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A popular theory of the probabilities of indicative conditionals, the Adams thesis (sometimes
called the Stalnaker thesis), says that the probability of “if p then q” is P (q |p), the probability of
q conditional on p.2 A few anomalies have cropped up in the literature in the last few decades,
however: examples in which the intuitively correct probability of a conditional is different from
what the Adams thesis predict. If ordinary speakers are not making a mistake in evaluating the
conditionals this way, then the existence of these cases implies at least that there sometimes is a
second, more salient reading of indicative conditionals whose probability the Adams thesis does
not predict.

This paper will discuss and give a theory of this phenomenon. I take as my point of de-
parture a theory recently proposed by Stefan Kaufmann,3 which purports to predict when a
second reading of an indicative conditional exists and its intuitively correct probability. In the
first section, I rehearse this theory and generalize it. I argue, however, that Kaufmann’s theory
is unsatisfactory, both because the conditions it gives on the existence of a second reading are
extensionally inadequate and because it leaves something important unexplained. I then offer an
original theory that (1) gives correct conditions on the existence of a second reading, (2) gives an
account of the process of reasoning used to evaluate this reading, and (3) ties the psychological
story with a formula for the probability of conditionals on this reading. I close by offering an
explanation of why a second reading of indicative conditionals should exist at all.

1 The phenomenon: locality
1.1 Examples

First, one example of the phenomenon:

1I’d like to thank Max Barkhausen, Hartry Field, Daniel Fogal, Dan Waxman, Robbie Williams, an anonymous
referee at The Journal of Philosophy, and especially Cian Dorr for invaluable comments and discussion.

2Some philosophers prefer not to use the terms “Adams thesis” and “Stalnaker thesis” interchangeably, taking the
latter to be the version that identifies the probability of a conditional with a conditional probability, and the former
to identify its “assertibility” (or something else less than genuine probability) with the conditional probability.

While I’m on this point, I want to flag a few things. The field of conditionals is laden with contentious issues: for
example, whether conditionals have truth-values, and whether they have genuine probabilities or only properties
like degrees of assertibility. The triviality results of Lewis and others suggest either that (1) conditionals do not
express full-blooded propositions, so cannot be the objects of genuine probabilities and have only degrees of assert-
ibility; or that (2) conditionals do express propositions (for example, “ p→ q” might just express the truth-functional
p ⊃ q), so that they have genuine probabilities, and that the intuitively correct probabilities of conditionals are not
their real probabilities, but only something related. For the purposes of this paper, I’ll remain neutral on this issue:
I’ll talk about probabilities of conditionals, but you can take this just to mean degrees of assertibility or otherwise
ersatz probability.

3Kaufmann (2004).
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Subway. You’re waiting at the subway stop near your apartment for a train into the
city. Standing on the platform, you suddenly realize that you’re not certain which
day of the week it is. But you have an impression that it’s the weekend, which causes
you to be pretty sure (about 2/3 sure) that it is. You know that on weekends, trains
arrive quite infrequently (say, every half hour), but are usually pretty empty; on
weekdays, trains arrive once every five minutes and are generally crowded.

How likely is it that if a train arrives in the next five minutes, it will be crowed? The intuitive
answer seems to be: not very. After all, you have a highish credence that it’s the weekend, in
which case the trains are usually pretty empty; you know that there’s a chance you’re wrong,
in which case the train will be pretty crowded, but the chance of that is fairly small. So a low
probability assignment to the conditional, “If a train arrives in the next five minutes, then it will
be crowded” seems right.

If the Adams thesis is correct, however, then the conditional has a middle-ish or high proba-
bility. For suppose that a train does show up in the next five minutes. It’s possible that you got
lucky and got to the station just in time; but it’s more likely that your impression about which
day it is was just wrong, and that it’s actually a weekday,4 in which case the train probably will
be pretty full.

Subway is an example that, alongside the reading of indicative conditionals that the Adams
thesis predicts, there is a second reading that is often more salient. (In fact, there will sometimes
be multiple other readings). Let’s call this phenomenon locality, for reasons that will become
clear later. Recognition of locality goes back at least as far as Pollock (1981), who gave a (some-
what involved) scenario in which the probability of an indicative conditional, on the salient
reading, is not equal to the conditional probability; Van McGee and Stefan Kaufmann have also
noticed the phenomenon, and have furnished their own examples.

Kaufmann’s example is the following:

Bags and balls. Suppose there are two bags, X and Y , with the following profiles: X
has 10 red balls, 9 of which have black spots, and 2 white balls, which are unspotted;
Y has 10 red balls, 1 of which has black spots, and 50 white balls (unspotted). One
of the bags is in front of you; you have .75 credence that it is bag Y.

What is the probability that, if you draw a red ball (r), it will have black spots (b)? Kaufmann ran
an informal survey on people’s intuitions, and found that they mostly assigned a “low” value to

4Here’s the Bayesian justification:

P (weekend|5 mins) =
P (5 mins|weekend)

P (5 mins)
P (weekend).

We know that P (weekend) = 2/3, P (5 mins|weekend) = 1/6, and P (5 mins|weekday) = 1, so the right-hand side
becomes

1/6

1/6× 2/3+ 1× 1/3
× 2/3= 1/4.
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this probability. The reasoning, formalized, might be as follows:

P (r → b ) = P (r → b |x)P (x)+ P (r → b |y)P (y) (total-probability law) (1)
= P (b |x ∧ r )P (x)+ P (b |y ∧ r )P (y) (2)
= .9× .25+ .1× .75= .3. (3)

Kaufmann writes that “the transition [from (1) to (2)] is not warranted by an ‘official’ rule of
the probabilistic calculus. Instead, it is motivated by the intuition that the [following] equality
should hold, at least in this case, if not in general: P (r → b |x) = P (b |r ∧ x).”5

Contrast this with the probability that the ball will have black spots conditional on its being
red:

P (b |r ) = P (b |r ∧ x)P (x|r )+ P (b |r ∧ y)P (y|r ). (total-probability law) (4)

We can apply Bayes’s rule to figure out P (x|r ) and P (y|r ); doing the math, P (b |r ) comes out to
.6. Hence the conditional probability is larger than the probability of the conditional, evaluated
this way.

Take another example, due to McGee:6

Sherlock Holmes. Suppose Murdoch is found dead. The police believe it was an
accident, so you (deferring to their judgment) do too. But later, someone you think
is Sherlock Holmes tells you that Brown killed him and that, in any case, if Brown
didn’t kill Murdoch, then someone else did.

