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This paper presents the Hamilton-Jacobi method for integrating the equations of motion of mechanical systems on time scales. We
give the criterion and four basic forms of canonical transformation on time scales. Also, various examples are given to illustrate the
role played by a generating function in the canonical transformation. By choosing an appropriate generating function, we construct
the Hamilton-Jacobi equation on time scales and prove the Jacobi theorem on time scales. An example for an Emden-Fowler type
equation is discussed to show the application of the method.

1. Introduction

As it is well known, the Hamilton-Jacobi equation [1–4],
that is an important nonlinear partial differential equation,
represents a reformulation of classical mechanics. In addi-
tion, the Hamilton-Jacobi method is very useful in integrat-
ing differential equations of motion for the holonomic
mechanical systems [5–9], the nonholonomic mechanical
systems [10, 11], and the nonconservative mechanical sys-
tems [12]. The differential equations that can be realized
by Hamilton formularization [13–15] can also be solved by
the Hamilton-Jacobi method [13, 14]. Moreover, the discrete
analogues of the Hamilton-Jacobi equation have been studied
by Elnatanov and Schiff [16] and Lall and West [17]. Ohsawa
et al. [18] developed the discrete Hamilton-Jacobi theory
within the framework of discrete Hamiltonian mechanics.
Until now, the Hamilton-Jacobi theory is well understood
both from the continuous and discrete points of view, and
it has many important applications in optimal control prob-
lems, particle physics, fluid mechanics, quantum mechanics,
and cosmology. In this paper, the Hamilton-Jacobi method
for mechanical systems is studied in version of time scales.

A time scale is an arbitrary nonempty closed subset of the
real numbers. The calculus of time scales, which has recently
attracted a lot of attention, was introduced by Hilger [19]

in 1988 to unify continuous and discrete analysis. In terms
of a unique formalism, this theory can deal with not only
continuous and discrete analysis but also complex processes
such as the control systems, impulsive dynamical systems,
electromechanical systems, neural network, and economical
systems [20–24]. The calculus of variations on time scales
that was one of the popular topics has been well studied
[25–35]. Inspired by these works, the Euler-Lagrange equa-
tions, the Hamilton canonical equations [36–38], and the
Birkhoff’s equations [39] were established for mechanical
systems on time scales. Besides, the Noether’s theorems
[37–42] were established in finding conserved quantities
for mechanical systems on time scales. However, it is worth
mentioning that the famous Hamilton-Jacobi method also
represents an important integration method. It is worth
and necessary to study the Hamilton-Jacobi method on
time scales.

The outline of this paper is as follows: we first present the
basic definitions and properties about the calculus of time
scales in Section 2. In Section 3, we give the Hamilton canon-
ical equations on time scales. Section 4 focuses on the canon-
ical transformation theory on time scales. In Section 5, we
construct the Hamilton-Jacobi equations on time scales and
prove the Jacobi theorem on time scales. Section 6 gives the
conclusions and future directions of research.
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2. Preliminaries on Time Scales

We begin by introducing the definitions and properties on
time scales needed in the sequel. More discussions and proofs
can be found in [21, 24].

A time scale T is an arbitrary nonempty closed subset of
the real numbers ℝ. For all t ∈ T , the forward jump operator
σ T → T is defined by σ t = inf s ∈ T s > t , while the
backward jump operator ρ T → T is defined by ρ t = sup
s ∈ T s < t , with inf ϕ = sup T and sup ϕ = inf T .

A point t ∈ T is called right-dense, right-scattered, left-
dense, and left-scattered if σ t = t, σ t > t, ρ t = t and ρ
t < t, respectively. The graininess function μ T → 0,∞
is defined by μ t = σ t − t. If T has a left-scattered maxi-
mum M, then we define T k = T − M , otherwise T k = T .

Let f T →ℝ be a function. Then the delta derivative
f Δ t of f at a point t ∈ T k is defined to be the number with
the poverty that given any ε > 0, there exists a neighborhood
U of t (i.e., U = t − δ, t + δ ∩ T ) for some δ > 0 such that

f σ t − f s − f Δ t σ t − s ≤ ε σ t − s , for all s ∈U

1

A function f T →ℝ is called rd-continuous if it is
continuous at right-dense points in T and its left-sided
limits exist (finite) at left-dense points in T . The set of
rd-continuous functions can be denoted by Crd. The set

of differentiable functions with rd-continuous derivative
is denoted by C1

rd.
A function F T →ℝ is called an antiderivative of f

T →ℝ provided FΔ t = f t holds for all t ∈ T k. Then the
indefinite integral of f is defined by f τ Δτ = F t + C,
where C is an arbitrary constant. The definite integral is
defined by b

