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Abstract

In standard treatments of probability, Pr(A|B) is defined as
the ratio of Pr(A ∩ B) to Pr(B), provided that Pr(B) > 0.
This account of conditional probability suggests a psycholog-
ical question, namely, whether estimates of Pr(A|B) arise in
the mind via implicit calculation of Pr(A ∩ B)/Pr(B). We
tested this hypothesis (Experiment 1) by presenting brief vi-
sual scenes composed of forms, and collecting estimates of
relevant probabilities. Direct estimates of conditional proba-
bility were not well predicted by Pr(A∩B)/Pr(B). Direct es-
timates were also closer to the objective probabilities defined
by the stimuli, compared to estimates computed from the fore-
going ratio. The hypothesis that Pr(A|B) arises from the ratio
Pr(A∩B)/[Pr(A∩B)+Pr(A∩B)] fared better (Experiment 2).
Keywords: Conditional probability, reasoning, judgment;

Introduction
Axiomatic presentations of probability (Ross, 1988) typically
define conditional probability from absolute probability via
the equation

(1) Pr(A|B) =def
Pr(A∩B)

Pr(B)
provided Pr(B) > 0.

As a theory of chance, the probability calculus can be jus-
tified independently of human psychology, for example, in
terms of fair betting rates (Jeffrey, 2004). Definition (1)
nonetheless invites the hypothesis that judgments of condi-
tional probability arise by implicit calculation of the ratio of
the two absolute probabilities shown above. Here we report
experiments designed to test this hypothesis in a simple set-
ting, in which probabilities must be estimated from brief vi-
sual presentation of forms of varying shape, color, and posi-
tion.

The previous literature provides reasons to doubt that (1)
reflects the provenance of conditional probability in the mind.
According to (1), Pr(A|B) = Pr(B|A) only if Pr(A) = Pr(B).
Yet the inversion of conditional probabilities is a common
feature of judgment even when it is recognized that Pr(A) 6=
Pr(B) (Eddy, 1982; Dawes, Mirels, Gold, & Donahue, 1993).
Such inversion undermines the conviction that most people
understand the concept of conditional probability.

Another reason to doubt (1) is that it conflicts with in-
tuition in cases involving continuous sample spaces (Hajek,

2003). For example, suppose a number is drawn uniform ran-
domly from [0,1], and let B = {.6, .7, .8}.1 It seems that the
chance of falling below .75 given that a member of B is drawn
equals 2/3 whereas (1) recognizes no such conditional prob-
ability because Pr(B) = 0. Examples of this character have
prompted axiomatizations that reverse the roles of conditional
and absolute probability. For example, conditional probabil-
ity is primitive and Pr(A) is defined as Pr(A|Ω) where Ω is
the certain event (Popper, 1959).

In what follows, we let RH denote the hypothesis that judg-
ments of conditional probability arise from implicit calcula-
tion of the ratio shown in (1). To formulate predictions asso-
ciated with RH, we rely on the following notation. Let two
perceptual categories A,B be given (e.g., red, square), and let
S be the visual scene in question. Then, for a given experi-
mental participant:

Pr [dir](B) denotes the judged probability that a form drawn
randomly from S is B, and likewise for Pr [dir](A ∩ B).
Pr [dir](A|B) denotes the judged probability that such a
form is A assuming that it is B. (“dir” stands for “direct.”)

Pr [ind](A|B) denotes the ratio of Pr [dir](A ∩ B) to
Pr [dir](B). Thus, Pr [ind](A|B) is the conditional proba-
bility of A given B as computed from (1). (“ind” stands for
“indirect.”)

Pr [obj](A|B) denotes the percentage of A’s in S among the
B’s in S, i.e., the true conditional probability in S of A as-
suming B — and similarly for Pr [obj](B) and Pr [obj](A∩
B). (“obj” stands for “objective.”)

