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Protein complexes play a critical role in understanding the biological processes and the functions of cellular mechanisms. Most
existing protein complex detection algorithms cannot reflect dynamics of protein complexes. In this paper, a novel algorithmnamed
Improved Cuckoo Search Clustering (ICSC) algorithm is proposed to detect protein complexes in weighted dynamic protein-
protein interaction (PPI) networks. First, we constructed weighted dynamic PPI networks and detected protein complex cores in
each dynamic subnetwork.Then, ICSC algorithmwas used to cluster the protein attachments to the cores.The experimental results
on both DIP dataset and Krogan dataset demonstrated that ICSC algorithm is more effective in identifying protein complexes than
other competing methods.

1. Introduction

Proteins are indispensable to cellular life. Biological functions
of cells are carried out by protein complexes rather than single
proteins [1]. Detecting these protein complexes can help to
predict protein functions and explain biological processes,
which has great significance in biology, pathology, and
proteomics [2].Therefore, the study of protein complexes has
become one of most important subjects. Many of experimen-
tal methods combined with computational strategies have
been proposed to predict and identify protein complexes,
such as affinity purification and mass spectrometry [3–5].
However, they are costly and have difficulty in capturing the
protein complexes instantaneous and dynamic changes [6].

The high throughput techniques have generated a large
amount of protein-protein interaction (PPI) data, gene
expression data, and protein structure data, which enable
scholars to find protein complexes based on the topological
properties of PPI networks and structural information of
proteins [7]. Bader andHogue proposedMCODE [8]method
to detect protein complexes based on the proteins’ connec-
tivity and density in PPI networks. Liu et al. [9] presented a

method called CMC to identify protein complexes based on
maximal cliques. Protein complexes integrate multiple gene
products to perform cellular functions and may have over-
lapping. Nepusz et al. [10] developed a clustering algorithm
ClusterONE to detect overlapping protein complexes. Gavin
et al. [11] suggested that there are two types of proteins in
complexes: core components and attachments [11]. According
to the core-attachment structure of protein complexes, Leung
et al. [12] designed CORE algorithm which calculated the
𝑝 value to detect cores. Wu et al. [13] proposed COACH
algorithm to detect dense subgraphs as core components.
The biological processes are dynamic and PPIs are changing
over time [14]. Therefore, it is necessary to shift the study of
protein complexes from static PPI networks to the dynamic
characteristics of PPI networks [15]. Wang et al. constructed
dynamic PPI network based on time series gene expression
data to detect protein complexes [16]. Zhang et al. proposed
CSO [17] algorithm by constructing ontology attributed
PPI networks based on GO annotation information. Some
classical clustering algorithms such as Markov clustering
(MCL) [18] and fuzzy clustering [19, 20] were also developed
to detect protein complexes.
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However, with the birth of the biological simulation tech-
nology, bioinspired algorithms provided a new perspective
for solving protein complex detection problem [21]. In 2016,
Lei et al. proposed F-MCL [22] clustering model based on
Markov clustering and firefly algorithm which automatically
adjusted the parameters by introducing the firefly algorithm.
At the same year, Lei et al. proposed FOCA [6] clustering
model which was based on the fruit flies’ foraging behav-
ior and protein complexes’ core-attachment structure. The
previous studies proved that the protein complex detection
methods based on the bioinspired algorithms had shown a
relatively better performance.

Cuckoo Search (CS) algorithm is a new intelligence opti-
mization algorithm which has been successfully applied to
the global optimization problem, clustering, and other fields
[21]. In this study, according to the core-attachment structure
of protein complexes and CS mechanism, a new clustering
method named Improved Cuckoo Search Clustering (ICSC)
algorithm was proposed to detect protein complexes in
weighted dynamic PPI networks, in which the corresponding
relationships between CS algorithm and clustering procedure
of PPI data are established.

2. Methods

2.1. Constructing Weighted Dynamic PPI Network. The static
PPI networks data produced by high throughput experi-
ments generally contain a high rate of false positive and
false negative interactions [9], which makes it inaccurate
to predict protein complexes and impossible to reflect the
real dynamic changes of PPIs in a cell. To address this
problem, some scholars used the computational methods to
evaluate the interactions [23]. On the other hand, the protein
dynamic information such as gene expression data, subcellu-
lar localization data, and transcription regulation data were
integrated to reveal the dynamics of PPIs [24–26]. Tang et
al. [27] constructed time course PPI network (TC-PIN) by
using gene expression data over three successive metabolic
cycles. The expression values of genes were compared with a
single-threshold to determine whether a gene was expressed.
Some essential genes were filtered out by the single-threshold
for their low expression levels. Wang et al. [28] developed a
three-sigma method to define an active threshold for each
gene and then constructed dynamic PPI network (DPIN)
by using active proteins based on the static PPI network
in combination with gene expression data. Many previous
studies have revealed that the three-sigma principle had
better prediction performance. In this study, we use three-
sigma principle to construct the DPIN. The gene expression
data includes three successivemetabolic cycles; each cycle has
12 timestamps, so the DIPN includes 12 subnetworks.

