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We deal with the design problem of nonfragile state estimator for discrete-time genetic regulatory networks (GRNs) with time-
varying delays and randomly occurring uncertainties. In particular, the norm-bounded uncertainties enter into the GRNs in
random ways in order to reflect the characteristic of the modelling errors, and the so-called randomly occurring uncertainties
are characterized by certain mutually independent random variables obeying the Bernoulli distribution. The focus of the paper is
on developing a new nonfragile state estimationmethod to estimate the concentrations of themRNA and the protein for considered
uncertain delayed GRNs, where the randomly occurring estimator gain perturbations are allowed. By constructing a Lyapunov-
Krasovskii functional, a delay-dependent criterion is obtained in terms of linear matrix inequalities (LMIs) by properly using
the discrete-time Wirtinger-based inequality and reciprocally convex combination approach as well as the free-weighting matrix
method. It is shown that the proposed method ensures that the estimation error dynamics is globally asymptotically stable and the
desired estimator parameter is designed via the solutions to certain LMIs. Finally, we provide two numerical examples to illustrate
the feasibility and validity of the proposed estimation results.

1. Introduction

Genetic regulatory networks (GRNs), which are biochemi-
cally dynamical systems describing highly complicated inter-
actions among DNA, RNA, protein, and metabolic product
in the interactive transcriptional and translational processes,
have become an attractive research field in the systems biol-
ogy andbiomedical sciences during the past fewdecades.One
of the main objectives in systems biology is to understand
howmRNAs and proteins work collectively and interact with
each other to perform the complicated biological functions
(e.g., the process of transcriptions and translations). In the
past few years, a great deal of attention has been devoted
to the theoretical analysis and experimental investigation on
GRNs. Accordingly, a large amount of important results has
been reported in literature making significant contributions

for understanding both static and dynamic behaviors of bio-
logical systems in detail (see [1–3] and the references therein).
Among them, twomain classes ofmodels used to characterize
the GRNs include discrete models such as Boolean model
[4, 5] and continuous models such as differential equation
models [6, 7].

When modelling GRNs, we should bear in mind the fact
that GRNs models are unavoidably affected by modelling
uncertainties, including parametric errors, time delays, and
stochastic noises. More specifically, the time delays are
unavoidable due primarily to the slow process of transcrip-
tion/translation, translocation, or the finite switching speed
of amplifiers. The existence of the time delays could affect
the whole system performance and may lead to oscillation,
divergence, and instability of the genetic networks. According
to the occurrence way of time delays, they can generally be
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classified into three types: interval time-varying delays [8, 9],
distributed delays [10], and random time delays [11, 12]. In
addition, gene regulation is an intrinsically noisy process due
to intracellular and extracellular noise perturbations, which
are derived from random births and deaths of individual
molecules and environmental fluctuations. Accordingly, a
great deal of effort has been made to deal with the anal-
ysis problem of GRNs with time-varying delays as well as
stochastic noises and a growing number of approaches have
been provided in the literature to examine the dynamical
behaviors of the addressed GRNs [2, 3, 13]. On the other
hand, the discrete-time version of GRNs receives increasing
research interests due to the reason that the continuous-time
GRNs are commonly discretized for computer simulation
and experimental purposes [14, 15]. In recent years, much
effort has been made to tackle the synthesis problems of
discrete GRNs with time delays. For example, the robust𝐻∞
control problem has been investigated in [16] for discrete
delayed stochastic GRNs. Moreover, the asymptotic stability
problems have been investigated in [17–19] for discrete-time
uncertain GRNs with time-varying delays and stochastic
fluctuations, where some sufficient conditions have been
presented to ensure the stability of the addressed GRNs via
the linear matrix inequality approach.

In practice, for the purpose of both the drug design
and disease diagnosis, it is worth mentioning that biologists
hope to gain actual concentrations of gene products in
GRNs. However, due to the existence of the model errors,
time delays, and external disturbances, the actual values of
GRNs can hardly be obtained and only partial information
about the gene states is commonly available in the mea-
surement outputs. As such, the filtering and state estimation
problems for complex dynamics systems have been widely
investigated; see, for example, [20–26]. To mention a few,
the set-values filtering problem has been investigated in
[20] for a class of GRNs with time-varying uncertainties
and bounded external noise, where new filtering scheme
has been given for the addressed GRNs. In [22], the state
estimation problem has been studied for a class of discrete-
time GRNs with random delays. Moreover, the 𝐻∞ state
estimation problem has been discussed in [24] for discrete
stochastic GRNs with Markovian jumping parameters and
time-varying delays. More recently, the sampling-data state
estimation algorithm has been provided in [25] for a class of
GRNs subject to time-varying delays. On the other hand, the
parameter uncertainties may be changed in a random way
with certain types and intensity due to various effects, for
instance, the changing subsystem interconnections, network-
induced random failures, repairs of components and sudden
environmental perturbations, and so on.Hence, it ismore sig-
nificant to deal with the effects from the randomly occurring
parameter uncertainties onto the networked systems [27–
32]. In addition, as discussed in [33], a small or even tiny
drift/fluctuation/error of the presented controller/estimator
during the parameter implementation may result in unex-
pected fragility/degradation for whole system performance.
In other words, there exist the deviations between the param-
eters of actually implemented controller/estimator and their
expected values, and hence there is a need to design the robust

controller/estimator with certain degree of tolerance against
the possible deviations. In the past decade, the nonfragile
estimation problems have gainedmuch attentionwith respect
to the implementation errors of proposed estimators [34–
36]. However, the nonfragile state estimation problem has
not been fully studied yet for discrete delayed GRNs, not to
mention the case where the randomly occurring parameter
uncertainties are also considered. As such, the main purpose
of the paper is to provide a robust state estimation method
against the mentioned phenomena.

Motivated by the aforementioned analysis, in this paper,
we aim to investigate the robust nonfragile state estimation
problem for a class of discrete GRNs with time-varying
delays and randomly occurring uncertainties.The Lyapunov-
Krasovskii functional is chosen which utilizes more infor-
mation about the time delays and a new set of conditions is
added to calculate the difference of the designed Lyapunov-
Krasovskii functional. Furthermore, as mentioned in [37], it
is clearly seen that theWirtinger-based inequality can reduce
the conservatism and provide a more tighter lower delay
bound of the summation terms. Therefore, we revisit the
nonfragile state estimation problem for discrete GRNs with
time-varying delays and randomly occurring uncertainties
by using the discrete-time Wirtinger-based inequality and
the reciprocally convex combination inequality. A delay-
dependent estimation criterion is established in terms of fea-
sibility of a set of LMIs. The main contributions of this paper
can be summarized as follows: (1) the discrete Wirtinger-
based inequality is utilized for the first time to investigate
the nonfragile state estimation problem for GRNs with time-
varying delays and randomly occurring uncertainties, where
the estimator gain perturbations occur in a random way;(2) by utilizing the discrete-time Wirtinger-based inequality
and the reciprocally convex combination approach, the sum-
mation terms are addressed and more information of time
delays is reflected in the proposed algorithm; and (3) more
free-weighting matrices are introduced by adding to new
conditions with hope to further reduce the conservativeness
induced by time delays. Finally, examples and simulation are
given to illustrate the effectiveness and advantages of the
proposed main results.

Notations. For a matrix 𝐴, 𝐴 > 0 denotes that 𝐴 is
a symmetric positive-definite matrix. 𝐸[⋅] stands for the
mathematical expectation operator. The superscript 𝑇 and(−1) represent the transpose and the inverse of the matrix,
respectively. 𝐼 represents an identity matrix with appropriate
dimension. For simplicity, ∗ represents the term that is
induced by symmetry in symmetric block matrices.

2. Model Description and Preliminaries

In this paper, we consider the following discrete GRNs with
time-varying delays, 𝑛mRNA, and 𝑛 proteins:

𝑀(𝑘 + 1) = 𝐴𝑀(𝑘) + 𝐵𝑓 (𝑃 (𝑘 − 𝜏 (𝑘))) + 𝐿,
𝑃 (𝑘 + 1) = 𝐶𝑃 (𝑘) + 𝐷𝑀(𝑘 − 𝛿 (𝑘)) , (1)
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where 𝑀(𝑘) = [𝑀1(𝑘),𝑀2(𝑘), . . . ,𝑀𝑛(𝑘)]𝑇, 𝑃(𝑘) = [𝑃1(𝑘),𝑃2(𝑘), . . . , 𝑃𝑛(𝑘)]𝑇 ∈ 𝑅𝑛 are the concentrations of mRNA and
protein at instant 𝑘, respectively. 𝐴 = diag{𝑎1, 𝑎2, . . . , 𝑎𝑛} and𝐶 = diag{𝑐1, 𝑐2, . . . , 𝑐𝑛} are real constant diagonal matrices
representing the decay rates of mRNA and protein with
entries |𝑎𝑖| < 1 and |𝑐𝑖| < 1, 𝐷 = diag{𝑑1, 𝑑2, . . . , 𝑑𝑛}, 𝑑𝑖 is
the translation rate, and 𝐵 = (𝑏𝑖𝑗)𝑛×𝑛 is the coupling matrix of
the genetic networks. 𝐿 = [𝑙1, 𝑙2, . . . , 𝑙𝑛]𝑇 stands for the basal
rates of degradation. 𝜏(𝑘) > 0 and 𝛿(𝑘) > 0 are the time-
varying delays denoting the feedback regulation delay and the
translation delay satisfying 0 < 𝜏𝑚 ≤ 𝜏(𝑘) ≤ 𝜏𝑀 and 0 <𝛿𝑚 ≤ 𝛿(𝑘) ≤ 𝛿𝑀. In addition, the nonlinear function 𝑓(𝑘) =[𝑓1(𝑘), 𝑓2(𝑘), . . . , 𝑓𝑛(𝑘)]𝑇 represents the feedback regulation
of the protein on the transcription. It is a monotonic function
in the Hill form; that is, 𝑓𝑗(𝑥) = (𝑥/𝛽𝑗)𝐻𝑗/(1 + (𝑥/𝛽𝑗)𝐻𝑗),𝑥 ∈ 𝑅, where 𝐻𝑗 is the Hill coefficient and 𝛽𝑗 is a positive
constant.