Since you think Holmes is telling you this, and that Holmes is almost certainly right, it seems
probable to you that if Brown didn’t kill Murdoch, then someone else did. Nonetheless, if you
discover that Brown didn’t kill Murdoch, then your confidence that the man telling you this is
Holmes drops, and you revert to your original low credence in Murdoch’s having been killed.
So the probability that someone else killed Murdoch conditional on that Brown didn’t kill him
is low. Again, the Adams thesis seems to predict a reading that’s not the most salient.

These examples don’t show that the Adams thesis is unqualifiedly false, that it does not give
the probability of indicative conditionals on some legitimate reading of them. Indeed, there’s a
clear reading of “if p then q” on which the Adams thesis is correct: we imagine that we have
observed that p, and are asking whether q . (In the subway example, we pretend that we’ve just
seen the train arriving, and are asking on this basis whether it’s going to be full.) Since updating
on an observation proceeds via conditionalization, the probability “if p then q ,” on this reading,
will just be P (q |p).7 What the examples do show is that this reading isn’t always the first that
pops into speakers’ minds when they see the conditional.

5p. 585, notation adjusted. (The principle that, in general, P (p→ q |r ) = P (q |p ∧ r ) is sometimes called the
generalized Adams thesis, and can be derived from the ordinary Adams thesis. So this example is an example that the
operations of applying the total-probability law and the Adams thesis do not commute.)

6MacGee (2000)
7The idea that updating proceeds via conditionalization is controversial; see Christensen (1992) for a nice discus-

sion. But the problems for conditionalization do not affect cases, such as the ones here, in which we can unprob-
lematically suppose that the information gained can be represented as a proposition, our credence in which rises to
one as a result of the observation.
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1.2 The partition theory

Kaufmann explains the difference between the two probabilities as follows. In each of the ex-
amples, along with the antecedent and consequent, we have a third proposition that is proba-
bilistically related to (i.e., confirms or disconfirms) the antecedent and consequent, even though
causally independent from the antecedent.8 In the subway example, learning that it’s a weekday
(the third proposition) confirms both that the next train will show up soon (antecedent) and that
it’ll be pretty full (consequent). In the bags-and-balls case, knowing which bag we are drawing
from (third proposition) changes our credence both that the ball is red (antecedent) and that it has
black spots (consequent). In the Sherlock Holmes case, knowing that it was Holmes who spoke
to us (third proposition) increases our credence both that Brown killed Murdoch (antecedent),
and that someone else killed Murdoch (consequent). Call this third proposition r .

Kaufmann hypothesizes that, in the context of the partition {r,¬r }, there are two ways of
reading the conditional “if p then q .” One is a global reading, on which the probability of the
conditional is identical to the conditional probability:

P (p→g q) = P (q |p) (Adams thesis) (5)

= P (q |p ∧ r )P (r |p)+ P (q |p ∧¬r )P (¬r |p). (total-probability law) (6)

The other is the local reading:

P (p→l q) = P (p→ q |r )P (r )+ P (p→ q |¬r )P (¬r ) (total-probability law) (7)
= P (q |p ∧ r )P (r )+ P (q |p ∧¬r )P (¬r ). (8)

The difference between corresponds to a difference in when one applies the total-probability law:
applying the Adams thesis before leads us to replace the marginal probabilities P (r ), P (¬r ) in (8)
with conditional probabilities P (r |p), P (¬r |p) in (6). Since, on the global reading, one applies
the Adams thesis before applying the partition, the probability is independent of the partition.
Not so on the local reading: different partitions may generate different values for P (p →l q).
For short, I’ll refer to the global and local reading of conditionals simply as “local conditionals”
and “global conditionals.”

It’s not clear if Kaufmann takes probabilistic dependence and causal independence to be con-
ditions on the availability of the local reading or just its having a different probability from that
of the global reading. I take it that Kaufmann intends the probabilistic dependence conditions
to be necessary for P (p →l q) to be different from P (p →g q) at all: If r is independent of p,
then P (r |p) = P (r ), and clearly (6) is identical to (8). And if r is independent of q (conditional
on p), then P (q |p ∧ r ) = P (q |p); it follows that P (q |p ∧ r ) = P (q |p ∧¬r ) = P (q |p), in which
case both (6) and (8) just reduce to P (q |p).9 Causal independence, on the other hand, seems to
be a condition on the availability of the local reading; I’ll discuss it later.

8I take it that, by “causally independent,” Kaufmann means that the antecedent has no causal influence on the
third proposition, rather than the stronger claim that neither has any causal influence on the other. I also take it
that Kaufmann has the de re reading of the causal-independence claim in mind: that, of the next ball that I draw, the
bag that I draw it from has no causal influence on its color.

9As this shows, we actually need that r be probabilistically related to q conditional on p, not just unconditionally.
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We can represent the whole thing with a diagram, where the probability of some proposition
a is represented by the proportion of total space taken up by a-space:

r ¬r

q

p

The two readings of “ p→ q” correspond to two ways of removing the white (non- p-) space and
renormalizing. On the global reading, we preserve the proportion of shaded r -space to shaded
¬r -space, stretching out everything shaded by the same amount:

r ¬r

q

p

On the local reading, on the other hand, we preserve the proportion of total r -space to total
¬r -space, stretching out the shaded r - and ¬r -regions by different amounts (I’ve made the line
between the r - and ¬r -regions bold to emphasize that the update doesn’t change the size of those
regions):

r ¬r

q

p

The probability of “if p then q” on each reading is given by the proportion of p-space that’s also
q -space in each diagram; it’s pretty clear that there are cases (as above) where they differ.

Kaufmann takes the two readings to correspond to two ways of reasoning from p. The
reasoning that gets us the global reading includes a hypothetical abductive inference from the
antecedent to the third variable: in the bags-and-balls case, the best explanation for my having
drawn a red ball is that this is bag X after all, which confirms the hypothesis that this is bag X ,
and this lowers my credence in the ball’s having a black spot. In evaluating the local reading, we
ignore this step: we revise our credence in the consequent, but hold fixed our credence in the
third proposition. This is why, whereas we have conditional probabilities P (r |p) and P (¬r |p)
in equation (6), we have unconditional ones P (r ) and P (¬r ) in (8). So Kaufmann has a nice story

5



to tell about why the way in which we evaluate local conditionals means that equation (8) gives
intuitively correct probabilities for them.

