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Objective. Deep brain stimulation (DBS) provides dramatic tremor relief in patients with severe essential tremor (ET). Typically, the
VIM nucleus is the most effective brain area to target for high-frequency electrical stimulation in these patients. Correlation analysis
between electrical local field potential (LFP) recordings from the thalamic DBS leads and electrical muscle activity from the
contralateral tremulous limb has become an attractive practical tool to interpret the LFPs and their association with the
tremulous clinical manifestations. Although functional connectivity analysis between brain electrical recordings and
electromyographic (EMG) signals from the tremor has been of interest to an increasing number of engineering researchers,
there is no well-accepted tailored framework to consistently characterise the association between thalamic electrical recordings
and the tremorogenic EMG activity. Methods. This paper proposes a novel framework to address this challenge, including an
estimation of the interaction strength using wavelet cross-spectrum and phase lag index while demonstrating the statistical
significance of the findings. Results. Consistent results were estimated for single and multiple trials of consecutive or partially
overlapping epochs of data. The latter approach reveals a substantial increase on the range of statistically significant dynamic
low-frequency interrelationships while decreasing the dynamic range of high-frequency interactions. Conclusion. Results from
both simulation and real data demonstrate the feasibility and robustness of the proposed framework. Significance. This study
offers the proof of principle required to implement this methodology to uncover VIM thalamic LFP-EMG interactions for (i)
better understanding of the pathophysiology of tremor; (ii) objective selection of the DBS electrode contacts with the highest
strength of association with the tremorogenic EMG, a particularly useful feature for the implementation of novel multicontact
directional leads in clinical practice; and (iii) future research on DBS closed-loop devices.

1. Introduction

Essential tremor (ET) is defined as a neurological disorder
that causes involuntary abnormal repetitive shaking. This
shaking can appear in different parts of the body such as
the hands, forearms, or head [1]. ET is a common movement
disorder affecting around four out of 100 adults over 40 years
of age. It is considered to be a centrally driven tremor, and the
constituents of the network comprise anatomical areas of the

physiological motor system [2]. Treatment of ET is mainly
based on pharmacotherapy and surgery for medically refrac-
tory cases [3]. The main surgical approach currently in use
consists of continuous deep brain stimulation (DBS) through
implantation of a depth electrode in the area of the ventral
intermediate (VIM) nucleus of the thalamus, a key area in
the neuronal loop generating the tremor [3, 4]. The depth
electrodes after DBS surgery emit continuous electrical
signals coming from the neurostimulator or pacemaker [5].
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To confirm electrode position within the VIM thalamic
nucleus, in addition to neuronavigation techniques to target
this specific anatomical area, some centres perform micro-
electrode recordings during surgery to detect tremor-related
electric neuronal bursts and find the ideal position for elec-
trode implantation [6]. Through the routinely used macro-
electrodes in DBS surgery, neuronal network electrical
activity can be recorded from the VIM thalamus in the form
of local field potentials (LFPs) a few days after surgery.

2. Material

In this study, we use recordings from two patients (aged 64
and 53, both female) who underwent DBS surgery for medi-
cally refractory ET. Ethics approval for use of patients’ EEGs
and LFPs for the development of new quantitative EEG
(qEEG) methods was obtained both from the University of
Sheffield and the NHS ethics committees (SMBRER207 and
11/YH/0414). The multichannel Natus Quantum Amplifier
(Optima Medical Ltd.) at a sampling rate of 16,384Hz was
used for all EEG/LFP/EMG polygraphy recordings (analogue
bandwidth 0.01–4000Hz).

In our institution (Royall Hallamshire Hospital, Sheffield
Teaching Hospitals, NHS Foundation Trust), every patient
undergoing DBS surgery for tremor is offered, five days after
implantation of the depth electrodes, a comprehensive elec-
trophysiological analysis to include LFPs from the VIM
thalamus, electroencephalography (EEG), and electromyo-
graphic (EMG) polygraphy recordings, measuring the elec-
trical activity from the muscles, to look at the correlation
between the tremor and the thalamic network oscillations.
The cortical scalp EEG recordings are not used in this work.
There are four electrode contacts on each macroelectrode
placed in the thalamus in close proximity to each other
(contacts 0, 1, 2, and 3) through which bipolar recordings
of LFPs can be obtained. Many centres use an empirical
approach in selecting the ideal electrode contact to stimulate
after DBS surgery to obtain the ideal tremor suppression.
This approach can be time-consuming, and it will become
more of a problem as new multicontact directional leads
make their way into clinical practice [7]. Additionally, it
seems that the LFPs offer very significant information
which in the future could be used to optimise clinical out-
comes in closed-loop systems [8]. However, before this
becomes possible, an objective measure of the strength of
association between the VIM thalamic network and the
tremor recorded on EMG, or the equivalent mechanical
oscillations through accelerometers, is required. One practi-
cal solution is based on the correlation analysis between
data coming from the DBS leads (LFP) and electrical mus-
cular activity (EMG) of the tremulous limb. Corticomuscu-
lar functional connectivity is defined as the interaction
between the electrical activity of the cortex in the brain or
the thalamus in this instance and the electrical activity
recorded from various muscles. During the last few years,
a few methods have been developed to understand this type
of functional connectivity [9–11].