Let [𝑀∗𝑇 , 𝑃∗𝑇] = [𝑀∗1 ,𝑀∗2 , . . . ,𝑀∗𝑛 , 𝑃∗1 , 𝑃∗2 , . . . , 𝑃∗𝑛 ] be
an equilibrium point of system (1). Then, it is easy to obtain
that

𝑀∗ = 𝐴𝑀∗ + 𝐵𝑓 (𝑃∗) + 𝐿,
𝑃∗ = 𝐶𝑃∗ + 𝐷𝑀∗. (2)

Subsequently, we can shift the equilibrium point [𝑀∗𝑇 , 𝑃∗𝑇]
of system (1) to the origin point via the transformations𝑥(𝑘) = 𝑀(𝑘) − 𝑀∗ and 𝑦(𝑘) = 𝑃(𝑘) − 𝑃∗. Then, system (1)
can be converted into the following form:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑔 (𝑦 (𝑘 − 𝜏 (𝑘))) ,
𝑦 (𝑘 + 1) = 𝐶𝑦 (𝑘) + 𝐷𝑥 (𝑘 − 𝛿 (𝑘)) . (3)

with 𝑔(𝑦(𝑘)) = 𝑓(𝑦(𝑘) + 𝑃∗) − 𝑓(𝑃∗).
As mentioned above, the GRNs are often the large-scale

networks and it should be noted that systemparameter uncer-
tainties may be subject to random changes in real circum-
stances due to some factors such as repairs of components and
sudden environmental disturbances. Thus, they may occur
in a probabilistic way with various types and intensities. By
considering the randomly occurring uncertainties, system (3)
becomes

𝑥 (𝑘 + 1) = (𝐴 + 𝛼1 (𝑘) Δ𝐴 (𝑘)) 𝑥 (𝑘)
+ (𝐵 + 𝛽2 (𝑘) Δ𝐵 (𝑘)) 𝑔 (𝑦 (𝑘 − 𝜏 (𝑘))) ,

𝑦 (𝑘 + 1) = (𝐶 + 𝛽1 (𝑘) Δ𝐶 (𝑘)) 𝑦 (𝑘)
+ (𝐷 + 𝛼2 (𝑘) Δ𝐷 (𝑘)) 𝑥 (𝑘 − 𝛿 (𝑘)) ,

(4)

whereΔ𝐴(𝑘),Δ𝐵(𝑘),Δ𝐶(𝑘), andΔ𝐷(𝑘) denote the parameter
uncertainties satisfying the following condition:

[Δ𝐴 (𝑘) Δ𝐵 (𝑘) Δ𝐶 (𝑘) Δ𝐷 (𝑘)]
= 𝐸1𝐹 (𝑘) [𝑀1 𝑀2 𝑀3 𝑀4] , (5)

where 𝐸1,𝑀1,𝑀2,𝑀3, and𝑀4 are known constant matrices
and 𝐹(𝑘) is an unknown time-varying matrix satisfying𝐹𝑇(𝑘)𝐹(𝑘) ≤ 𝐼. The stochastic variables 𝛼𝑖(𝑘) and 𝛽𝑖(𝑘) (𝑖 =1, 2) are used to characterize the randomly occurring uncer-
tainties and are mutually independent Bernoulli-distributed
white noise sequences satisfying

Prob {𝛼𝑖 (𝑘) = 1} = 𝛼𝑖,
Prob {𝛼𝑖 (𝑘) = 0} = 1 − 𝛼𝑖,
Prob {𝛽𝑖 (𝑘) = 1} = 𝛽𝑖,
Prob {𝛽𝑖 (𝑘) = 0} = 1 − 𝛽𝑖,

(6)

where 𝛼𝑖 and 𝛽𝑖 ∈ [0, 1] (𝑖 = 1, 2) are known constants.
The state components of the GRNs are usually not

completely accessible. Consequently, it is necessary to make
use of the available output information and design a state
estimator to estimate the state vector of the addressed GRNs.
For this case, assume that the measurement outputs are given
as follows:

𝑧𝑥 (𝑘) = 𝑊1𝑥 (𝑘) ,
𝑧𝑦 (𝑘) = 𝑊2𝑦 (𝑘) , (7)

where 𝑧𝑥(𝑘) and 𝑧𝑦(𝑘) are themeasurements ofmodel (4);𝑊1
and𝑊2 are the known matrices.

The main objective of this paper is to estimate the
concentrations ofmRNAandprotein in (4) from the available
network outputs in (7). In the sequel, we design the following
nonfragile state estimator:

𝑥 (𝑘 + 1)
= 𝐴𝑥 (𝑘) + 𝐵𝑔 (𝑦 (𝑘 − 𝜏 (𝑘)))
+ (𝐾1 + 𝛾1 (𝑘) Δ𝐾1 (𝑘)) [𝑧𝑥 (𝑘) − 𝑊1𝑥 (𝑘)] ,

𝑦 (𝑘 + 1)
= 𝐶𝑦 (𝑘) + 𝐷𝑥 (𝑘 − 𝛿 (𝑘))
+ (𝐾2 + 𝛾2 (𝑘) Δ𝐾2 (𝑘)) [𝑧𝑦 (𝑘) − 𝑊2𝑦 (𝑘)] ,

(8)

where 𝑥(𝑘), 𝑦(𝑘) are the estimations of 𝑥(𝑘) and 𝑦(𝑘),
and the nonfragile estimator gain matrices 𝐾1, 𝐾2 are
to be determined. The real-valued matrices Δ𝐾1(𝑘) andΔ𝐾2(𝑘) represent possible estimator gain fluctuations. It is
assumed that Δ𝐾1(𝑘) and Δ𝐾2(𝑘) have the following struc-
ture:

[Δ𝐾1 (𝑘) Δ𝐾2 (𝑘)] = 𝐸2𝐹 (𝑘) [𝑀5 𝑀6] , (9)

where 𝐸2, 𝑀5, and 𝑀6 are the known constant matrices
and 𝐹(𝑘) is the unknown time-varying matrix satisfying𝐹𝑇(𝑘)𝐹(𝑘) ≤ 𝐼. The stochastic variables 𝛾𝑖(𝑘) (𝑖 = 1, 2)
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represent the perturbations in the estimator gain matrices
and are mutually independent Bernoulli-distributed white
noise sequences taking on values of 0 or 1 with

Prob {𝛾𝑖 (𝑘) = 1} = 𝛾𝑖,
Prob {𝛾𝑖 (𝑘) = 0} = 1 − 𝛾𝑖, (10)

where 𝛾𝑖 ∈ [0, 1] (𝑖 = 1, 2) are known constants.
Letting the estimation error be 𝑥(𝑘) = 𝑥(𝑘) − 𝑥(𝑘) and𝑦(𝑘) = 𝑦(𝑘) − 𝑦(𝑘), the estimation error dynamics can be

described as follows:

𝑥 (𝑘 + 1) = (𝐴 − 𝐾1𝑊1) 𝑥 (𝑘) + 𝐵𝑔 (𝑦 (𝑘 − 𝜏 (𝑘)))
+ 𝛼1 (𝑘) Δ𝐴 (𝑘) 𝑥 (𝑘)
− 𝛾1 (𝑘) Δ𝐾1 (𝑘)𝑊1𝑥 (𝑘)
+ 𝛽2 (𝑘) Δ𝐵 (𝑘) 𝑔 (𝑦 (𝑘 − 𝜏 (𝑘))) ,

𝑦 (𝑘 + 1) = (𝐶 − 𝐾2𝑊2) 𝑦 (𝑘) + 𝐷𝑥 (𝑘 − 𝛿 (𝑘))
+ 𝛽1 (𝑘) Δ𝐶 (𝑘) 𝑦 (𝑘)
− 𝛾2 (𝑘) Δ𝐾2 (𝑘)𝑊2𝑦 (𝑘)
+ 𝛼2 (𝑘) Δ𝐷 (𝑘) 𝑥 (𝑘 − 𝛿 (𝑘)) ,

(11)

where 𝑔(𝑦(𝑘−𝜏(𝑘))) = 𝑔(𝑦(𝑘−𝜏(𝑘)))−𝑔(𝑦(𝑘−𝜏(𝑘))). Initial
conditions for the uncertain GRNs (4) and state estimator
system (8) are assumed to be (𝑥(𝑘), 𝑦(𝑘)) = (𝜙(𝑘), 𝜓(𝑘))
and (𝑥(𝑘), 𝑦(𝑘)) = (𝜙(𝑘), 𝜓̂(𝑘)) on [−𝜏, 0], where 𝜏 =
max{𝜏𝑀, 𝛿𝑀}.