We understand RH to entail:

1. Pr [ind](A|B) is an unbiased estimate of Pr [dir](A|B).

2. Pr [dir](A|B) and Pr [ind](A|B) are equally close to
Pr [obj](A|B).

1The uniform distribution over [0,1] sets the probability of sam-
pling an interval I ⊆ [0,1] equal to the length of I. Single points
in [0,1] thus have zero probability (since they represent intervals of
length zero).
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Another hypothesis will figure in the sequel. Since
Pr(B) = Pr(A∩B)+Pr(A∩B), (1) implies:

(2) Pr(A|B) =
Pr(A∩B)

Pr(A∩B)+Pr(A∩B)
provided Pr(B) > 0.

Let RH′ be the hypothesis that judgments of condi-
tional probability arise from implicit calculation of the ra-
tio shown in (2). Correspondingly, we let Pr [ind′](A|B) de-
note Pr [dir](A∩B) divided by Pr [dir](A∩B)+ Pr [dir](A∩
B). The predictions of RH′ are the same as for RH, with
Pr [ind′](A|B) substituted for Pr [ind](A|B) .

We do not consider the hypothesis based on Bayes’ Theo-
rem

Pr(A|B) =
Pr(B|A)×Pr(A)

Pr(B)

inasmuch as conditional probability appears on both sides of
the equation.

In the experiments reported below, Pr [dir](A|B) was
elicited via two kinds of wording. In the probability condi-
tion, participants were asked a question of the form: “Sup-
pose that a B is chosen at random from the array; what is
the probability that it is an A?” The frequency version of
this question was: “What percent of the B’s in the array are
A’s?” Similar wordings were used for Pr [dir](A∩ B) and
Pr [dir](B). The two formulations test the robustness of our
results inasmuch as frequency formats sometimes yield es-
timates more consistent with the probability calculus (Tver-
sky & Kahneman, 1983; Fiedler, 1988; Mellers, Hertwig, &
Kahneman, 2001). In the present experiments, the impact of
alternative formats was minimal.

Experiment 1
The primary purpose of the first experiment was to test RH
through its predictions 1 and 2.

Participants
Forty-five undergraduate students from Princeton University
participated in exchange for partial course credit (32 female,
mean age 20.09 yrs, SD = 1.02).

Materials
Participants viewed 12 sets of geometric shapes on a com-
puter screen. Each set was a mixture of 20 triangles, squares,
and circles in blue, red, and green (all three shapes and all
three colors appeared in every matrix). A given set was shown
four times, with each display lasting one second. The shapes
in a given display were arrayed as a 4×5 matrix, their respec-
tive positions individually randomized for each presentation.
The purpose of multiple brief, randomized displays of a given
set was to prevent responses based on counting. 2

The four displays of a given set were initiated by a “Ready”
button controlled by the participant. Henceforth, by a trial

2An alternative to this spatial display of stimuli is temporal pre-
sentation in which the shapes appear on the screen in a serial manner.
This option is not explored in the current study.

associated with a given set is meant the successive display of
its four randomized matrixes.

For each set we chose one color and one shape to serve as
the categories A and B evoked in the Introduction. A different
choice was made for each of the 12 sets; for six sets A was a
color and B a shape, the reverse held for the other six. The sets
were designed so that Pr [obj](A∩ B) and Pr [obj](B) were
either .1 and .3, .4 and .6, or .8 and .9. These three cases
yield Pr [obj](A|B) equal to .33, .67, or .89, respectively. Four
sets fell into each of these cases, called low, medium, and
high levels in what follows. Table 1 summarizes the objective
probabilities figuring in the experiment.

Table 1: Objective probabilities in the sets of stimuli used in
Experiments 1.

Level Pr [obj](A|B) Pr [obj](A∩B) Pr [obj](B)
Low 0.33 0.1 0.3
Medium 0.67 0.4 0.6
High 0.89 0.8 0.9

Procedure
Each participant served in both the probability and frequency
conditions (the order was counterbalanced). In each condi-
tion, the participant viewed the 12 sets three times, once for
each query Pr(B), Pr(A∩ B), or Pr(A|B). The colors and
shapes representing A and B were the same in the three trials
for a given set. The 36 resulting trials were presented in indi-
vidualized random order under the constraint that a given set
not appear twice in a row. Following each trial, the participant
responded to one question corresponding to Pr(B), Pr(A∩B),
or Pr(A|B). For the probability condition, the questions are
illustrated as follows.

