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Abstract. Neutrosophic set is a new mathematical tool 
for handling problems involving imprecise, indetermi-
nacy and inconsistent data. Pseudo-BCI algebra is a 
kind of non-classical logic algebra in close connection 
with various non-commutative fuzzy logics. Recently, 
we applied neutrosophic set theory to pseudo-BCI al-
gebras. In this paper, we study neutrosophic filters 
in pseudo-BCI algebras. The concepts of neutrosophic 
regular filter, neutrosophic closed filter and fuzzy regular 

filter in pseudo-BCI algebras are introduced, and 
some basic properties are discussed. Moreover, the 
relationships among neutrosophic regular filter, fuzzy 
filters and anti-grouped neutrosophic filters are prese-
nted, and the results are proved: a neutrosophic filter 
(fuzzy filter) is a neutrosophic regular filter (fuzzy 
regular filter), if and only if it is both a neutrosophic 
closed filter (fuzzy closed filter) and an anti-grouped 
neutrosophic filter (fuzzy anti-grouped filter).  
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1 Introduction

In 1998, Florentin Smarandache introduced the concept 
of a neutrosophic set from a philosophical point of view 
(see [16, 17, 18]). The neutrosophic set is a powerful gen-
eral formal framework that generalizes the concept of 
fuzzy set and intuitionistic fuzzy set. In this paper we work 
with special neutrosophic sets, they are called single val-
ued neutrosophic set (see [21]). The neutrosophic set the-
ory is applied to many scientific fields (see [18, 19, 20]), 
and also applied to algebraic structures (see [1, 2, 15, 19]), 
it is similar to the applications of fuzzy set (soft set, rough 
set) theory in algebraic structures (see [11, 14, and 23]). 

In 2008, W. A. Dudek and Y. B. Jun [3] introduced the 
notion of pseudo-BCI algebra as a generalization of BCI 
algebra, it is also as a generalization of pseudo-BCK alge-
bra (which is close connection with various non-
commutative fuzzy logic formal systems, see [4, 24, 26, 27, 
28, and 32]). For non-classical logic algebra systems, the 
theory of filters (ideals) plays an important role (see [9, 12, 
13, 25, and 30]). In [7], the notion of pseudo-BCI filter 
(ideal) of pseudo-BCI algebras is introduced. In 2009, 
some special pseudo-BCI filters (ideals) are discussed in 
[10]. Since then, some articles related filters of pseudo-
BCI algebras are published (see [29, 31, 33, and 34]). 

Recently, we applied neutrosophic set theory to pseudo 
-BCI algebras in [35]. This paper we further study on the 
applications of neutrosophic sets to pseudo-BCI algebras. 
We introduce the new concepts of neutrosophic regular fil-

ter, neutrosophic closed filter and fuzzy regular filter in 
pseudo-BCI algebras, and investigate their basic properties 
and present relationships among neutrosophic regular fil-
ters, anti-grouped neutrosophic filter and fuzzy filters.  

Note that, the notion of pseudo-BCI algebra in this pa-
per is a dual of the original definition in [3], so the notion 
of filter is a dual of (pseudo-BCI) ideal in [7, 10].  

2 Some basic concepts and properties

2.1 On neutrosophic sets

Definition 2.1[17, 18, 19] Let X be a space of points (ob-
jects), with a generic element in X denoted by x. A neutro-
sophic set A in X is characterized by a truth-membership 
function TA(x), an indeterminacy-membership function IA(x), 
and a falsity-membership function FA(x). The functions 
TA(x), IA(x), and FA(x) are real standard or non-standard 
subsets of ]−0, 1+[. That is, TA(x): X→ ]−0, 1+[, IA(x): X→ ]−0, 
1+[, and FA(x): X→ ]−0, 1+[. Thus, there is no restriction on 
the sum of TA(x), IA(x), and FA(x), so −0 ≤ supTA(x) + su-
pIA(x) + supFA(x) ≤ 3+. 