To facilitate further derivations, set

𝑒𝑥 (𝑘) = [𝑥 (𝑘)𝑥 (𝑘)] ,
𝑒𝑦 (𝑘) = [𝑦 (𝑘)𝑦 (𝑘)] .

(12)

Combining (4) with (11), we obtain the augmented estimation
error dynamics:

𝑒𝑥 (𝑘 + 1) = 𝐴1𝑒𝑥 (𝑘) + 𝐵1𝑔 (𝑒𝑦 (𝑘 − 𝜏 (𝑘)))
+ 𝐸1󰜚1 (𝑘) + 𝐸2󰜚2 (𝑘) ,

𝑒𝑦 (𝑘 + 1) = 𝐶1𝑒𝑦 (𝑘) + 𝐷1𝑒𝑥 (𝑘 − 𝛿 (𝑘)) + 𝐸1󰜚3 (𝑘)
+ 𝐸2󰜚4 (𝑘) ,

󰜚𝑖 (𝑘) = 𝐹 (𝑘) 𝜍𝑖 (𝑘) , 𝑖 = 1, 2, 3, 4,

𝜍1 (𝑘) = 𝛼1 (𝑘)𝑀1𝑒𝑥 (𝑘)
+ 𝛽2 (𝑘)𝑀2𝑔 (𝑒𝑦 (𝑘 − 𝜏 (𝑘))) ,

𝜍2 (𝑘) = 𝛾1 (𝑘)𝑀5𝑒𝑥 (𝑘) ,
𝜍3 (𝑘) = 𝛽1 (𝑘)𝑀3𝑒𝑦 (𝑘)

+ 𝛼2 (𝑘)𝑀4𝑒𝑥 (𝑘 − 𝛿 (𝑘)) ,
𝜍4 (𝑘) = 𝛾2 (𝑘)𝑀6𝑒𝑦 (𝑘) ,

(13)

where

𝐴1 = [𝐴 0
0 𝐴 − 𝐾1𝑊1] ,

𝐶1 = [𝐶 0
0 𝐶 − 𝐾2𝑊2] ,

𝐵1 = [𝐵 0
0 𝐵] ,

𝐷1 = [𝐷 0
0 𝐷] ,

𝐸1 = [𝐸1 0
0 𝐸1] ,

𝐸2 = [𝐸2 0
0 𝐸2] ,

𝐹 (𝑘) = [𝐹 (𝑘) 0
0 𝐹 (𝑘)] ,

𝑀1 = [𝑀1 0𝑀1 0] ,

𝑀2 = [𝑀2 0𝑀2 0] ,

𝑀3 = [𝑀3 0𝑀3 0] ,

𝑀4 = [𝑀4 0𝑀4 0] ,
𝑀5 = [0 0

0 −𝑀5𝑊1] ,
𝑀6 = [0 0

0 −𝑀6𝑊2] .

(14)
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Assumption 1. The nonlinear function 𝑔𝑖(⋅) (𝑖 = 1, 2, . . . , 𝑛)
is a monotonically increasing function and satisfies the
following condition:

0 ≤ 𝑔𝑖 (𝑥𝑖)𝑥𝑖 ≤ 𝑙𝑖, 𝑥𝑖 ̸= 0, 𝑔𝑖 (0) = 0, (15)

which is equivalent to

𝑔𝑇 (𝑥) (𝑔 (𝑥) − 𝐿𝑥) ≤ 0, (16)

where 𝐿 = diag{𝑙1, 𝑙2, . . . , 𝑙𝑛} > 0 and 𝑙𝑖 (𝑖 = 1, 2, . . . , 𝑛) are
known constants.

Definition 2. System (8) is said to be a robust asymptotic state
estimator of the GRNs (4) if estimation error system (13) is
globally robustly asymptotically stable in the mean square;
that is,

lim
𝑘→+∞

𝐸 {‖𝑥 (𝑘)‖2 + 󵄩󵄩󵄩󵄩𝑦 (𝑘)󵄩󵄩󵄩󵄩2} = 0. (17)

To end of this section, we introduce the following lemmas
which will be frequently used in the subsequent develop-
ments.

Lemma 3 ([38] (Schur complement)). Given constant matri-
ces 𝑆11, 𝑆12, and 𝑆22 with appropriate dimensions, where 𝑆11 =𝑆𝑇11 and 𝑆22 = 𝑆𝑇22 < 0, then 𝑆11 − 𝑆12𝑆−122 𝑆𝑇12 < 0 if and only if

𝑆 = [𝑆11 𝑆12𝑆𝑇12 𝑆22] < 0. (18)

Lemma 4 ([37] (discrete-time Wirtinger-based inequality)).
For a given positive-definite matrix 𝑅 and three nonnegative
integers 𝑎, 𝑏, 𝑘 satisfying 𝑎 ≤ 𝑏 ≤ 𝑘, denote
𝜒 (𝑘, 𝑎, 𝑏)

= {{{{{{{
1𝑏 − 𝑎 [[(2

𝑘−𝑎−1∑
𝑗=𝑘−𝑏

𝑥 (𝑗)) + 𝑥 (𝑘 − 𝑎) − 𝑥 (𝑘 − 𝑏)]] , (𝑎 < 𝑏)
2𝑥 (𝑘 − 𝑎) , (𝑎 = 𝑏) .

(19)

Then, one has

− (𝑏 − 𝑎) 𝑘−𝑎−1∑
𝑗=𝑘−𝑏

𝜂𝑇 (𝑖) 𝑅𝜂 (𝑖)

≤ − [Ω0Ω1]
𝑇 [𝑅 0

0 3𝑅][
Ω0Ω1] ,

(20)

where

𝜂 (𝑘) = 𝑥 (𝑘 + 1) − 𝑥 (𝑘) ,
Ω0 = 𝑥 (𝑘 − 𝑎) − 𝑥 (𝑘 − 𝑏) ,
Ω1 = 𝑥 (𝑘 − 𝑎) + 𝑥 (𝑘 − 𝑏) − 𝜒 (𝑘, 𝑎, 𝑏) .

(21)

Lemma 5 (see [39]). For given positive integers 𝑛,𝑚, a scalar𝛼 ∈ (0, 1), an 𝑛 × 𝑛-matrix 𝑅 > 0, and two 𝑛 × 𝑚-matrices𝑆1, 𝑆2, for all vector 𝜉 ∈ 𝑅𝑚, the function Θ(𝛼, 𝑅) is given by

Θ (𝛼, 𝑅) = 1𝛼𝜉𝑇𝑆𝑇1𝑅𝑆1𝜉 + 11 − 𝛼𝜉𝑇𝑆𝑇2𝑅𝑆2𝜉. (22)

If there is a matrix 𝑋 ∈ 𝑅𝑛×𝑛 such that [ 𝑅 𝑋∗ 𝑅 ] > 0, then the
following inequality holds:

minΘ (𝛼, 𝑅) ≥ [𝑆1𝜉𝑆2𝜉]
𝑇 [𝑅 𝑋

∗ 𝑅][
𝑆1𝜉𝑆2𝜉] . (23)

3. Main Results

In this section, we first consider that there are no parameter
uncertainties in GRNs (4). Also, the estimator can be selected
as (8); then augmented error system (13) can be rewritten as

𝑒𝑥 (𝑘 + 1) = 𝐴1𝑒𝑥 (𝑘) + 𝐵1𝑔 (𝑒𝑦 (𝑘 − 𝜏 (𝑘)))
+ 𝐸2󰜚2 (𝑘) ,

𝑒𝑦 (𝑘 + 1) = 𝐶1𝑒𝑦 (𝑘) + 𝐷1𝑒𝑥 (𝑘 − 𝛿 (𝑘)) + 𝐸2󰜚4 (𝑘) ,
󰜚𝑖 (𝑘) = 𝐹 (𝑘) 𝜍𝑖 (𝑘) , 𝑖 = 2, 4,
𝜍2 (𝑘) = 𝛾1 (𝑘)𝑀5𝑒𝑥 (𝑘) ,
𝜍4 (𝑘) = 𝛾2 (𝑘)𝑀6𝑒𝑦 (𝑘) .

(24)

Our main aim is to design the nonfragile state estimator
to guarantee that estimation error system (24) is globally
asymptotically stable. In other words, by designing a proper
Lyapunov-Krasovskii functional, together with the discrete-
time Wirtinger-based inequality, reciprocally convex combi-
nation approach, and the free-weighting matrices method,
we are interested in looking for the estimator gain matrices𝐾1 and 𝐾2 such that the error dynamics governed by (24) is
globally asymptotically stable. Further, the result is extended
to handle the nonfragile state estimation problem for GRNs
(4) with randomly occurring uncertainties.