A protein 𝑝 is considered to be active in a dynamic PPI
subnetwork only if its gene expression value is greater than
or equal to the active threshold Active Th(𝑝) [28]:

Active Th (𝑝) = 𝜇 (𝑝) + 3𝜎 (𝑝) (1 − 𝐹 (𝑝)) , (1)

where 𝜇(𝑝) is the algorithmicmean of gene expression values
of protein 𝑝 over timestamps 1 to 𝑛 and 𝜎(𝑝) is the standard
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Figure 1: DPIN construction. (a) The static PPI network. (b) The
subnetworks contained in the DPIN.

deviation of its gene expression values. 𝐹(𝑝) is defined as
follows:

𝐹 (𝑝) = 1
1 + 𝜎2 (𝑝) . (2)

A static PPI network is usually described as an undirected
graph 𝐺(𝑉, 𝐸) which consists of a set of nodes 𝑉 and a set of
edges 𝐸, the nodes in 𝑉 represent the proteins and the edges
in 𝐸 = {𝑒(V𝑖, V𝑗)} represent the connections between pairs
of proteins V𝑖 and V𝑗. 𝐺𝑡(𝑉𝑡, 𝐸𝑡) is denoted as the dynamic
PPI subnetwork at timestamp 𝑡 (𝑡 = 1, 2, . . . , 𝑛). Protein V𝑖
interactswith protein V𝑗 in a dynamic PPI subnetwork𝐺𝑡 only
if they are active in the same timestamp 𝑡 and connect with
each other in the static PPI network.

As shown in Figure 1, three-sigma principle was applied
to calculate the active threshold Active Th(𝑝) for each pro-
tein and to determine the active timestamps. After that, 12
dynamic subnetworks were constructed.
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Clustering coefficient has been used as an effective tool
to analyze the topology of PPI networks [29]. Radicchi et al.
proposed the edge clustering coefficient (ECC) [30]. In PPI
network, the ECC of an edge connecting proteins V𝑖 and V𝑗
can be expressed as follows:

ECC𝑖𝑗 =
𝑍𝑖𝑗

min (󵄨󵄨󵄨󵄨𝑁𝑖󵄨󵄨󵄨󵄨 − 1, 󵄨󵄨󵄨󵄨󵄨𝑁𝑗
󵄨󵄨󵄨󵄨󵄨 − 1)

, (3)

where𝑍𝑖𝑗 is the number of triangles built on edge (V𝑖, V𝑗); |𝑁𝑖|
and |𝑁𝑗| are the degrees of protein V𝑖 and V𝑗, respectively. Edge
clustering coefficient is a local variable which characterizes
the closeness of two proteins V𝑖 and V𝑗.

The Pearson correlation coefficient (PCC) was calcu-
lated to evaluate how strong two interacting proteins are
coexpressed [31]. The PCC value of a pair of genes 𝑥 =
{𝑥1, 𝑥2, . . . , 𝑥𝑛} and 𝑦 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, which encode the
corresponding paired proteins V𝑖 and V𝑗 interacting in the PPI
network, is defined as

PCC (𝑥, 𝑦)

= ∑𝑛𝑘=1 (𝑥𝑘 − 𝜇 (𝑥)) (𝑦𝑘 − 𝜇 (𝑦))
√∑𝑛𝑘=1 (𝑥𝑘 − 𝜇 (𝑥))2√∑𝑛𝑘=1 (𝑦𝑘 − 𝜇 (𝑦))2

, (4)

where 𝜇(𝑥) and 𝜇(𝑦) are the mean gene expression value of
proteins V𝑖 and V𝑗, respectively.The value of PCC ranges from
−1 to 1; if PCC(𝑥, 𝑦) is a positive value, there is a positive
correlation between proteins V𝑖 and V𝑗.

The protein complex is a group of proteins which show
high coexpression patterns and share high degree of func-
tional similarity, so we integrate GO-slims data from the
point of view of protein functions. If two interacted proteins
V𝑖 and V𝑗 have some common GO terms, their functions are
more similar. Let GSM𝑖𝑗 denote this correlation which can be
computed as follows:

GSM𝑖𝑗 =
󵄨󵄨󵄨󵄨󵄨GSM𝑖 ∩ GSM𝑗

󵄨󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨GSM𝑖󵄨󵄨󵄨󵄨 × 󵄨󵄨󵄨󵄨󵄨GSM𝑗
󵄨󵄨󵄨󵄨󵄨
, (5)

where |GSM𝑖| and |GSM𝑗| represent the number of GO
terms for proteins V𝑖 and V𝑗, respectively. In the dynamic
PPI subnetwork 𝐺𝑡, the weight between proteins V𝑖 and V𝑗 is
defined as follows:

𝑊𝑖𝑗 =
PCC𝑖𝑗 + ECC𝑖𝑗 + GSM𝑖𝑗

3 . (6)

Up to now, the weighted dynamic PPI network was
constructed.