There’s also a nice connection, although Kaufmann seems not to notice this, between the line
of reasoning that he takes people to employ in evaluating local conditionals and the condition he
sets on the availability of a local reading. Since the crucial step in evaluating the local conditional
that differentiates it from evaluating a global conditional is that we do not make an abductive
inference from p to r , then in order for the local reading to exist at all, r must be such that
we can (but do not, when evaluating the local conditional) draw an abductive inference from p
to it. Since abductive inferences run from data to hypotheses, and since an effect cannot be a
hypothesis that explains a cause, it is impossible to draw an abductive inference from cause to
effect: we cannot abduce from “there’s fire” to “there’s smoke.” So if r causally depended on p,
then we just couldn’t run an abductive inference from p to r , and a local reading could not arise.
And this means that causal independence of the third proposition from the antecedent has to be
a condition on the existence of a local reading.

Equation (8) gives the probability of the local conditionals in the above examples, just as the
Adams thesis gives the probability of the global conditionals. Of course, we need to generalize
the formula: in the examples above, we had only two-piece partitions (e.g., {bag X , bag Y }), but
we can imagine situations in which the antecedent and consequent depend on a variable that can
take n > 2 possible values (e.g., if there were three bags instead of two), or on several different
propositions (e.g., if each bag had a left and right pocket, each having different proportions of
red and spotted balls). A suitable generalization is that whenever a partition {ai} generates a local
reading,10 then the probability of the conditional “if p then q” on that reading is

P (p→{ai } q) =
∑

i

P (q |p ∧ ai )P (ai ). (9)

Kaufmann’s condition on the availability of P (p→l q), that the third proposition be causally
independent of p, becomes the condition that each member ai of the partition be causally inde-
pendent of p. (Similarly, his condition on the distinctness of P (p→g q) and P (p→l q), that the
third proposition be probabilistically related to the antecedent and consequent, becomes the re-
quirement that, for some member ai of the partition, P (p|ai ) 6= P (p) and P (q |p ∧ai ) 6= P (q |p).)
Call the theory that conjoins this condition on the availability of a local reading with the claim
that equation (9) gives the probability of that reading the partition theory. Perhaps a further con-
dition is that, in order for the reading to be salient, the partition must be a salient one. I’ll refer
to equation (9) as the partition-theory equation.

One handy feature of the partition theory is that, when the partition is {>}, the right-hand
side of (9) becomes P (q |p), which is just the probability on the global reading. (I take it that >
and ⊥ are causally independent of any antecedent p, so the condition on availability is trivially
satisfied.) So the global reading arises as a limiting case of the local readings.

When multiple partitions satisfy these conditions, we get multiple local readings, each with
perhaps a different probability. Here’s a (slightly intricate) example:

10When there are multiple variables R1, . . . , Rn that the antecedent and consequent depend on, let each ai be
something of the form r1 ∧ . . .∧ rn , where each r j is a possible value for R j .
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Political betting arena. You’re a member of an online political betting arena. You’ve
taken bets on whether the following three events will occur: (1) the current ruling
party will win the election next year (e), (2) national GDP will have grown by next
year (g ), and (3) military intervention in the Middle East will have ended by next
year (m). The bet is such that you’ll win $1,000 (w) if all three events occur, and
nothing if fewer than all three do.

The three events, of course, aren’t probabilistically independent. The chance that
the ruling party wins the election given that GDP grows and military intervention
ends is .9; if the GDP grows but military intervention is ongoing, or if GDP does
not grow but military intervention ends, then the chance that the ruling party wins
is .3; if GDP does not grow and military intervention is ongoing, then the ruling
party has a .1 chance of winning.

The chance that GDP increases is 3/4 and the chance that military intervention ends
is 1/2. (Suppose that these two events are causally independent.)

Now, consider the indicative conditional, “If the ruling party wins the elections next year,
then I’ll win $1,000.” We can imagine a range of situations such that a different probability
assignment seems intuitively right in each.

First, suppose that your credence in GDP growth is the result of newly-received economic
data. In this situation, you might reason as follows: “If the ruling part re-wins election, then I’ll
win the money iff both GDP grows and military intervention stops. Now, I’ve just found out
that it’s fairly likely that GDP will grow. So if the ruling party wins, then it must be fairly likely
that military intervention will have ended. So the chance that if the ruling party wins, then I’ll
win the $1,000 is the product of two fairly likely events, which comes out to something with
middle-ish probability.”

Second, imagine another situation, in which you’ve just heard the president announce that
a new plan has been made to withdraw forces from the Middle East, which bumps up your
credence that intervention will end to 1/2. Here, you might reason: “It’s about even whether
military intervention will end. So if the ruling party wins, then it must be very likely that GDP
will have grown. So the chance that if the ruling party wins, then I’ll win the money is the
product of something with middle-ish probability with something with high probability, which
comes out to something with middle-ish probability.”

Or imagine a third situation, in which you get the economic and military information pretty
much simultaneously. Here, you might reason: “It’s fairly likely that GDP will increase, but
only 50-50 that the intervention will have ended, so fairly unlikely that both will happen. So it’s
fairly unlikely that if the ruling party wins, then I’ll win the money.”

Finally, imagine a situation in which your credences on the matter have been fixed for a while.
Here, you might reason, “If the ruling party wins the election, then it must be quite likely that
both GDP will have increased and military intervention will have ended. So it’s quite likely that
if they win the election, then I’ll win the money.”

Diagrammatically, we can represent the scenario as follows:
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g ¬g

m

¬m

e

w

The four readings correspond to four diagrams, each generated from the original by a different
way of eliminating the non-e - space (white space) and re-normalizing. We get the global reading
by preserving the proportions of shaded g ∧m-, g ∧¬m-, ¬g ∧m-, and ¬g ∧¬m-space in the
original diagram:

g ¬g

m

¬m

The {g ,¬g} reading corresponds to preserving the proportion of g -space to ¬g -space, both
shaded and unshaded, and preserving the proportion of shaded m-space to shaded ¬m-space:

g ¬g

m

¬m

(I’ve made the line between g and ¬g extra thick to indicate that we don’t change the proportion
of total g -space to total ¬g -space from that in the original diagram.) Similarly, the {m,¬m}
reading corresponds to preserving the proportion of m-space to ¬m-space, and preserving the
proportion of shaded g -space to shaded ¬g -space:
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g ¬g

m

¬m

Last, the {g ∧m, g ∧¬m,¬g ∧m,¬g ∧¬m} reading corresponds to preserving the proportion
of space, shaded and unshaded, of each piece of the partition:

g ¬g

m

¬m

The partition theory accounts for the existence of these four readings as follows. In each
situation, a different partition is salient to us: {g ,¬g}, {m,¬m}, {m∧ g , m∧¬g ,¬m∧ g ,¬m∧
¬g}, and finally (as a degenerate case) {>}. Furthermore, each satisfies the availability-condition
on a local reading, since whether GDP will have grown, military intervention will have ended,
and conjunctions of the two are causally independent of whether the ruling party will win the
election. So each of the situations corresponds to a different instance of equation (9); in all, we
get:

