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Some dynamics of a new 4D chaotic system describing the dynamical behavior of the finance are considered. Ultimate boundedness
and global attraction domain are obtained according to Lyapunov stability theory. These results are useful in estimating the
Lyapunov dimension of attractors, Hausdorff dimension of attractors, chaos control, and chaos synchronization. We will also
present some simulation results. Furthermore, the volumes of the ultimate bound set and the global exponential attractive set
are obtained.

1. Introduction

Chaotic systems are characterized by their extreme sensitivity
both to initial conditions and to system parameters. The
study of various aspects of chaotic systems has received great
interest among scientists from various fields due to their
numerous potential applications in science and engineering
[1–30]. Among such aspects, the problem of investigating
the ultimate boundedness of chaotic systems and hyperchao-
tic systems is an important subject. Since the discovery of the
famous Lorenz chaotic attractor [1], ultimate boundedness
of the Lorenz attractor has been investigated by Leonov
et al. in a series of articles [7, 10]. Since then many papers
have studied ultimate boundedness of other chaotic sys-
tems [25–32]. However, the approach taken in each is only
suitable for that particular chaotic system. It is very difficult
to propose a universal approach to estimate the bounds for
an arbitrary chaotic system. Zhang et al. studied the ultimate
boundedness of the Lü system and the Chen system by
using the Lyapunov stability theory and optimization
method [25–27]. Particularly, Liao et al. studied the ultimate
boundedness of the Yang-Chen system by using geometric
and algebraic methods [31]. Zhang et al. studied the ultimate
boundedness of a novel finance chaotic system by using the

Lyapunov stability theory and iterative method [32]. To
this end, it is necessary to study the bounds of the new
chaotic systems.

Recently, a financial chaos dynamical system is reported
as follows [32, 33]:

dx
dt

= z + y − a x,
dy
dt

= 1 − by − x2,
dz
dt

= −x − cz

1

System (1) models a financial dynamical system
composed of product, money, bond, and labor force. The
variables x, y, and z denote the interest rate, the investment
demand, and the price index, respectively. The positive
parameters a, b, and c denote the saving amount, the per
investment cost, and the demand elasticity of commercials,
respectively. The factors that induce the change of the inter-
est rate x mainly come from two aspects: the price index and
the surplus between the investment demand and the savings
amount. The changing rate of y is determined by the benefit
rate of investment (we assume that the rate is constant during
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a certain period), the feedback of the investment demand,
and the interest rate. The change of the price index z is
controlled by the real interest rate and price index.

According to the financial dynamical system (1), by
adding a variable u, one gets a new 4D financial chaos
dynamical system as follows:

dx
dt

= z + y − a x,

dy
dt

= 1 − by − x2,

dz
dt

= −x − cz + du,

du
dt

= −ku −mz

2

where the variable u denotes control input and economi-
cally state intervention to balance the economic environ-
ment and a, b, c, d, k,m are positive real parameters of
system (2).

The Lyapunov exponents of the financial system (2)
are calculated numerically for the parameter values a = 0 9,
b = 0 2, c = 1 5, d = 1, k = 0 05, and m = 0 005 with the initial
state x0, y0, z0, u0 = 0, 1,… , 0 5, 0 . System (2) has the
Lyapunov exponents as λLE1 = 0 1740, λLE2 = 0 1314, λLE3 =
0 0000, and λLE4 = −15 6059 for the above parameters (see
[8, 9] for a detailed discussion of Lyapunov exponents of
strange attractors in chaos dynamical systems).

The chaotic attractor of system (2) in xOyz space for the
positive parameters a = 0 9, b = 0 2, c = 1 5, d = 1, k = 0 05,
and m = 0 005 is shown in Figure 1.

