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We propose a cooperative multiagent Q-learning algorithm called exploring actions according to Q-value ratios (EAQR). Our aim
is to design a multiagent reinforcement learning algorithm for cooperative tasks where multiple agents need to coordinate their
behavior to achieve the best system performance. In EAQR, Q-value represents the probability of getting the maximal reward,
while each action is selected according to the ratio of its Q-value to the sum of all actions’ Q-value and the exploration rate ε.
Seven cooperative repeated games are used as cases to study the dynamics of EAQR. Theoretical analyses show that in some
cases the optimal joint strategies correspond to the stable critical points of EAQR. Moreover, comparison experiments on
stochastic games with finite steps are conducted. One is the box-pushing, and the other is the distributed sensor network
problem. Experimental results show that EAQR outperforms the other algorithms in the box-pushing problem and achieves the
theoretical optimal performance in the distributed sensor network problem.

1. Introduction

Reinforcement learning (RL) uses a scalar numeric feedback
from the environment to improve the behavior of the
learner. In the case with only one agent, RL is an effective
unsupervised learning method to solve problems with the
Markov property [1, 2]. Many researchers have been trying
to extend RL to optimize performance indices in circum-
stances where multiple agents exist and a lot of multiagent
reinforcement learning (MARL) algorithms, and their appli-
cations have been proposed [3–5]. In a multiagent system
(MAS), on one hand, the state transition distribution and
the local immediate reward received by each agent are not
determined by the behavior of any single agent but the
behavior of all the agents in the system. Thus, each agent
has to adapt to the environment and the other agents at
the same time, which leads to the invalidity of the Markov
property. On the other hand, if all the agents in the system
are viewed as a single one, the joint action space will
grow exponentially, which deteriorates the scalability of
MARL algorithms.

This paper investigates methods coordinating multiple
agents through MARL techniques. In recent years, many
MARL algorithms with different assumptions and goals have
been presented to solve coordination issues in MAS. Some
algorithms require sharing each agent’s local immediate
reward; some algorithms require sharing each agent’s
selected actions and even value functions or Q-value func-
tions as well. The learning goal depends on the problems
at hand. Nash equilibria have been used in optimal con-
trol [6, 7] and are also adopted as the learning goal by
many MARL algorithms. Hu and Wellman [8] proposed
Nash-Q which could converge to a Nash equilibrium in
some repeated games. However, Nash-Q needed Q-value
functions to be shared as well. Infinitesimal gradient ascent
(IGA) [9] was proposed and guaranteed that the agents’
strategies would converge to a Nash equilibrium, or average
rewards would converge to the expected rewards of a Nash
equilibrium in two-player two-action repeated games. Win-
or-learn fast policy with IGA (WoLF-IGA) [10] was pro-
posed to address the issue that IGA would not converge to
any Nash equilibrium in some repeated games. For IGA
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and WoLF-IGA, each agent has to know its own payoff
matrix and the other agent’s strategy. Besides, Nash-Q,
IGA, and WoLF-IGA would suffer the curse of dimen-
sionality for joint action space.

To mitigate the above problems, some algorithms with
less requirement of sharing were studied. WoLF-policy hill-
climbing (WoLF-PHC) [10] only needed to share states and
local immediate rewards of each agent, but the convergence
property was not guaranteed any more. The exponential
moving average (EMA) Q-learning [11] and the weighted
policy learner (WPL) [12] empirically converged to a Nash
equilibrium in some typical repeated games. To design
scalable MARL algorithms that can gain the optimal total
sum of reward in fully cooperative games is our motivation.

NewMARL algorithms can be obtained by designing new
action exploration method. Babes et al. [13] pointed out that
more robust algorithms could be produced by inserting tools
from nonlinear dynamics into Q-learning to modify the
exploration or learning rate. So far, the dynamics of indepen-
dent Q-learning (IQL) in two-player two-action repeated
games have been extensively studied. Tuyls and Nowé, Tuyls
and Parsons, and Bloembergen et al. [14–16] firstly built the
model of IQL with Boltzmann exploration in three typical
repeated games. They pointed out that the IQL model was
similar with dynamic replication equations, and they pre-
sented graphical representation of the relation between the
temperature parameter T and the critical points. Kianercy
and Galstyan [17] further studied the dynamics of IQL. They
analyzed the position and the stability of the critical points of
IQL in some types of two-player two-action repeated games.
Babes et al. [13] analyzed the dynamics of IQL with ε-greedy
exploration. For ε-greedy exploration, since the action with
the maximal Q-value will be selected for exploitation, the
Q-value can be viewed as the switching signal. Thus results
on stability analysis for switching systems [18, 19] might be
beneficial to the analysis of IQL with ε-greedy exploration.
Awheda and Schwartz [11] proposed EMA Q-learning and
proved its ability to converge to a Nash equilibrium in
two-player two-action games.

Nash equilibrium is important when analyzing the
interaction between agents. Some multiagent reinforcement
(MARL) algorithms do focus on convergence on Nash equi-
librium, and most of these algorithms consider general sum
games. In contrast, for cooperative tasks, reaching better
performance indices is more important than converging
to Nash equilibrium and becomes the prime concern for
MARL algorithms.

To obtain the maximal expected total cumulative reward,
this paper proposes a multiagent Q-learning algorithm
called exploring actions according to Q-value ratios (EAQR).
In standard fictitious play [20], each player’s strategy is a
function of the other players’ empirical frequency, while
in EAQR, each agent selects an action according to its
Q-value function of its own actions and updates its Q-value
function only according to the frequency of its own action
selection. The maximal total immediate reward can still be
achieved in some cooperative repeated games, which is the
first contribution. The second contribution is that EAQR
can be naturally extended to apply to stochastic games.

Simulation results show that EAQR outperforms the other
algorithms in the box-pushing problem and achieves the
theoretical optimal performance in the distributed sensor
network problem.