From the engineering perspective, the approaches to
study connectivity between two signals can be classified as

time- and frequency-domain-based methods. One of the
classic linear measures to estimate similarity in time domain
is cross-correlation that has been used to study ET [12]. It
measures the degree of connectivity when a time series is
shifted from other reference series. This method is also useful
to measure the time lag between two signals. However, this
method usually assumes that the system is linear and station-
ary. Another branch to quantify the correlation or causality
between signals in time domain is by mutually predicting
selected observable measurements based on multivariate
modelling, where the best-established methods are based on
the Granger causality test [13] that has been used to study
the correlation between EEG signals [14]. They are based
on parametric modelling. A full and unbiased model is there-
fore required, which can be a challenge to achieve due to the
limited knowledge on the human brain. Other nonparamet-
ric methods include mutual information [15] and transfer
entropy [16, 17], which are model-free but usually require
larger datasets or averaging over many realisations to miti-
gate the effects of noise. In the scope of frequency-based
methods, cross-spectrum allows determining the connection
between two stationary signals in terms of frequency [18].
When computing complex cross-spectrum, results can be
divided in cospectrum (in-phase connectivity) and quad-
spectrum (out-of-phase connectivity). Coherence [19, 20]
uses a normalisation of cross-spectrum values that takes unit
value when total linear phase relationship is detected or zero
value for independent signals. Both methods are easy-to-use
and computationally inexpensive, but the investigated corre-
lation must be stationary and linear and there is no-coupling
information among various frequencies. Cross-bispectrum
[21] is used to detect the quadratic phase coupling (QPC)
between frequency components of two target signals. One
pitfall of this algorithm is that bispectrum is affected not only
by nonlinearity but also by non-Gaussian data. Thus, it
requires thedata topresentGaussiandistribution tomake sure
to detect nonlinearity. A suitable approach to overcome these
non-phase-coupling peaks is through cross-bicoherence [22].
However, this method only favours the strongly phase-
coupled signals, the ones that show QPC interactions.

In addition to the frequency- and time-based approaches,
efforts have beenmade with the wavelet domain to study con-
nectivity of brain networks. This approach aims to address
limitations of the above methods on tackling dynamic sys-
tems by providing time-resolving value with accurate locality.
Meanwhile, it is a model-free (nonparametric) measure,
which reduces the requirement of a priori knowledge of the
underlying model. Wavelet coherence has attracted increased
interest on studying brain-related disorders. Jeong et al. [23]
proposed to use wavelet energy and wavelet coherence as
EEG biomarkers to distinguish Parkinson’s disease and
Alzheimer’s disease. A wavelet coherence-based clustering
of EEG signals has been developed to estimate the brain con-
nectivity in absence epileptic patients [24]. It has also been
applied to studies on autism [25], traumatic brain injury
[26], schizophrenia [27], and poor sleep quality [28]. How-
ever, there is very limited research focusing on its application
on ET. Furthermore, for the approaches based on wavelet
coherence to understand brain connectivity, there are no
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well-accepted complete frameworks to understand cerebro-
muscular connectivity systematically.

Addressing these challenges, this paper develops a new
wavelet-based correlation analysis framework combined by
the estimation of connectivity strength, significance test,
and phase-delay characterisation. It aims to better under-
stand cerebromuscular interactions in a structured manner.
It should be noted that this framework has the prospect to
be applied on other applications of connectivity analysis,
such as EEG-EEG and EEG-EMG.