SAMPLE PROBABILITY QUESTIONS:

Pr(B) What is the probability that a randomly
selected shape in the set is red?

Pr(A∩B) What is the probability that a randomly
selected shape in the set is a red square?

Pr(A|B) What is the probability that a randomly
selected shape in the set is square assum-
ing that it is a red?

For the frequency condition, the corresponding questions
were:

SAMPLE FREQUENCY QUESTIONS:

Pr(B) What percent of the shapes in the set are
blue?

Pr(A∩B) What percent of the shapes in the set are
blue circles?

Pr(A|B) What percent of the blue shapes in the
set are circles?
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Thus, in both conditions, a given set yielded values for each
of Pr [dir](B), Pr [dir](A∩B) and Pr [dir](A|B). Participants
entered their answers using either decimals, fractions, or per-
cents according to their preference. The experiment began
with explanation of the task and practice trials. Participants
were not informed that sets would be repeated (with different
queries); none seem to have discovered this fact. Between
the two conditions (probability and frequency), participants
completed a 5-minute distraction task.

Results
Average responses The probability and frequency condi-
tions produced very similar numbers; across all participants,
the average discrepancy between responses to corresponding
queries was only 0.022. The two conditions were therefore
collapsed.

For a given participant, we averaged the response to each
query — Pr [dir](B), Pr [dir](A ∩ B) or Pr [dir](A|B) — at
each level (low, medium, high). Each of these nine categories
of numbers (three levels by three queries) was then averaged
across the 45 participants, yielding the results shown in Ta-
ble 2 (standard deviations shown in parentheses). Compari-
son of Tables 1 and 2 (objective versus estimated probabil-
ities) suggests that participants’ judgments were reasonably
accurate. In particular, the average value of Pr [dir](A|B) is
close to Pr [obj](A|B) at all three levels (within 0.02, 0.04,
and 0.07, respectively).

Table 2: Average estimates from Experiment 1.

Level Pr [dir](A|B) Pr [dir](A∩B) Pr [dir](B)
Low 0.35 (0.10) 0.19 (0.08) 0.31 (0.07)
Medium 0.63 (0.10) 0.50 (0.10) 0.58 (0.07)
High 0.82 (0.12) 0.80 (0.07) 0.86 (0.04)

To compute Pr [ind](A|B), for each participant and each
level, we divided her average for Pr [dir](A∩B) at that level
by her average for Pr [dir](B). Over the 45 participants, the
means for Pr [ind](A|B) were 0.61 (SD = 0.21), 0.86 (SD
= 0.17), and 0.94 (SD = 0.08) for the low, medium, and high
levels, respectively.

Test of RH To test prediction 1, at each level we performed
paired t-tests on the average values of Pr [dir](A|B) versus
Pr [ind](A|B) across the 45 participants. In all three cases,
Pr [dir](A|B) was reliably smaller than Pr [ind](A|B) (for low,
medium, high levels, paired t(44) = 7.5, 7.7, 5.4, respec-
tively, p < .01). The differences between Pr [dir](A|B) and
Pr [ind](A|B) are 0.26, 0.23, and 0.12 at the three levels.

To test prediction 2, at each level we computed for each
participant the absolute difference between Pr [dir](A|B) and
Pr [obj](A|B), and between Pr [ind](A|B) and Pr [obj](A|B).
Across the 45 participants, the average absolute difference
between Pr [dir](A|B) and Pr [obj](A|B) was 0.10, 0.10, and
0.08 at the three levels, compared to 0.30, 0.22, and 0.09 for