The remainder of this paper is organized as follows.
Section II introduces stochastic games and repeated games.
Section III proposes EAQR in repeated games. Section IV
studies the dynamics of EAQR in seven different repeated
games which are analyzed. Section V compares EAQR with
EMA Q-learning, WoLF-PHC, and single-agent RL in two
stochastic games—box-pushing and the DSN problem.
Section VI summarizes the conclusions.

2. Preliminaries of Stochastic Games and
Repeated Games

2.1. Stochastic Games. A stochastic game [5] is a tuple
<S, A1, A2,… , An, p, r1, r2,… , rn > , where n is the number
of agents in the game; S is the set of environment states; Ai
is the set of agent i’s available actions; and Ai for all agents i
constitutes the joint action setA = A1 × A2 ×⋯× An; the state
transition function p S × A1 × A2 ×⋯× An × S→ 0, 1 is a
conditional probability determining the probability of tran-
siting to the next state s′ if the joint action a ∈ A has been
executed in the current state s, and ri S × A1 × A2 ×⋯×
An × S→ R is the local immediate reward function of
agent i. The global immediate reward function is the
sum of local immediate reward functions of all agents
and is defined as r =∑n

i=1ri. In cooperative MAS, the learning
objective is to maximize the discounted global cumulative
reward at each time t,

R t = r t + 1 + γr t + 2 + γ2r t + 3 +⋯ = 〠
K

k=0
γkr t + k + 1 ,

1

where γ is the discount factor within (0, 1) (smaller γ values
correspond to a greater importance of near future rewards);
K is the ending time of an episode; and r t + 1 is the global
immediate reward received at time t + 1.

2.2. Repeated Games. There still exists interacting between
agents, although this paper focuses on optimization problem.
Repeated game is an ideal tool to depict interaction and build
the model of EAQR. In a repeated game, the set of state is
null. Each agent’s local immediate reward depends solely
on the joint action. In a fully cooperative repeated game, we
are concerned with only the global immediate reward repre-
senting the team benefit. Figure 1 shows the payoff matrix of
a two-player two-action game. Each row represents an action
of agent A, and each column represents an action of agent B.
Each element of the payoff matrix is a numerical global
immediate reward. For example, if agent A chooses action
a1 while agent B chooses action b2, then both agents will
receive a global immediate reward of 2. The optimal global
immediate reward of 6 is marked with parentheses.
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3. EAQR: A Multiagent Q-Learning
Algorithm for Coordination of
Multiple Agents

EAQR is designed for optimizing performance indices of
fully cooperativeMAS. EAQR requires each agent to have full
observation of states and local immediate reward of all
agents. One merit of EAQR is that each agent does not need
to observe any other agent’s action. Thus the size of the
Q-table maintained by agent i is ∣S∣ × ∣Ai∣. Sharing local
immediate reward is to achieve the optimal global immediate
reward. EAQR manages to converge to (a2, b2) in Figure 1
through the procedures depicted in Algorithm 1. For agent
i, the probability of selecting action j is

pj t =

Qj t

∑k∈Ai
Qk t

 with probability 1 − ε,

1
Ai

 with probability ε,
2

where Qj t is the probability of obtaining the maximum
global immediate reward by taking action j at time t; the
exploration rate ε is within (0,1); Ai is the action set of agent
i; Ai is the number of available actions for agent i. The
nonnegativity of Qj t can be guaranteed by setting the
learning rate α and the initial value ofQj t to a positive value
within (0, 1). ∑k∈Ai

Qk t will be strictly greater than zero if
each action is visited by infinite times. To avoid being divided
by zero in practical application, we randomly select an action
if ∑k∈Ai

Qk t = 0. In EAQR, the exploration rate ε balances
exploration and exploitation. When ε = 0, pj t is equal to
the ratio ofQj t to∑k∈Ai

Qk t . When ε = 1, a random action
is selected according to the uniform distribution.

In a repeated game, all agents keep their strategies
unchanged and play the game forNs times. Then they update
the Q-value of each action j according to

Qj t + 1 =Qj t + α f j t −Qj t , 3

where α ∈ 0, 1 is the learning rate; f j t is the frequency of
obtaining the maximum global immediate reward by taking
action j. It is evaluated according to

f j t =
nmax j t

nj t
, 4

where nj t is the number of times for agent i selecting action
j during the previous Ns games, and nmax j t is the number
of times for agent i achieving the maximum global immediate
reward in history when selecting action j during the previous
Ns games. Before playing the next Ns games, all agents need
to update their strategies according to (3).

In stochastic games with deterministic state transition,
a state can be viewed as a repeated game, and the ele-
ments of the payoff matrix are cumulative rewards if
EAQR can converge to a joint action at each of its subse-
quent states. In this situation, the frequency of obtaining
the maximum global cumulative reward by taking action
j in each state is to be evaluated to update Q-value functions.
In stochastic games with nondeterministic state transition,
each state cannot be simply regarded as a repeated game.
Yet we can try to treat each state in an optimistic way (The
frequency of maximal global cumulative reward instead of
the average global reward is concerned) and employ the same
Q-value updating rule.

4. Dynamics of EAQR in Cooperative
Repeated Games

In this section, the dynamics of EAQR in seven cooperative
repeated games are analyzed. A theorem about the dynamics
of EAQR is presented, and seven cases of repeated games are
analyzed. If the updating of Q-value function is regarded as a
continuous process, the EAQR can be modeled with differen-
tial equations. According to [14, 17], the continuous-time
form of Q-value updating rule of EAQR can be obtained
as follows:

Qj t = α f j t −Qj t 5

After rescaling t→ αt, we can obtain the following:

Qj t = f j t −Qj t 6

Theorem 1. For a cooperative repeated game with n (n ≥ 3)
players and m optimal pure joint strategies, if for any optimal
pure joint strategy each of its component actions is different
from the corresponding component action of the other optimal
pure joint strategies, then only the m optimal pure joint
strategies are the stable critical points of the model of
EAQR with ε = 0.