Remark 1. The chaotic attractor is one of the important
concepts of dynamical systems. Although system (2) has a
chaotic attractor for the positive parameters a = 0 9, b = 0 2,
c = 1 5, d = 1, k = 0 05, and m = 0 005, the type of the chaotic
attractor of system (2) is still unknown. It is interesting to
discuss whether the chaotic attractor of system (2) is hidden
or self-excited in the future (see the excellent papers [17, 19]
for a detailed discussion of the chaotic attractor of dynam-
ical systems).

This paper is organized as follows. In the next section, we
will study the bounds for the chaotic attractors (2) using the
Lyapunov stability theory and optimization method. To
validate the ultimate bound estimation, numerical simula-
tions are also provided. Finally, we will give some concluding
remarks in Section 3.

2. Main Properties

Theorem 1. Suppose that a > 0, b > 0, c > 0, k > 0, d ≠ 0,m > 0.
Let X t = x t , y t , z t , u t be an arbitrary solution

of system (2). Then, the following set

Ω = x, y, z, u mx2 +my2 +mz2 + du2 ≤ R2 , 3

is the ultimate bound set and positively invariant set of
system (2), where

R2 =

m
4a b − a

, c ≥ a, k ≥ a, b ≥ 2a,

m
4c b − c

, a > c, k > c, b ≥ 2c,

m
4k b − k

, a > k, c > k, b ≥ 2k,

m

b2
, b < 2a, b < 2c, b < 2k

4

Proof 1. Define the Lyapunov-like function

V X =mx2 +my2 +mz2 + du2, 5

where X t = x t , y t , z t , u t . Computing the deriva-
tive of V X along the trajectory of (2), we have

dV X
dt 2

= 2mx
dx
dt

+ 2my
dy
dt

+ 2mz
dz
dt

+ 2du du
dt

= 2mx z + xy − ax + 2my 1 − by − x2

+ 2mz −x − cz + du + 2du −ku −mz

= −2amx2 − 2bmy2 + 2my − 2cmz2 − 2dku2

= −2amx2 − 2bm y −
1
2b

2
− 2cmz2 − 2dku2 + m

2b
6

Obviously, the surface Γ1, that is, defined by

Γ1 = X amx2 + bm y −
1
2b

2
+ cmz2 + dku2 = m

4b , 7

is an ellipsoid in R4 ∀a > 0, b > 0, c > 0, k > 0, d ≠ 0, andm > 0.
Outside Γ1: dV X /dt < 0, while inside Γ1: dV X /dt > 0.
Thus, the maximum value of V X can only be reached on
Γ1. Since the V X is a continuous function and Γ1 is a
bounded closed set, then the function (5) can reach its maxi-
mum value max

X∈Γ1
V X = R2 on the surface Γ1 defined in (7).

Obviously, X ∣V X ≤max
X∈Γ1

V X = R2 contains the

solutions of system (2). By solving the following conditional
extremum problem, one can get the maximum value of the
function (5) as follows:

max V X =max mx2 +my2 +mz2 + du2 ,

s t   amx2 + bm y −
1
2b

2
+ cmz2 + dku2 = m

4b
8

That is to say,

max  V X =max mx2 +my2 +mz2 + du2 ,

s t   mx2

m/4ba + m y − 1/2b 2

m/4b2
+ mz2

m/4bc +
du2

m/4bk = 1

9
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Let us take mx = x1, my = y1, mz = z1, du = u1
as the new variables, then (9) transforms into the fol-
lowing form:

max V X =max x21 + y21 + z21 + u21 ,

s t   x21
m/4ba + y1 − m/2b 2

m/4b2
+ z21
m/4bc +

u21
m/4bk = 1

10
According to the Lagrange multiplier method, we can

easily get the above conditional extremum problem (10) as

R2 =

m
4a b − a

, c ≥ a, k ≥ a, b ≥ 2a,

m
4c b − c

, a > c, k > c, b ≥ 2c,

m
4k b − k

, a > k, c > k, b ≥ 2k,

m

b2
, b < 2a, b < 2c, b < 2k

11

Finally, it is easy to show that (3) is the ultimate bound set
and positively invariant set of system (2).