Definition 2.2[21] Let X be a space of points (objects) 
with generic elements in X denoted by x. A simple valued 
neutrosophic set A in X is characterized by truth-
membership function TA(x), indeterminacy-membership 
function IA(x), and falsity-membership function FA(x). Then, 
a simple valued neutrosophic set A can be denoted by 

A={〈x , TA(x), IA(x), FA(x) 〉 | x∈X}, 
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where TA(x), IA(x), FA(x)∈[0, 1] for each point x in X. 
Therefore, the sum of TA(x), IA(x), and FA(x) satisfies the 
condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. 

Definition 2.3[21] The complement of a simple valued 
neutrosophic set A is denoted by Ac and is defined as 
(∀x∈X) 

( ) ( ), ( ) 1 ( ), ( ) ( ).c c cA A AA A A
T x F x I x I x F x T x= = − =  

Then 

Ac={〈x , FA(x), 1−IA(x), TA(x)〉 | x∈X}. 

Definition 2.4[21] A simple valued neutrosophic set A is 
contained in the other simple valued neutrosophic set B, de-
note A⊆B, if and only if TA(x)≤ TB(x), IA(x) ≤ IB(x), FA(x)≥ 
FB(x) for any x in X. 

Definition 2.5[21] Two simple valued neutrosophic sets 
A and B are equal, written as A = B, if and only if A⊆B and 
B⊆A. 

For convenience, “simple valued neutrosophic set” is 
abbreviated to “neutrosophic set” later. 

Definition 2.6[21] The union of two neutrosophic sets A 
and B is a neutrosophic set C, written as C=A∪B, whose 
truth-membership, indeterminacy-membership and falsity-
membership functions are related to those of A and B by 

TC(x)=max(TA(x), TB(x)), IC(x)=max(IA(x), IB(x)), 
FC(x)=min(FA(x), FB(x)), ∀x∈X. 

Definition 2.7[21] The intersection of two neutrosophic 
sets A and B is a neutrosophic set C, written as C=A∩B, 
whose truth-membership, indeterminacy-membership and 
falsity-membership functions are related to those of A and B 
by 

TC(x)= min(TA(x), TB(x)), IC(x)=min(IA(x), IB(x)), 
FC(x)=max(FA(x), FB(x)), ∀x∈X. 

Definition 2.8[20]  Let A be a neutrosophic set in X and 
α, β, γ∈[0, 1] with 0≤α+β+γ ≤3 and (α, β, γ)-level set of A 
denoted by A(α, β, γ) is defined as: 

A(α, β, γ)={ x∈X | TA(x)≥α, IA(x)≥β, FA(x)≤γ}. 

2.2 On pseudo-BCI algebras

Definition 2.9[3] A pseudo-BCI algebra is a structure (X; 
≤, →, , 1), where “≤” is a binary relation on X,  “→” and 
“ ” are binary operations on X and “1” is an element of X, 
verifying the axioms: for all x, y, z∈X, 

(1)  y→z≤(z→x) (y→x), y z≤(z x)→(y x); 
(2)  x≤(x→y) y, x≤(x y)→y; 
(3)  x≤x;  
(4)  x≤y, y≤x ⇒ x=y;  
(5)  x≤y ⇔ x→y =1 ⇔ x y =1. 

If (X; ≤, →, , 1) is a pseudo-BCI algebra satisfying 
x→y = x y for all x, y∈X, then (X; →, 1) is a BCI-algebra. 