2.2. Cuckoo Search Algorithm. CS algorithm was a novel
bioinspired metaheuristic optimization algorithm proposed
in 2009 [32], which was based on the obligatory brood
parasitic behaviors of some cuckoo species in combination
with the Lévy flight behaviors.

During the breeding period, some certain species of
cuckoos lay their eggs in host nests. The cuckoos usually

look for host birds which have similar incubation period
and brood period. Moreover, their eggs are similar to each
other in many aspects of color, shape, size, and cicatricle.
The cuckoo flight strategy demonstrates the typical charac-
teristics of Lévy flights. Lévy flights comprise sequences of
randomly orientated straight-line movements. Actually, the
strategies of frequently occurring but relatively short straight-
line movements, as well as randomly alternating with more
occasionally occurring longer movements, can maximize the
efficiency of resource search [33].

Specifically, for a cuckoo 𝑖when generating new solutions
𝑥(𝑡 + 1), a Lévy flight is performed by using the following
equation:

𝑥(𝑡+1)𝑖 = 𝑥(𝑡)𝑖 + 𝛼 ⊕ Lévy (𝛽) , (𝑖 = 1, 2, . . . , 𝑛) , (7)

where 𝛼 > 0 is the step size which should be related to
the scales of the problem of interests. In most cases, we can
use 𝛼 = 1; ⊕ means the Hadamard product operator. The
Lévy flight is a type of random walk which has a power law
step length distribution with a heavy tail and the value of 𝛽
between 1 and 3.

2.3. The ICSC Algorithm. Our ICSC is developed to detect
protein complexes inweighted dynamic PPI network through
the use of improvedCS algorithm. It has beenwidely accepted
that protein complexes are organized in the core-attachment
structure.

The core is a small subgraph in a PPI network with
high density. As shown in Figure 2(a), four highly connected
subgraphs constitute cores, denoted by core1, core2, core3,
and core4 (red round proteins in the dashed circle). Several
peripheral connection protein nodes are attachments (blue
square proteins) in this PPI network.The blue square proteins
and black diamond proteins are all noncore proteins.

In ICSC algorithm, each cuckoo was viewed as a non-
core protein (marked with black round in Figure 2(b)), and
the nest was viewed as the core proteins (marked with
black circles in Figure 2(b)), while the cuckoo population is
denoted as a group of clustering results.The noncore proteins
become attachments if a cuckoo finds an appropriate nest to
lay eggs. Figure 2 illustrates the corresponding relationships
between ICSC algorithm and the clustering procedure of
a PPI network. Algorithm 1 indicates the function of the
proposed algorithm ICSC. The ICSC method operates in
three phases. In the first step, some dense subgraphs were
selected as initial nests.Then the cuckoos are generated based
on these nests. Last the improved Cuckoo Search strategy
was applied to generate protein complexes. The complexes
in different dynamic subnetworks may have a high level of
similarity, so a refinement procedure is applied in order to
filter out redundancies and generate the final set of protein
complexes.

