+1, and P i
n+1 = {E ∈ N i

n+1 | E ∩ Cn+1 6= Ø}. Clearly,
it remains true that P i

n+1 ⊆ N i
n+1 ⊆ P i

n and Cn+1 =
⋃
P1
n+1 ∩

⋃
P2
n+1. If P i

n+1 = P i
n, or

equivalently, if Cn+1 = Cn, the procedure stops; otherwise, agent i updates credence ofH according
to whether {E ∩ Cn+1 | E ∈ P i

n+1} dilates H . If it does not dilate H , the credence is updated to
Qi

n+1(H) = Q(H|P i(w)∩Cn+1); otherwise, the credence is updated to Qi
n+1(H) = Q(H|Cn+1).

For instance, if the agents in Example 2 are commonly known to be dilation-averse and follow
the above procedure, then at step 0, seeing that her partition {{w1, w2}, {w3, w4}} dilates H , agent
1 will ignore her private information (i.e., {w1, w2}) and go with Q1

0(H) = Q(H|C0) = {1/2}.
Then at step 1, P i

1 = N i
1 = P i

0, and the procedure stops (with a consensus).
As the original, Bayesian procedure of communicating posteriors, this dilation-averse procedure

will surely stop at step m + 1 for some m ≥ 0. It is then very easy to adapt the arguments for
Theorems 3, 5, and 8 to show the following:

Theorem 9 Suppose that the dilation-averse procedure of communicating posteriors stops at step
m+ 1. Then

1) Q1
m(H) = Q2

m(H) and Q1
m(H) = Q2

m(H);

2) If Q is closed, then Q1
m(H) ∩Q2

m(H) 6= Ø; and

3) If Q is closed and connected, then Q1
m(H) = Q2

m(H).

Proof For each i, either {E ∩ Cm | E ∈ P i
m} dilates H , in which case Qi

m(H) = Q(H|Cm) by
the design of the procedure, or {E ∩ Cm | E ∈ P i

m} does not dilate H , in which case the argument
for Theorem 3 is applicable to derive that Qi

m(H) = Q(H|Cm) and Qi
m(H) = Q(H|Cm). Either

way we have 1). The derivations of 2) and 3) from 1) are the same as those of Theorems 8 and 5.

Therefore, two agents who are commonly known to be dilation-averse cannot agree to disagree on
lower or upper probabilities, and, under common assumptions, cannot agree not to fully agree.

6. Concluding Remarks

Like Aumann’s original result, the results in this paper are mathematically simple once the frame-
work is set up, but they highlight an interesting connection between the possibility of agreeing to
disagree and the phenomenon of dilation. We offered two perspectives to view this connection. For
Bayesian agents with a common set of priors, agreeing to disagree on lower or upper posteriors en-
tails the presence of dilation for at least one of them. For dilation-averse (but otherwise Bayesian)
agents with a common set of priors, it is impossible to agree to disagree on lower or upper posteriors.

Although the absence of dilation is sufficient for Bayesian agents to reach agreements by com-
municating posteriors, it is not necessary. Here is a simple example to show this.

Example 3 Let Ω = {w1, w2, w3, w4} andA be its power set. SupposeP1 = {{w1, w2}, {w3, w4}}
and P2 = {{w1, w3}, {w2, w4}}. LetH = {w1, w4}, and suppose the true state of the world is w1.
Let p̃ be the uniform distribution over the 4-atom algebra, and Λ be the set of all distributions over
the 4-atom algebra. Define Q = {(0.8p̃+ 0.2q) | q ∈ Λ}.8

8. This ε-contamination model (ε = 0.2) can be equivalently specified as the largest set of probability measures on the
4-atom algebra satisfying the constraint that every atom receives a lower probability of 0.2.
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Like Example 2, this is an Aumann case, where the posteriors of H are common knowl-
edge without announcements, because Q(H|{w1, w2}) = Q(H|{w3, w4}) = [1/3, 2/3], and
Q(H|{w1, w3}) = Q(H|{w2, w4}) = [1/3, 2/3]. So the procedure of communicating posteri-
ors stops at step 1, and C1 = C0 = Ω. Dilation does occur, for both agents, because Q(H|C0) =
Q(H) = [0.4, 0.6], which is strictly contained in [1/3, 2/3]. Despite the presence of dilations, the
two agents will still reach an agreement even if they are not dilation-averse, though the agreement
is different from the one dilation-averse agents would reach.

It is also worth noting that this example is a generalization of an example from Geanakoplos
and Polemarchakis (1982), which was used to illustrate the fact we mentioned in Section 2, that the
consensus resulting from communicating posteriors can be different from the consensus resulting
from directly exchanging private information. If both pieces of private information in the example
become public, the two agents will converge on a precise, extreme probability.

We close by mentioning two ways our results may be expanded. First, when “agreement” is in-
terpreted as partial agreement, the common prior assumption may also be relaxed to the assumption
that priors (partially) agree, i.e., that the two sets of priors have a non-empty intersection. This is,
for example, what Carvajal and Correia-da-Silva (2010) assume in their results. Their main agree-
ment result about Bayesian agents (Proposition 1) is that if two Bayesian agents have closed and
connected sets of priors that have a non-empty intersection, and both sets of posteriors on a hypoth-
esis are common knowledge, then the sets of posteriors also have a non-empty intersection. This
result, just like Aumman’s original result, is straightforwardly generalizable to the setting of com-
municating posteriors. The more interesting question, in light of our results here, is what purchase
the condition of no dilation has in the context of priors that do not fully agree, or to put it differently,
whether stronger agreement results are available in this context for dilation-averse agents.

Second, we have only considered the full Bayesian updating rule (and the dilation-averse vari-
ant). Other updating rules may be examined in our setting, especially the Dempster-Shafer or max-
imum likelihood updating considered by Kajii and Ui (2005) and Carvajal and Correia-da-Silva
(2010). For Dempster-Shafer updating, Carvajal and Correia-da-Silva’s main agreement result re-
quires each agent’s set of likelihood maximizers as well as their sets of posteriors to be common
knowledge, which suggests that in general communication of posteriors alone is not enough to guar-
antee agreement. One natural idea is to allow also the communication of likelihood maximizers. On
the other hand, Seidenfeld (1997) showed that for ε-contamination models (Huber, 1973; Berger,
1984) Dempster-Shafer updating is equivalent to Bayesian updating. Therefore, if we can derive a
corollary about ε-contamination models (in the spirit of Corollary 7) from Theorem 5 and results on
dilation in ε-contamination models, that will also apply to Dempster-Shafer updating.
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