P (e→{>} w) = P (w|e) = .68 (10)

P (e→{g ,¬g} w) =
∑

g ′=±g

P (w|e , g ′)P (g ′) = .56 (11)

P (e→{m,¬m} w) =
∑

m′=±m

P (w|e , m′)P (m′) = .45 (12)

P (e→{g∧m,g∧¬m,¬g∧m,¬g∧¬m} w) =
∑

g ′=±g
m′=±m

P (w|e , g ′, m′)P (g ′, m′) = .38 (13)

You can check that these probabilities accord with the intuitive probabilities in each of the cases.
That the partition theory predicts the sensitivity of the probabilities to which partition is

salient is a point in its favor. The theory is not, however, without defects. First, some partitions
that satisfy Kaufmann’s availability-condition generate strange readings even when salient, so
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that condition cannot be enough for there to be a natural local reading of a conditional. Take
the following example:

Socks. You have 100 pairs of socks in a drawer. 15 of them are red (r ), of which 10 are
cotton (c ) and 5 are nylon (n); 9 of the cotton socks are striped (s ) and one is solid;
all of the nylon socks are solid. The remaining 85 socks are black, all of which are
nylon and solid.

What’s the probability of the conditional, “If you pick a red sock, then it will be striped”? In-
tuitively, something like 9/15, the proportion of red socks that are striped. But suppose that
the partition {cotton, nylon} becomes salient. We can suppose that whether a sock is cotton
or nylon is causally independent of whether it is red, so according to the partition theory, the
partition generates a reading of the conditional on which its probability is

P (r →{c ,n} s) = P (s |r ∧ c)P (c)+ P (s |r ∧ n)P (n) (14)

= 9/10× 10/100+ 0× 90/100= .09. (15)

But a reading that assigns this very low probability just seems bizarre. It seems hard to see why
someone would read the conditional this way unless somehow primed.

Second, a perfectly natural local reading of an indicative conditional can arise even when
Kaufmann’s availability-condition is not satisfied. Consider the following example:

Disease. There’s a serious disease such that the death rate without treatment is .9, but
the death rate with treatment is .1. Because the death rate without treatment is so
high, doctors strongly try to avoid false negatives; but this also leads to many false
positives, so that only 1/2 of those treated actually have the disease. Among those
not treated, the incidence of the disease is negligible.

Suppose you’re 1/3 sure that patient X is being treated for the disease, and that your credence
didn’t arise from any previous credence in X ’s having the disease. (Suppose, for example, a
doctor told you that exactly one of X , Y , and Z was being treated.) What’s the probability
that if patient X has the disease, then he’ll die? Intuitively, fairly high. This seems to be a
straightforward application of (9) on the partition {treated, not treated}:

P (h→{t ,¬t} d ) = P (d |h ∧ t )P (t )+ P (d |h ∧¬t )P (¬t ) (16)

= .1× 1/3+ .9× 2/3= 19/30. (17)

The global reading, on the other hand, has a probability of

P (h→{>} d ) = P (d |h) (18)

= P (d |h ∧ t )P (t |h)+ P (d |h ∧¬t )P (¬t |h) (19)
= .1× P (t |h)+ .9× P (¬t |h). (20)
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Using Bayes’s rule, we get P (t |h)≈ 1 and P (¬t |h)≈ 0,11 so that the last line works out to about
.1. So a natural local reading exists, since the intuitively correct probability of the conditional is
different from the probability of the global reading. Yet here, we can suppose that whether the
patient is treated does causally depend on whether he has the disease; this means that the causal
independence of the partition from the antecedent is not necessary for a local reading to arise
either.

So far, these are counterexamples to the claim that the partition theory gives correct availa-
bility-conditions on a local reading, rather than to the claim that the partition-theory equation
assigns the right probabilities to available local readings. Indeed, I take the partition-theory
equation to be in good shape, at least for fairly simple cases, and I want to preserve it even if
other aspects of the partition theory fail. But there is another reason for dissatisfaction with the
theory. Recall what Kaufmann says about the line of reasoning we employ in evaluating local
conditionals: when a partition {ai} is salient and satisfies the availability-condition, we evalu-
ate the probability of the resulting local conditional “ p →{ai } q” by updating our credences in
propositions other than the ai s in accordance with the conditional probabilities, but preserving
our original credences in the ai s. What I take to be unsatisfactory about this isn’t that the pro-
posed mode of reasoning is false, but that it leaves something important unexplained: namely,
when a partition {ai} is salient. It would be nice if we could have an account of the mode of
reasoning people employ in evaluating local conditionals that implies when a partition is salient,
rather than requires some prior condition on salience.

A defender of the partition theory might respond that maybe the only thing that we can
say about when a partition becomes salient to an agent is that this is subject to all kinds of
psychological quirks, so that there’s no general story to tell; at any rate, to expect such a story
seems to set the bar for a satisfactory theory of conditionals unreasonably high. But I think we
can do better, and I aim to.

An improvement on the partition theory, then, should do a few things: first, give correct
conditions on which partitions generate natural local readings; second, say what kind of reasoning
we use in evaluating local conditionals, in a way that explains when a partition becomes salient;
and third, say how the claim that equation (9) gives intuitively correct probabilities for local
conditionals follows from the claim that people are using this kind of reasoning to evaluate them.
In the next section, I’ll propose a theory that does these things.

1.3 Does the local reading involve a fallacy?

Before going on, I want to address the worry that, in evaluating indicative conditionals on the
local reading, people are committing a fallacy. If they are, then such a fallacy would have a
lot in common with the probabilistic fallacies that (as psychologists stress) people are so prone
to commit. Such a worry, if valid, allows the proponent of the Adams thesis to maintain his
position that the thesis predicts the only legitimate reading of indicative conditionals, the global
reading, since the local readings all involve some kind of error in reasoning.

The specific charge is as follows. The local reading arises from the same process of reasoning

11P (t |h) = P (t )P (h|t )/P (h) = P (t )P (h|t )/(P (h|t )P (t ) + P (h|¬t )P (¬t )). Since P (h|¬t )≈ 0, this last bit comes
out to ≈ 1.
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that gives rise to the global reading: we pretend to observe the antecedent, and figure out what
our new credence in the consequent should be. But in evaluating the conditional in the way that
generates the local reading, we commit an error in carrying out this line of reasoning: we forget
the fact that the antecedent is probabilistically related to the third proposition (or, in the more
general case, members of the partition), do not update our credence in the proposition, and end
up using that pre-update credence in calculating the post-update credence in the consequent. In
the subway case, for example, we forget the fact that the next train’s arriving within a few minutes
confirms its being a weekday; this makes our credence in its being a weekday irrationally low,
which in turn makes our credence in the train’s being crowded irrationally low as well. (Things
look especially bad if the partition theory is right, since the line of reasoning it ascribes to us
includes a step explicitly saying we do not update certain credences.)