“Initial nest” subfunction (Algorithm 1) tries to generate
initial nests. The initial nests can be seen as the core
proteins for each protein complex. The weight of dynamic
PPI subnetwork 𝐺𝑡(𝑉𝑡, 𝐸𝑡) has considered the PCC, ECC,
and GSM, so the weight threshold wth can be used to find
some protein pairs which have highly functional similarity
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Input. The weighted PPI sub-network: 𝐺𝑡(𝑉𝑡, 𝐸𝑡), 𝑡 = 1, 2, . . . , 12;
Output. The detected protein complexes: 𝐶𝑜𝑚𝑝𝑙𝑒𝑥
Begin
(1) for each 𝐺𝑡 do
(2) Initialization: (1) maximum iterations: maxiter; cuckoo populations’ size: 𝑛𝑝;
(3) (2) weight threshold: wth;
(4) (3) Initial nest 𝑛𝑒𝑠𝑡: for each 𝑒(V𝑖, V𝑗) ∈ 𝐸𝑡 do
(5) if 𝑤𝑖𝑗 ≥ (mean(𝑤)/wth) then insert (V𝑖, V𝑗) into nest end if
(6) end for
(7) Merge operation;
(8) (4) Initial solutions 𝑁𝑒𝑠𝑡: Nest(:, :, 𝑖) = nest, 𝑖 = 1, 2, . . . , 𝑛𝑝;
(9) while iter ≤ maxiter do
(10) for 𝑖 = 1 to 𝑛𝑝
(11) Generation cuckoos 𝐶𝑢𝑐𝑘𝑜𝑜𝑖: each V ∈ 𝑉𝑡, if V ∉ Nest(:, :, 𝑖) then insert V into Cuckoo𝑖 end if
(12) for each cuckoo𝑗 ∈ Cuckoo𝑖 do
(13) for each nest𝑘 ∈ Nest(:, :, 𝑖) do
(14) Calculate closeness(cuckoo𝑗, nest𝑘);
(15) if closeness(cuckoo𝑗, nest𝑘) > 0 then
(16) Roulette wheel selection 𝑐𝑢𝑐𝑘𝑜𝑜𝑗, set nest𝑡 = union(nest𝑘, cuckoo𝑗);
(17) Calculate objective function 𝐹(nest𝑡);
(18) if 𝐹(nest𝑡) > 𝐹(nest𝑘) then
(19) insert cuckoo𝑗 into nest𝑘;
(20) end if
(21) end if
(22) end for
(23) end for
(24) Calculate the objective function 𝐹(Nest(:, :, 𝑖))
(25) end for
(26) Find the largest objective function 𝐹max = max(𝐹(Nest(:, :, 𝑖))), 𝑖 = 1, 2, . . . , 𝑛𝑝;
(27) Find the best solution 𝑁𝑒𝑠𝑡𝑏𝑒𝑠𝑡, 𝐹(Nestbest) = 𝐹max;
(28) end while
(29) Complex𝑡 = Nestbest;
(30) end for
(31) Complex = (Complex1,Complex2, . . . ,Complex12)
(32) Refinement procedure;
End

Algorithm 1: ICSC algorithm.

and high coexpression. For 𝑒(V𝑖, V𝑗) ∈ 𝐸𝑡, if the weight 𝑤𝑖𝑗
is larger than mean(𝑤)/wth, the node pair (V𝑖, V𝑗) is denoted
as one initial nest, wheremean(𝑤) is the average weight of𝐺𝑡.
Protein complex cores often correspond to the small, dense,
and reliable subgraphs in PPI networks, but the node pairs
may have overlaps with each other. So the node clustering
coefficient (NCC) was used to filter out the overlapping nests,
which is defined as follows:

NCC (V) = 2𝑛V
𝑘V (𝑘V − 1) , (8)

where 𝑘V is the degree of node V, 𝑛V is the number of links
connecting the 𝑘V neighbors of node v to each other. Because
the PPI network has a large number of nodes and edges,many
nodes may have the same value of node clustering coeffi-
cient. In this study, the weighted node clustering coefficient
(WNCC) was defined to distinguish the importance of nodes
in the dynamic PPI network. For two initial nests (V𝑖, V𝑗)
and (V𝑖, V𝑘), if WNCC(V𝑖) ≥ WNCC(V𝑗) and WNCC(V𝑖) ≥

WNCC(V𝑘), they are merged into (V𝑖, V𝑗, V𝑘). The WNCC of
node V is defined as

WNCC (V) = ∑We
𝑘V (𝑘V − 1) , 𝑒 ∈ 𝑛V, (9)

whereWe is the weight of edge 𝑒 ∈ 𝑛V; 𝑘V and 𝑛V have the same
meanings as in NCC.

After nest detection in the previous steps, the nests are
fixed. It is time to find cuckoos around the nests. In𝐺𝑡(𝑉𝑡, 𝐸𝑡),
if protein V𝑖 ∈ 𝑉𝑡 is not in any nests, it is denoted as a cuckoo.

As a “cuckoo” in𝐺𝑡(𝑉𝑡, 𝐸𝑡), there aremany “nests” around
“cuckoo”; the similarities between “cuckoo” and “nest” is
measured based on the closeness between cuckoo𝑖 and nest𝑗,
defined as follows:

closeness (cuckoo𝑖, nest𝑗) =
󵄨󵄨󵄨󵄨󵄨𝑁cuckoo𝑖 ∩ nest𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨nest𝑗
󵄨󵄨󵄨󵄨󵄨

, (10)

where 𝑁cuckoo𝑖 is the set of all cuckoo𝑖’s neighbors, |𝑁cuckoo𝑖 ∩
nest𝑗| is the number of vertices in nest𝑗 connected with
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Figure 2: The corresponding relationships between ICSC algorithm and the clustering procedure of a PPI network.

cuckoo𝑖, and |nest𝑗| is the number of vertices in nest𝑗. In order
to keep the diversity of population, the roulette wheel selec-
tion was used. For a cuckoo𝑖, if closeness(cuckoo𝑖, nest𝑗) > 0,
the nest𝑗 is selected to construct the roulette wheel.