Proof 1. aij is used to denote player i′s component action of

the optimal pure joint strategy j, and Qi
j is used to denote

the Q-value of aij for i = 1, 2,… , n and j = 1, 2,… ,m. For
any optimal pure joint strategy, each of its component
actions is different from the corresponding component
action of the other optimal pure joint strategies, which is
saying that ∀p ≠ q, aip, and aiq should not be the same action
for player i for i = 1, 2,… , n. According to (6), the Q-value
of actions that can never reach the optimal global reward will

3

(6)2

2

Agent B

Agent A

a1

a2

b1 b2

Figure 1: The payoff matrix of a fully cooperative repeated game.
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decrease to zero. Then the model of EAQR with ε = 0 can be
expressed by the following equations.

Q
i
j =

n

k=1 k≠i

Qk
j

∑m
l=1Q

k
l

−Qi
j, 7

for i = 1, 2,… , n and j = 1, 2,… ,m. Ifm = 1, it can be proved
trivially that there is only one stable critical point which is the
optimal pure joint strategy. It can be obtained from (7) that
the critical points have to satisfy

n

k=1 k≠i

Qk
j

∑m
l=1Q

k
l

=Qi
j, 8

for i = 1, 2,… , n and j = 1, 2,… ,m. It can be further
obtained that Q1

j =Q2
j =⋯ =Qn

j for j = 1, 2,… ,m at the

critical point. Suppose Qi
j/∑m

k=1Q
i
k = pj for j = 1, 2,… ,m

at the critical point, the following can be obtained according
to (8):

pj =
pj

n−1

∑m
k=1 pk

n−1 ,
9

for j = 1, 2,… ,m. It can be seen that the value of pj can only
be 1, 0, or 1/m. pj = 1 and pj = 0 correspond to them optimal
pure joint strategies, while pj = 1/m corresponds to a mixed
strategy. Thus the critical points include all the m optimal
pure joint strategies and the strategy equally choosing an
action that has reached the optimal global reward, namely,

Qi
j = 1/m n−1 for i = 1, 2,… , n and j = 1, 2,… ,m. The

stability of the critical points can be judged by the eigenvalues
λ of the Jacobin matrix J .

For the m optimal pure joint strategies, the determinant
of J − λI can be expanded according to rows and columns
step by step. The following can be obtained:

det J − λI = λ + 1 mn 10

All eigenvalues are −1 which is negative. Thus the m
optimal pure joint strategies are stable critical points.

For the mixed strategy, we just need to transform the
determinant of J − λI and extract a common factor of it for
n = 2k + 2 and n = 2k + 1, k ∈ Z+, respectively. Although the
transformation processes are different in the two cases, the
following can be obtained for both the cases:

det J − λI = λ − n − 2 f λ , 11

where f λ is a polynomial of λ of degreemn − 1. Thus, there
always exists at least one positive eigenvalue λ = n − 2 when
n ≥ 3, which means the mixed strategy is unstable. Thus, only
the m optimal pure joint strategies are the stable critical
points of the model of EAQR.

Cases 1–4 are two-player two-action repeated games.
Case 5 and case 6 are two-player three-action repeated
games. Case 7 is a three-player two-action repeated
game. The corresponding payoff matrices are displayed in
Figures 2–4, respectively. The numeric number represents
the global immediate reward. The optimal global immediate
reward is displayed in parentheses. In all cases, pij represents
the probability of obtaining the maximum global immediate
reward when player i chooses action j. Qj, Pj, and K j repre-
sent the Q-value of action j for player 1, 2, and 3, respectively.

1: for each agent i, do
2: initialize Q ai with a number within (0,1) for ai ∣ ai ∈ Ai ,
3: initialize ε with a number within (0,1)
4: f ai = 0: frequency of getting the maximum global immediate reward after selecting action ai
5: sampleGameCnt = 0: number of sample games played
6: repeat for each game
7: select an action ai with the probability of

p ai =
Q ai /∑a∈Ai

Q a with probability 1 − ε

1/ Ai with probability ε
8: sampleGamesCnt = sampleGamesCnt + 1
9: execute action ai, update information about reward
10: if sampleGamesCnt =Ns then
11: for each action ai ∈ Ai do
12: evaluate f ai according to (4)
13: Q ai =Q ai + α f ai −Q ai
14: end for each action
15: sampleGamesCnt = 0
16: end if
17: until the predefined number of games have been played
18: end for each agent
19: return Q-value function for each agent

Algorithm 1: EAQR for repeated games.
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In Cases 1–4, player 1 and player 2 are literally the
row player and the column player, respectively. We
assume that a matrix B exists and that each element of
B − bij is strictly smaller than a scalar a (bij, a ∈ R). Cases
1–4 are examined first.

Case 1. There is only one optimal global immediate reward.

We can see that p11 = 0, p12 = ε/ A2 + 1 − ε P2/
P1 + P2 , p21 = 0, and p22 = ε/ A1 + 1 − ε Q2/ Q1 +Q2 .
Thus, we arrive at the following equations from (6):

Q1 = −Q1, 12

Case 2Case 1

b11

b21

b12

(a) b21

b12

(a)

(a)

b21 b22 b22

(a) (a)

(a)

(a)(a)

Case 4Case 3

Figure 2: The payoff matrices of Cases 1–4.

b21

b31 b32

b23

b13b12 b11 b13

b31 b33

b22

(a)

(a)

(a)

(a)

(a)

(a)

(a)

Case 6Case 5

Figure 3: The payoff matrices of Case 5 and Case 6.

(a)

b21 b22

b12

If player 3 chooses
action 1

Case 7

If player 3 chooses
action 2

c11

c21

c12

c22

Figure 4: The payoff matrix of Case 7.