This completes the proof.

Remark 2.

(i) When a = 0 9, b = 0 2, c = 1 5, d = 1, k = 0 05, and
m = 0 005, then we can obtain that

Ω1 = x, y, z, u 0 005x2 + 0 005y2 + 0 005z2

+ u2 ≤ 0 412 ,
12

which is the ultimate bound set and positively
invariant set of system (2) according to Theorem 1.
Figure 2 shows the chaotic attractor of system (2) in
the xOyz space defined by Ω1.

(ii) We can figure out that the volume of the set Ω in (3)
is v Ω = π2R4/2m md according to Theorem 1.

Though Theorem 1 gives the ultimate bound set and
positively invariant set of the financial chaos system (2), it
does not give the global exponential attractive set of system
(2). The global exponential attractive set of system (2) is
described by the following Theorem 2.

Theorem 2. Suppose that a > 0, b > 0, c > 0, k > 0, d ≠ 0, and
m > 0, and let

V X =mx2 +my2 +mz2 + du2,

L2 = m
θb

,

θ =min a, b, c, k > 0

13

Then, the estimation,

V X t − L2 ≤ V X t0 − L2 e−θ t−t0 , 14

holds for system (2), and thus

Ψ = X V X ≤ L2 , 15

which is the globally exponential attractive set of system (2),
that is, lim

t→+∞
V X t ≤ L2.
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Figure 1: The chaotic attractor of system (2) in xOyz space with a = 0 9, b = 0 2, c = 1 5, d = 1, k = 0 05, m = 0 005, and x0, y0, z0, u0 =
0, 1,… , 0 5, 0 .
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Figure 2: The chaotic attractor of system (2) in the xOyz space
defined by Ω1 with a = 0 9, b = 0 2, c = 1 5, d = 1, k = 0 05, and
m = 0 005.

3Complexity



Proof 2. Define the following function of a variable

f y = −bmy2 + 2my, 16

then we can get

max
y∈R

f y = m
b

17

Define the Lyapunov function

V X =mx2 +my2 +mz2 + du2 18

Differentiating the Lyapunov function V X in (18)
with respect to time t along the trajectory of system (2),
when V X t > L2 and V X t0 > L2, we have

dV X
dt 2

= 2mx
dx
dt

+ 2my
dy
dt

+ 2mz
dz
dt

+ 2du du
dt

= 2mx z + xy − ax + 2my 1 − by − x2

+ 2mz −x − cz + du + 2du −ku −mz

= −2amx2 − 2bmy2 + 2my − 2cmz2 − 2dku2

≤ −amx2 − bmy2 − cmz2 − dku2 − bmy2 + 2my

≤ −amx2 − bmy2 − cmz2 − dku2 + f y

≤ −amx2 − bmy2 − cmz2 − dku2 + max
y∈R

f y

≤ −amx2 − bmy2 − cmz2 − dku2 + m
b

≤ −θV X + m
b
= −θ V X −

m
bθ

= −θ V X − L2 < 0
19

Thus, we have

V X t − L2 ≤ V X t0 − L2 e−θ t−t0 , 20

and

lim
t→+∞

V X t ≤ L2 21

which clearly shows that Ψ = X ∣V X ≤ L2 is the globally
exponential attractive set of system (2).

The proof is complete.

Remark 3.

(i) We can figure out that the volume of the set Ψ in (15)
is v Ψ = π2L4/2m md according to Theorem 2.

3. Conclusions

In this paper, we considered some dynamics of a new
4D financial chaos system. We obtained the ultimate
boundedness and global exponential attractive sets of this
system according to Lyapunov stability theory. MATLAB

simulations show that the proposed method is effective.
Characteristic time scales of the 4D financial system, the
homoclinic orbits, and heteroclinic orbits of the 4D financial
system will be taken into consideration in the future.
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