The objective function 𝐹 is defined as follows:

𝐹 (𝐶1, 𝐶2, . . . , 𝐶𝑘) =
𝑘

∑
𝑖=1

𝐶𝑖in
𝐶𝑖in + 𝐶𝑖out

,

𝐶𝑖in = 2 × |𝐸|
|𝑉| × (|𝑉| − 1) ,

𝐶𝑖out = 𝑊𝑘𝑖
|𝑉| ,

(11)

where (𝐶1, 𝐶2, . . . , 𝐶𝑘) is a clustering result determined by a
nest; 𝐶𝑖 represents a cluster. |𝐸| is the number of edges in the
cluster 𝐶𝑖; |𝑉| is the number of nodes in the cluster 𝐶𝑖. 𝑊𝑘𝑖 is
the number of edges with one node in 𝐶𝑖 and another node
outside 𝐶𝑖. Finally, the same or highly overlapping protein
complexes are filtered out.

2.4. Time Complexity Analysis of ICSC Algorithm. The time
complexity is used to estimate the efficiency of the ICSC
algorithm.The maximal iterationsmaxiter is for the external
loop; each iteration produces np solutions. In order to gen-
erate solutions, there are three main operations, generating
the cuckoo, calculating the closeness, and calculating the
objective function. Let nv be the number of proteins inGt and
ne be the number of interactions in 𝐺𝑡. The time complexity
of generating the cuckoos is O(nv). The time complexity of
calculating closeness is 𝑂(nc ∗ nn), where nc is the number
of cuckoos; nn is the number of nests. The time complex-
ity of calculating the objective function is 𝑂((nv − nc)2).

In summary, the time complexity of ICSC algorithm is
𝑂(maxiter∗np∗(nv+nc∗nn+(nv−nc)2)), which is equivalent
to 𝑂(maxiter ∗ np ∗ nv2).

3. Experiments and Results

The proposed ICSC algorithm was implemented in Matlab
R2015b and executed on a quad-core processor 3.30GHz PC
with 8G RAM.

3.1. Experimental Dataset. In this study, four PPI datasets
DIP [34] (version of 20160114), Krogan et al. [35], MIPS [36],
andGavin et al. [11] were employed to evaluate our algorithm.
All the data used were Saccharomyces cerevisiae which have
false positive and false negative interactions in the datasets.
In this study, self-interactions and repetitive interactions are
removed for data preprocessing. After preprocessing, theDIP
dataset consists of 5028 proteins and 22302 interactions, the
Krogan dataset consists of 2674 proteins and 7075 interac-
tions, the MIPS dataset consists of 4546 proteins and 12319
interactions, and the Gavin dataset consists of 1430 proteins
and 6531 interactions.

Gene expression data was retrieved from GEO (Gene
Expression Omnibus, GSE3431) [37]. After preprocessing,
the dataset contains 7074 genes in 3 cell life cycles, each
cycle having 12 time points. The GSE3431 dataset contains
4876 proteins in the DIP dataset (coverage rate: 4876/5028
= 96.98%), 2644 proteins in the Krogan dataset (the coverage
rate: 2644/2674 = 98.88%), 4446 proteins in theMIPS dataset
(the coverage rate: 4446/4546 = 97.80%), and 1418 proteins in
the Gavin dataset (the coverage rate: 1418/1430 = 99.16%).

The GO database is currently one of most comprehensive
ontology databases in bioinformatics. GO-slims data are
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Table 1: The number of proteins and interactions in SPIN and DPIN on four datasets.

Datasets SPIN DPIN timestamp 𝑡
1 2 3 4 5 6 7 8 9 10 11 12

DIP Protein 5028 860 1029 863 671 645 598 530 1000 1194 638 690 489
Interactions 22302 1103 1608 1337 839 835 752 627 1861 2447 950 1026 569

Krogan Protein 2674 336 379 320 256 206 189 202 580 626 304 330 250
Interactions 7075 334 464 331 234 210 184 213 1025 1081 314 373 258

MIPS Protein 4546 737 897 781 583 570 531 470 839 1014 523 616 402
Interactions 12319 1097 1443 1183 754 684 642 504 1238 1637 878 1207 700

Gavin Protein 1430 177 228 215 135 112 102 96 379 419 174 190 146
Interactions 6531 242 334 317 150 135 118 135 1019 1043 230 264 184

cut-down version of the GO ontologies [17], which is availa-
ble at http://www.yeastgenome.org/download-data/curation.
GO-slim data provide GO terms to explain gene product
feature in biological process (BP), molecular function (MF),
and cellular component (CC). we used GO-slims to annotate
PPI data.