Proposition 2.1[3, 7, 10] Let (X; ≤, →, , 1) be a pseudo-
BCI algebra, then X satisfy the following properties (∀x, y, 
z∈X): 

(1)  1≤x ⇒ x=1; 
(2)  x≤y ⇒ y→z≤x→z, y z≤x z; 
(3)  x≤y, y≤z ⇒ x≤z; 
(4)  x (y→z)=y→(x z); 
(5)  x≤y→z ⇔ y≤x z; 
(6)  x→y≤(z→x)→(z→y), x y≤(z x) (z y); 
(7)  x≤y ⇒ z→x≤z→y, z x≤z y; 
(8)  1→x=x, 1 x=x; 
(9)  ((y→x) x)→x=y→x, ((y x)→x) x=y x; 
(10)  x→y≤(y→x) 1, x y ≤(y x)→1; 
(11)  (x→y)→1=(x→1) (y 1), 

(x y) 1=(x 1)→(y→1); 
(12)  x→1=x 1. 

Definition 2.10[7] A nonempty subset F of pseudo-BCI 
algebra X is called a pseudo-BCI filter (briefly, filter) of X 
if it satisfies: 

(F1)  1∈F;   
(F2)  x∈F, x→y∈F ⇒ y∈F; 
(F3)  x∈F, x y∈F ⇒ y∈F. 

Definition 2.11[29] A pseudo-BCI algebra X is said to be 
anti-grouped pseudo-BCI algebra if it satisfies the follow-
ing identity: 

(G1)  ∀x, y, z∈X, (x→y)→(x→z)= y→z, 
(G2)  ∀x, y, z∈X, (x y) (x z)= y z. 

Proposition 2.2 [29] A pseudo-BCI algebra X is an anti-
grouped pseudo-BCI algebra if and only if it satisfies: 

∀x∈X, (x→1)→1=x or (x 1) 1=x. 

Definition 2.12[29] A filter F of a pseudo-BCI algebra X 
is called an anti-grouped filter of X if it satisfies 

(GF) ∀x∈X, (x→1)→1∈F or (x 1) 1∈F⇒x∈F. 

Definition 2.13[29] A filter F of a pseudo-BCI algebra X 
is called a closed filter of X if it satisfies 

(CF) ∀x∈X, x→1∈F. 

Definition 2.14[34] A filter F of pseudo-BCI algebra X is 
said to be regular if it satisfies: 

(RF1)  ∀x, y∈X, y∈F and x→y∈F ⇒ x∈F. 
(RF2)  ∀x, y∈X, y∈F and x y∈F ⇒ x∈F. 

Proposition 2.3 [34] Let X be a pseudo-BCI algebra, F a 
filter of X. Then F is regular if and only if F is anti-grouped 
and closed. 
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Definition 2.15[31, 33] A fuzzy set A in pseudo-BCI alge-
bra X is called fuzzy filter of X if it satisfies: 

(FF1)  ∀x∈X, μA(x)≤μA(1);  
(FF2)  ∀x, y∈X, min{μA(x), μA(x→y)}≤μA(y); 
(FF3)  ∀x, y∈X, min{μA(x), μA(x y)}≤μA(y). 

Definition 2.16[31] A fuzzy set A: X →[0, 1] is called a 
fuzzy closed filter of pseudo-BCI algebra X if it is a fuzzy 
filter of X such that: 

(FCF) μA(x→1) ≥ μA(x), ׊x∈X. 

Definition 2.17[31] A fuzzy set A in pseudo-BCI algebra 
X is called fuzzy anti-grouped filter of X if it satisfies: 

(1)  ∀x∈X, μA(x)≤μA(1);  
(2)  ∀x, y, z∈X, min{μA(y), μA((x→y)→(x→z))}≤μA(z); 
(3)  ∀x, y, z∈X, min{μA(y), μA((x y) (x z))}≤μA(z). 

Proposition 2.4[31] Let A be a fuzzy filter of pseudo-
BCI algebra X. Then A is a fuzzy anti-grouped filter of X if 
and only if it satisfies: 

∀x∈X, μA(x)≥μA((x→1)→1), μA(x)≥μA((x 1) 1). 