Pr [ind](A|B). Thus, direct estimates of objective conditional
probability were more accurate than indirect at the low and
medium levels (paired t-tests yield t(44) = 6.3 and 5.1, p <
.01). The accuracy of direct estimates was close to that of
indirect estimates at the high level (t(44) = 0.04, p > .05).
Inversion of conditional probability The data give scant
evidence for confusion of Pr(B|A) with Pr(A|B). For each
participant at each level, we calculated the mean abso-
lute difference between Pr [obj](A|B) and Pr [dir](A|B) along
with the mean absolute difference between Pr [obj](B|A) and
Pr [dir](A|B). These means were based on the 8 estimates
of Pr [dir](A|B) made at a given level. Inversion of the
conditional would result in the absolute difference between
Pr [obj](A|B) and Pr [dir](A|B) tending to be equal to or
greater than the absolute difference between Pr [obj](B|A)
and Pr [dir](A|B). We found, however, that the first differ-
ence was smaller than the second at each level. The difference
was significant at the low level (paired t(44) = 2.9, p < .01)
but was just a trend at the medium and high levels (paired
t(44) = 1.4 in each case, p > .05).

Discussion of Experiment 1

The results of Experiment 1 are largely inconsistent with RH,
the hypothesis that conditional probabilities are mentally cal-
culated from the ratio appearing in Equation (1). The lat-
ter ratio consistently overestimated participants’ direct judg-
ments of Pr(A|B) (by more than 0.2 on average). Moreover,
at the low and medium levels, direct estimates of objective
conditional probability were considerably more accurate than
estimates based on RH.

Finally, participants showed no sign of conflating Pr(A|B)
with Pr(B|A). Combined with the accuracy of their estimates
of Pr [obj](A|B), these results suggest they have a mature con-
ception of conditional probability.

Experiment 2

The second experiment was designed to replicate the first, and
also to test Hypothesis RH′, based on Equation (2). For this
purpose, we added the query Pr(A∩B) to the three queries
figuring in Experiment 1.

Participants

Forty-five undergraduate students from Princeton University
participated in exchange for partial course credit (35 female,
mean age 19.2 yrs, SD = 1.35).

Materials and Procedure

The stimuli from Experiment 1 were employed again. The
procedure was the same except that each set figured in an
additional trial that queried Pr(A∩B) as illustrated here.
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PROBABILITY AND FREQUENCY QUERIES FOR Pr(A∩B):

probability version: What is the probability that a ran-
domly selected shape in the set is
square and not red?

frequency version: What percent of the shapes in the set
are square and not red?

Note that these queries have the form Pr(B∩A) rather than
the equivalent Pr(A∩B). This was done to avoid ambiguity
about the scope of the negation. Pr [obj](A∩B) was 0.2, 0.2,
and 0.1 for low, medium, and high levels. To summarize, in
both conditions a given set figured in four trials, one for each
of the probabilities Pr [dir](B), Pr [dir](A∩B), Pr [dir](A∩B)
and Pr [dir](A|B).

Results
Average responses Once again, the probability and fre-
quency conditions produced similar numbers; across all par-
ticipants, the average discrepancy between responses to cor-
responding queries was only 0.024. The two conditions were
therefore collapsed.

For a given participant, we averaged the response to
each query — Pr [dir](B), Pr [dir](A∩B), Pr [dir](A∩B) or
Pr [dir](A|B) — at each level (low, medium, high). Each
of these twelve categories of numbers (three levels by four
queries) was then averaged across the 45 participants (see
Table 3). In particular, the average value of Pr [dir](A|B) is
close to Pr [obj](A|B) at all three levels (within 0.01, 0.04,
and 0.06, respectively).

Table 3: Average direct estimates from Experiment 2.

Level B A∩B A∩B A|B
Low 0.29(0.05) 0.17(0.06) 0.23(0.07) 0.33(0.09)
Med 0.59(0.08) 0.51(0.16) 0.21(0.05) 0.63(0.10)
High 0.85(0.05) 0.78(0.06) 0.14(0.08) 0.83(0.06)

To compute Pr [ind′](A|B), for each participant and each
level, we divided her average for Pr [dir](A∩B) at that level
by her average for Pr [dir](A∩B)+ Pr [dir](A∩B). Over the
45 participants, the means for Pr [ind′](A|B) were 0.44 (SD
= 0.07), 0.71 (SD = 0.07), and 0.86 (SD = 0.07) for the
low, medium, and high levels, respectively. The means for
Pr [ind](A|B) were computed as in Experiment 1, yielding
0.60 (SD = 0.18), 0.87 (SD = 0.24), and 0.93 (SD = 0.09) at
the three levels.