3. Methods

Model-free (nonparametric) measures are chosen in this
paper to study the correlation between LFPs and EMG
because this biological system is so complex that it would
require a substantial number of parameters and computation
time to build a satisfactory parametric model. Additionally,
there is no well-accepted analytical model to start with.
A common deficiency when applying biomedical signal-
processing tools is the assumption of stationarity. A typical
practice for the estimation of spectrum distribution is seg-
menting long records of data and averaging calculations over
segments. The main disadvantage of this practice is the
inability of having time-resolved values. There is therefore
no time resolution, and the dynamic behaviour of neuronal
interactions cannot be revealed. One solution to overcome
this issue is the use of wavelets.

Wavelet transformation makes a decomposition of a
time series into a frequency-time domain. It uses convolu-
tion of a mother wavelet and its scaled and shifted versions.
Among all the possible mother wavelets, the Morlet wavelet
provides a good balance between frequency and time reso-
lution and has been widely used in EEG and EMG research
[29]. This study is restricted to this wavelet. Equation (1)
corresponds with a normalised Morlet wavelet where the
dimensionless frequency w0 is set as 6 and dimensionless
time is denoted by η. Considering an observed time-serial
x k k = 1,… ,N , in continuous wavelet transform (CWT),
the mother wavelet is modified by varying the scale s, as
shown in (2), so that η = s · t with a discretised time domain
of time step δt.

Ψ0 η = π1/4eiw0ηe− 1/2 η2 , 1

Wx
k s = δt

s
〠
N

k′=1
xkΨ0

k − k′ δt

s
2

3.1. Wavelet Coherence. Coherence is one of the most widely
used methods for measuring linear interactions. It is based on
the Pearson correlation coefficient used in statistics but in
frequency and time domain. It measures the mean resultant
vector length (or consistency) of the cross-spectral density
between two signals. Its squared value varies from 0 to 1,
meaning low and high linear frequential correlation. During
this study, coherence is used as a reference standard for
comparison to other methods. The wavelet formulation of

coherence between two signals, x and y, and in the frequency
w and time t domain, can be formulated as

coh2xy w, t =
Sxy w, t 2

Sx w, t Sy w, t ,

Sxy w, t = E Wx w, t Wy w, t ,
3

where Sxy w, t is the wavelet cross-spectrum between x and
y and Sx w, t and Sy w, t are the corresponding autospec-
trums. Working with two single signals (single realisation)
usually requires using a smoothing operator (see f · opera-
tor in (4)), and ergodicity properties should be assumed [30].

coh2xy w, t =
f Sxy w, t 2

f Sx w, t · f Sy w, t 4

If multiple trials of both signals are available, square
coherence can be estimated using (5), which is used in
this study.

coh2xy w, t =
Sxy w, t

2

Sx w, t Sy w, t
, 5

where

Sxy w, t = 1
n
〠
n

m=1
Wxm

w, t Wym
w, t 6

The number of trails is denoted by n.
To assert significant values of wavelet coherence, the

statistical methodology stablished by Gallego et al. [31] is
employed. It estimates a threshold based on the null hypoth-
esis (H0) of independency by analytically calculating the
statistical distribution of coherence. Specifically, H0 assumes
that both signals are independent Gaussian variables. Under

H0, coh2xy w, t ≤ rα with a specified probability α, where rα is
calculated as

rα = 1 − α1/ n−1 , 0 ≤ α ≤ 1 7

In this paper, the parameter α is set as a fixed value of
0 05, equivalent to a 95% of confidence interval.

3.2. Wavelet Cross-Spectrum.Wavelet cross-spectrum (WCS)
also provides information about linear synchronisation, but
its values are not normalised as in wavelet coherence. Its
calculation is written in (6) for multiple trials. Its values
seem difficult to be interpreted by statisticians and comple-
mentary plots, such as coherence or coquadrature, that can
help understand the frequential relationships between sig-
nals [9]. That is why few neurological connectivity studies
have used this method. However, this paper proposes to
use an appropriate significant test that allows WCS results
to be judged with more clarity by including the variance
of each signal.

It has been proven by Bigot et al. [32] that including the
variance spectrum data (autospectrum) Sx w, t and Sy w, t
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benefits the interpretation of WCS in contrast to wavelet
coherence. Its performance is based, analogously to coher-
ence, on a threshold calculation under a null hypothesis.
However, this H0 makes the statistical procedure using a
combination of parametric and nonparametric estimations.
It has parametric characteristics since it stablishes the signals
as independent Gaussian vectors. But its distribution is con-
sidered to show a zero-mean value and a general covariance
matrix ∑x and ∑y estimated by the sampled data. Hence, it
does not make any parametric assumption on the covariance.
The statistical test stablishes, under H0 ∑x ,∑y and n ≥ 1,
that P Sxy w, t ≥ λα ≤ α. The threshold λα, for each time
t and frequency w point, is defined as

λα w, t =
ρxρy
n

· Ψw,t · −log α

2 + −2n log α

2 ,

8

where ρx and ρy are the largest eigenvalues of the empirical
covariance matrix of the time series x and y, respectively.
The symbol Ψw,t means the energy of the wavelet, but since
wavelet-normalised values are considered, this variable is
omitted. This paper considers a significant probability of
95% with α = 0 05.