Definition 2.18[35] A neutrosophic set A in pseudo-BCI 
algebra X is called a neutrosophic filter in X if it satisfies: 
∀x, y∈X, 

(NSF1) TA(x)≤TA(1), IA(x)≤IA(1) and FA(x)≥FA(1);  
(NSF2) min{TA(x), TA(x→y)}≤TA(y), min{IA(x), IA(x→y)} 

≤IA(y) and max{FA(x),  FA(x→y)}≥FA(y); 
(NSF3) min{TA(x), TA(x y)}≤TA(y), min{IA(x), IA(x y)} 

≤IA(y) and max{FA(x),  FA(x y)}≥FA(y). 

Proposition 2.5[35] Let A be a neutrosophic filter in 
pseudo-BCI algebra X, then ∀x, y∈X, 

(NSF4) x≤y ⇒ TA(x)≤TA(y), IA(x)≤IA(y) and FA(x)≥FA(y). 

Definition 2.19[35] A neutrosophic set A in pseudo-BCI 
algebra X is called anti-grouped neutrosophic filter in X if it 
satisfies: ∀x, y, z∈X, 

(1) TA(x)≤TA(1), IA(x)≤IA(1) and FA(x)≥FA(1);  
(2) min{TA(y), TA((x→y)→(x→z))} ≤ TA(z), min{IA(y), 

IA((x→y)→(x→z))} ≤ IA(z) and max{FA(x), FA((x→y) 
→(x→z))} ≥ FA(z); 

(3) min{TA(y), TA((x y) (x z))} ≤ TA(z), min{IA(y), 
IA((x y) (x z))} ≤ IA(z) and max{FA(x), FA((x y) 

(x z))} ≥ FA(z). 

Proposition 2.6[35] Let A be a neutrosophic set in pseu-
do-BCI algebra X. Then A is a neutrosophic filter in X if 
and only if A satisfies: 

(i) TA is a fuzzy filter of X; 
(ii) IA is a fuzzy filter of X; 
(iii) 1−FA is a fuzzy filter of X, where (1−FA)(x) = 

1−FA(x), ∀x∈X. 

Proposition 2.7[35] Let A be a neutrosophic set in pseu-
do-BCI algebra X. Then A is an anti-grouped neutrosophic 
filter in X if and only if A satisfies: 

(i) TA is a fuzzy anti-grouped filter of X; 

(ii) IA is a fuzzy anti-grouped filter of X; 
(iii) 1−FA is a fuzzy anti-grouped filter of X, where 

(1−FA)(x)=1−FA(x), ∀x∈X. 

3 Neutrosophic regular filters and neutrosophic
closed filters

Definition 3.1 A neutrosophic set A in pseudo-BCI al-
gebra X is called a neutrosophic regular filter in X if it is a 
neutrosophic filter in X such that: ∀x, y∈X, 

(NSRF1) min{TA(y), TA(x→y)}≤TA(x), min{IA(y), 
IA(x→y)}≤IA(x) and max{FA(y),  FA(x→y)}≥FA(x); 

(NSRF2) min{TA(y), TA(x y)}≤TA(x), min{IA(y), 
IA(x y)}≤IA(x) and max{FA(y),  FA(x y)}≥FA(x). 

Definition 3.2 A neutrosophic set A in pseudo-BCI al-
gebra X is called a neutrosophic closed filter in X if it is a 
neutrosophic filter in X such that: ׊x∈X, 

(NSCF) TA(x→1)≥TA(x), IA(x→1)≥IA(x), FA(x→1)≤FA(x). 

Proposition 3.1 Let A be a neutrosophic regular filter in 
pseudo-BCI algebra X. Then A is closed. 

Proof: Suppose x∈X. By Definition 2.9 (2) and Proposi-
tion 2.1 (12) we have 

x ≤ (x→1) 1= (x→1)→1. 
From this and Proposition 2.5 we get 

TA(x)≤TA((x→1)→1), IA(x)≤IA((x→1)→1), 
FA(x)≥FA((x→1)→1). 