The standard protein complex CYC2008 [38] is used to
evaluate our clustering results, which includes 408 protein
complexes and covers 1492 proteins.

In this study, three-sigma principle is used to construct
the dynamic PPI networks based on four static PPI networks
(SPIN) DIP, Krogan, MIPS, and Gavin in combination with
GSE3431 gene expression dataset.There are 12 timestamps per
cycle in GSE3431, so each dynamic PPI network contains 12
subnetworks, as shown in Table 1. These 12 subnetworks have
different sizes.

3.2. EvaluationMetrics. Three commonly used metrics sensi-
tivity (SN), specificity (SP), and F-measure [8, 25, 39] are used
tomeasure the efficiency of the proposed ICSC algorithm and
evaluate the performance of the clustering results:

SN = TP
TP + FN

,

SP = TP
TP + FP

,

𝐹-measure = 2 × SN × SP
SN + SP

,

(12)

where TP is the number of predicted protein complexes
which are matched with 408 standard protein complexes, FP
is the number of predicted protein complexes which are not
matched with anyone of 408 standard protein complexes, and
FN is the number of standard protein complexes which are
not matched with predicted protein complexes [8, 25]. The
overlapping score OS is used to evaluate the matching degree
between predicted protein complexes and standard protein
complexes:

OS (pc, sc) =
󵄨󵄨󵄨󵄨󵄨𝑉pc ∩ 𝑉sc

󵄨󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨󵄨𝑉pc
󵄨󵄨󵄨󵄨󵄨 × 󵄨󵄨󵄨󵄨𝑉sc

󵄨󵄨󵄨󵄨
, (13)

where 𝑉pc and 𝑉sc denote the node sets of predicted protein
complex pc and standard protein complex sc, respectively.

The threshold of OS is set for 0.2 [8, 40]; that is, if OS(pc,
sc) is greater than 0.2, the predicted protein complex pc is
considered to match standard protein complex sc. OS(pc, sc)
= 1 shows that the predicted protein complex pc is perfectly
matched with the standard protein complex sc. The 𝑝 value
[41], which illustrates the probability that a protein complex
is enriched by a given functional group, was used to evaluate
the biological significance of the predicted protein complexes
in this study:

𝑝-value = 1 −
𝑘−1

∑
𝑖=0

( 𝐹𝑖 ) (𝑁−𝐹𝐶−𝑖 )
(𝑁𝐶 ) , (14)

where N, C, and F are the sizes of the whole PPI network,
a protein complex, and a functional group in the network,
respectively, and 𝑘 is the number of proteins in the functional
group in the protein complex [41]. For a protein complex, the
smaller the 𝑝 value is, the higher the biological significance
is. The protein complex is considered to be insignificant if 𝑝
value is greater than 0.01.

3.3. Parameter Analysis. The proposed algorithm ICSC has
three parameters, the maximum iterations maxiter, the
cuckoo populations’ size np, and the weight threshold wth.
The maximum number of iterations maxiter measures the
convergence performance of the algorithm, and the popula-
tions’ size np can guarantee the diversity of the population.
The convergence curve of ICSC algorithm on the first sub-
network of the dynamic PPI network was shown in Figure 3.
The horizontal axis is the number of iterations, and the
vertical axis is the objective function value. Figure 3 illustrates
that the ICSC algorithm converges with 30 iterations. The
populations’ size np is from 5 to 30; the objective function
reaches its maximum value at np = 15. In this study, we set
maxiter = 100, np = 15.

In ICSCmethod, cuckoo𝑖 chooses the most suitable nest𝑗
to form a protein complex; the quality of nest𝑗 directly
determines the accuracy of protein complexes, and the value
of weight threshold wth directly affects the quality of the
nest. If the value of wth is too small, a small amount of
protein pairs is selected in a nest; the clustering results are not
accurate. On the contrary, if the value of wth is too large, lots
of meaningless protein complexes are predicted.Therefore, it
is critical to select the appropriate value ofwth.MatchingRate

http://www.yeastgenome.org/download-data/curation
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Figure 3: Convergence curve of ICSC algorithm on number 1
subnetwork of DIP dataset.