3.3. Phase Lag Characterisation. Apart from the quantifica-
tion of the linear interaction strength and associated signifi-
cance, it is also important to measure the time or phase lag
between signals at a certain frequency. It is particularly
important for studying corticomuscular interactions as they
carry significant time delays.

The most straightforward approach would be calculating
the time lag from the phase information in the complex data
of the WCS results with a simple fraction

lag = ϕd
2πf 9

where ϕd is the phase difference between both signals at a
specific time and frequency and f is the sample rate. How-
ever, volume conduction can cause the coherence and the
phase-locking value to spuriously increase, and (9) is not
effective to deal with this kind of common noise sources.
To overcome this problem, a measure called the weighted
phase lag index (WPLI) algorithm [33] that describes the
consistency of the phase difference or time lag is used. This
value will inform if the phase lag existent between both sig-
nals is consistent. This method not only highlights frequency
bands where the phase difference is constant, indicating a
strong linear relationship, but also penalises those synchroni-
sations where time lag is close to zero, thus avoiding possible
artefacts coming from common noise sources. The weight
can be illustrated by Figure 1, which clearly shows the WPLI
weights cross-spectra according to the magnitude of the
imaginary component of the cross-spectrum. Cross-spectra
around the real axis contribute to a less extent than

cross-spectra around the imaginary axis. Their values are
calculated as

Ωw =
〠n

j=1〠k≠jIm Sxyj · Im Sxyk

〠n
j=1〠k≠j Im Sxyj · Im Sxyk

, 10

where Im · is the imaginary part of the argument and Sxyj is

the cross-spectrum value of the jth trial of the total number
of trials (n). The value is normalised from −1 to 1. As indi-
cated by Figure 1, a value of 1 suggests that the phase lag is
90° while a value of 0 corresponds to 0° or 180°. It should
be noted that this process should be applied before the signif-
icance test.

The proposed methodology can be illustrated by Figure 2.
Starting from the multiple trials’ data collection or extraction,
the WCS is applied on each trial to measure the correlation
strength. After the number of trails is sufficient, the results
of WCS of all trails are averaged. A significance test can
then be applied to produce the binary correlation map.
Meanwhile, the phase lag can be estimated based on the
averaged WCS.

4. Results on Simulation Examples

The simulation example aims to evaluate the performance of
the proposed analysis framework on frequential and time
resolution and robustness against noise. Considering a linear
single input single output (SISO) system, the input signal is
defined as

x ti = Z 〠
K

k=1
cos 2πf kti ·W t1,t2 k

+ ε1 11

The input signal constitutes an ensemble of K compo-
nents, with different frequencies in the cosine form. It is
defined within a temporal range t1, t2 through a window
functionW t1,t2 k

. The entire ensemble was sampled by a nor-
mal distribution Z~ 0, 1 . In other words, the amplitude of
the entire signal is modulated by a random Gaussian signal.

WPLI
Weight

Real axis

Figure 1: Illustration of the WPLI [22] (blue: phase lead; red: phase
lag), where the oval outer layer reflects the weights, so values around
real axes contribute less than values close to the imaginary axis.
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For the window function, a Tukey window was used with a
tapper parameter of 0.5. This type of window was selected
to avoid possible ringing artefacts coming from the temporal
sharp transitions of the frequency components. A white
Gaussian noise ε1was also added, emulating a more realistic
situation. The output signal is defined as