a f t Δt = F b − F a , for all a, b ∈ T .
For delta differentiable f and g, the next formulae hold

f σ t = f t + μ t f Δ t , 2

f g Δ t = f Δ t g t + f σ t gΔ t

= gΔ t f t + gσ t f Δ t ,
3

b

a
f t gΔ t Δt = f g b − f g a

−
b

a
f Δ t gσ t Δt,

4

b

a
f ν t νΔ t Δt =

ν b

ν a
f t Δt, 5

where we abbreviate f ∘ σ by f σ, that is, f σ t = f σ t .
Let f Λn = T 1 × T 2 ×⋯× Tn = t = t1, t2,… , tn : ti ∈

T i →ℝ be a function. The partial delta derivative of f
respect to ti ∈ T k

i is defined as the limit

Let the function f T 1 × T 2 →ℝ be σ1-completely delta
differentiable at the point t0, s0 . If the functions φ and ψ
have delta derivatives at the point ξ0, then the composite
function

F ξ = f φ ξ , ψ ξ for ξ ∈ T 7

has a delta derivative at that point which is expressed by the
formula

FΔ ξ0 = ∂f t0, s0
Δ1t

φΔ ξ0 + ∂f σ1 t0 , s0
Δ2s

ψΔ ξ0 ,

8

where t0, s0 = φ ξ0 , ψ ξ0 , σ1 φ ξ0 = φ σ ξ0 .

Remark 1. If T =ℝ and F ξ = f ξ, ψ ξ , then (8) means
that

FΔ ξ0 =
∂f ξ0, s0

Δ1t
+
∂f ξ0, s0

∂s
ψΔ ξ0 9

Remark 2. If the function f T 1 × T 2 →ℝ be σ2-completely
delta differentiable at the point t0, s0 , if the functions
ψ and φ have delta derivatives at the point ξ0, then the
composite function

F ξ = f ψ ξ , φ ξ for ξ ∈ T 10

has a delta derivative at that point which is expressed by the
formula

FΔ ξ0 = ∂f s0, t0
Δ1s

ψΔ ξ0 + ∂f σ2 s0 , t0
Δ2t

φΔ ξ0 ,

11

where s0, t0 = ψ ξ0 , φ ξ0 , σ2 ψ ξ0 = ψ σ ξ0 .
The formulae (8) and (11) constitute a dual pair in which

the shift appears at two different places. This is a natural phe-
nomenon in the calculus on time scales such as the product
rule (3) has two forms.

Let a function f T 1 × T 2 →ℝ have the mixed delta
derivatives ∂2 f t, s /Δ1tΔ2s and ∂2 f t, s /Δ2sΔ1t in some

lim
si→ti
si≠σi ti

f t1, t2,… , ti−1, σi ti , ti+1,… , tn − f t1, t2,… , ti−1, si, ti+1,… , tn
σi ti − si

= ∂f t
Δiti 6
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neighborhood of the point t0, s0 ∈ T k
1 × T k

2. If these deriva-
tives are continuous at the point t0, s0 , then

∂2 f t, s
Δ1tΔ2s

= ∂2 f t, s
Δ2sΔ1t

12

3. Hamilton Canonical Equations on
Time Scales

In this section, we present the Hamilton canonical equations
on time scales that have been discussed in literatures [36–38].

Assuming that the configuration of a mechanical system
is determined by generalized coordinate q, the Lagrangian L
is L t, qσ t , qΔ t , where t ∈ T , q a, b T →ℝ, q ∈ C1

rd.
The Hamilton action is

S q ⋅ =
b

a
L t, qσ, qΔ Δt 13

The Hamilton principle on time scales can be
expressed as

δS = 0, 14

which satisfies the relationships

δqΔ = δq Δ,
δqσ = δq σ,

15

and the boundary conditions

δq∣t=a = δq∣t=b = 0 16

The generalized momentum and the Hamiltonian are

p = ∂L
∂qΔ

,

H =H p, qσ, t = pqΔ − L

17

The Hamilton canonical equations on time scales can be
derived from the principle above, that is,

qΔ = ∂H
∂p

,

pΔ = −
∂H
∂qσ

18

4. Canonical Transformations on Time Scales

Now, we consider the transformation from the old variables
q, p to the new variables Q, P

Q =Q p, q, t ,
P = P p, q, t ,

19

and suppose that (19) is invertible. Undergoing the transfor-
mation, the canonical equations (18) on time scales will be
transformed into other new equations. However, the new
equations may not have the canonical form in general.
Among the possible transformations, there is a class of

transformations called canonical transformations whose
properties are particularly useful in dynamics. That is, the
canonical equations (18) are transformed into the new
canonical equations

QΔ = ∂H∗

∂P
,

PΔ = −
∂H∗

∂Qσ ,
20

where the new Hamiltonian H∗ P,Qσ, t is

H∗ P,Qσ, t = PQΔ − L 21

The following criterion gives the condition under which
(19) is canonical on time scales.