Theorem 6. For given positive scalars 𝛿𝑚, 𝛿𝑀, 𝜏𝑚, and 𝜏𝑀,
estimation error system (24) is globally asymptotically stable,
if there exist scalars 𝜀𝑖 > 0 (𝑖 = 2, 4), matrices 𝑃1 > 0, 𝑃2 > 0,𝑅 > 0, 𝑍𝑗 > 0 (𝑗 = 1, 2, 3, 4), and 𝑄𝑙 > 0 (𝑙 = 1, 2, . . . , 6),
positive diagonal matrices Λ 1, Λ 2, and Λ 3, matrices 𝑌𝑖 =[ 𝑌𝑖1 𝑌𝑖2∗ 𝑌𝑖3 ] (𝑖 = 1, 2), and block diagonal matrices 𝑁1, 𝑁2, 𝑁3,𝑁4,𝑋1, and 𝑋3, such that the following LMIs hold:

Σ = [[[
[
Ξ0 𝜀2Ψ𝑇2 𝜀4Ψ𝑇4∗ −𝜀2𝐼2𝑛 0
∗ ∗ −𝜀4𝐼2𝑛

]]]
]
< 0, (25)
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where

Ψ2 = [𝛾1𝑀5 0𝑛×19𝑛] ,
Ψ4 = [0𝑛×4𝑛 𝛾2𝑀6 0𝑛×15𝑛] ,
Ξ0 = 9∑
𝑖=1

Ξ𝑖,
Ξ1 = 2𝑒1𝑃1𝑒𝑇9 + 𝑒9𝑃1𝑒𝑇9 + 2𝑒5𝑃2𝑒𝑇10 + 𝑒10𝑃2𝑒𝑇10,
Ξ2 = 𝑒1 (𝑄1 + (1 + 𝛿1) 𝑄2 + 𝑄3) 𝑒𝑇1 − 𝑒3𝑄1𝑒𝑇3

− 𝑒2𝑄2𝑒𝑇2 − 𝑒4𝑄3𝑒𝑇4 ,
Ξ3 = 𝑒5 (𝑄4 + (1 + 𝜏1) 𝑄5 + 𝑄6) 𝑒𝑇5 − 𝑒7𝑄4𝑒𝑇7

− 𝑒6𝑄5𝑒𝑇6 − 𝑒8𝑄6𝑒𝑇8 ,
Ξ4 = 𝑒11 (1 + 𝜏1) 𝑅𝑒𝑇11 − 𝑒12𝑅𝑒𝑇12,
Ξ5 = 𝑒9 (𝛿1𝑍1 + 𝛿𝑚𝑍2) 𝑒𝑇9 + 𝑒10 (𝜏1𝑍3 + 𝜏𝑚𝑍4) 𝑒𝑇10

− 1𝛿𝑚 𝜌1𝑍2𝜌𝑇1 −
1𝛿1 𝜌7Θ1𝜌𝑇7 −

1𝜏𝑚 𝜌4𝑍4𝜌𝑇4
− 1𝜏1 𝜌8Θ2𝜌𝑇8 ,

Ξ6 = 2𝑒5𝐿Λ 1𝑒𝑇11 − 2𝑒11Λ 1𝑒𝑇11 + 2𝑒6𝐿Λ 2𝑒𝑇12
− 2𝑒12Λ 2𝑒𝑇12 + 2 (𝑒5 − 𝑒6) 𝐿Λ 3 (𝑒11 − 𝑒12)𝑇
− 2 (𝑒11 − 𝑒12) Λ 3 (𝑒11 − 𝑒12)𝑇 ,

Ξ7 = −𝑒19𝜀2𝐼2𝑛𝑒𝑇19 − 𝑒20𝜀4𝐼2𝑛𝑒𝑇20,
Ξ8 = 2𝑒9𝑁1𝐵1𝑒𝑇12 + 2𝑒9𝑁1𝐸2𝑒𝑇19 − 2𝑒9𝑁1𝑒𝑇9

+ 2𝑒1𝑁2𝐵1𝑒𝑇12 + 2𝑒1𝑁2𝐸2𝑒𝑇19 − 2𝑒1𝑁2𝑒𝑇9
+ 2𝑒10𝑁3𝐷1𝑒𝑇2 + 2𝑒10𝑁3𝐸2𝑒𝑇20 − 2𝑒10𝑁3𝑒𝑇10
+ 2𝑒5𝑁4𝐷1𝑒𝑇2 + 2𝑒5𝑁4𝐸2𝑒𝑇20 − 2𝑒5𝑁4𝑒𝑇10,

Ξ9 = 2𝑒9 (𝑁1𝐴1 − 𝑋1𝑊1) 𝑒𝑇1
+ 2𝑒1 (𝑁2𝐴1 − 𝑋1𝑊1) 𝑒𝑇1
+ 2𝑒10 (𝑁3𝐶1 − 𝑋3𝑊2) 𝑒𝑇5
+ 2𝑒5 (𝑁4𝐶1 − 𝑋3𝑊2) 𝑒𝑇5 ,

𝑒𝑖 = [02𝑛×(𝑖−1)2𝑛 𝐼2𝑛×2𝑛 02𝑛×(20−𝑖)2𝑛]𝑇 ,
𝑖 = 1, 2, . . . , 20,

𝜌1 = [𝑒1 − 𝑒3 √3 (𝑒1 + 𝑒3 − 𝑒13)] ,

𝜌2 = [𝑒2 − 𝑒4 √3 (𝑒2 + 𝑒4 − 𝑒14)] ,
𝜌3 = [𝑒3 − 𝑒2 √3 (𝑒3 + 𝑒2 − 𝑒15)] ,
𝜌4 = [𝑒5 − 𝑒7 √3 (𝑒5 + 𝑒7 − 𝑒16)] ,
𝜌5 = [𝑒6 − 𝑒8 √3 (𝑒6 + 𝑒8 − 𝑒17)] ,
𝜌6 = [𝑒7 − 𝑒6 √3 (𝑒7 + 𝑒6 − 𝑒18)] ,
𝜌7 = [𝜌2 𝜌3] ,
𝜌8 = [𝜌5 𝜌6] ,
𝑍𝑖 = [𝑍𝑖 0

0 𝑍𝑖] , (𝑖 = 1, 2, 3, 4) ,
Θ1 = [𝑍1 𝑌1∗ 𝑍1] ,

Θ2 = [𝑍3 𝑌2∗ 𝑍3] ,
𝐴1 = [𝐴 − 𝐼 0

0 𝐴 − 𝐼] ,
𝐶1 = [𝐶 − 𝐼 0

0 𝐶 − 𝐼] ,
𝑊1 = [0 0

0 −𝑊1] ,
𝑊2 = [0 0

0 −𝑊2] .
(26)

And the remaining terms are zero. Then, the estimator gain
matrices are determined by

𝐾1 = 𝑁−112𝑋1,
𝐾2 = 𝑁−132𝑋3. (27)

Proof. Set

𝜂1 (𝑘) = 𝑒𝑥 (𝑘 + 1) − 𝑒𝑥 (𝑘) ,
𝜂2 (𝑘) = 𝑒𝑦 (𝑘 + 1) − 𝑒𝑦 (𝑘) ,

𝛿1 = 𝛿𝑀 − 𝛿𝑚,
𝜏1 = 𝜏𝑀 − 𝜏𝑚.

(28)

We construct the following Lyapunov-Krasovskii functional
for discrete-time GRNs (24):

𝑉 (𝑘) = 5∑
𝑖=1

𝑉𝑖 (𝑘) , (29)
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where

𝑉1 (𝑘) = 𝑒𝑇𝑥 (𝑘) 𝑃1𝑒𝑥 (𝑘) + 𝑒𝑇𝑦 (𝑘) 𝑃2𝑒𝑦 (𝑘) ,
𝑉2 (𝑘) = 𝑘−1∑

𝑖=𝑘−𝛿𝑚

𝑒𝑥𝑇 (𝑖) 𝑄1𝑒𝑥 (𝑖) + 𝑘−1∑
𝑖=𝑘−𝛿𝑀

𝑒𝑥𝑇 (𝑖) 𝑄3𝑒𝑥 (𝑖)

+ 𝑘−1∑
𝑖=𝑘−𝛿(𝑘)

𝑒𝑥𝑇 (𝑖) 𝑄2𝑒𝑥 (𝑖)

+ −𝛿𝑚∑
𝑗=−𝛿𝑀+1

𝑘−1∑
𝑖=𝑘+𝑗

𝑒𝑥𝑇 (𝑖) 𝑄2𝑒𝑥 (𝑖) ,

𝑉3 (𝑘) = 𝑘−1∑
𝑖=𝑘−𝜏𝑚

𝑒𝑦𝑇 (𝑖) 𝑄4𝑒𝑦 (𝑖) + 𝑘−1∑
𝑖=𝑘−𝜏𝑀

𝑒𝑦𝑇 (𝑖) 𝑄6𝑒𝑦 (𝑖)

+ 𝑘−1∑
𝑖=𝑘−𝜏(𝑘)

𝑒𝑦𝑇 (𝑖) 𝑄5𝑒𝑦 (𝑖)