Q2 =
ε

2 + 1 − ε
P2

P1 + P2
−Q2, 13

P1 = −P1, 14

P2 =
ε

2 + 1 − ε
Q2

Q1 +Q2
− P2 15

It can be seen from (12) and (14) that Q1 and P1 will be
stable at zero after an infinite long time. Suppose at time t0,
Q1 and P1 are both very close to zero. Then we can obtain
the following from (13) and (15) when t > t0:

Q2 = 1 − ε

2 −Q2, 16

P2 = 1 − ε

2 − P2 17

If we let Q̂2 = 1 − ε / 2 −Q2 and P̂2 = 1 − ε / 2 − P2 ,
then (16) and (17) can be transformed to a set of linear
differential equations. And it is easy to see that Q̂

∗
2 , P̂

∗
2 =

0, 0 , namely, Q∗
2 , P∗

2 = 1 − ε /2, 1 − ε /2 is a globally
stable node. To sum up, there is only one globally stable
critical point Q∗

1 ,Q∗
2 , P∗

1 , P∗
2 = 0, 1 − ε /2, 0, 1 − ε /2 in

Case 1. This point is corresponding to the strategy x∗, y∗ =
Q∗

1 / Q∗
1 +Q∗

2 , P∗
1 / P∗

1 + P∗
2 = 0, 0 , which corresponds

to the optimal global immediate reward. In Case 1, this
conclusion is also valid for ε = 0 and ε = 1.

To validate our analysis, we present the plot of the
learning process of EAQR in Case 1 with Figures 5–10.
The learning rate α is 0.1, and the number of samples
Ns is 200. Twelve different points (Q1, Q2, P1, P2) are
used as initial conditions and marked with solid circles.
It can be seen in Figures 5 and 8 that the learning trajecto-
ries converge to the point Q∗

1 ,Q∗
2 , P∗

1 , P∗
2 = 0, 1, 0, 1

when ε = 0. It can also be seen in Figures 6 and 9 that the
learning trajectories converge to the point Q∗

1 ,Q∗
2 , P∗

1 , P∗
2 =

0, 0 55, 0, 0 55 when ε = 0 9. Both points are literally the
critical point Q∗

1 ,Q∗
2 , P∗

1 , P∗
2 = 0, 1 − ε /2, 0, 1 − ε /2 we

have obtained earlier. The joint strategy (x, y) is illustrated
in Figures 7 and 10. It converges to (0, 0). This indicates that
our analysis is reasonable.

Case 2. There are two optimal global immediate reward in
diagonal positions.

We arrive at the following equations from (6):

Q1 =
ε

2 + 1 − ε
P1

P1 + P2
−Q1, 18

Q2 =
ε

2 + 1 − ε
P2

P1 + P2
−Q2, 19

P1 =
ε

2 + 1 − ε
Q1

Q1 +Q2
− P1, 20

P2 =
ε

2 + 1 − ε
Q2

Q1 +Q2
− P2 21
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If we let Q =Q1 +Q2 and P = P1 + P2, then the following
system can be derived from (18)–(21):

Q = 1 −Q, 22

P = 1 − P 23

It is obvious that Q∗, P∗ = 1, 1 is a globally stable
node of the above system. Suppose at time t0, Q and P are

both very close to 1. Then the system described by
(18)–(21) degenerates to the following one when t > t0:

Q1 = −Q1 + 1 − ε P1 +
ε

2 , 24

P1 = 1 − ε Q1 − P1 +
ε

2 25
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0.9

1

Q1

P
1

Figure 5: P1 and Q1 during the learning process of EAQR in
Case 1 (ε = 0).
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Figure 6: P2 and Q2 during the learning process of EAQR in
Case 1 (ε = 0).
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Figure 7: x and y during the learning process of EAQR in
Case 1 (ε = 0).
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Figure 8: P1 and Q1 during the learning process of EAQR in
Case 1 (ε = 0 9).
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The interior critical point must satisfy

Q1 = 1 − ε P1 +
ε

2 ,

P1 = 1 − ε Q1 +
ε

2

26

Thus, we have the critical point Q∗
1 , P∗

1 = 0 5, 0 5
when ε ∈ 0, 1 . Then we examine the stability of this critical

point. The Jacobin matrix of the system described by (24),
(25) is

J =
−1 1 − ε

1 − ε −1
27

of which the eigenvalues are λ1,2 = −1 ± 1 − ε . When
ε ∈ 0, 1 , we have λ1 < 0, λ2 < 0. According to the theorem
of stability of almost linear systems, this critical point is
stable. To sum up, there is only one stable critical point
Q∗

1 ,Q∗
2 , P∗

1 , P∗
2 = 0 5, 0 5, 0 5, 0 5 in Case 2 when ε ∈

0, 1 . This point is corresponding to the strategy x∗, y∗ =
Q∗

1 / Q∗
1 +Q∗

2 , P∗
1 / P∗

1 + P∗
2 = 0 5, 0 5 . The greedy joint

action may not correspond to either of the optimal global
immediate reward.

The above conclusion does not hold when ε = 0. This
is because we use the condition ε ∈ 0, 1 when determin-
ing the position and the stability of the critical point of
the system described by (24) and (25). When the system
described by (22) and (23) is stable, the point Q1,Q2
is on the line Q1 +Q2 = 1; the point P1, P2 is on the
line P1 + P2 = 1, and Q1 = P1. The converged strategy is
determined by initial conditions.

Case 3. There are two optimal global immediate reward in the
same row.

The system is described by the following differen-
tial equations:

Q1 = 1 −Q1,

Q2 = −Q2,

P1 =
ε

2 + 1 − ε
Q1

Q1 +Q2
− P1,

P2 =
ε

2 + 1 − ε
Q1

Q1 +Q2
− P2

28

The analysis process is similar with that in Case 1.
There is only one stable critical point Q∗

1 ,Q∗
2 , P∗

1 , P∗
2 =

1, 0, 1 − ε /2, 1 − ε /2 for ε ∈ 0, 1 . This point is cor-
responding to the strategy x∗, y∗ = Q∗

1 / Q∗
1 +Q∗

2 , P∗
1 /

P∗
1 + P∗

2 = 1, 0 5 , which corresponds to either of the
optimal global immediate reward.