Criterion 1. If (19) satisfies the condition

pqΔ − PQΔ +H∗ −H = ΔF
Δt ,

22

then it is a canonical transformation on time scales, where F
is delta differentiable.

Proof 1. Formula (22) can be written as

pΔq − PΔQ + H∗ −H Δt = ΔF, 23

suppose that q and p exist with the isochronal variations δq
and δp. Then (23) becomes

pδq − PδQ = δF 24

Taking the delta derivative of (24) with respect to t,
we obtain

pΔδq + pσ δq Δ − PΔδQ − Pσ δQ Δ = δF Δ 25

Taking the variation of (22), we have

qΔδp + pδqΔ −QΔδP − PδQΔ + δH∗ − δH = δFΔ 26

By using (15) and subtracting (25) from (26) yields

qΔδp − pΔδq − QΔδP − PΔδQ + δH∗

− δH + p − pσ δq Δ − P − Pσ δQ Δ = 0
27

According to (3), (27) becomes

qΔδp − pΔδqσ − QΔδP − PΔδQσ + δH∗ − δH = 0
28

Taking note of (18), we obtain

QΔδP − PΔδQσ − δH∗ = 0 29

Therefore, (20) can be derived from (29).

In fact, (22) is also the necessary condition of the canon-
ical transformation on time scales. According to the Hamil-
ton principle on time scales, if both the new variables and
old variables satisfy
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δ
b

a
PQΔ −H∗ P,Qσ, t Δt = 0, 30

δ
b

a
pqΔ −H p, qσ, t Δt = 0, 31

then (19) is canonical on time scales. From (30) and (31), the
two integrands should satisfy the following relation

pqΔ −H p, qσ, t − PQΔ −H∗ P,Qσ, t = ΔF
Δt ,

32

where F can be an arbitrary function with new variables, old
variables, and time.

Because the canonical transformation completely
depends on the choice of the arbitrary function F, the func-
tion F can be called the generating function. Clearly, F and
H∗ can be solved from (23), and the solution of the canon-
ical transformation problem on time scales is not unique.
In order to achieve the transformation between the two
groups of canonical variables, the generating function F
should contain both new variables and old variables [1].
With that case in mind, the four forms of the canonical
transformations on time scales are discussed below, and
some simple and important examples are given to illustrate
the effect of the canonical transformation on time scales
and the generating function.

Case 1. The generating function of the first kind has the form

F = F1 Q, q, t , 33

we have

ΔF = ∂F1 Q, q, t
Δ1Q

ΔQ + ∂F1 Qσ, q, t
Δ2q

Δq

+ ∂F1 Qσ, qσ, t
Δ3t

Δt
34

Substituting (34) into (23), we obtain

− P + ∂F1 Q, q, t
Δ1Q

ΔQ + p −
∂F1 Qσ, q, t

Δ2q
Δq

+ H∗ −H −
∂F1 Qσ, qσ, t

Δ3t
Δt = 0

35

From (35), we can find

P = −
∂F1 Q, q, t

Δ1Q
,

p = ∂F1 Qσ, q, t
Δ2q

,

H∗ =H + ∂F1 Qσ, qσ, t
Δ3t

36

Example 1. If the generating function has the form

F1 = qQ, 37

then the corresponding canonical transformation gives

p =Qσ,
P = −q,

H∗ =H

38

The transformation (38) shows that the new generalized
coordinates depend on the old generalized momentum while
the new generalized momentum depends on the old general-
ized coordinates.