I think, however, that we can say a few things to dispel the idea that people are commit-
ting a fallacy here. First, if the explanation of the fallacy is that people are forgetting that the
antecedent is probabilistically related to the third proposition, then simply bringing this fact to
their attention should induce them to revise their judgment. If this is correct, then in the subway
case, simply telling people that the next train arrives in a few minutes increases the probability of
it’s a weekday should get them to raise their credence in the conditional. Intuitively, however, it
doesn’t seem that this is the reaction that people would have; it seems that, even after attending
to the probabilistic-dependence fact, people would still be disposed to evaluate the conditional in
the same way. We can imagine someone saying, “Sure, if the next train arrives in a few minutes,
then it’s probably not the weekend. But it still seems true that, given that we’re pretty sure it
is the weekend, if the train arrives in a few minutes, then it’ll probably be pretty empty.” Of
course, that people would have this reaction is an empirical claim, but it seems plausible.

Second, if the charge is that the local reading arises out of an incorrect way of carrying out
the process of pretending to observe the antecedent, then the charge would lose some of its
plausibility if we could identify another process of reasoning such that the local reading arises
as a correct way of carrying out that process. This gives us another reason to provide a different
psychological story about how people reason about local conditionals, which is part of the goal
of the next section.

2 The epistemic-intervention theory
2.1 When do we get a local reading?

On to the positive proposal. I’ll start with the first task, that of giving conditions for a partition
to generate a natural reading of a conditional. Consider that, for each of the examples we’ve
given, it sounds intuitively right to say, “whether p depends on whether r ,” where p is the
antecedent and r the third proposition: it sounds right to say, “whether the next train will arrive
soon depends on whether it’s a weekday,” “whether the ball is red depends on which bag it came
from,” and “whether Brown killed Murdoch depends on whether it was Holmes who said so.”
Furthermore, the dependence-claims in the other direction are infelicitous: in the given setting,
it seems unnatural to say, “whether it’s a weekday depends on whether the next train will arrive
soon,” “which bag the ball came from depends on whether it’s red,” and “whether it was Holmes
who said that Brown killed Murdoch depends on whether Brown killed Murdoch.” One could
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say these things, and say them sensibly, but it would involve a shift in cognitive perspective. The
take-away of these examples is that, in any such given perspective, “depends” is asymmetric.

Furthermore, such a condition is not met in the socks cases, our example of the absence of
a natural local reading: without any special priming, it sounds odd to say that whether the sock
is red depends on whether it’s cotton or nylon. So it’s plausible that it’s both necessary and
sufficient for a partition to generate a local reading when the antecedent depends, in whatever
sense is at work in these examples, on some member of the partition. The task now is to find the
right sense of “depends.”

To go through some candidates:

1. Mere probabilistic dependence isn’t enough. Probabilistic dependence is symmetric: if
P (x|y) > P (x), then P (y|x) > P (y).12 The examples above, however, show that depen-
dence in our sense is usually asymmetric.

2. Nor does “depends” here just mean causal dependence between the propositions themselves:
causal relations, after all, are absent in Kaufmann’s and McGee’s examples.

3. Kaufmann mentions that, in evaluating a global conditional, we make an abductive infer-
ence from the antecedent to the third proposition. Talk about abduction suggests another
natural idea: that the third proposition must figure into what the speaker takes to be an
explanation (perhaps the best explanation) of the antecedent. That is, the antecedent must
explanatorily depend on the third proposition. But this doesn’t seem like a necessary con-
dition. If it were, then in the Sherlock Holmes case, we’d be committed to saying that the
proposition that it was Sherlock Holmes who spoke to us explains the proposition that
Brown killed Murdoch; but it’d be totally bizarre to give this explanation.13

4. Nonetheless, it is true that our credence that the man is Holmes causally explains why
our credence that Brown killed Murdoch is as high as it is: we start out with a credence
that the man is Holmes, and can use it (together with our credence that Brown killed
Murdoch given that Holmes said so) to work out the rational credence that Brown killed
Murdoch. Similarly, in the bags and balls case, we start out with a credence that the bag
in front of us is X , from which (together with the relative frequencies) we can work out
the rational credence that the next ball drawn is red. And in the political betting case,
we start out with credences in GDP growth and military withdrawal, and can use those
to figure out the probability of the election results. To generalize, in these cases we start
out with credences over the partition {ai}, and conditional credences in the antecedent p
conditional on members of the partition; we can then work out what our credence in p

12Proof: By Bayes’s rule, P (y|x) = P (x|y)P (y)/P (x); since P (x|y) > P (x), P (x|y)P (y)/P (x) > P (y). (The usual
proviso about non-zero probabilities applies.)

13Some philosophers, e.g., Van Fraassen in The Scientific Image, emphasize that explanations must be given relative
to a context, and that, by changing contexts, an outré explanation may become completely appropriate. But it seems
difficult to say what context could make “that Holmes said so explains why Brown killed Murdoch” appropriate,
and why readers would evaluate the conditional in that context.
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should be by applying the total-probability law, P (p) =
∑

i P (p|ai )P (ai ).
14 In the cases

where the local reading is natural, then, our credences over the partition partly cause our
credence in the antecedent. So this causal relation between the relevant credences seems at
least a necessary condition for there to be a natural local reading.

Furthermore, such a condition fails in the socks case: there, we’re told the probability of
the antecedent off the bat. So it seems plausible that it’s both necessary and sufficient for a
partition to generate a local reading when our credences over the partition partly causally
explain our credence in the antecedent. Or, to put it in terms of dependence, a partition
generates a local reading when our credence in the antecedent causally depends on (perhaps
among other things) our credences over the partition. I’ll say that p epistemically depends
on q (for an agent) iff the agent’s credence in q (perhaps together with other things) causally
explains his credence in p.

Epistemic dependence, then, is sensitive to the order in which we form our credences in the
relevant propositions. You can verify that the following set of probabilities are equivalent to the
ones we were given in Kaufmann’s example:

P (r ) = 1/3
P (x|r ) = 5/8 P (y|r ) = 3/8
P (b |x ∧ r ) = 9/10 P (b |y ∧ r ) = 1/10 (21)

But presented with these probabilities, now our credence that the bag is X or Y causally depends
on our credence that the ball is red. As a result, in this setting, it seems natural to assign a
middle-ish or high-ish probability to the conditional, “If I draw a red ball, it will have a black
spot.”