Replication of Experiment 1 The results of Experiment
1 were replicated in Experiment 2. Regarding prediction 1
of Hypothesis RH, the average value of Pr [dir](A|B) across
the 45 participants of Experiment 2 was reliably smaller
than Pr [ind](A|B) at all three levels (paired t(44) = 8.9,
6.3, 5.9, respectively, p < .01). The differences were 0.27,
0.24, and 0.10. Regarding prediction 2, direct estimates of
Pr [obj](A|B) were closer than indirect estimates at all three
levels (t(44) = 6.3, 3.9, 1.9, p < .01 for the low and medium

levels, p < .05 for the high level). Across the 45 partici-
pants, the average absolute difference between Pr [dir](A|B)
and Pr [obj](A|B) was 0.09, 0.10, and 0.07 at the three levels,
compared to 0.27, 0.24, and 0.10 for Pr [ind](A|B).

Again, there was little evidence for conflation of Pr(B|A)
with Pr(A|B). Pr [dir](A|B) was significantly closer to
Pr [obj](A|B) than to Pr [obj](B|A) at the low and high lev-
els (paired t(44) = 2.8, 3.1, respectively, p < .01), and
also closer at the medium level but not significantly (paired
t(44) = 1.1, p > .05).

Test of RH′ To test the prediction that Pr [ind′](A|B) is
an unbiased estimate of Pr [dir](A|B), at each level we per-
formed paired t-tests on the average values of Pr [dir](A|B)
versus Pr [ind′](A|B) across the 45 participants. For all three
levels, Pr [dir](A|B) was reliably smaller than Pr [ind′](A|B)
(t(44) = 6.3, 4.3, 2.3, respectively, p < .01), with gaps of
0.11, 0.08, and 0.03. Although Pr [ind′](A|B) systemati-
cally overestimates Pr [dir](A|B), its gaps are smaller than for
Pr [ind](A|B). RH′ thus appears to be more accurate than RH.

The superiority of RH′ must be due to the denominator
Pr(A∩B)+ Pr(A∩B) in (2) compared to Pr(B) in (1) inas-
much as the respective numerators are identical. Indeed,
Pr [dir](A∩B)+Pr [dir](A∩B) typically exceeded Pr [dir](B)
despite their equivalence in the probability calculus. Across
the 12 stimuli and 45 participants, the mean of Pr [dir](A∩
B)+Pr [dir](A∩B) is 0.68 (SD = 0.08) whereas the mean of
Pr [dir](B) is 0.58 (SD = 0.04). The slightly greater value of
the denominator in (2) lowers the value of the ratio thereby
mitigating the overestimation of Pr [dir](A|B).

To test the prediction that Pr [dir](A|B) and Pr [ind′](A|B)
are equally close to Pr [obj](A|B), at each level we com-
puted for each participant the absolute difference between
Pr [dir](A|B) and Pr [obj](A|B), and between Pr [ind′](A|B)
and Pr [obj](A|B).

At the low level, Pr [dir](A|B) was significantly more ac-
curate than Pr [ind′](A|B) (t(44) = 2.0, p < .05) whereas
Pr [ind′](A|B) was more accurate than Pr [dir](A|B) at the
other levels; for the medium level the difference was signif-
icant (t(44) = 2.0, p < .05) but just a trend at the high level
t(44) = 0.8, p > .05). Across the 45 participants, the average
absolute difference between Pr [dir](A|B) and Pr [obj](A|B)
was 0.09, 0.10, and 0.07 at the three levels, compared to 0.12,
0.08, and 0.06 for Pr [ind′](A|B).

As a predictor of Pr [obj](A|B), Pr [ind′](A|B) was su-
perior to Pr [ind](A|B). In fact, 35 out of the 45 partici-
pants showed smaller average, absolute deviation between
Pr [obj](A|B) and Pr [ind′](A|B) than between Pr [obj](A|B)
and Pr [ind](A|B) (p < 0.05).