(MR) is defined to verify the influence of different values of
wth.Nest is the set of initial nests of the dynamic PPI network;
SC is the set of standard protein complexes CYC2008, and
MR(Nest, SC) is defined as follows:

MR (Nest, SC) = (NI/ |Nest| + SI/ |SC|)
2 , (15)

where NI is the number of nests which are included in the
standard protein complexes, |Nest| denotes the number of
nests in Nest, SI is the number of standard protein complexes
which are included in Nest, and |SC| denotes the number of
protein complexes in SC. The experiments on four dynamic
PPI networks with wth from 0.2 to 1.2 were carried out
to verify the influence of parameters wth. The results were
showed in Figure 4. From Figure 4, in Krogan and Gavin
datasets, the MR tends to be stable while wth is greater than
or equal to 0.8. In DIP datasets the MR reaches its maximum
value at wth = 0.6 and then gradually declines, and the
downward trend is from 0.6 to 0.8. The MR curve in MIPS
dataset is similar to DIP. Therefore, the value of wth is set as
0.8 in this study.

3.4. Clustering Results. The performance of ICSC is com-
pared with six other previously proposed methods: MCODE,
MCL, CORE, CSO, ClusterONE, and COACH. All the six
methods were run on the dynamic PPI networks constructed
by three-sigma principle based on DIP, Krogan, MIPS, and
Gavin datasets. The clustering results are shown in Table 2,
where PC is the total number of predicted protein complexes,
MPC is the count of predicted protein complexes which
were matched, and MSC is the number of matched standard
protein complexes. Perfect is the count of predicted protein
complexes and standard complexes are perfectly matched;
that is, OS(pc, sc) = 1. AS represents the average size of the

DIP
Gavin

Krogan
MIPS

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.20.2
wth

0
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M
R

Figure 4: Influence of parameters wth on four DPIN.

predicted protein complexes.The comparison results are also
showed in Table 2, from which it is clear that ICSC performs
better than other six methods in terms of sensitivity (SN) and
MPC.The 𝐹-measure of ICSC is the highest on DIP, Krogan,
andMIPS while on the Gavin the 𝐹-measure of ICSC it was a
bit less than that of ClusterONE. The Perfect values of ICSC
on DIP and MIPS are 64 and 50, respectively, and are far
superior to other algorithms.

In Table 2, the perfect value of ICSC on DIP is 64. The
degree distribution of perfectly matched protein complexes
is calculated in Table 3. The degree refers to the number of
protein nodes contained in the protein complex. There are
408 protein complexes in the standard protein complexes
CYC2008; 172 complexes contain 2 protein nodes accounting
for 42.16%.However, theMCODE,CSO, andCOACHcannot
predict this part of protein complexes. The degree of 149
protein complexes greater than or equal to 4 accounted for
36.52% of all standard protein complexes, only a small part of
which can be predicted by MCL, CORE, and ClusterONE. It
is clear that ICSC algorithm achieved the best performance
in these two aspects.

In order to clearly show the clustering results, we visualize
the 265th standard protein complex of CYC2008 “nuclear
exosome complex” in Figure 5. As shown in Figure 5(a),
there are 12 proteins in this standard protein complex. The
clustering results of other five methods MCODE (b), MCL
(c), CORE (d), ClusterONE (e), and ICSC (f) are all from
Krogan dataset.The blue nodes are proteins that are correctly
predicted, the red nodes are proteins that are not identified,
and the green nodes are the proteins that are wrongly
identified. MCODE method only successfully predicted six
proteins. AlthoughMCL successfully predicted all 12 proteins
in the protein complex, MCL also produced 3 incorrect
proteins.The accuracy of CORE is the lowest; only 2 proteins
are successfully predicted. Our method ICSC accurately
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Table 2: The performance comparison of several typical algorithms on four datasets.

Dataset Algorithms SN SP 𝐹-measure PC MPC MSC Perfect AS

DIP

MCODE 0.2318 0.6182 0.3372 165 102 70 6 6.7212
MCL 0.7031 0.2505 0.3694 1541 386 245 14 4.4361
CORE 0.7381 0.2769 0.4027 1517 420 259 39 2.443
CSO 0.4403 0.6257 0.5169 342 214 136 11 4.652

ClusterONE 0.6093 0.3385 0.4352 972 329 197 15 3.5422
COACH 0.5009 0.5591 0.5284 474 265 144 13 4.9789
ICSC 0.8385 0.4186 0.5585 1997 836 247 64 3.5613

Krogan

MCODE 0.2749 0.7937 0.4084 160 127 73 10 5.125
MCL 0.566 0.4559 0.5051 658 300 178 40 3.9544
CORE 0.5417 0.4121 0.4681 677 279 172 39 2.6041
CSO 0.3284 0.8254 0.4699 189 156 89 10 5.2646

ClusterONE 0.5232 0.4632 0.4914 585 271 161 28 3.935
COACH 0.3566 0.81 0.4952 221 179 85 11 5.3575
ICSC 0.6314 0.5966 0.6135 761 454 143 23 3.3338