+ −𝜏𝑚∑
𝑗=−𝜏𝑀+1

𝑘−1∑
𝑖=𝑘+𝑗

𝑒𝑦𝑇 (𝑖) 𝑄5𝑒𝑦 (𝑖) ,

𝑉4 (𝑘) = 𝑘−1∑
𝑖=𝑘−𝜏(𝑘)

𝑔𝑇 (𝑒𝑦 (𝑖)) 𝑅𝑔 (𝑒𝑦 (𝑖))

+ −𝜏𝑚∑
𝑗=−𝜏𝑀+1

𝑘−1∑
𝑖=𝑘+𝑗

𝑔𝑇 (𝑒𝑦 (𝑖)) 𝑅𝑔 (𝑒𝑦 (𝑖)) ,

𝑉5 (𝑘) = −𝛿𝑚−1∑
𝑗=−𝛿𝑀

𝑘−1∑
𝑖=𝑘+𝑗

𝜂1𝑇 (𝑖) 𝑍1𝜂1 (𝑖)

+ −1∑
𝑗=−𝛿𝑚

𝑘−1∑
𝑖=𝑘+𝑗

𝜂1𝑇 (𝑖) 𝑍2𝜂1 (𝑖)

+ −𝜏𝑚−1∑
𝑗=−𝜏𝑀

𝑘−1∑
𝑖=𝑘+𝑗

𝜂2𝑇 (𝑖) 𝑍3𝜂2 (𝑖)

+ −1∑
𝑗=−𝜏𝑚

𝑘−1∑
𝑖=𝑘+𝑗

𝜂2𝑇 (𝑖) 𝑍4𝜂2 (𝑖) .

(30)

For convenience, define the following notations:

𝜒1 (𝑘) = 𝜒 (𝑘, 0, 𝛿𝑚) ,
𝜒2 (𝑘) = 𝜒 (𝑘, 𝛿 (𝑘) , 𝛿𝑀) ,
𝜒3 (𝑘) = 𝜒 (𝑘, 𝛿𝑚, 𝛿 (𝑘)) ,
𝜒4 (𝑘) = 𝜒 (𝑘, 0, 𝜏𝑚) ,
𝜒5 (𝑘) = 𝜒 (𝑘, 𝜏 (𝑘) , 𝜏𝑀) ,

𝜒6 (𝑘) = 𝜒 (𝑘, 𝜏𝑚, 𝜏 (𝑘)) ,
𝜉𝑇 (𝑘) = [𝑒𝑇𝑥 (𝑘) , 𝑒𝑇𝑥 (𝑘 − 𝛿 (𝑘)) , 𝑒𝑇𝑥 (𝑘 − 𝛿𝑚) ,

𝑒𝑇𝑥 (𝑘 − 𝛿𝑀) , 𝑒𝑇𝑦 (𝑘) , 𝑒𝑇𝑦 (𝑘 − 𝜏 (𝑘)) , 𝑒𝑇𝑦 (𝑘 − 𝜏𝑚) ,
𝑒𝑇𝑦 (𝑘 − 𝜏𝑀) , 𝜂𝑇1 (𝑘) , 𝜂𝑇2 (𝑘) , 𝑔𝑇 (𝑒𝑦 (𝑘)) ,
𝑔𝑇 (𝑒𝑦 (𝑘 − 𝜏 (𝑘))) , 𝜒𝑇1 (𝑘) , 𝜒𝑇2 (𝑘) , 𝜒𝑇3 (𝑘) , 𝜒𝑇4 (𝑘) ,
𝜒𝑇5 (𝑘) , 𝜒𝑇6 (𝑘) , 󰜚𝑇2 (𝑘) , 󰜚𝑇4 (𝑘)] .

(31)

Calculate the difference of 𝑉(𝑘) by defining Δ𝑉(𝑘) = 𝑉(𝑘 +1) − 𝑉(𝑘) along the solutions of (24):
Δ𝑉1 (𝑘) = 𝑉1 (𝑘 + 1) − 𝑉1 (𝑘)

= 𝑒𝑇𝑥 (𝑘 + 1) 𝑃1𝑒𝑥 (𝑘 + 1) − 𝑒𝑇𝑥 (𝑘) 𝑃1𝑒𝑥 (𝑘)
+ 𝑒𝑇𝑦 (𝑘 + 1) 𝑃2𝑒𝑦 (𝑘 + 1) − 𝑒𝑇𝑦 (𝑘) 𝑃2𝑒𝑦 (𝑘)

= (𝜂1 (𝑘) + 𝑒𝑥 (𝑘))𝑇 𝑃1 (𝜂1 (𝑘) + 𝑒𝑥 (𝑘))
− 𝑒𝑇𝑥 (𝑘) 𝑃1𝑒𝑥 (𝑘)
+ (𝜂2 (𝑘) + 𝑒𝑦 (𝑘))𝑇 𝑃2 (𝜂2 (𝑘) + 𝑒𝑦 (𝑘))
− 𝑒𝑇𝑦 (𝑘) 𝑃2𝑒𝑦 (𝑘) = 𝜉𝑇 (𝑘) Ξ1𝜉 (𝑘) ,

Δ𝑉2 (𝑘) = 𝑒𝑇𝑥 (𝑘)𝑄1𝑒𝑥 (𝑘)
− 𝑒𝑇𝑥 (𝑘 − 𝛿𝑚) 𝑄1𝑒𝑥 (𝑘 − 𝛿𝑚)
+ 𝑒𝑇𝑥 (𝑘) 𝑄3𝑒𝑥 (𝑘)
− 𝑒𝑇𝑥 (𝑘 − 𝛿𝑀) 𝑄3𝑒𝑥 (𝑘 − 𝛿𝑀)
+ 𝛿1𝑒𝑇𝑥 (𝑘)𝑄2𝑒𝑥 (𝑘)
+ 𝑘∑
𝑖=𝑘+1−𝛿(𝑘+1)

𝑒𝑇𝑥 (𝑖) 𝑄2𝑒𝑥 (𝑖)

− 𝑘−1∑
𝑖=𝑘−𝛿(𝑘)

𝑒𝑇𝑥 (𝑖) 𝑄2𝑒𝑥 (𝑖)

− −𝛿𝑚∑
𝑗=−𝛿𝑀+1

𝑒𝑇𝑥 (𝑘 + 𝑗)𝑄2𝑒𝑥 (𝑘 + 𝑗)
≤ 𝑒𝑇𝑥 (𝑘)𝑄1𝑒𝑥 (𝑘) + (1 + 𝛿1) 𝑒𝑇𝑥 (𝑘) 𝑄2𝑒𝑥 (𝑘)
+ 𝑒𝑇𝑥 (𝑘) 𝑄3𝑒𝑥 (𝑘)
− 𝑒𝑇𝑥 (𝑘 − 𝛿𝑚) 𝑄1𝑒𝑥 (𝑘 − 𝛿𝑚)
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− 𝑒𝑇𝑥 (𝑘 − 𝛿 (𝑘)) 𝑄2𝑒𝑥 (𝑘 − 𝛿 (𝑘))
− 𝑒𝑇𝑥 (𝑘 − 𝛿𝑀) 𝑄3𝑒𝑥 (𝑘 − 𝛿𝑀)

= 𝜉𝑇 (𝑘) Ξ2𝜉 (𝑘) .
(32)

In the same way, we obtain

Δ𝑉3 (𝑘) ≤ 𝑒𝑇𝑦 (𝑘) 𝑄4𝑒𝑦 (𝑘) + (1 + 𝜏1) 𝑒𝑇𝑦 (𝑘)𝑄5𝑒𝑦 (𝑘)
+ 𝑒𝑇𝑦 (𝑘)𝑄6𝑒𝑦 (𝑘)
− 𝑒𝑇𝑦 (𝑘 − 𝜏𝑚) 𝑄4𝑒𝑦 (𝑘 − 𝜏𝑚)
− 𝑒𝑇𝑦 (𝑘 − 𝜏 (𝑘)) 𝑄5𝑒𝑦 (𝑘 − 𝜏 (𝑘))
− 𝑒𝑇𝑦 (𝑘 − 𝜏𝑀) 𝑄6𝑒𝑦 (𝑘 − 𝜏𝑀)

= 𝜉𝑇 (𝑘) Ξ3𝜉 (𝑘) ,

(33)

Δ𝑉4 (𝑘) = 𝜏1𝑔𝑇 (𝑒𝑦 (𝑘)) 𝑅𝑔 (𝑒𝑦 (𝑘))
+ 𝑘∑
𝑖=𝑘+1−𝜏(𝑘+1)

𝑔𝑇 (𝑒𝑦 (𝑖)) 𝑅𝑔 (𝑒𝑦 (𝑖))

− 𝑘−1∑
𝑖=𝑘−𝜏(𝑘)

𝑔𝑇 (𝑒𝑦 (𝑖)) 𝑅𝑔 (𝑒𝑦 (𝑖))

− −𝜏𝑀∑
𝑗=−𝜏𝑀+1

𝑔𝑇 (𝑒𝑦 (𝑘 + 𝑗)) 𝑅𝑔 (𝑒𝑦 (𝑘 + 𝑗))
≤ (1 + 𝜏1) 𝑔𝑇 (𝑒𝑦 (𝑘)) 𝑅𝑔 (𝑒𝑦 (𝑘))
− 𝑔𝑇 (𝑒𝑦 (𝑘 − 𝜏 (𝑘))) 𝑅𝑔 (𝑒𝑦 (𝑘 − 𝜏 (𝑘)))