Moreover, by Definition 2.18 (NSF1) and Definition 3.1 
(NSRF1) 

TA((x→1)→1)=min{TA(1), TA((x→1)→1)}≤TA(x→1),  
IA((x→1)→1)=min{IA(1), IA((x→1)→1)}≤IA(x→1),  

FA((x→1)→1)=max{FA(1), FA((x→1)→1)}≥FA(x→1). 
Thus, 

TA(x)≤TA((x→1)→1)≤TA(x→1), 
IA(x)≤IA((x→1)→1)≤IA(x→1), 

FA(x)≥TA((x→1)→1)≥TA(x→1). 
By Definition 3.2 we know that A is closed. 

By Proposition 2.4 and Proposition 2.7 we can get the 
following proposition. 

Proposition 3.2 Let A be a neutrosophic filter of pseu-
do-BCI algebra X. Then A is an anti-grouped neutrosophic 
filter of X if and only if it satisfies: ∀x∈X, 

TA(x)≥TA((x→1)→1), TA(x)≥TA((x 1) 1); 
IA(x)≥IA((x→1)→1), IA(x)≥IA((x 1) 1); 

FA(x)≤FA((x→1)→1), FA(x)≤FA((x 1) 1). 

Proposition 3.3 Let A be a neutrosophic regular filter in 
pseudo-BCI algebra X. Then A is anti-grouped. 

Proof: Suppose x∈X. By Definition 2.9 and Proposition 
2.1 we have 

x→((x→1)→1)= x→((x→1) 1)=1. 
From this we get 

TA(x→((x→1)→1))=TA(1), IA(x→((x→1)→1))=IA(1), 
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FA(x→((x→1)→1))=FA(1). 
Thus, applying Definition 3.1 (NSRF1) we get 

TA(x)≥min{TA((x→1)→1), TA(x→((x→1)→1))} 
=min{TA((x→1)→1), TA(1)}=TA((x→1)→1),  

IA(x)≥min{IA((x→1)→1), IA(x→((x→1)→1))} 
=min{IA((x→1)→1), IA(1)}=IA((x→1)→1),  

FA(x)≤max{FA((x→1)→1), FA(x→((x→1)→1))} 
=max{FA((x→1)→1), FA(1)}=FA((x→1)→1). 

Similarly, we can prove that 
TA(x)≥TA((x 1) 1),IA(x)≥IA((x 1) 1), 

FA(x)≤FA((x 1) 1). 

By Proposition 3.2 we know that A is anti-grouped. 

Proposition 3.2 Assume that A is both an anti-grouped 
neutrosophic filter and a neutrosophic closed filter in pseu-
do-BCI algebra X. Then A satisfies: ∀x∈X, 

TA(x)=TA(x→1), IA(x)=IA(x→1), FA(x)=FA(x→1). 

Proof: For any x∈X, by Definition 3.2 we have 
TA(x→1)≥TA(x), IA(x→1)≥IA(x), FA(x→1)≤FA(x). 

Moreover, ∀x∈X, by Definition 2.19 and Definition 3.2, 
TA(x)≥min{TA((x→1)→(x→x)), TA(1)} 

=min{TA((x→1)→1), TA(1)} 
=TA((x→1)→1)≥TA(x→1),  

IA(x)≥min{IA((x→1)→(x→x)), IA(1)} 
=min{IA((x→1)→1), IA(1)} 
=IA((x→1)→1)≥IA(x→1),  

FA(x)≤max{FA((x→1)→(x→x)), FA(1)} 
=max{FA((x→1)→1), FA(1)} 
=FA((x→1)→1)≤FA(x→1). 

That is, 
TA(x)≥TA(x→1), IA(x)≥IA(x→1), FA(x)≤FA(x→1). 

Therefore,  
∀x∈X, TA(x)=TA(x→1), IA(x)=IA(x→1), FA(x)=FA(x→1). 