Case 4. There are three optimal global immediate reward.

The system is described by the following differen-
tial equations:

Q1 = 1 −Q1,

Q2 =
ε

2 + 1 − ε
P1

P1 + P2
−Q2,

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q2

P
2

Figure 9: P2 and Q2 during the learning process of EAQR in
Case 1 (ε = 0 9).
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Figure 10: x and y during the learning process of EAQR in
Case 1 (ε = 0 9).
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P1 = 1 − P1,

P2 =
ε

2 + 1 − ε
Q1

Q1 +Q2
− P2 29

It is obvious that Q1, P1 = 1, 1 is a globally stable
node. Suppose at time t0, Q1 and P1 are both very close
to 1. Then the system degenerates to the following one
when t > t0:

Q2 = 1 − ε
1

1 + P2
+ ε

2 −Q2,

P2 = 1 − ε
1

1 +Q2
+ ε

2 − P2

30

The interior critical point must satisfy

Q2 =
ε

2 + 1 − ε
1

1 + P2
,

P2 =
ε

2 + 1 − ε
1

1 +Q2

31

It can be derived that the critical point is Q∗
2 , P∗

2 = c, c
where c = − 1 − ε /2 + 1 − ε /2 2 + 4 1 − ε /2 /2.
We can further get c ∈ 0 5, 0 618 when ε ∈ 0, 1 . Thus at
the critical point, x = y, and they are both within [0.618,
0.667] when ε ∈ 0, 1 . The examination of stability follows
the way in Case 2. It can be determined that the critical point
is a stable node. This means that the converged greedy joint
action corresponds to the top left optimal global immediate
reward. This conclusion holds forε ∈ 0, 1 .

We want to examine cases with more than two actions.
Thus, Case 5 and Case 6 repeated games with two agents
and three actions are given. In Case 5 and Case 6, xj and yj
represent the probability of selecting action j for player 1
and 2, respectively.

Case 5. There are three optimal global immediate reward in
the diagonal line.

The system is described by the following differen-
tial equations:

Qj =
ε

3 + 1 − ε
Pj

P1 + P2 + P3
−Qj,

Pj =
ε

3 + 1 − ε
Qj

Q1 +Q2 +Q3
− Pj

32

If we let Q =Q1 +Q2 +Q3 and P = P1 + P2 + P3 and
follow the way in Case 2, then it can be obtained that there
is only one stable node Q∗

1 ,Q∗
2 ,Q∗

3 , P∗
1 , P∗

2 , P∗
3 = 1/3, 1/3,

1/3, 1/3, 1/3, 1/3 when ε ∈ 0, 1 . This critical point is corre-
sponding to the strategy x∗1 , x∗2 , x∗3 , y∗1 , y∗2 , y∗3 = 1/3, 1/3,
1/3, 1/3, 1/3, 1/3 . The greedy joint action may not corre-
spond to any optimal global immediate reward.

As in Case 2, the above conclusion does not hold
when ε = 0. In this situation, when the system is stable,

the point Q1,Q2,Q3 is on the plane Q1 +Q2 +Q3 = 1,
the point P1, P2, P3 is on the plane P1 + P2 + P3 = 1, Q1 =
P1, and Q2 = P2. The converged strategy is determined by
initial conditions.

Case 6. There are four optimal global immediate reward.

The system is described by the following differen-
tial equations:

Q1 =
ε

3 + 1 − ε
P2

P1 + P2 + P3
−Q1, 33

Q2 =
2ε
3 + 1 − ε

P1 + P3
P1 + P2 + P3

−Q2, 34

Q3 =
ε

3 + 1 − ε
P2

P1 + P2 + P3
−Q3, 35

P1 =
ε

3 + 1 − ε
Q2

Q1 +Q2 +Q3
− P1, 36

P2 =
2ε
3 + 1 − ε

Q1 +Q3
Q1 +Q2 +Q3

− P2, 37

P3 =
ε

3 + 1 − ε
Q2

Q1 +Q2 +Q3
− P3 38

If we let M1 =Q1 +Q2, M2 =Q2 +Q3, N1 = P1 + P2,
and N2 = P2 + P3, the following system can be derived
from (33)–(38):

M1 = 1 −M1,
M2 = 1 −M2,
N1 = 1 −N1,
N2 = 1 −N2

39

It is obvious that M1,M2,N1,N2 = 1, 1, 1, 1 is a
globally stable node of the above system. Suppose at time
t0, the state of the above system is very close to the stable
state (1, 1, 1, 1), that is

Q1 = 1 −Q2, 40

Q3 = 1 −Q2, 41

P1 = 1 − P2, 42

P3 = 1 − P2 43
Then the system described by (33)–(38) degenerates to

the following one when t > t0:

Q2 =
2ε
3 + 1 − ε

2 − 2P2
2 − P2

−Q2, 44

P2 =
2ε
3 + 1 − ε

2 − 2Q2
2 −Q2

− P2 45
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The critical point has to satisfy

Q2 =
2ε
3 + 1 − ε

2 − 2P2
2 − P2

,

P2 =
2ε
3 + 1 − ε

2 − 2Q2
2 −Q2

46

It can be obtained that there is only one critical point Q∗
2 ,

P∗
2 = c, c where c = 2 − 2ε /3 − 2 − 2ε /3 1 − 2ε /3 .