y ti = Z 〠
K

k=1
ak · cos 2πf kti + θk ·W t1,t2 k

+ ε2 12

One difference with the input is the change on the ampli-
tude of each frequential component by setting ak. In addition,
each component presents a specific phase θk. Therefore, the
linear system modulates the amplitude for each frequency
of the input and delays it with a specific value. It must be
noted that one can get several realisations of both measures,
having then multiple trials of this linear interaction.
Figure 3 illustrates the produced input and output signal of
a single trial, which includes two frequential components:
f1 = 10Hz within 0 1, 0 5 and f2 = 30Hz within 0 6, 0 9 .
The total data length is 1 sec with the sample rate of
1000Hz. Both amplitude gains are equal and unit valued
(a1 = a2 = 1), and delays θ1 and θ2 are set to 25ms and
14ms, respectively. Gaussian noise was added for both sig-
nals with the signal-to-noise ratio (SNR) of 40 dB. The
bottom graph of Figure 3 shows the result of standard coher-
ence based on Fourier transform. Although it successfully
reveals the strong coherence at the frequency around 10Hz
and 30Hz, it cannot localise when the coherence changes
occurred. Such an approach therefore misses the time-
resolved information, which is key to study a dynamical sys-
tem. Although such a limitation can be partly addressed
through using a sliding-window technique [34], the selection
of window size is usually challenging and depends on the fre-
quency of signals.

If there is no noise, the measured frequency-time interac-
tion after the significance test using WCS can be represented
by Figure 4. The yellow colours, indicating the significant

interactions, clearly correctly capture the two frequential
components and corresponding starting and ending times,
which cannot be revealed by the standard coherence. The
white dashed line marks the cone of influence (COI). When
computing CWT using convolution procedure, edge artefacts
cannot be ignored. That is why COI is introduced to describe
the area in which the power of the shifted wavelet drops to
e−2 of the value at the edge [35].

If there is noise involved, the number of trials is impor-
tant and should be considered. Figure 5 shows the result of
WC with the associated significance test where SNR=−5 dB
and n = 5. The linear synchronisation around frequencies of
10Hz and 30Hz is distinguishable. The temporal resolution
of the interaction is close to the ideal one since the ending
points of high coherent frequencies at 10Hz and 30Hz are
located close to [0.1 s, 0.5 s] and [0.6 s, 0.9 s]. However, high
coherence values can be observed in the high-frequency
band and very low-frequency band, which are determined
as significant, which are artefacts. This is caused by the
introduction of severe noise. Figure 6 shows the results using
WCS for the same parameter settings. It shows a clearer plot
with better contrast comparing to Figure 5. The simulated
synchronisation can be easily differentiated from the rest
of the noisy values based on the graph of significance test
(see Figure 6(b)). This is explained by the normalisation
process followed in the CWT process by Grinsted, where
the energy of the wavelet signals is normalised (L2 normal-
isation). One direct consequence of L2 normalisation is that
the values at higher frequencies are compressed more than
those at lower frequencies.

To quantitatively study the influence of SNR and the
number of trials on the results, the 2-D correlation coefficient
between the significance tests of the ideal case (see Figure 4)
and the testing case (see Figure 6(b)) is employed to measure
the accuracy of connectivity detection. The equation to calcu-
late the correlation coefficient of two images A and B can be
written as

r =
〠i〠j Aij − A Bij − B

〠i〠j Aij − A 2 〠i〠j Bij − B 2
, 13

whereA and B denote the means ofA and B, respectively, and
i and j denote the indexes of horizontal and vertical direc-
tions, respectively. A closer value of correlation coefficient
to 1 indicates a better performance of detection. In this test,
the SNR was varied from 30dB to −10dB with the step of
1 dB, and n was varied from 1 to 50 with the step of 1. The
result is illustrated by a coloured matrix of correlation values,
as shown in Figure 7. Drawing a horizontal line across the
SNR axis, it can be observed that the correlation value
increases with the number of trials. The increment rate is
faster at higher levels of noise (lower value of SNR) than
lower noise levels (higher value of SNR). A distinctive high
noise range exists from 5dB to −5 dB where limited trials
(less than 6) can produce good results. For SNR<−5 dB
and SNR> 10 dB, a significant number of trials are required
to achieve reliable results. The fact of getting better results

Wavelet cross-spectrum

Significance test Phase lag
characterisation

Multiple trial
collection/extraction 

Sufficient
trial? 

Yes

No

Average WCS

Figure 2: The flowchart of the proposed correlation analysis
framework.
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with high noise levels (from 5dB to −5 dB) with limited trials
than those with low noise levels (>10 dB) can be explained by
the influence of the Tukey window. When applied to short-
time segments of low-frequency components, such a window
function generates low-frequency artefacts. These artefacts
can pass the statistical test when the threshold is low, which
happens if the variance of both signals is low, or, in other
words, when low noise is applied to the signal. This means,
the noise level can influence the variance and thus the statis-
tical threshold and finds a balance where the threshold only
shows the sequential linear interactions without artefacts.