Case 2. The generating function of the second kind has the
form

F = F2 P, q, t −QP, 39

combining (39) and (23), we have

Qσ −
∂F2 P, q, t

Δ1P
ΔP + p −

∂F2 Pσ, q, t
Δ2q

Δq

+ H∗ −H −
∂F2 Pσ, qσ, t

Δ3t
Δt = 0

40
From (40), we obtain

Qσ = ∂F2 P, q, t
Δ1P

,

p = ∂F2 Pσ, q, t
Δ2q

,

H∗ =H + ∂F2 Pσ, qσ, t
Δ3t

41

Example 2. If the generating function has the form

F2 = Pq, 42

then the corresponding canonical transformation gives

p = Pσ,
Qσ = q,
H∗ =H

43

Case 3. The generating function of the third kind has the
form

F = F3 Q, p, t + pq 44

Similarly, we have

P = −
∂F3 Q, p, t

Δ1Q
,

qσ = −
∂F3 Qσ, p, t

Δ2p
,

H∗ =H + ∂F3 Q, p, t
Δ3t

45

Example 3. If the generating function has the form

F3 = −pQ, 46

then the corresponding canonical transformation gives
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qσ =Qσ,
P = p,

H∗ =H

47

The transformation (47) shows that the new generalized
coordinates and the new generalized momentum are the
same with the old ones. Hence, the generating function (46)
is corresponding to the identical transformation.

Case 4. The generating function of the fourth kind has
the form

F = F4 P, p, t + pq − PQ 48

Similarly, we have

Qσ = ∂F4 P, p, t
Δ1P

,

qσ = −
∂F4 Pσ, p, t

Δ2p
,

H∗ =H + ∂F4 Pσ, pσ, t
Δ3t

49

Example 4. If the generating function has the form

F4 = pP, 50

then the corresponding canonical transformation gives

qσ = −Pσ,
Qσ = p,
H∗ =H

51

Compared with (38), (51) is actually the same with (38).
Hence, different generating functions can correspond to the
same canonical transformation.

The canonical transformations expressed by the four
kinds of generating functions above are only part of the
canonical transformations on time scales. However, it is quite
extensive. If t is not explicitly contained in F1, F2, F3, and F4,
then H∗ =H, (23) can be written as

pΔq − PΔQ = ΔF 52

This kind of transformation can be called contact transfor-
mation on time scales.

5. Hamilton-Jacobi Method on Time Scales

The form of Hamiltonian will be simpler if we choose an
appropriate generating function, such as H∗ = 0. If H∗ = 0,
(20) becomes

QΔ = ∂H∗

∂P
= 0,

PΔ = −
∂H∗

∂Qσ = 0
53

By integrating, we have

Q = α,
P = β,

54

where α and β are constants and α = ασ, β = βσ.
In order to achieve the purpose above depends on the

generating function we choose. According to the relationship
between the new Hamiltonian and the old Hamiltonian

H∗ =H + ∂F
Δt

55

Thus, the generating function should satisfy

H + ∂F
Δt = 0 56

If we choose F = F2 P, q, t −QP and use symbol S take
the place of F2, then we can obtain the following equation

H p, qσ, t + ∂S Pσ, qσ, t
Δ3t

= 0 57

Substituting P = β into S, we have

S = S β, q, t 58

Obviously, β can be determined by initial conditions.
Hence, the transformation relation corresponding to the
function S = F2 P, q, t can be written as

α = ∂S β, q, t
Δ1β

,

p = ∂S β, q, t
Δ2q

59

Substituting p into (57), we obtain

H
∂S β, q, t

Δ2q
, qσ, t + ∂S β, qσ, t

Δ3t
= 0 60

Equation (60) can be called the Hamilton-Jacobi equa-
tion on time scales.

Theorem 1. If function S β, q, t is a complete integral of
the Hamilton-Jacobi equation (60) on time scales, that is,
S ∈ C2

rd, β is the constant of integration, and

det ∂2S β, q, t
Δ1βΔ2q

≠ 0, 61

and it satisfies the Hamilton-Jacobi equation (60) on time
scales, then the first integrals of the canonical equations (18)
on time scales are determined by
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α = ∂S β, q, t
Δ1β

, 62

p = ∂S β, q, t
Δ2q

63

Proof 2. First, we show that (62) is the first integral of the sys-
tem on time scales, namely,

∂2S β, q, t
Δ1βΔ2q

qΔ + ∂2S β, qσ, t
Δ1βΔ3t

= 0 64

Taking note of (18) and (64), we have

∂2S β, q, t
Δ1βΔ2q

∂H S β, q, t /Δ2q , qσ, t
∂ S β, q, t /Δ2q

+ ∂2S β, qσ, t
Δ1βΔ3t

= 0

65

Taking the partial delta derivative of (60) with respect to
β and noting (9), we have

∂H ∂S β, q, t /Δ2q , qσ, t
∂ ∂S β, q, t /Δ2q

∂2S β, q, t
Δ2qΔ1β

+ ∂2S β, qσ, t
Δ3tΔ1β

= 0

66

Notice that (66) coincides with (65). Therefore, (64) is
an identity.