It can be further determined that c ∈ 2 − 2, 2/3 for
ε ∈ 0, 1 . The Jacobin matrix of the system described
by (44), (45) is

J =
−1 −2 1 − ε

2 − P∗
2

2

−2 1 − ε

2 −Q∗
2

2 −1
47

of which the eigenvalues are λ1,2 = −1 ± 2 1 − ε / 2 − P∗
2

2 −Q∗
2 . There are two repeated roots λ1,2 = −1 when

ε = 1. In this situation, the system described by (33)–(38) will
be stable at the point Q∗

1 ,Q∗
2 ,Q∗

3 , P∗
1 , P∗

2 , P∗
3 = 1/3, 2/3,

1/3, 1/3, 2/3, 1/3 which corresponds to the point x∗1 , x∗2 ,
x∗3 , y∗1 , y∗2 , y∗3 = 0 25, 0 5, 0 25, 0 25, 0 5, 0 25 . When ε ∈
0, 1 , let k = 2 − 2ε /3, k ∈ 4/3, 2 , then the eigenvalues

can be rewrote as λ1,2 = −1 ± 3k − 4 / 2 − k + k k − 1 2
.

We want to show that in this situation there are two dif-
ferent negative real eigenvalues. The following condition
will suffice:

3k − 4

2 − k + k k − 1
2 < 1 48

It is trivial to prove (48). To sum up, the system described
by (33)–(38) has a stable node for ε ∈ 0, 1 , and the greedy
action for both players is the second action. Unfortunately,
this joint action does not correspond to any optimal global
immediate reward.

When ε = 0, there is only one stable node that satisfies
(40)–(43) and

Q2 + P2 =
1
2Q2P2 + 1 49

The converged strategy is determined by initial condi-
tions, and the greedy joint action does not necessarily
correspond to any optimal global immediate reward.

Case 7. There is only one optimal global immediate reward in
a three-player three-action game.

Player 1 and player 2 are literally the row player and the
column player, respectively. Player 3 can be viewed as a
matrix player. If player 3 chooses the first action, the left
payoff matrix will be adopted. Otherwise, the right payoff
matrix will be adopted. We assume that there are matrix B,

matrix C, and each element of B and C − bij, cij is strictly
smaller than a scalar a (bij, cij, a ∈ R). Let Qj, Pj, and Kj

denote the Q-value of action j for player 1, 2, 3, respectively,
and let x, y, z denote the probability of selecting the first
action for player 1, 2, 3, respectively. The system is described
by the following differential equations:

Q1 = 1 − ε
K1

K1 + K2

ε

2 + 1 − ε
P1

P1 + P2

+ ε

2
ε

2 + 1 − ε
P1

P1 + P2
−Q1,

Q2 = −Q2,

P1 = 1 − ε
K1

K1 + K2

ε

2 + 1 − ε
Q1

Q1 +Q2

+ ε

2
ε

2 + 1 − ε
Q1

Q1 +Q2
− P1,

P2 = −P2,

K1 =
ε

2 + 1 − ε
P1

P1 + P2

ε

2 + 1 − ε
Q1

Q1 +Q2
− K1,

K2 = −K2

50

The analysis process is similar with that in Case 1.
There is only one stable node Q∗

1 ,Q∗
2 , P∗

1 , P∗
2 , K∗

1 , K∗
2 =

1 − ε /2 2, 0, 1 − ε /2 2, 0, 1 − ε /2 2, 0 for ε ∈ 0, 1 .
This critical point corresponds to the strategy
x∗, y∗, z∗ = Q∗

1 / Q∗
1 +Q∗

2 , P∗
1 / P∗

1 + P∗
2 , K∗

1 / K∗
1 + K∗

2 =
1, 1, 1 , which literally corresponds to the optimal global
immediate reward.

To sum up, it can be seen that the optimal global
immediate reward can be achieved in Cases 1, 3, 4, 7 and
may not be achieved in Cases 2, 5, 6. In the next section, we
will show the performance of EAQR in two stochastic games:
box-pushing and the DSN problem.

5. Simulations on Stochastic Games

Case A. Box-pushing

The box-pushing problem is illustrated in Figure 11. Four
boxes are represented with grey solid circles, and empty
positions are represented with white circles. Four agents
(which are not shown in the figure) need to collaborate with
each other to make the boxes distribute uniformly. Each
agent is responsible for moving one box and has three kinds
of actions: pushing the box to the adjacent clockwise posi-
tion, pushing the box to the adjacent anticlockwise position,
or doing nothing. In the beginning of an episode, four boxes
are located in random positions. Each agent selects an action,
and the boxes are pushed to the new positions. An episode
ends when the number of empty positions between any two
adjacent boxes are the same, or 100 steps have occurred. If
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one episode ends, the positions of the four boxes, reward, and
step for each agent will be reset for the next episode (but the
Q-value function for each agent will be restored until the next
run). Each agent receives a reward of −1 at each step and
receives a reward of 10 at the end of an episode.

The rules of the box-pushing problem are as follows.
First, all agents push boxes simultaneously. Second, if a
conflict occurs, then the boxes in the conflict will stay still.
A conflict occurs in the following cases: a box being pushed
to a static box, two boxes being pushed to the same empty
positions, two adjacent boxes being pushed in the opposite
direction, and a string of adjacent boxes being pushed in
the same direction while the head box is in a conflict. Third,
a box can be pushed successfully if it is not in a conflict.

In the experiment, EMA (exponential moving average)
Q-learning [11], WoLF-PHC [10], and SARSA (state-
action-reward-state-action) [21] are chosen as comparison
algorithms. EMA Q-learning and WoLF-PHC are MARL
algorithms while SARSA is a type of single-agent RL algo-
rithm corresponding to centralized learning in the context
of multiple agents.

The parameters were fine tuned after many trials. For
EAQR, the sample times Ns = 50. The learning rate α follows

α = αini −
αinin
1 05L , 51

where the initial learning rate αini = 0 7, L is the predefined
number of learning episodes, and n is number of experienced
learning episodes. The exploration rate ε follows

ε =

0 9 1 ≤ n ≤ 0 2L,
0 8 0 2L < n ≤ 0 4L,
0 7 0 4L < n ≤ 0 6L,
0 6 0 6L < n ≤ 0 8L,
0 5 0 8L < n ≤ L

52

For EMA Q-learning, ε = 0 2, k = 2, and the discount
factor γ = 0 9. The learning rate α follows (51) with
αini = 0 7; ηl = 0 001ηw and ηw follows

ηw = 1
10 + 0 2n 53

For WoLF-PHC, δw = 0 003, δl = 0 01, γ = 0 9, ε = 0 8,
and the learning rate α follows (51), with αini = 0 7. For
SARSA, α, γ, and ε are the same as those in WoLF-PHC.