The direction of causal dependence in our credence can sometimes be the opposite of the direc-
tion of causal dependence in the world; in these cases, we get local readings where the antecedent
epistemically depends on the third proposition, even though the third proposition causally de-
pends on the antecedent. This is what was going on, for example, in the disease case: there,
whether the patient has the disease epistemically depends on whether he is being treated (since
our credence that he is being treated causally explains our credence in his having the disease),
even though whether he is being treated causally depends on whether he has the disease. This
explains why, contrary to what Kaufmann says, the third proposition need not be causally inde-
pendent from the antecedent in order for a local reading to arise. I think Kaufmann takes causal

14Some might doubt that conditional credences play any explanatory role: P (q |p) is usually just defined as the
ratio of two unconditional probabilities, P (p ∧ q) and P (p), after all. But Edgington (1995) has stressed that,
although P (q |p) is usually so defined, we typically arrive at our credence in q conditional on p without going
through any initial credence over the conjunction q and p, or in p: our credence in heads given that the coin is fair
is 1/2, although we may not have a prior view on the probability that the coin is fair, much less on the probability
that the coin is fair and will land heads. As Edgington writes, “The natural order of human thinking is not the
same thing as the most elegant order of mathematical exposition. Humans are not endowed with complete belief-
distributions over the finest partitions they need to consider. They need to work out some degrees of belief (as the
need arises) in terms of others which are more readily accessible. b (B |A) can be accessible en route to b (A&B),
and can be accessible when b (A) is not” (p. 266–7). So this doesn’t seem like good reason to doubt that conditional
credences are occasionally explanatory.
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independence to be a necessary condition because it’s hard to think of cases where we start off
with knowledge of the inverse probabilities (of some cause on an effect) rather than the forward
ones.

I want to build another condition into the notion of epistemic dependence. Any talk about
causation in the context of belief-formation is going to run into the problem of deviant causal
chains; here, the problem is that an agent’s credence in r can be an indirect cause of his cre-
dence in p in a way that should not give rise to a local conditional with p as antecedent. As
one example, suppose that Alex discovers that his wife is having an affair, and that this piece of
information shocks him so much that he faints, hitting his head in precisely the right way to
change his credence in its raining tomorrow. So his credence in his wife’s having an affair indi-
rectly caused his new credence in its raining tomorrow, even though it would be absurd to think
that this generates a reading of any indicative conditional, “If it rains tomorrow, then . . . ” not
available to Alex before. We need, then, an anti-deviancy condition to rule out such causal chains
as constituting genuine instances of epistemic dependence. Obviously it’s outside the scope of
this paper actually to give such a condition, but we can nevertheless help ourselves to one.

To sum up: the partition {ai} generates a local reading of “if p then q” in a given setting when,
in that setting, p epistemically depends on {ai}, i.e., when our credences over {ai} (perhaps
among other things) causally explain our credence in p in a non-deviant way.

2.2 The connection to counterfactuals and causation

I want to suggest, taking into account this condition on the naturalness of certain readings, a the-
sis about the reasoning involved in evaluating a local conditional: (1) assign probability 1 to the
antecedent, (2) hold fixed our credences in every proposition that the antecedent epistemically
depends on, (3) update our credences in other propositions in accordance with the conditional
probabilities, and (4) figure out the rational credence in the consequent. (So notice that, on this
account, the partition isn’t an independent input into this process of reasoning, but instead just
given by the dependencies in our credences: {ai} just includes all of the propositions that the
antecedent epistemically depends on.)

As it turns out, this way of characterizing the distinction between global and local indicative
conditionals reveals some interesting connections between indicative conditionals and counter-
factuals. (Kaufmann mentions this connection too, although makes much less of it than he can.)
Philosophers have known since Lewis’s work on the topic15 that counterfactuals (or subjunctive
conditionals) have two readings, a backtracking one and a non-backtracking one. In evaluating
a non-backtracking reading, we simply imagine that the antecedent had been true, holding as
much of the actual past fixed as possible. In evaluating a non-backtracking reading, on the other
hand, we consider how the past would have needed to be different in order to accommodate the
truth of the antecedent.

As an example, consider the counterfactual, “If the fire department hadn’t shown up, the
building surely would’ve burned down.” On a non-backtracking reading, the conditional is
true: if everything in the history in the world (so including the size of the fire) had been the
same up until the fire department’s arrival, and something had caused them not to arrive (say, if

15See Lewis (1979).
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all of the fire engines had simultaneously broken down), then it seems likely that the building
would’ve burned down. On a backtracking reading, however, we might demur. After all, the
fire department normally shows up to even quite small fires. In order for the fire department to
have not shown up, then any fire must have been quite harmless indeed. And if that had been
true, then the building probably wouldn’t have burned down.

Lewis wanted to analyze causation in terms of counterfactuals (so that “c caused e” comes
out roughly to “if c hadn’t happened, then e wouldn’t have happened”); flipping the equivalence
between counterfactuals and causal notions around, we can avail ourselves of causal notions in
characterizing the backtracking/non-backtracking distinction. In fact, there’s a well-known dis-
tinction in the causality literature that tracks the backtracking/non-backtracking one well: that
between conditioning and intervening.16 To condition on p is, again, to suppose that one has
observed that p, and to revise one’s credences in the possible causes or explanations of p, as
well as in its effects. To intervene on p, on the other hand, is just to make p so (in a way
that bypasses the usual causes). In the fire department example, intervening corresponds to the
non-backtracking reading: we suppose that something simply made it so that the fire depart-
ment didn’t arrive. Conditioning corresponds to the backtracking reading: we suppose that we
observed, contrary to what actually happened, that the fire department did not arrive, and are
looking for explanations of this.

This means that there’s a nice formal similarity between indicatives and counterfactuals.
Consider local indicatives and non-backtracking counterfactuals: in both cases, we hold fixed
our credences in every proposition that the antecedent depends on, in the relevant sense, while
revising our credences in every proposition that depends, in the same sense, on the antecedent.
In the case of indicatives, the relevant sense of “depends on” is epistemic; in the case of counter-
factuals, it’s causal. And consider global indicatives and backtracking counterfactuals: in both
cases, we revise our credences in every proposition that is probabilistically related to the an-
tecedent. In evaluating a local conditional, then, we do something quite similar to pretending to
intervene on the antecedent: something formally identical, but epistemic rather than causal. I’ll
call this account of local indicative conditionals the epistemic-intervention theory.