Similarly, we verify that (63) is also the first integral.
Actually, taking the delta derivative of (63) with respect to
t, we have

pΔ = ∂2S β, q, t
Δ2qΔ2q

qΔ + ∂2S β, qσ, t
Δ2qσΔ3t

67

Then (67) becomes

−pΔ + ∂2S β, q, t
Δ2qΔ2q

∂H S β, q, t /Δ2q , qσ, t
∂ S β, q, t /Δ2q

+ ∂2S β, qσ, t
Δ2qσΔ3t

= 0
68

Taking the partial delta derivative of (60) with respect to
q yields

∂H ∂S β, q, t /Δ2q , qσ, t
∂ ∂S β, q, t /Δ2q

∂2S β, q, t
Δ2qΔ2q

+ ∂H
∂qσ

+ ∂2S β, qσ, t
Δ3tΔ2qσ

= 0
69

Considering S ∈ C2
rd and (18), we know that (69) coin-

cides with (68), that is, (68) is also an identity, completing
the proof.

Example 5. The Emden-Fowler type equations have signif-
icant applications in gas dynamics, fluid mechanics, rela-
tivistic mechanics, and nuclear physics and also play an
important role in the study of symmetries and dynamical
inverse problems.

Different kinds of Emden-Fowler type equations in ver-
sion of time scales have been established and many achieve-
ments have been made [43–45].

Now, we investigate the integrals of an Emden-Fowler
type equation on time scales. Assume that the Hamiltonian
of the system on time scales has the following form

H = 1
2 p2

1
tσ t

+ a
m + 2

tm+2

σ t
qσ 2m+4 , 70

where a and m are constant. The Hamilton canonical equa-
tions of system on time scales are

qΔ = ∂H
∂p

= p
tσ t

,

pΔ = −
∂H
∂qσ

= −a
tm+2

σ t
qσ 2m+3

71

When a = 1, m = 1, and T =ℝ, the equations lead to the
classical Emden equation

tq + 2q + tq5 = 0 72

The Hamilton-Jacobi equation on time scales is given by

∂S β, qσ, t
Δ3t

+ 1
2

1
t t + h

∂S β, q, t
Δ2q

2
+ a
m + 2

tm+2

t + h
qσ 2m+4 = 0

73
Equation (73) is hard to solve by the method of vari-

able separation. Now, assume m = −3 and t ∈ T = hℤ, h >
0, then σ t = t + h, μ t = h. Thus, (73) becomes

∂S β, qσ, t
Δ3t

+ 1
2t t + h

∂S β, q, t
Δ2q

2
− a qσ −2 = 0 74

By using the method of variable separation, we set the
complete integral as

S = S1 t + S2 q 75

Substituting (75) into (74), we have

2t t + h
∂S1 t
Δ3t

= a qσ −2 −
∂S2 q
Δ2q

2
= β 76

By integrating (76), we obtain

S1 = −
β

2t ,

S2 = a q + hqΔ
−2
− β

1/2
Δ2q,

S = −
β

2t + a q + hqΔ
−2
− β

1/2
Δ2q,

77

and
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In this example, we gave an Emden-Fowler type of
equation (71) on time scales which was a specific case of
the general equation in [44]. By applying Theorem 1, we
found the integrals of (71) when T = hℤ.

The Emden model on time scales contains not only
continuous and discrete cases but also other more general
cases. More potential applications for the Emden model on
time scales in symmetries, dynamical inverse problems and
oscillations, and control are worth looking forward to.

6. Conclusions

In this paper, we presented the Hamilton-Jacobi method for
mechanical systems on time scales. We started from the
canonical transformation theory on time scales. Four exam-
ples were given to show the role played by a generating func-
tion in the canonical transformation. Then we constructed
the Hamilton-Jacobi equation (60) on time scales and proved
the Jacobi theorem on time scales. We illustrated how this
method works for dynamical equations on time scales. The
results of this paper are more general. The continuous and
discrete analogues of the Hamilton-Jacobi method are special
cases of this paper. Moreover, this method can also be
applied to the constrained mechanical systems on time scales,
the symplectic dynamical systems on time scales, and the
impulsive dynamical systems on time scales.

From a geometrical point of view, the Hamilton-Jacobi
theory on time scales remains an interesting open question.
Further works about finding the integral of dynamical equa-
tions on time scales are still worth doing, for example, the
Poisson theory on time scales and the Lie symmetry theory
on time scales.
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