MIPS

MCODE 0.1714 0.5333 0.2595 135 72 60 4 5.437
MCL 0.5451 0.2017 0.2945 1259 254 196 17 4.7434
CORE 0.6235 0.249 0.3558 1217 303 225 29 2.5859
CSO 0.2835 0.5163 0.366 246 127 87 6 4.5528

ClusterONE 0.4483 0.2796 0.3444 744 208 152 17 3.1317
COACH 0.3145 0.3662 0.3384 396 145 92 5 6.5253
ICSC 0.7181 0.3028 0.4260 1691 512 207 50 3.7534

Gavin

MCODE 0.2612 0.7548 0.3881 155 117 77 6 5.3484
MCL 0.4411 0.6417 0.5228 321 206 147 25 5.0312
CORE 0.4336 0.5735 0.4938 347 199 148 26 2.8184
CSO 0.3109 0.773 0.4434 185 143 91 6 5.9405

ClusterONE 0.4797 0.6413 0.5488 368 236 152 19 5.2826
COACH 0.3477 0.6966 0.4585 234 163 94 5 6.312
ICSC 0.5033 0.5704 0.5347 540 308 104 10 3.6093

Table 3: The degree distribution of predicted protein complexes
perfectly matched (OS = 1) on DIP datasets.

Algorithm Prefect Degree
(=2)

Degree
(≥4)

MCODE 6 0 3
MCL 14 10 1
CORE 39 32 1
CSO 11 0 5
ClusterONE 15 11 2
COACH 13 0 6
ICSC 64 47 6

CYC2008 408 172
(42.16%)

149
(36.52%)

predicted 9 proteins and achieved the best performance in
identifying protein complexes.

To evaluate the biological significance and functional
enrichment of protein complexes identified by ICSI, we
randomly selected five predicted protein complexes and

calculated the 𝑝 value of on biological process ontologies
based on Krogan datasets by using GO: termFinder (http://
www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl).The
results are showed in Table 4. The proteins in bold have
well matched standard protein complexes. From Table 4, it
is obvious that four protein complexes have larger OS values
and lower 𝑝 values, which illustrates that the ICSC algorithm
is effective, and these protein complexes are reliable and
biologically meaningful.

4. Conclusion

Protein complexes are involved in multiple biological pro-
cesses, and thus detection of protein complexes is essential
to understanding cellularmechanisms.There aremanymeth-
ods to identify protein complexes but cannot reflect dynamics
of protein complexes. In this study, we have presented a
novel protein complex identification method ISCS according
to the core-attachment structure of protein complexes. First,
a weighted dynamic PPI network is constructed, which
integrates the gene expression data and GO terms infor-
mation. Then, we find functional cores and cluster protein

http://www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl
http://www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl
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Table 4: Function enrichment analysis of five predicted protein complexes detected form Krogan dataset.

Number Predicted protein complex 𝑝 value Gene Ontology OS

(1)
YOR001W YOL021C YNL232W
YHR069C YGR158C YGR095C
YDR280W YDL111C YCR035C

4.25𝑒 − 24 GO:0071042
Cluster frequency: 100%

0.75

(2) YNL136W YML041C YJL081C
YHR090C YGR002C YDR334W

5.98𝑒 − 07 GO:0006325
Cluster frequency: 100%

0.23

(3)
YNL317W YLR277C YKL059C
YKL018W YJR093C YGR156W
YDR301W YDR195W YBL010C

2.45𝑒 − 16 GO:0031124
Cluster frequency: 88.9%

0.41

(4)
YPR034W YMR091C YMR033W
YLR357W YLR321C YLR033W
YKR008W YFR037C YDR303C

YCR052W YCR020W-B

1.35𝑒 − 28 GO:0031498
Cluster frequency: 100.0%

0.64

(5)
YPR110C YOR340C YOR210W
YNL248C YJR063W YJL148W

YDR156W YBR154C
4.81𝑒 − 16 GO:0098781

Cluster frequency: 100.0%
0.57

YHR069C

YHR081W

YOL142W

YNL232W

YOL021C

YGR195W

YCR035C

YDL111C

YOR001W

YDR280W

YGR158C

YGR095C

(a) Standard

YGR158C

YOR001W

YGR095C
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YNR024W

YCR035C YOL021C
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(b) MCODE

YCR035C
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(c) MCL

YCR035C

YDL111C

YOR001W

YDR280W

YGR095C

YGR158C

YHR069C

YGR195W

YHR081W

YNL232W

YOL021C

YOL142W

(d) CORE
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(e) ClusterONE
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(f) ICSC

Figure 5: Visualization of the 265th standard protein complex “nuclear exosome complex.”

attachments based on the CS algorithm. Compared with the
other competing clustering methods, ICSC can effectively
identify the protein complexes and has higher precision and
accuracy.
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