The prime performance metric is the average number of
steps per episode, which needs to be minimized. The second
important performance metric is the success rate, which
reflects the stability of the algorithm. A success means the
minimum steps are used in an episode. The theoretical
minimum number of steps of an episode is determined by a
specially designed program. Thus, the success rate over a
number of episodes can be evaluated. The experimental
results in Tables 1 and 2 are averaged over 100 runs. The
standard deviation is also presented in Table 1. Table 3 shows
the worst run for each algorithm. Each run has experienced
L learning episodes and 50,000 evaluation episodes. During
each of L learning episodes, the agents update their strate-
gies to try to obtain more cumulative reward. During each
of 50,000 evaluation episodes, the agents do not update
their strategies. For the sake of fairness, in the same col-
umns of Tables 1 and 3, the initial positions of the boxes
for the evaluation episodes are the same.

In Tables 1 and 2, it is noted that all algorithms perform
better as the number of learning episodes L grows. Optimal
represents the theoretical minimum number of steps. EAQR
presents the best performance for all different values of L,
which means EAQR learns faster than any of the other

Table 1: Average steps for 4-agent/12-vertex box-pushing
(evaluation episodes = 50,000).

L = 100,000 L = 500,000 L = 1000,000

Optimal 1.71 1.71 1.71

EAQR 2.53± 0.11 1.76± 0.03 1.74± 0.02

WoLF-PHC 2.83± 0.23 2.24± 0.11 1.99± 0.06
EMA Q-learning 4.53± 0.49 3.66± 0.40 3.47± 0.34
Single-agent RL 14.78± 0.60 3.29± 0.14 2.03± 0.06

Table 2: Average success rate for 4-agent/12-vertex box-pushing
(evaluation episodes = 50,000).

L = 100,000 L = 500,000 L = 1000,000

EAQR 82.6% 98.6% 99.6%

WoLF-PHC 80.7% 87.1% 91.7%

EMA Q-learning 66.7% 76.6% 78.7%

Single-agent RL 60.2% 91.2% 95.9%

Table 3: Maximal steps for 4-agent/12-vertex box-pushing
(evaluation episodes = 50,000).

L = 100,000 L = 500,000 L = 1000,000

EAQR 2.77 1.85 1.81

WoLF-PHC 3.45 2.55 2.18

EMA Q-learning 5.90 4.66 4.61

Single-agent RL 15.89 3.66 2.20

Figure 11: Four-agent/12-vertex box-pushing.
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algorithms. Besides, EAQR can obtain an average success rate
of 99.6% when L is 1,000,000, which means that it can use the
minimum steps to complete the box-pushing task with a
probability of 99.6%. This result is sufficiently good to com-
plete the task satisfactorily. Single-agent RL performs poorly
in the beginning, but it performs fairly well when L is
1,000,000 in the aspect of average success rate. Still, single-
agent RL is outperformed by EAQR. It is noted from
Table 3 that EAQR also has the better worst run compared
with the other algorithms.

Case B. Distributed sensor network

The DSN problem is used as the second test bed for
MARL algorithms. It was part of the NIPS 2005 bench-
marking workshop [22]. Figure 12 shows a DSN composed
of eight sensors. Each sensor is viewed as an agent. The
sensors have to cooperate to capture both targets wandering
in a grid of three cells. At each time step, each target moves
to its left side, moves to its right side, or keeps still with
equal probability. Each cell can be occupied by only one
target at any time. The targets move sequentially. Thus, if
a target moves out of the grid or moves to a cell which
has been occupied by another one, it just stays where it
was. Each sensor also has three actions: focus on its left
side, focus on its right side, or no focus at all. For example,
sensor 4 can focus on cell 1 which is on its left side, focus
on cell 0 which is on its right side, or make no focus.
Although there is only one cell near sensor 0, 1, 2, and 3,
respectively, these four sensors can still focus on the side
with no cells. To capture a target, the sensors must accom-
plish three hits on the same target. One hit happens if at least
three sensors focus on the cell occupied by a target. A target is
removed from the grid if it is captured. The reward allocation
rules follow [23]. If a target is captured by four sensors, the
sensor with the minimum index gets null reward, and the
other three sensors are rewarded by 10, respectively. The
action of focus gains a local immediate reward of −1, and
no focus gains a local immediate reward of 0.

The goal of the DSN problem is to capture the targets
with as many cumulative rewards as possible in an episode.

At the beginning of each episode, both targets are randomly
located in the grid. At each time step, all sensors take actions
at the same time. The judgment of focus, no focus, hit, and
capture is made, and the local immediate rewards are fed
back to each sensor. Then it is the turn for targets to move,
and the new state is fed back to each sensor. An episode ends
if both targets are captured, or 1000 time steps have elapsed.
Each sensor can perceive the state and the local immediate
rewards. However, they do not have any a priori knowledge
like what is a hit, what is a capture, or the goal of the problem.
They do not know the reward allocation rules either.

There are 37 states and 38 = 6, 561 joint actions in the
DSN problem. Single-agent RL algorithm needs to store
and learn Q-value of 37 × 6561 = 242, 757 state-action pairs,
and this number grows exponentially as the number of
sensors increases. By learning each agent’s own action
instead of joint action, the number of state-action pairs will
be reduced to 37 × 3 × 8 = 888, and it grows linearly as the
number of sensors increases.

The optimal strategy for a DSN problem is that every
three sensors focus on a target while the rest of the sensors
make no focus at all. It is obvious that the optimal global
cumulative reward is 42, and the optimal number of steps
is 3. According to the credit assignment rules in [23],
there will be no punishment if all agents do not focus at
all. This can lead to more steps in an episode. Thus, we
select average global cumulative rewards per episode as
the main performance metric and select average number
of steps as the secondary performance metric. A success
is made if a global cumulative reward of 42 is obtained
in an episode.