Theorem 3.1 Let A be a neutrosophic filter in pseudo-
BCI algebra X. Then the following conditions are equiva-
lent:  

(i) A is both an anti-grouped neutrosophic filter and a 
neutrosophic closed filter in X;  

(ii) A satisfies: ∀x∈X, 
TA(x)=TA(x→1), IA(x)=IA(x→1), FA(x)=FA(x→1). 

(iii) A is a neutrosophic regular filter in X. 

Proof: (i) ⇒ (ii) See Proposition 3.2. 
(iii) ⇒ (i) See Proposition 3.1 and Proposition 3.3. 
(ii) ⇒ (iii) Suppose that A satisfies: ∀x∈X, 

TA(x)=TA(x→1), IA(x)=IA(x→1), FA(x)=FA(x→1). 
For any x, y∈X, using Proposition 2.1 (6) we have 

y→1≤(x→y)→(x→1). 
From this, applying Propostion 2.5, 

TA(y→1)≤TA((x→y)→(x→1)), 
IA(y→1)≤IA((x→y)→(x→1)),  

FA(y→1)≥FA((x→y)→(x→1)). 
From these, by Definition 2.18 we get 

min{TA(y→1), TA(x→y)} 
≤ min{TA((x→y)→(x→1)), TA(x→y)}=TA(x→1), 

min{IA(y→1), IA(x→y)} 
≤ min{IA((x→y)→(x→1)), IA(x→y)}=IA(x→1), 

max{FA(y→1), FA(x→y)} 
≥max{FA((x→y)→(x→1)), FA(x→y)}=FA(x→1). 

Moreover, by condition (ii), 
TA(y→1)=TA(y), TA(x→1)=TA(x); 
IA(y→1)=IA(y), IA(x→1)=IA(x); 

FA(y→1)=FA(y), FA(x→1)=FA(x). 
Therefore, 

min{TA(y), TA(x→y)}≤TA(x), 
min{IA(y), IA(x→y)}≤ IA(x), 

max{FA(y), FA(x→y)}≥FA(x). 
Similarly, we can get 

min{TA(y), TA(x y)}≤TA(x), 
min{IA(y), IA(x y)}≤ IA(x), 

max{FA(y), FA(x y)}≥FA(x). 
By Definition 3.1 we know that A is a neutrosophic regular 
filter in X. 

4 Fuzzy regular filters and neutrosophic filters

Definition 4.1 A fuzzy filter A in pseudo-BCI algebra X 
is called to be regular if it satisfies: 

(FRF1) ∀x, y∈X, min{μA(y), μA(x→y)}≤μA(x); 
(FRF2) ∀x, y∈X, min{μA(y), μA(x y)}≤μA(x). 

Lemma 4.1[9, 33] Let X be a pseudo-BCI algebra. Then a 
fuzzy set μ: X→[0, 1] is a fuzzy filter of X if and only if the 
level set μt ={ x∈X | μ(x)≥t} is filter of X for all t∈Im(μ). 

Theorem 4.1 Let X be a pseudo-BCI algebra. Then a 
fuzzy set μ: X→[0, 1] is a fuzzy regular filter of X if and 
only if the level set μt ={ x∈X | μ(x)≥t} is regular filter of X 
for all t∈Im(μ). 

Proof: Assume that μ is fuzzy regular filter of X. By 
Lemma 4.1, for any t∈Im(μ), we have 

μt ={x∈X | μ(x)≥t} is filter of X. 
If y∈μt and x→y∈μt, then 

μ(y)≥t, μ( x→y)≥t. 
From this and Definition 4.1 (FRF1) we get 

μA(x)≥min{μA(y), μA(x→y)}≥ t. 
This means that x∈μt. Similarly, we can prove that 

y∈μt and x y∈μt⇒ x∈μt. 
By Definition 2.14 we know that μt is regular filter of X 

Conversely, assume that the level set μt ={ x∈X | μ(x)≥t} 
is regular filter of X for all t∈Im(μ). By Lemma 4.1 we 
know that μ: X→[0, 1] is a fuzzy filter of X. Let  x, y∈X, de-
note t0=min{μA(y), μA(x→y)}, then t0∈Im(μ) and 