One nice feature of the epistemic-intervention theory is that it helps bridge two topics, in-
dicatives and counterfactuals, that intuitively seem closely related (they use the same two-letter
word, after all), but whose intimacy philosophers have had trouble accounting for. Jonathan
Bennett, for example, is keen to stress that indicatives and counterfactuals have different func-
tions: indicatives for expressing conditional credences, and counterfactuals for reasoning about
nearby possible worlds, where nearness is determined by similarity of the past to the actual
past.17 But the recognition that counterfactuals admit of a backtracking reading, on which we
evaluate the conditional by counterfactually supposing that we observed the antecedent, brings
counterfactuals closer to the traditional territory of indicatives. And the recognition that in-
dicatives have a local reading, on which we hold fixed our credences about propositions that
the antecedent depends on, brings indicatives closer to counterfactual territory. We can even go
further and group conditionals by the kind of reasoning used to evaluate them rather than by

16See, for example, Meek and Glymour (1994).
17Throughout his (2003).
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their surface grammar, calling local indicatives and non-backtracking counterfactuals interven-
ing conditionals, and global indicatives and backtracking counterfactuals conditioning condition-
als. Armed with this new terminology, one might be tempted to contend that the distinction
between indicatives and counterfactuals masks a more fundamental distinction, that between
conditioning and intervening conditionals.

Another advantage of the epistemic-intervention theory is that it lets us exploit the formal
similarities between the global/local distinction and the conditioning/intervening one; in par-
ticular, we can adapt a formalism devised for the latter to get a formula for the probability of
local indicative conditionals that will (I will show) let us derive the partition-theory equation
from the thesis about how people evaluate indicative conditionals. I do this next.

2.3 A formalism for intervention

First, a précis of the formalism.18

One convenient way to represent the probabilistic dependencies encoded in probability func-
tions is through undirected graphical models: graphs in which nodes represent random variables,
and edges represent direct probabilistic dependencies between variables: i.e., there is an edge
between A and B iff P (a|b ) 6= P (a), and there are no other variables C that screen off this depen-
dence.

Most of the work in this area, however, has focused on directed graphical models, also known
as Bayesian networks. The nodes, again, represent random variables; but in place of (undirected)
edges, we now have (directed) arrows between the nodes, which represent a specified asymmet-
ric relation that implies direct probabilistic dependence. Typically, the relation is direct causal
dependence, but in our case, we will use epistemic dependence instead.

For example, in Kaufmann’s example we have:

P (x) = .25 P (¬x) = .75
P (r |x) = 5/6 P (r |¬x) = 1/6
P (b |x ∧ r ) = .9 P (b |¬x ∧ r ) = .1. (22)

Let us suppose that, in this setting, A epistemically depends on B iff we are given conditional
probabilities for A on (perhaps among other variables) B . Then a graph representing the scenario
would look like:

X

��

��
R

��
B

(23)

18What follows will be the slimmest of expositions. Unfamiliar readers should consult a text like Pearl (2000).
In what follows, I’ll use lowercase letters a, b , c , . . . to represent propositions, and uppercase letters A,B ,C , . . . to
represent propositional random variables. A can take a and ¬a as values. Boldface letters will represent sets of
such random variables or conjunctions of propositions: if A= {A1, . . . ,An}, then a can be any conjunction of form
a′1 ∧ . . .∧ a′n , where each a′i is either ai or ¬ai .
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In general, we will suppose that each setting is sufficient to orient entirely (i.e., direct each edge
in) the graph.

The set of variables with arrows into A are called the parents of A, PAA. Intuitively, the
parents of A are all the matter in determining the probability of a. If A is a parent of B , then B is
a child of A.

This can be combined with the Bayesian-network treatment of causal intervention, which I
will adapt to my account. To intervene causally on A is to cause it to make a so without thereby
causing the (usual) causal parents of A to change their values. Formally, here’s what happens:

1. To the probability function. When we intervene to make a so, A becomes independent of
its usual causes. Suppose our original probability function is P (·); the probability function
arising from making a so is called Pa(·) and has the following properties:

a. Pa(a) = 1.

b. Pa(b |paB) = P (b |paB), for b 6= a and paB consistent with a.

In words: property (a) says that the effect on a of intervening on it is to make its probability
1; property (b) says that, fixing the values of b’s parents, the effect on b of intervening on
a is nil (since the values of b’s parents jointly determine its probability).

We can derive a bunch of properties from these two basic ones. For our purposes, one
that deserves mention is that conditioning and intervening on the parents of a variable
are equivalent: that is, conditioning on PAA and intervening on it have the same effect on
whether a. In our notation,

PpaA
(a) = P (a|paA). (24)

This makes sense intuitively: the parents of A are all the variables that determine whether
a, so it makes no difference to whether a whether we’ve set the values for its parents or just
observed them. From this it follows that, for any subset B of PAA, the effect of intervening
on B (to make it b, say) while conditioning on the rest of PAA is the same as the effect of
conditioning on the whole set:

Pb(a|paA\B) = P (a|(paA\B)∧b).19

19Proof:

Pb(a|paA\B) =
∑

b′
Pb(a|(paA\B)∧b′)Pb(b

′|paA\B),

where b′ ranges over all possible values of B, by the total-probability law. Since Pb(b
′|paA\B) = 1 when b′ = b, and

0 otherwise, this last line becomes

= Pb(a|(paA\B)∧b),

which is just

= P (a|(paA\B)∧b)
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This seems intuitively true too: as long as we know the values of A’s parents, it doesn’t
matter how we came to our knowledge of each.

2. To the graph. Suppose that G represents P (·); then removing the arrows leading into the
node for A creates a new graph GA that represents Pa(·). (Since connection by arrows
represents causal dependence, doing this mirrors the independence of A from its parents
when we intervene on it.)

Since we want a formalism for not causal intervention, but epistemic intervention, we replace
causal terms with ones for epistemic dependence in the above description.

The apparatus for epistemic intervention needs to be a bit more flexible than that for causal
intervention, since in some cases we have partitions that don’t span the entire range of propo-
sitions that the antecedent epistemically depends on. (Think about the political betting arena
example, where we had the partitions {economy grows, economy shrinks} and {intervention
ends, intervention continues}, even though whether the ruling party wins the elections depends
on both the economy and the military intervention.) For these cases we need to extend the no-
tion of intervention to intervention on A with respect to variables B1, . . . ,Bn: we remove the effect
of B1, . . . ,Bn, but not of other variables, on whether a. The gist is that (roughly), for parents of
A among the Bi ’s, intervention with respect to the Bi ’s will have the same effect as intervention
simpliciter; for the parents of A not among the Bi ’s, it will instead have the same effect as con-
ditioning. Let’s call the probability function that arises from P (·) by intervening to make a so
with respect to B1, . . . ,Bn Pa:B1,...,Bn

(·).
We could give formal properties for this new function, but I suspect that would be overkill for

what we’re trying to do; throughout the next section, I’ll keep the appeals to formal machinery
to a minimum.