To complement the WCS results, Figure 8 shows the
estimated WPLI results with the noise level of −5 dB and 5
trials. Although the first interaction at 10Hz is still differen-
tiable, the second interaction at 30Hz is not so clear when

comparing with the rest of the noisy values. It should be
noted that WPLI values are not aiming at locating strong lin-
ear interactions but indicating the consistency of time lag,
which helps distinguish the true interaction and artefact.
Combining Figure 8 with Figure 6, it can be observed that
the synchrony at 10Hz shows higher phase lag consistency
than that at 30Hz. Considering the time delay of the two
components (f1 = 10Hz and f2 = 30Hz) were set to 25ms
and 14ms, respectively, the phase difference is θ1 = 90° and
θ2 = 135°. According to Figure 1, the weight of θ1 is higher
than the weight of θ2; hence, WPLI values around the inter-
action of f1 have higher contrast than those of f2.

5. Results on Essential Tremor Data

5.1. Data Collection. All electrophysiological recordings were
obtained with a multichannel Natus Quantum Amplifier
(Optima Medical Ltd.). Four types of data were available
for each recording: scalp electroencephalography (EEG),
intracranial thalamic (VIM) local field potentials (LFPs),
electromyography (EMG) with surface electrodes, andmono-
axial accelerometer recordings from the hands and head. All
data were sampled at 16.38 kHz and then downsampled to
2 kHz. This study focuses only on the interactions between
thalamic LFPs and contralateral EMG (as each right and left
half of the brain supplies the contralateral side of the body).
LFPs refer to the summated electrical neuronal activity
recorded with the DBS leads from the VIM thalamus. This
activity was recorded by a quadripolar DBS lead with three
possible input channels (0-1, 0–2, and 0–3) taking the pole
0 as a reference. Figure 9 shows an illustration of the lead lay-
out. EMG data was recorded by surface EMG electrodes
placed in different arm muscles. Given three LFP channels
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and five EMG channels, there are 15 possible pairs to be ana-
lysed in terms of interactions. However, based on previous
observations from our clinical work, the right triceps brachii

muscle (commonly showing well-formed tremorogenic oscil-
lations) and the left 0–3 LFPs were considered in this work.
Therefore, this pair is primarily studied below.
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5.2. Multiple-Trial Data Extraction. The simulation example
has demonstrated that the use of multiple trials or realisa-
tions of an event was important to better reveal significant
interactions. However, it is not possible to repeat the same
ET event in the same subject with the same conditions
such as timing within each tremorogenic oscillation. To
overcome this issue, the tremorogenic EMG signal trials were
substituted by time segments coming from a long single trial
signal. The necessary condition for extracting statistical
properties by analysing data over time instead of evaluating
several data samples is called ergodicity [36]. This is an
important assumption that the target signal is considered as
stationary instead of nonstationary and thus not assuming
dynamical changes along the entire signal. However, it does
not impede the detection of dynamic changes on frequential
interactions. If the dynamic changes occur periodically, the
true interactions will be enhanced by considering those
time segments, while noise will be attenuated. Additionally,
restricting time segments around a specific time interval,
with the right number of trials and overlap, will make possi-
ble to see how local stationarity properties change over time,
similar to a sliding-window technique, but the selection of
widow size is not required.

For correcting this issue of the timing offset, a reference
point, for each time segment extracted, is set as the closest
peak of the EMG signal. Through this manner, phase cancel-
lation artefacts can be avoided to some extent. To detect the
peaks on EMG, the procedure follows three steps. The first
step processes the data with a linear low-pass filter (passband
edge frequency 15Hz, stopband frequency 30Hz, passband
ripple 1 dB, and 60 dB of attenuation) since it is known that
the tremor appears at low frequencies and the filtered signal
is corrected with the corresponding delay of the filter. In the
second step, the frequency component with highest magni-
tude is analysed. In the third step, a peak neighbourhood
search is performed with a restriction based on the period of
the fundamental frequency. Figure 10 illustrates an example
of peak extraction from an epoch of EMG sample data com-
ing from the triceps brachii, where the top figure shows a time
series of raw EMG data and the bottom figure shows the fil-
tered data with the detected peaks marked by green lines.