= 𝜉𝑇 (𝑘) Ξ4𝜉 (𝑘) ,

(34)

Δ𝑉5 (𝑘) = 𝛿1𝜂𝑇1 (𝑘) 𝑍1𝜂1 (𝑘) − 𝑘−𝛿𝑚−1∑
𝑖=𝑘−𝛿𝑀

𝜂𝑇1 (𝑖) 𝑍1𝜂1 (𝑖)

+ 𝛿𝑚𝜂𝑇1 (𝑘) 𝑍2𝜂1 (𝑘) − 𝑘−1∑
𝑖=𝑘−𝛿𝑚

𝜂𝑇1 (𝑖) 𝑍2𝜂1 (𝑖)

+ 𝜏1𝜂𝑇2 (𝑘) 𝑍3𝜂2 (𝑘) − 𝑘−𝜏𝑚−1∑
𝑖=𝑘−𝜏𝑀

𝜂𝑇2 (𝑖) 𝑍3𝜂2 (𝑖)
+ 𝜏𝑚𝜂𝑇2 (𝑘) 𝑍4𝜂2 (𝑘)
− 𝑘−1∑
𝑖=𝑘−𝜏𝑚

𝜂𝑇2 (𝑖) 𝑍4𝜂2 (𝑖) .

(35)

By Lemma 4, it follows that

− 𝑘−1∑
𝑖=𝑘−𝛿𝑚

𝜂𝑇1 (𝑖) 𝑍2𝜂1 (𝑖)

≤ − 1𝛿𝑚 [[(
𝑒𝑥 (𝑘) − 𝑒𝑥 (𝑘 − 𝛿𝑚)

𝑒𝑥 (𝑘) + 𝑒𝑥 (𝑘 − 𝛿𝑚) − 𝜒1 (𝑘))
𝑇

⋅ (𝑍2 0
0 3𝑍2)(

𝑒𝑥 (𝑘) − 𝑒𝑥 (𝑘 − 𝛿𝑚)
𝑒𝑥 (𝑘) + 𝑒𝑥 (𝑘 − 𝛿𝑚) − 𝜒1 (𝑘))]]

= − 1𝛿𝑚 𝜉𝑇 (𝑘) 𝜌1𝑍2𝜌𝑇1 𝜉 (𝑘) .

(36)

Next, it follows from Lemmas 4 and 5 that

− 𝑘−𝛿𝑚−1∑
𝑖=𝑘−𝛿𝑀

𝜂𝑇1 (𝑖) 𝑍1𝜂1 (𝑖) = −𝑘−𝛿(𝑘)−1∑
𝑖=𝑘−𝛿𝑀

𝜂𝑇1 (𝑖) 𝑍1𝜂1 (𝑖)

− 𝑘−𝛿𝑚−1∑
𝑖=𝑘−𝛿(𝑘)

𝜂𝑇1 (𝑖) 𝑍1𝜂1 (𝑖) ≤ − 1𝛿𝑀 − 𝛿𝑚 𝜉𝑇 (𝑘)
⋅ 𝜌2𝑍1𝜌2𝑇𝜉 (𝑘) − 𝛿 (𝑘) − 𝛿𝑚𝛿𝑀 − 𝛿𝑚

1𝛿𝑀 − 𝛿 (𝑘)𝜉𝑇 (𝑘)
⋅ 𝜌2𝑍1𝜌2𝑇𝜉 (𝑘) − 1𝛿𝑀 − 𝛿𝑚 𝜉𝑇 (𝑘) 𝜌3𝑍1𝜌3𝑇𝜉 (𝑘)
− 𝛿𝑀 − 𝛿 (𝑘)𝛿𝑀 − 𝛿𝑚

1𝛿 (𝑘) − 𝛿𝑚 𝜉𝑇 (𝑘) 𝜌3𝑍1𝜌3𝑇𝜉 (𝑘)
= − 1𝛿𝑀 − 𝛿𝑚 [

𝛿𝑀 − 𝛿𝑚𝛿𝑀 − 𝛿 (𝑘)𝜉𝑇 (𝑘) 𝜌2𝑍1𝜌2𝑇𝜉 (𝑘)
+ 𝛿𝑀 − 𝛿𝑚𝛿 (𝑘) − 𝛿𝑚 𝜉𝑇 (𝑘) 𝜌3𝑍1𝜌3𝑇𝜉 (𝑘)] ≤ −

1𝛿𝑀 − 𝛿𝑚
⋅ 𝜉𝑇 (𝑘) 𝜌7Θ1𝜌7𝑇𝜉 (𝑘) .

(37)

Based on (35)–(37), we have

Δ𝑉5 (𝑘) ≤ 𝜂𝑇1 (𝑘) (𝛿1𝑍1 + 𝛿𝑚𝑍2) 𝜂1 (𝑘) + 𝜂𝑇2 (𝑘) (𝜏1𝑍3
+ 𝜏𝑚𝑍4) 𝜂2 (𝑘) − 𝜉𝑇 (𝑘) [ 1𝛿𝑚 𝜌1𝑍2𝜌𝑇1 +

1𝛿1 𝜌7Θ1𝜌𝑇7
+ 1𝜏𝑚 𝜌4𝑍4𝜌𝑇4 +

1𝜏1 𝜌8Θ2𝜌𝑇8 ] 𝜉 (𝑘) = 𝜉𝑇 (𝑘) Ξ5𝜉 (𝑘) .
(38)
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From Assumption 1, for diagonal matrices Λ 1, Λ 2, andΛ 3 > 0 and a known matrix 𝐿 = diag{𝑙1, 𝑙2, . . . , 𝑙𝑛} > 0, it is
not difficult to see that the inequalities

2𝑔𝑇 (𝑒𝑦 (𝑘)) Λ 1𝑔 (𝑒𝑦 (𝑘)) − 2𝑒𝑇𝑦 (𝑘) 𝐿Λ 1𝑔 (𝑒𝑦 (𝑘))
≤ 0, (39)

2𝑔𝑇 (𝑒𝑦 (𝑘 − 𝜏 (𝑘))) Λ 2𝑔 (𝑒𝑦 (𝑘 − 𝜏 (𝑘)))
− 2𝑒𝑇𝑦 (𝑘 − 𝜏 (𝑘)) 𝐿Λ 2𝑔 (𝑒𝑦 (𝑘 − 𝜏 (𝑘))) ≤ 0, (40)

2 [𝑔 (𝑒𝑦 (𝑘)) − 𝑔 (𝑒𝑦 (𝑘 − 𝜏 (𝑘)))]𝑇
⋅ Λ 3 [𝑔 (𝑒𝑦 (𝑘)) − 𝑔 (𝑒𝑦 (𝑘 − 𝜏 (𝑘)))]
− 2 [𝑒𝑦 (𝑘) − 𝑒𝑦 (𝑘 − 𝜏 (𝑘))]𝑇
⋅ 𝐿Λ 3𝑔 (𝑒𝑦 (𝑘) − 𝑒𝑦 (𝑘 − 𝜏 (𝑘))) ≤ 0

(41)

hold. In addition, since 𝜂1(𝑘) = 𝑒𝑥(𝑘 + 1) − 𝑒𝑥(𝑘), 𝜂2(𝑘) =𝑒𝑦(𝑘 + 1) − 𝑒𝑦(𝑘), by introducing relaxation matrices 𝑁1 =
diag{𝑁11, 𝑁12}, 𝑁2 = diag{𝑁21, 𝑁12}, 𝑁3 = diag{𝑁31, 𝑁32},
and 𝑁4 = diag{𝑁41, 𝑁32} with appropriate dimensions, we
obtain

2 (𝜂𝑇1 (𝑘)𝑁1 + 𝑒𝑇𝑥 (𝑘)𝑁2) [(𝐴1 − 𝐼2𝑛) 𝑒𝑥 (𝑘)
+ 𝐵1𝑔 (𝑒𝑦 (𝑘 − 𝜏 (𝑘))) + 𝐸2󰜚2 (𝑘) − 𝜂1 (𝑘)] = 0, (42)

2 (𝜂𝑇2 (𝑘)𝑁3 + 𝑒𝑇𝑦 (𝑘)𝑁4) [(𝐶1 − 𝐼2𝑛) 𝑒𝑦 (𝑘)
+ 𝐷1𝑒𝑥 (𝑘 − 𝛿 (𝑘)) + 𝐸2󰜚4 (𝑘) − 𝜂2 (𝑘)] = 0. (43)

From 𝐹𝑇(𝑘)𝐹(𝑘) ≤ 𝐼, we have
󰜚𝑇𝑖 (𝑘) 󰜚𝑖 (𝑘) ≤ 𝜁𝑇𝑖 (𝑘) 𝜁𝑖 (𝑘) , (𝑖 = 2, 4) . (44)

Then, there exist positive scalars 𝜀2 and 𝜀4 satisfying
𝜀𝑖 [𝜉𝑇 (𝑘)Ψ𝑇𝑖 (𝑘) Ψ𝑖 (𝑘) 𝜉 (𝑘) − 󰜚𝑇𝑖 (𝑘) 󰜚𝑖 (𝑘)] ≥ 0. (45)

Now, combining (32)–(45) and takingmathematical expecta-
tion, one can obtain the following inequality:

E [Δ𝑉 (𝑘)]
≤ E[𝜉𝑇 (𝑘)( 9∑

𝑖=1

Ξ𝑖 + 𝜀2Ψ𝑇2 Ψ2 + 𝜀4Ψ𝑇4 Ψ4)𝜉 (𝑘)]
< 0.