Discussion of Experiment 2
The results of Experiment 1 were replicated in the present
study. Pr [ind](A|B) markedly overestimated Pr [dir](A|B),
and also predicted Pr [obj](A|B) less well than Pr [dir](A|B).
Also, Pr [dir](A|B) was closer to Pr [obj](A|B) than to
Pr [obj](B|A), providing no evidence for systematic confla-
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tion of conditionals with their inverse.
The novel finding is the greater accuracy of Pr [ind′](A|B)

compared to Pr [ind](A|B) at predicting Pr [dir](A|B). Al-
though Pr [ind′](A|B) overestimates Pr [dir](A|B), its error is
about half that of Pr [ind](A|B). Moreover, Pr [ind′](A|B) pre-
dicts Pr [obj](A|B) about as well as does Pr [dir](A|B). RH′ is
thus better supported than RH by our data.

General Discussion
Our findings suggest that judgments of conditional probabil-
ity do not arise from mental division of the kind envisioned in
the standard definition. For, the ratio Pr(A∩B)/Pr(B) seen
in Equation (1) systematically overestimates such judgments
in all three of our experiments. Compared to direct estimates,
the ratio is also further from the objective conditional proba-
bilities inherent in the stimuli, providing another perspective
on the limitations of (1) as a psychological theory. The less
familiar but equivalent definition (2) comes closer to predict-
ing raw judgments but it also errs on the side of overestima-
tion. At the same time, (2) was as accurate as raw judgment
in predicting objective conditional probabilities.

The superiority of RH′ to RH is due to the slight over-
estimation of Pr(B) when it is decomposed as Pr(A∩B) +
Pr(A∩B). Such decomposition often (but not invariably) in-
creases estimates of event probability (Tversky & Koehler,
1994; Sloman, Rottenstreich, Wisniewski, Hadjichristidis, &
Fox, 2004). Overall, neither RH nor RH′ seems accurate as
an account of the provenance of conditional probability.

Finally, in neither Experiment 1 nor 2 did we find evidence
for conflation of Pr(A|B) with Pr(B|A). At least in this re-
spect, our participants seem to have understood the questions
they were posed. Indeed, as seen earlier, Pr [dir](A|B) was
impressively close to Pr [obj](A|B).

The sample space in our experiments is transparent, and all
probabilities were grounded in frequencies. The results thus
discredit RH and RH′ when probability is extensional. In this
setting it is easy to envision theories of conditional probabil-
ity that are alternative to the ratio accounts (1) and (2). Asked
about Pr(red|square), for example, one might attempt to fo-
cus attention on just the squares then estimate the proportion
of reds in this set. When the underlying partition of events
is less evident than here it may be challenging to identify the
relevant symmetries, opening the door to misconceptions and
biases (Fox & Levav, 2004). Event-counting seems nonethe-
less central to many extensional settings, in which probability
can be defined from frequency.

Matters are more complicated for the intensional case,
which involves probabilities of non-repeatable events, for ex-
ample:

B = NASA merges with the European Space
Agency by 2030.

A = Humans walk on Mars by 2050.

It is unclear how a counting scheme could be deployed to con-
struct Pr(A|B). Ratio hypotheses like RH and RH′ are thus all
the more attractive for such events. Moreover, the proviso that

Pr(A|B) is defined only if Pr(B) > 0 seems more palatable in
the intensional setting compared to the counterintuitive re-
sults it produces extensionally (Hajek, 2003). Unfortunately,
ratio hypotheses rely on Pr(A∩B), and how this quantity is
mentally calculated appears to be just as mysterious in the
intensional framework as the calculation of Pr(A|B). Both
require determining the compatibility of A and B.

In any event, the poor performance of RH and (to a lesser
extent) RH′ in predicting judgments of conditional probabil-
ity within our extensional framework suggests that they are
unsatisfactory as well for the intensional case. But only fur-
ther research will decide the matter.
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