5.3. Interaction Estimation Based on a Single Trial. Figure 11
shows the result of WCS of a 10 sec single trial between left
L0L3(LFP) and right triceps (EMG). As shown in the top
graph, there is a distinguishable linear interaction between
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Figure 9: Design of quadripolar DBS lead based on Medtronic DBS model 3387.
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LFP and EMG around 5Hz, which at the same time is the fre-
quency of the arm tremor (validated by the accelerometer
data). Moreover, the intensity of 5Hz interactions is inter-
mittent, showing peaks and troughs over time. In addition,
weaker synchronisation is present at lower and higher fre-
quencies. The significance test of a single trial is shown in
the bottom graph of Figure 11, where significant interactions
are observed from 1 to 128Hz when using a single trial that
as a result reduces the confidence level of estimation. Multi-
ple trials are required to improve the confidence level to
reveal the true significant interactions by reducing the influ-
ence of noise.

The colour scale establishes a range of values, in terms of
WCS module, of fourth order of magnitude. However, it is
not a reliable feature to compare with other combinations
of signals, since the scale depends on the amplitude of the

original signals that can differ depending on the impedance
and position of the reference electrode. Instead, comparing
different plots during a long period of time and checking
which one is more consistent and regular will lead to better
interpretation of the underlying interactions. Figure 12
shows theWCS results of a 15 sec single trial of five combina-
tions between LFPs and EMG recordings. In this figure, the
triceps brachii (a) presents a more stable and periodical
behaviour in terms of the linear spectral correlation with
L0L3. Figures 12(b), 12(c), and 12(e) show high spread values
over lower frequencies.

5.4. Interaction Estimation Based on Multitrial. Two param-
eters to be determined for multitrial analysis for real data
include the number of trials and the overlap rate. With sam-
pling starting from the 6th sec of the data of L0L3 and right
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Figure 11: Result of wavelet cross-spectrum of a 10 sec single trial between L0L3 LFPs and right triceps brachii EMG.
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triceps brachii with a window length of 1 sec epoch, the cor-
relation was estimated where the trial number was set as 10
and 20, and the overlap rate was set as 0%, 50%, and 75%.
For the trial number of 10 and the overlap rate of 0%, the
sampling windows are [6 s, 7 s], [7 s, 8 s],… , [15 s, 16 s]. It
should be noted that the overlap rates of 50% and 75% are
approximate values. The true overlap rates are determined
by the references points based on the closest peak of the
EMG signal. For example, the second window of the overlap
rate of 50% is not necessary to start exactly from 6.5 s. It starts
from the closest EMG peak around 6.5 s. Figures 13–14 show
the results of WCS with the trial number of 10 and 20 and
overlap rates of 0%, 50%, and 75%. In comparison with the
result of a single trial shown in Figure 15, results of the

multitrial highlight those interactions that keep repeating
over time and reduce the occasional high values that could
be artefactual. For example, the 5Hz tremor along with its
first harmonic at 10Hz shows a stable linear correlation.
Despite losing time resolution due to averaging, dynamic
changes in WCS values at higher frequencies are still observ-
able and could be genuine. A more regular temporal pattern
can be observed for the frequency band from 16Hz to 64Hz
following the increment of the overlap rate. The increased
number of trials makes the results smoother and more
consistent.

To evaluate the time lag of the significant interactions,
the WPLI approach was applied and the result is shown in
Figure 16. The higher contrast shows that components
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Figure 12: Result of wavelet cross-spectrum of a 15 sec single trial between (a) left L0L3 LFPs and the right triceps brachii EMG, (b)
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around the first harmonic of the tremor have the more prom-
inent phase lag.

6. Conclusions

This paper proposes a novel data analysis framework to study
thalamomuscular associations in essential tremor involving
three steps: correlation strength estimation, significance test,
and phase lag characterisation. This framework aims to
improve the robustness and reliability of correlation analysis
between the local field potential recordings from the brain
and the tremulous electrical activity recorded on EMG. It

has been shown in the simulation example that the proposed
approach can effectively evaluate the linear interaction
between two signals. The sensitivity analysis studies show
how the number of trials and noise level of measurement
affect the results. For data with noise level<−5 dB or
>10 dB, a significant number of trials produce much better
results. However, for data with noise level>−5 dB and
<5 dB, the number of trials has less influence on the findings.
The application of the method, on real data from two patients
with ET undergoing DBS surgery for tremor suppression,
demonstrates the validity of the proposed approach through
segmenting a long single epoch into a number of overlapped
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Figure 13: Result of wavelet cross-spectrum for left L0L3 versus right triceps brachii based on multitrials with different parameter settings
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windows to produce the averaged strength of associations.
One limitation of this approach is that the result is difficult
to be quantified due to the complexity of WCS patterns if
the ground truth is unknown. Another potential limitation
is that the number of trials plays an important role in
improving the performance of this approach. With a single
trial, the significance test cannot be constructed. In the real
data application, it is not possible to repeat the same ET event
(i.e., tremorogenic oscillation) in the same subject with the
same conditions. Future work therefore will focus on quanti-
fication of the results and reduce the dependency from the
number of trials.