μ(y)≥t0, μ( x→y)≥t0. 
This means that y∈

0t
μ and x→y∈

0t
μ . Since

0t
μ  is regular 

filter of X, by Definition 2.14  we have x∈
0t

μ , that is 
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μ(x)≥ t0=min{μA(y), μA(x→y)}. 
It follows that Definition 4.1 (FRF1) holds. Similarly, we 
can prove that ∀x, y∈X, min{μA(y), μA(x y)}≤μA(x). There-
fore, μ: X→[0, 1] is a fuzzy regular filter of X. 

Similar to Theorem 4.1 we can get the following propo-
sition (the proofs are omitted). 

Proposition 4.1 Let X be a pseudo-BCI algebra. Then a 
fuzzy set μ: X→[0, 1] is a fuzzy closed filter of X if and on-
ly if the level set μt ={ x∈X | μ(x)≥t} is closed filter of X for 
all t∈Im(μ). 

By Theorem 6 in [31] we have 

Theorem 4.2 Let μ be a fuzzy filter of pseudo-BCI al-
gebra X. Then the following conditions are equivalent:  

(i) μ is fuzzy closed  anti-grouped filter of X; 
(ii) ∀x∈X, μA(x→1)=μA(x). 
(iii) μ is a fuzzy regular filter of X. 

Theorem 4.3 Let A be a neutrosophic set in pseudo-BCI 
algebra X. Then A is a neutrosophic closed filter in X if and 
only if A satisfies: 

(i) TA is a fuzzy closed filter of X; 
(ii) IA is a fuzzy closed filter of X; 
(iii) 1−FA is a fuzzy closed filter of X, where (1−FA)(x) 

=1−FA(x), ∀x∈X. 

Proof: Assume that A is a neutrosophic closed filter in 
X. By Definition 3.2 we have (∀x∈X) 

TA(x→1)≥TA(x), IA(x→1)≥IA(x), FA(x→1)≤FA(x). 
Thus, 

(1−FA)(x→1)=1−FA(x→1)≥1−FA(x)=(1−FA)( x).  
Therefore, using Definition 2.16, we get that TA, IA and 
1−FA are fuzzy closed filters of X. 

Conversely, assume that TA, IA and 1−FA are fuzzy 
closed filters of X. Then, by Definition 2.16, 

TA(x→1)≥TA(x), IA(x→1)≥IA(x), 
(1−FA)(x→1)≥(1−FA)(x).  

Thus, 
FA(x→1)=1−(1−FA)(x→1)≤1−(1−FA)(x)=FA(x). 

Hence, applying Definition 3.2 we get that A is a neutro-
sophic closed filter A in X. 

By Theorem 4.2, Theorem 4.3, Theorem 3.1 and Propo-
sition 2.7 we can get the following results. 

Theorem 4.4 Let A be a neutrosophic set in pseudo-BCI 
algebra X. Then A is a neutrosophic regular filter in X if and 
only if A satisfies: 

(i) TA is a fuzzy regular filter of X; 
(ii) IA is a fuzzy regular filter of X; 
(iii) 1−FA is a fuzzy regular filter of X, where (1−FA)(x) 

=1−FA(x), ∀x∈X. 

Theorem 4.5 Let X be a pseudo-BCI algebra, A be a 
neutrosophic set in X such that TA(x)≥α0, IA(x)≥β0 and 
FA(x)≤γ0, ∀x∈X, where α0∈Im(TA), β0∈Im(IA) and γ0∈ 
Im(FA). Then A is a neutrosophic closed filter in X if and on-
ly if (α, β, γ)-level set A(α, β, γ) is closed filter of X for all 

α∈Im(TA), β∈Im(IA) and γ∈Im(FA). 