(46)

Using the Schur complement Lemma, it can be shown that the
considered uncertain system (24) is globally asymptotically

stable inmean square sense, which completes the proof of the
theorem.

Remark 7. It is worthwhile to mention that two constraint
conditions (i.e., (39)-(40)) on feedback regulatory function
were used on dealing with the state estimation problem for
discrete GRNs with time-varying delays. In this paper, we
add inequality (41) with hope to reduce the conservativeness
introduced by time delays.

Now, we are in a position to deal with the nonfragile
estimator design for GRNs (4) with time-varying delays and
randomly occurring uncertainties.

Theorem 8. For given positive scalars 𝛿𝑚, 𝛿𝑀, 𝜏𝑚, and 𝜏𝑀,
system (8) is said to be a globally robustly asymptotic state
estimator of GRNs (4), if there exist scalars 𝜀𝑖 > 0 (𝑖 =1, 2, 3, 4), matrices 𝑃1 > 0, 𝑃2 > 0, 𝑅 > 0, 𝑍𝑗 > 0 (𝑗 =1, 2, 3, 4), and 𝑄𝑙 > 0 (𝑙 = 1, 2, . . . , 6), positive diagonal
matrices Λ 1, Λ 2, and Λ 2, matrices 𝑌𝑖 = [ 𝑌𝑖1 𝑌𝑖2∗ 𝑌𝑖3 ] (𝑖 = 1, 2),
and block diagonal matrices𝑁1,𝑁2,𝑁3,𝑁4,𝑋1, and𝑋3 with
appropriate dimensions, such that the following LMIs hold:

Σ̃ =
[[[[[[[[[[[[
[

11∑
𝑖=1

Ξ𝑖 𝜀1Ψ𝑇1 𝜀2Ψ𝑇2 𝜀3Ψ𝑇3 𝜀4Ψ𝑇4
∗ −𝜀1𝐼 0 0 0
∗ ∗ −𝜀2𝐼 0 0
∗ ∗ ∗ −𝜀3𝐼 0
∗ ∗ ∗ ∗ −𝜀4𝐼

]]]]]]]]]]]]
]

< 0, (47)

with

Ψ1 = [𝛼1𝑀1 0𝑛×10𝑛 𝛽2𝑀2 0𝑛×10𝑛] ,
Ψ2 = [𝛾1𝑀5 0𝑛×21𝑛] ,
Ψ3 = [0𝑛×𝑛 𝛼2𝑀4 0𝑛×2𝑛 𝛽1𝑀3 0𝑛×17𝑛] ,
Ψ4 = [0𝑛×4𝑛 𝛾2𝑀6 0𝑛×17𝑛] ,
Ξ10 = 2 [𝑒9𝑁1 + 𝑒1𝑁2] 𝐸1𝑒𝑇21

+ 2 [𝑒10𝑁3 + 𝑒5𝑁4] 𝐸1𝑒𝑇22,
Ξ11 = −𝑒21𝜀1𝐼2𝑛𝑒𝑇21 − 𝑒22𝜀3𝐼2𝑛𝑒𝑇22,

(48)

and the other parameters are defined as in Theorem 6. More-
over, the estimation gain matrices are determined by

𝐾1 = 𝑁−112𝑋1,
𝐾2 = 𝑁−132𝑋3. (49)
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Proof. The proof of this theorem follows from Theorem 6
directly. According to (13), for any matrices 𝑁1, 𝑁2, 𝑁3, and𝑁4, we have
2 (𝜂𝑇1 (𝑘)𝑁1 + 𝑒𝑇𝑥 (𝑘)𝑁2) [(𝐴1 − 𝐼2𝑛) 𝑒𝑥 (𝑘)

+ 𝐵1𝑔 (𝑒𝑦 (𝑘 − 𝜏 (𝑘))) + 𝐸1󰜚1 (𝑘) + 𝐸2󰜚2 (𝑘)
− 𝜂1 (𝑘)] = 0,

(50)

2 (𝜂𝑇2 (𝑘)𝑁3 + 𝑒𝑇𝑦 (𝑘)𝑁4) [(𝐶1 − 𝐼2𝑛) 𝑒𝑦 (𝑘)
+ 𝐷1𝑒𝑥 (𝑘 − 𝛿 (𝑘)) + 𝐸1󰜚3 (𝑘) + 𝐸2󰜚4 (𝑘) − 𝜂2 (𝑘)]
= 0.

(51)

Similarly, we get

󰜚𝑇𝑖 (𝑘) 󰜚𝑖 (𝑘) ≤ 𝜁𝑇𝑖 (𝑘) 𝜁𝑖 (𝑘) , (𝑖 = 1, 2, 3, 4) . (52)

Then, for positive scalars 𝜀𝑖, we have
𝜀𝑖 [𝜉𝑇 (𝑘) Ψ𝑇𝑖 (𝑘)Ψ𝑖 (𝑘) 𝜉 (𝑘) − 󰜚𝑇𝑖 (𝑘) 󰜚𝑖 (𝑘)] ≥ 0,

(𝑖 = 1, 2, 3, 4) , (53)

with

𝜉𝑇 (𝑘) = [𝑒𝑇𝑥 (𝑘) , 𝑒𝑇𝑥 (𝑘 − 𝛿 (𝑘)) , 𝑒𝑇𝑥 (𝑘 − 𝛿𝑚) ,
𝑒𝑇𝑥 (𝑘 − 𝛿𝑀) , 𝑒𝑇𝑦 (𝑘) , 𝑒𝑇𝑦 (𝑘 − 𝜏 (𝑘)) , 𝑒𝑇𝑦 (𝑘 − 𝜏𝑚) ,
𝑒𝑇𝑦 (𝑘 − 𝜏𝑀) , 𝜂𝑇1 (𝑘) , 𝜂𝑇2 (𝑘) , 𝑔𝑇 (𝑒𝑦 (𝑘)) ,
𝑔𝑇 (𝑒𝑦 (𝑘 − 𝜏 (𝑘))) , 𝜒𝑇1 (𝑘) , 𝜒𝑇2 (𝑘) , 𝜒𝑇3 (𝑘) , 𝜒𝑇4 (𝑘) ,
𝜒𝑇5 (𝑘) , 𝜒𝑇6 (𝑘) , 󰜚𝑇2 (𝑘) , 󰜚𝑇4 (𝑘) , 󰜚𝑇1 (𝑘) , 󰜚𝑇3 (𝑘)] .

(54)

Combining the above and taking the mathematical expecta-
tion, one has

E [Δ𝑉 (𝑘)] ≤ E [𝜉𝑇 (𝑘) Σ̃𝜉 (𝑘)] . (55)

By using the Schur complement Lemma, it is easy to conclude
that the proof of this theorem is complete.

Remark 9. In this paper, a nonfragile state estimation algo-
rithm has been presented for discrete-time GRNs with
time-varying delays and randomly occurring uncertainties.
It is worth mentioning that it is the first time to use
the discrete Wirtinger-based inequality and the reciprocally

convex inequality to handle the state estimation problem for
discrete-time delayed GRNs subject to randomly occurring
uncertainties and estimator gain perturbations. In particular,
the reciprocally convex approach, the discrete Wirtinger-
based inequality, and the free-weighting matrix method are
fully utilized in order to reduce the conservativeness of the
developed estimation criterion. Besides, by introducing two
new zero equations (42) and (43), the free-weightingmatrices𝑁1,𝑁2,𝑁3, and𝑁4 have been introduced in the main results
with hope to further reduce the possible conservativeness
induced by time-varying delays, which could be utilized
to deal with related state estimation problems for complex
systems with time delays.

Remark 10. It should be noted that the presented method in
this paper is based on LMIs. The standard LMI system has
a polynomial-time complexity bounded by 𝑂(𝑀𝑁), where𝑀 is the total row size of the LMI system and 𝑁 is the total
number of scalar decision variables. For example, let us look
at the LMIs condition for the addressed GRNs (as described
inTheorem 6); we have𝑀 = 44𝑛 and𝑁 = 2+ 13𝑛(𝑛 + 1)/2 +2(𝑛(𝑛 + 1) + 𝑛2) + 3𝑛 + 8𝑛2 + 2𝑛2 = (1/2)(41𝑛2 + 23𝑛 + 4).
Therefore, the computational complexity of the LMI-based
state estimation criterion can be represented by 𝑂(902𝑛3 +506𝑛2 + 88𝑛).
Remark 11. It is worthwhile to point out that our major focus
is on the nonfragile state estimation problem for discrete-
time GRNs subject to time-varying delays and randomly
occurring uncertainties. Due to such a complicated system,
we have decided to carry out research on the feasibility
problem with satisfactory performance requirements for
addressed GRNs; that is, we made great efforts to propose
a new state estimation method against the above-mentioned
phenomena. Nevertheless, in case that the convergence pre-
cision of the proposed state estimation method becomes a
concern, some additional conditions can be provided, which
constitutes one of our future research topics.