It should be noted that wavelet cross-spectrum and phase
lag characterisation used in this framework are not novel.
However, combining them together along with a significance
test is new. Furthermore, this is the first attempt to apply
wavelet-based correlation analysis on patients with medically
refractory essential tremor undergoing surgery. This paper
shows a clear association between the thalamic local field
potential recordings and the contralateral tremorogenic
EMG oscillations, at the frequency of the tremor and its first
harmonic (Figure 13). These interactions are beyond the
observational empirical interpretation of thalamic LFPs and
EMG recordings from patients with ET. This paper offers a

10 trials

0%
50

%
75

%
Significance test cross-spectrum

Si
gn

ifi
ca

nc
e c

ro
ss

-s
pe

ct
ru

m
Si

gn
ifi

ca
nc

e c
ro

ss
-s

pe
ct

ru
m

Si
gn

ifi
ca

nc
e c

ro
ss

-s
pe

ct
ru

m

Fr
eq

ue
nc

y 
(H

z)

256
512

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

Si
gn

ifi
ca

nc
e c

ro
ss

-s
pe

ct
ru

m

1

0.8

0.6

0.4

0.2

0

Si
gn

ifi
ca

nc
e c

ro
ss

-s
pe

ct
ru

m

1

0.8

0.6

0.4

0.2

0

Si
gn

ifi
ca

nc
e c

ro
ss

-s
pe

ct
ru

m

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

128
64
32
16

8
4

Fr
eq

ue
nc

y 
(H

z)

256

512

128

64

32

16

8

4

Fr
eq

ue
nc

y 
(H

z)

256

512

128

64

32

16

8

4

Fr
eq

ue
nc

y 
(H

z)

256

512

128

64

32

16

8

4

Fr
eq

ue
nc

y 
(H

z)

256

512

128

64

32

16

8

4

Fr
eq

ue
nc

y 
(H

z)

256

512

128

64

32

16

8

4
6 6.2 6.4

Time (sec)
6.6 6.8 7

6 6.2 6.4
Time (sec)

6.6 6.8 7

6 6.2 6.4
Time (sec)

6.6 6.8 7 6 6.2 6.4
Time (sec)

6.6 6.8 7

6 6.2 6.4
Time (sec)

6.6 6.8 7

6 6.2 6.4
Time (sec)

6.6 6.8 7

Significance test cross-spectrum

Significance test cross-spectrumSignificance test cross-spectrum

Significance test cross-spectrumSignificance test cross-spectrum

20 trials

Figure 14: Significance test result of wavelet cross-spectrum for left L0L3 versus right triceps brachii based on multitrial analysis with
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framework that can be used to choose the thalamic contacts
that show the strongest association with the tremulous
EMG oscillations that if selected for high-frequency DBS
stimulation produce a better clinical outcome in comparison
to the empirical programming of the DBS device. Our clinical
experience so far confirms this hypothesis, but this will be
explored in a future study, on a significant number of
patients with ET, where the emphasis will be on the use of
such a framework to obtain best tremor suppression by
objective selection of the ideal contacts to stimulate. As more
complex multicontact directional DBS leads are already used
in various centres, evidence-based (both radiological and
neurophysiological) selection of the ideal contacts to stimu-
late will become increasingly important [7]. With this frame-
work, the electrophysiological LFP recordings and their
relationship to the tremor can be analysed to determine the
DBS lead contacts that show the strongest association with

the tremor and select them for stimulation. This work offers
the proof of principle required to assess the utility and the
limitations of this methodology. It has been demonstrated
that the proposed framework can reveal significant cerebro-
muscular interactions, in this instance thalamic (VIM) LFPs
versus the tremulous EMG activity, reaffirming in vivo that
this part of the thalamus is part of the central tremorogenic
network in ET. It could play an important role for future
research on developing a closed-loop DBS device. It also
has the potential to objectively determine in individual
patients which of the thalamic lead contacts shows objec-
tively the strongest association with the tremor, particularly
as multicontact leads make their way into clinical practice.
This thalamic lead contact could plausibly offer the best
tremor suppression for each patient. This hypothesis will
have to be confirmed in future electroclinical studies as our
clinical experience so far is pointing in this direction.
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Figure 15: Result of wavelet cross-spectrum for L0L3-right triceps brachii based on a single trial over a 1-second epoch.
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