For EAQR, the learning rate α is constant and is set
to 0.2; Ns is set to 50, and the exploration rate ε follows
(52). For EMA Q-learning, the learning rate α follows
(51) with αini = 0 7; the exploration rate ε is constant
and is set to 0.8, k = 2, γ = 0 9, ηl = 0 001ηw, and ηw fol-
lows (53). For WoLF-PHC, the parameters δw = 0 003,
δl = 0 01, the learning rate α follows (51) with αini = 0 7;
the exploration rate ε is constant and is set to 0.2, and γ =
0 9. For single-agent RL, α, ε, and γ are the same with those
of WoLF-PHC.

Cell 0

0 4 5 1

3 7 6 2

Cell 1 Cell 2

Figure 12: A distributed sensor network with eight sensors ⊗ and two targets ●.
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Tables 4 and 5 show that after 100, 000 learning episodes
the success rate of EAQR is 100%, and it gains an average
global cumulative reward of 42 which is just the theoretical
optimal cumulative reward in an episode. The standard
deviation is also presented in Table 5. EAQR has great advan-
tages over the other algorithms in terms of success rate.
Table 5 shows that for WoLF-PHC and single-agent RL,
higher average cumulative reward might be achieved if more
learning episodes are given. However, there is no such a trend
for EMA Q-learning. More learning would probably not
improve the performance of EMA Q-learning. Table 6 shows
the worst run of cumulative reward for each algorithm. It is
noted from Table 6 that EAQR also has the better worst
cumulative reward compared with the other algorithms.

Table 7 shows that EAQR consumes less steps to capture
both targets than the other algorithms. The standard devia-
tion is also presented in Tables 7. Table 8 shows the worst
run of steps for each algorithm. Due to the large joint action
space in the DSN problem, single-agent RL shows the
worst performance among all algorithms. This experiment
shows that solving multiagent reinforcement problem
through single-agent view is inadvisable.

EAQR shows good performance in both stochastic
games, which indicates that most of the time EAQR can
converge to one of the optimal global cumulative reward
under any initial strategies. Otherwise, EAQR will not gain
a success rate of 99.6% in Case A and 100% in Case B. EAQR
also alleviates the curse of dimensionality of joint action
space. Yet the same problem for joint state space remains to
be addressed. For some stochastic games such as box-
pushing [24, 25] and hunting game [26, 27], the circle and
the grid can be viewed as images. Many states are actually
the same one if the translation operation is performed on
the “images”. Thus, the structure of convolutional neural
networks [28, 29] can be employed to realize an autoencoder
[30] which automatically extracts features in the original
state space and uses these features to construct a compressed
state space.

6. Conclusions

In this paper, we deal with the problem of how to
achieve optimal coordination in fully cooperative multiagent
systems. Firstly, we propose a cooperative multiagent Q-
learning algorithm called EAQR and analyze its dynamics
in seven repeated games. The results in these games show
that if there is only one optimal global immediate reward,
then EAQR can converge to it. However, if more than
one optimal global immediate reward exist, then EAQR
may not necessarily converge to any optimal global imme-
diate reward. Secondly, we test EAQR in two stochastic
games—one with four agents and the other with eight
agents. EAQR shows excellent performance in both tasks.
It achieves the theoretical optimal cumulative reward in
the DSN problem.

We will carry on our work towards three directions in the
future. Firstly, we have to find a way to depict the learning
process for stochastic games to help us find out why EAQR
works well in these tasks. Secondly, we will learn from
solutions to consensus [31, 32] to design new action
exploration methods that can be analyzed more trivially
and has rigorous theoretical proof in general cases. Thirdly,
we will employ convolutional neural networks and auto-
encoders to alleviate the curse of dimensionality of state
space in some collaborative tasks.

Table 4: Success rate for the DSN problem (evaluation
episodes = 5000).

L = 10,000 L = 50,000 L = 100,000

EAQR 47.4% 99.9% 100%

WoLF-PHC 22.8% 34.1% 33.7%

EMA Q-learning 7.8% 6.8% 7.1%

Single-agent RL 0 0 0

Table 5: Average cumulative reward for the DSN problem
(evaluation episodes = 5000).

L = 10,000 L = 50,000 L = 100,000

EAQR 41.23± 0.52 41.99± 0.003 42± 0

WoLF-PHC 39.96± 0.89 40.69± 0.73 40.74± 0.68
EMA Q-learning 36.59± 1.76 36.14± 1.82 36.21± 1.80
Single-agent RL 29.88± 1.57 33.16± 1.33 34.96± 1.05

Table 6: Minimal cumulative reward for the DSN problem
(evaluation episodes = 5000).

L = 10,000 L = 50,000 L = 100,000

EAQR 39.26 41.97 42

WoLF-PHC 37.65 38.71 38.82

EMA Q-learning 32.92 32.08 32.53

Single-agent RL 25.12 29.38 32.21

Table 7: Average steps for the DSN problem (evaluation
episodes = 5000).

L = 10,000 L = 50,000 L = 100,000

EAQR 3.65± 0.35 3.22± 0.26 3.12± 0.20

WoLF-PHC 3.64± 0.63 3.58± 0.64 3.69± 0.61
EMA Q-learning 3.81± 0.43 3.94± 0.44 3.93± 0.45
Single-agent RL 5.57± 0.25 5.3± 0.29 5.06± 0.27

Table 8: Maximal steps for the DSN problem (evaluation
episodes = 5000).

L = 10,000 L = 50,000 L = 100,000

EAQR 4.81 3.93 3.77

WoLF-PHC 5.34 5.34 5.67

EMA Q-learning 4.72 4.94 4.80

Single-agent RL 6.00 6.00 5.66
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