4. Numerical Simulations

In this section, we present two numerical examples to
illustrate the effectiveness and correctness of the proposed
state estimation scheme.

Example 1. Consider three-node GRNs with the following
parameters:

𝐴 = 𝐷 = 0.3𝐼,
𝐶 = 0.1𝐼,

𝐹 (𝑘) = diag {sin (𝑘) , cos (𝑘) , 0} ,

𝐵 = 0.5 × [[
[
0 0 −1
−1 0 1
0 −1 0

]]
]
,
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𝑊1 = [0.3 0.5 0
0.2 0.1 0.15] ,

𝑊2 = [ 0.4 0.1 −0.5
−0.2 0.1 0.3 ] ,

𝐸2 = [[[
0.2 0.3 0
0.1 0 0.2
0 0.3 0

]]
]
,

𝑀5 = [[[
−0.3 −0.05
−0.4 0.06
−0.1 0.02

]]
]
,

𝑀6 = [[[
0.1 0.03
0.02 0.1
0.03 0.1

]]
]
.

(56)

The nonlinear genetic regulatory function 𝑔(𝑠) is taken to be
as usual Hill function. That is, 𝑔(𝑠) = 𝑠2/(1 + 𝑠2). Then, it is
easy to see that

𝐿 = diag {0.65, 0.65, 0.65} . (57)

This means that Assumption 1 holds. Moreover, assume 𝛿𝑚 =1, 𝛿𝑀 = 5, 𝜏𝑚 = 2, 𝜏𝑀 = 4, 𝛾1 = 0.3, and 𝛾2 = 0.7. By
using the LMIs control Toolbox in Matlab to solve the LMIs
in Theorem 6, we can obtain feasible solutions. Due to space
consideration, only the following few parameters are listed:𝜀2 = 1.1713; 𝜀4 = 1.0898; the nonfragile state estimator can
be designed with the estimator gain matrices described by

𝐾1 = [[[
0.0968 −0.1305
−0.1321 0.2728
0.0909 −0.2096

]]
]
,

𝐾2 = [[[
−0.2167 0.1296
0.5065 0.8443
−0.0759 0.1388

]]
]
.

(58)

The numerical simulation affirms our theoretical results.
Figure 1 plots the trajectories of mRNA concentrations, its
estimates, and the estimation errors with initial conditions𝜙(𝑘) = [0.2 0.2 0.4]𝑇 and 𝜙(𝑘) = [0.8 0.5 0.9]𝑇.
Figure 2 depicts the trajectories of protein concentrations, its
estimates, and the estimation errors with initial conditions𝜓(𝑘) = [0.1 0.5 0.3]𝑇 and 𝜓̂(𝑘) = [0.5 0.8 0.3]𝑇.
It follows from Figures 1 and 2 that the estimation error
between the original GRNs and its estimation approaches

zero asymptotically. In addition, in order to illustrate the
advantage of the main results, we can set 𝐸2 = 0. Then, error
system (24) is equivalent to system (6) in [27]. Subsequently,
it is not difficult to check that when the feedback regulation
delay 𝜏(𝑘) and the translation delay 𝛿(𝑘) satisfy 2 ≤ 𝜏(𝑘) ≤ 5
and 2 ≤ 𝛿(𝑘) ≤ 9, respectively, LMI (25) in Theorem 6
of our paper is feasible while LMI condition (7) in [27] is
infeasible. Therefore, it is concluded that our results are less
conservative than those in [27]. The major reason is that
we have made additional efforts to propose new results with
more information of time delays by taking the advantage of
the discrete-timeWirtinger-based inequality, the reciprocally
convex combination approach, and the free-weight matrix
technique. On the other hand, it should be mentioned that,
compared to [27] without consideration of estimator gain
perturbations, the developed state estimation approach is
more applicable.

Example 2. To demonstrate the effectiveness of Theorem 8,
we consider the following parameters as in Example 1, with

𝐸1 = [[[
0.2 0 0.1
0.2 −0.1 0
0 0.2 0.3

]]
]
,

𝐸2 = [[[
0.1 0 −0.2
0.2 0.1 0
0.1 0 0.3

]]
]
,

𝑀1 = [[[
0.2 0.05 −0.3
0.2 −0.1 0
0.2 0.3 0.6

]]
]
,

𝑀2 = [[[
0.1 0.3 0
0.2 0.1 0.2
0.1 0 0.3

]]
]
,

𝑀3 = [[[
−0.1 0 −0.06
0 0.1 0.2
0.3 0.2 −0.2

]]
]
,

𝑀4 = [[[
0.2 0.1 0.2
−0.5 0.2 0.1
−0.3 0.2 0

]]
]
,

𝑀5 = [[[
−0.1 0.02
0.05 0.1
0.1 0.02

]]
]
,

𝑀6 = [[[
0.2 0.03
0.3 0.1
−0.1 0

]]
]
.

(59)
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Figure 1: mRNA concentrations, its estimates, and the estimation error of Example 1.

Let the delays 𝛿(𝑘) and 𝜏(𝑘) vary randomly within the
intervals [2, 5]. The mathematical expectations of Bernoulli-
distributed white sequences can be taken as 𝛼1 = 0.5, 𝛼2 =0.4, 𝛽1 = 0.3, 𝛽2 = 0.2, 𝛾1 = 0.4, and 𝛾2 = 0.3. By solving
the LMIs inTheorem 8 with the help of Matlab LMI toolbox,
we can obtain feasible solutions and scalars 𝜀1 = 0.1385,𝜀2 = 0.6089, 𝜀3 = 0.0910, and 𝜀4 = 0.5866. According
to Theorem 8, the nonfragile state estimator with randomly
occurring uncertainties can be designed with the estimator
gain matrices defined as follows:

𝐾1 = [[[
0.1198 −0.2160
−0.2708 0.4029
0.1412 −0.3462

]]
]
,

𝐾2 = [[[
[

0.0842 0.0778
0.3287 0.5749
0.0143 0.1117

]]]
]
.

(60)

The simulation results are shown in Figures 3 and 4. The
actual state responses 𝑥(𝑘) and 𝑦(𝑘), their estimates 𝑥(𝑘) and𝑦(𝑘), and the estimation error are depicted in Figures 3 and 4.
The initial conditions are taken as 𝜙(𝑘) = [0.5 0.3 0.6]𝑇,𝜙(𝑘) = [0.3 0.8 0.2]𝑇, 𝜓(𝑘) = [0.7 0.3 0.4]𝑇, and𝜓̂(𝑘) = [0.2 0.9 0.8]𝑇. It is also observed from Figures 3
and 4 that the estimation error between the original GRNs
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Figure 2: Protein concentrations, its estimates, and the estimation error of Example 1.

and the estimator system approaches zero asymptotically.
It should be noticed that when we do not consider the
nonfragility of estimator gain perturbations, the admissibility
of upper bounds of time delays (under different lower
bounds of time delays) guaranteeing the globally asymptot-
ical stability of the resulting estimation error system for the
addressedGRNs can be obtained and listed inTable 1 by using
Theorem 2 in [27] andTheorem 8 in this paper, respectively,
which further illustrate the advantages and less conservatism
of the newly proposed result.

5. Conclusion

In this paper, we have investigated the nonfragile state
estimator design for a class of the discrete-time GRNs

Table 1: Admissible upper bound 𝛿𝑀with different 𝛿𝑚, when 𝜏𝑚 = 2
and 𝜏𝑀 = 5.
𝛿𝑚 2 4 6 8 10
[[27], Theorem 2] 6 8 10 12 14
Theorem 8 7 9 11 13 15

with interval time-varying delays and randomly occurring
uncertainties. The norm-bounded uncertainties enter into
the GRNs in random ways, and such randomly occurring
uncertainties have been characterized by certain mutually
uncorrelated Bernoulli-distributed white noise sequences.
Under these circumstances, the state estimator has been
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Figure 3: mRNA concentrations, its estimates, and the estimation error of Example 2.

designed to estimate the true concentration of the mRNA
and the protein from available measurements. By construct-
ing a Lyapunov-Krasovskii functional, new delay-dependent
estimation criterion has been obtained in terms of LMIs by
using the discrete-time Wirtinger-based inequality and the
reciprocally convex approach. A new constraint condition
on feedback regulatory function has been used with hope to
reduce the conservativeness of the estimation criterion.Then,
the desired state estimation algorithm has been provided
in view of the solutions to LMIs, which can ensure that
the estimation error dynamics are globally asymptotically
stable. Finally, numerical simulations have been given to
illustrate the applicability and usefulness of the developed

theoretical results. It is worth mentioning that the proposed
method in this paper can be extended to address the
nonfragile state estimation problems for Markovian jump
systems as in [40, 41] with different types of time delays
and time-varying systems in [42–44] with unreliable mea-
surements, which constitute interesting topic for future re-
search.
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Figure 4: Protein concentrations, its estimates, and the estimation error of Example 2.
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