Proof: Assume that A is neutrosophic closed filter in X. 
By Theorem 4.3 and Proposition 4.1, for any α∈Im(TA), 
β∈Im(IA) and γ∈Im(FA),  we have 

(TA)α ={x∈X | TA(x)≥α}, (IA)β ={x∈X | IA(x)≥β} and 
(1−FA)1−γ ={x∈X | (1−FA)(x)≥ 1− γ }={x∈X | FA(x)≤ γ } are 

closed filters of X. 

Thus (TA)α ∩(IA)β ∩(1−FA)1−γ  is a closed filters of X. More-
over, by Definition 2.8, it is easy to verify that (α, β, γ)-
level set A(α, β, γ) =(TA)α ∩(IA)β ∩(1−FA)1−γ . Therefore, A(α, β, γ) 
is closed filter of X for all α∈Im(TA), β∈Im(IA) and γ∈ 
Im(FA). 

Conversely, assume that A(α, β, γ) is closed filter of X for 
all α∈Im(TA), β∈Im(IA) and γ∈Im(FA). Since TA(x)≥α0, 
IA(x)≥β0 and FA(x)≤γ0, ∀x∈X, then 

(TA)α ={x∈X | TA(x)≥α}=(TA)α ∩X∩X 

= (TA)α ∩ (IA)
0β ∩ (1−FA)

01 γ− = 0 0( , , )A α β γ ;

(IA)β ={x∈X | IA(x)≥β}=X ∩ (IA)β ∩X 

= (TA)
0α ∩ (IA) β ∩ (1−FA)

01 γ− = 0 0( , , )A α β γ ;

(1−FA) 1−γ ={x∈X | (1−FA)(x)≥1− γ } 
= X∩X∩{x∈X | FA(x)≤γ} 

= (TA)
0α ∩ (IA)

0β ∩ {x∈X | FA(x)≤γ} = 0 0( , , )A α β γ .
Thus, 

(TA)α ={x∈X | TA(x)≥α}, (IA)β ={x∈X | IA(x)≥β} and 
(1−FA)1−γ ={x∈X | (1−FA)(x)≥1− γ }={x∈X | FA(x)≤γ } are 

closed filters of X. 

From this, applying Proposition 4.1, we know that TA, IA 
and 1−FA are fuzzy closed filters of X. By Theorem 4.3 we 
get that A is neutrosophic closed filter in X. 

Similarly, we can get 

Lemma 4.2  Let X be a pseudo-BCI algebra, A be a 
neutrosophic set in X such that TA(x)≥α0, IA(x)≥β0 and 
FA(x)≤γ0, ∀x∈X, where α0∈Im(TA), β0∈Im(IA) and γ0∈ 
Im(FA). Then A is a (anti-grouped) neutrosophic filter in X if 
and only if (α, β, γ)-level set A(α, β, γ) is (anti-grouped) filter 
of X for all α∈Im(TA), β∈Im(IA) and γ∈Im(FA). 

Combining Theorem 4.5, Lemma 4.2 and Theorem 3.1 
we can get the following theorem. 

Theorem 4.6 Let X be a pseudo-BCI algebra, A be a 
neutrosophic set in X such that TA(x)≥α0, IA(x)≥β0 and 
FA(x)≤γ0, ∀x∈X, where α0∈Im(TA), β0∈Im(IA) and γ0∈ 
Im(FA). Then A is a neutrosophic regular filter in X if and 
only if (α, β, γ)-level set A(α, β, γ) is regular filter of X for all 
α∈Im(TA), β∈Im(IA) and γ∈Im(FA). 
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The neutrosophic set theory is applied to many scien-
tific fields, and also applied to algebraic structures. 
This paper applied neutrosophic set theory to pseudo-
BCI algebras, and some new notions of neutrosophic 
regular filter, neutrosophic closed filter and fuzzy 
regular filter in pseudo-BCI algebras are introduced. 
In addition to studying the basic properties of these new 
concepts, this paper also considered the relationships 
between them, and obtained some necessary and 
sufficient conditions. 
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