2.4 How this entails the partition-theory equation

We’re now in a position to define the probability of a local conditional in terms of these notions:

P (p→{∧i r ′i }
q) = Pp:R1,...,Rn

(q). (26)

where r ′i can be either ri or ¬ri . In words: the probability of “if p then q” on the reading
generated by the partition {

∧

i r ′i } is just the probability of q when we intervene on p with
respect to the propositions that generate the partition. (The global reading arises as a degenerate
case, by intervening on p with respect to no variables.)

We can then show that, under some conditions, (26) entails the partition-theory equation,

P (p→{∧i r ′i }
q) =
∑

r ′i=±ri

P (q |p ∧ r ′1 ∧ . . .∧ r ′n)P (r
′
1 ∧ . . .∧ r ′n). (27)

by property (b) above, since (paA\B)∧b is consistent with b.
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In this section I’ll show that this equation holds for the simple cases we considered in the first
section; we can prove a more general version, but I’ll leave that proof out here for considerations
of space and the reader’s attention.

Again, in the simple cases we have a Bayesian network as follows:

R

��

��
P

��
Q

(28)

In the subway case, r = it’s the weekend, p = the next train will arrive in a few minutes, q = the
next train will be crowded; in the bags-and-ball case, r = the bag is X , p = the ball is red, and
q = the ball has a black spot; in the Sherlock Holmes case, r = the man is Holmes, p = Brown
killed Murdoch, and q = someone killed Murdoch.

Intervening on P with respect to R, we get the following graph,

R

��

P

��
Q

(29)

in which P and R are now probabilistically independent.
According to (26),

P (p→{r,¬r } q) = Pp:R(q) (30)

= Pp:R(q |r )Pp:R(r )+ Pp:R(q |¬r )Pp:R(¬r ), (31)

by law of total probability. Now, intervening on p has no effect on r , so Pp:R(r ) is just P (r ),
and the last line is

= Pp:R(q |r )P (r )+ Pp:R(q |¬r )P (¬r ). (32)

Now we get to appeal to the equivalence stated in equation (25): P and R are the parents of Q,
so the effect on Q of conditioning on one and intervening on the other is the same as the effect
of conditioning on both. This means that Pp:R(q |r ) = P (q |p ∧ r ), so that the last line is

= P (q |p ∧ r )P (r )+ P (q |p ∧¬r )P (¬r ), (33)

which is just what the partition-theory equation predicts.
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2.5 Causation and the origin of local conditionals

To close, I want to look at the question of why a local reading of conditionals should exist at
all. What is the purpose of having such a way of evaluating conditionals, given that, evaluated
this way, their probability does not reflect the credence we should have in the consequent upon
observing the antecedent?

Call causal conditionals any conditional whose assertibility depends on the existence of a
causal relation between the antecedent and consequent: for example, “If the Fed lowers interest
rates, then stock prices will go up.” Here, as with counterfactuals, there are two natural readings:
one on which we pretend to observe the antecedent, and one on which we pretend to intervene
causally to make the antecedent so. It should be clear from what I have said in the last section
that the first is just the global reading, and the second the local reading.20 So in the case of causal
conditionals, the local reading has a clear function: it tells us the probability of the consequent
when we intervene to make the antecedent so. In the case of non-causal indicative conditionals,
however, I am not sure that there is a functional explanation of local readings; in place of that,
let me offer a sketch of a non-functional one.

Lakoff and Johnson21 introduced the idea that we understand entire classes of concepts in
terms of others, through a process similar to metaphor; they call this conceptual metaphor. As
an example, one metaphor we employ is of time as a moving object. Hence, “Time flies,” “It’s
hard to face the future,” “The end of the fiscal year is approaching.” As another, morality as debt:
“What we owe to each other,” “I am endebted to her for her support,” “To his credit, he admitted
his error.” This is not the modest thesis that we sometimes use relations among entities in one
domain to elucidate those in another domain; rather, it is that our understanding of certain
domains altogether depends inextricably on our understanding of other domains.

I want to suggest that we conceive of epistemic relations partly metaphorically, in terms of
physical or causal ones. As one piece of evidence, consider the epistemic terms that are derived
from physical ones: “depends on,” “supports,” “weakens,” etc. (Even a seemingly sterile word
like “confirm” is derived from Latin confirmare, to strengthen.) As another piece of evidence,
there is a well-documented cross-linguistic tendency for modal verbs expressing epistemic modal-
ity to derive from ones expressing physical modality. For example, in English we have “may”
(Old English magan, to be strong, able), which began as a verb expressing physical possibility;
this sense is now obsolete, although attested until the 1600s. The epistemic sense was not attested
until the 1200s.22

The presence of metaphor here would explain formal similarities between causal/physical
and epistemic concepts. If, for example, our concept of epistemic modality is shaped in part by
our concept of physical modality, this would explain formal similarities between the two: why
“possibly” is equivalent to “not necessarily not” in both the epistemic and physical domains,
and so on. Similarly, if our general concept of indicative conditionals is modeled in part on our
concept of causal conditionals, this explains the formal similarities between the two: why two

20Specifically, the maximally local reading: the one on which we intervene on all the causal parents of the an-
tecedent.

21Lakoff and Johnson (1980)
22See the OED entry on “may,” v.1, sense II.
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readings exist for both, and why the second reading of both involves an asymmetric relation of
dependence.

References
Bennett, J. (2003). A Philosophical Guide to Conditionals. Oxford University Press.

Christensen, D. (1992). Confirmational holism and Bayesian epistemology. Philosophy of Science,
59(4):540–557.

Edgington, D. (1995). On conditionals. Mind, 104(414):235–329.

Kaufmann, S. (2004). Conditioning against the grain. Journal of Philosophical Logic, 33(6):583–
606.

Lakoff, G. and Johnson, M. (1980). Metaphors We Live by. University of Chicago Press.

Lewis, D. (1979). Counterfactual dependence and time’s arrow. Noûs, 13(4):455–476.

MacGee, V. (2000). To tell the truth about conditionals. Analysis, 60(1):107–111.

Meek, C. and Glymour, C. (1994). Conditioning and intervening. British Journal for the Philos-
ophy of Science, 45(4):1001–1021.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press.

Pollock, J. L. (1981). Indicative conditionals and conditional probability. In Harper, W. L.,
Stalnaker, R., and Pearce, G., editors, Ifs: Conditionals, Belief, Decision, Chance, and Time.
Reidel.

22


