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The random traffic flow model which considers parameters of all the vehicles passing through the bridge, including arrival time,
vehicle speed, vehicle type, vehicle weight, and horizontal position as well as the bridge deck roughness, is input into the vehicle-
bridge coupling vibration program. In this way, vehicle-bridge coupling vibration responses with considering the random traffic
flow can be numerically simulated. Experimental test is used to validate the numerical simulation, and they had the consistent
changing trends. This result proves the reliability of the vehicle-bridge coupling model in this paper. However, the
computational process of this method is complicated and proposes high requirements for computer performance and resources.
Therefore, this paper considers using a more advanced intelligent method to predict vibration responses of the long-span bridge.
The PSO-BP (particle swarm optimization-back propagation) neural network model is proposed to predict vibration responses
of the long-span bridge. Predicted values and real values at each point basically have the consistent changing trends, and the
maximum error is less than 10%. Hence, it is feasible to predict vibration responses of the long-span bridge using the PSO-BP
neural network model. In order to verify advantages of the predicting model, it is compared with the BP neural network model
and GA-BP neural network model. The PSO-BP neural network model converges to the set critical error after it is iterated to
the 226th generation, while the other two neural network models are not converged. In addition, the relative error of predicted
values using PSO-BP neural network is only 2.71%, which is obviously less than the predicted results of other two neural
network models. We can find that the PSO-BP neural network model proposed by the paper in predicting vibration responses is
highly efficient and accurate.

1. Introduction

With the progress of the era, transportation and automo-
bile industries have achieved rapid development, while
vehicle loads acting on bridge structures also are increased
continuously. As a result, the traffic flow will be increased
continuously, driving speeds of vehicles will be increased
obviously, and a lot of heavy-load vehicles travel on highway.
In some regions, the overload phenomena are serious, and
vehicle dynamic loads become one of the main reasons for
bridge deck damage, threatening the safe of long-span brid-
ges [1-5]. Vehicle loads of long-span bridges are significantly
different from those of middle-span and small-span bridges,
which are mainly reflected in the following aspects: main

beams of long-span bridges have low rigidity, and the main
beam deformation is obvious under vehicle loads; long-
span bridges are mainly located at traffic throat positions
with large traffic flow; long-span bridges are obviously
affected by intensive vehicles. Strong traffic flow will lead to
violent vibrations of bridges. Therefore, simulation research
on loads acting on long-span bridge decks during traffic flow
driving becomes one important issue in studying vehicle-
bridge dynamic systems [6-8]. More and more obvious
vehicle-bridge coupling vibration issues gradually cause
attention of scholars. Aiming at numerical analysis on
vehicle-bridge coupling vibrations of complicated bridges,
Shi et al. [9] proposed a computational method for achieving
vehicle-bridge coupling vibrations of complicated bridges on
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FIGURE 1: Schematic diagram of long-span bridges.

highways with finite element software, deeming vehicle and
complicated bridge as two separate subsystems. Based on
contact relations between wheels and bridge deck, Ji et al.
[10] established a dynamic equation of vehicle-bridge cou-
pling vibrations. With considering random excitation from
road surface roughness, vehicles were deemed as certain
loads, and responses of bridge node displacement were
solved. Zhang et al. [11] solved random excitation caused
by bridge deck roughness and certain excitation caused by
gravity using a virtual excitation method; mean values and
standard deviations of bridge midspan deflection and stress
responses were finally obtained.

However, when vehicle loads are considered, they com-
pute vehicle loads according to bridge design specifications
and neglected randomness of traffic flows. Therefore, the
obtained conclusions had a great deviation from results of
the experimental test. Computational results will further
approach actual engineering situations, and engineering
practice can be guided better by studied conclusions if ran-
dom traffic flow conditions can be investigated fully; compre-
hensive statistical analysis can be conducted to parameters;
and a random traffic flow simulation program based on
tested data can be compiled on this basis and used for study-
ing bridge structures. Yin and Deng [12] fitted a function
expression of influential faces according to a method of
response face analysis and solved the maximum deflection
of bridge structures under random traffic flow. Yin et al.
[13] introduced a method of cellular automation for random
traffic flow simulation, used an established whole-vehicle
model which could consider spatial vehicle vibration to
simulate heavy-type vehicles in traffic flows, used a single-
freedom degree vehicle model to simulate other vehicle types
in the traffic flow, and established a motion equation under
coupling effects between bridges and traffic flows. Chen and
Wu [14] have adopted the cellular automaton (CA) traffic
flow simulation technique to simulate the actual traffic flow.
Based on the traffic flow simulation results, the live load on
a long-span bridge from the stochastic traffic is studied with
a focus on the static component. Enright and O’Brien [15]
have presented a comprehensive model for Monte Carlo sim-
ulation of bridge loading for free-flowing traffic and show
how the model matches results from measurements on five
European highways.

At present, researches on random traffic flow loads acting
on bridges are mainly focused on statistical analysis theories,
depend too much on basic assumption about unchanging of
vehicle type, vehicle weight, vehicle distance, and vehicle

speed, and fail to fully study and consider random character-
istics of each traffic flow parameters. Aiming at such
situation, this paper tests bridge health and monitors traffic
flow parameters including vehicle type, vehicle weight, and
vehicle speed. Then, through mathematic statistical analysis,
representative data of traffic situations is obtained. Simula-
tion on random traffic flow is conducted, and a random vehi-
cle flow program is compiled on this basis. A vehicle-bridge
coupling model including random traffic flows is established,
which can consider vehicle type, vehicle weight, vehicle lane,
vehicle speed, and opposite driving functions. After that,
response values of the bridge structure are extracted to be
compared with tested values. In the testing, tested time is
long, so there are many data parameters to be monitored.
Size of data to be uploaded to the data center will be very
huge. In view of the large bridge spans, monitoring with
traditional wired sensor networks must be confronted with
long wiring and high monitoring difficulty. Thanks to rapid
development of big data analysis technology, microcomputer
system, sensor technology, wireless communication technol-
ogy, and low-power consumption embedding technology, it
is possible to acquire and process data with a wireless sensor
network. With increase of monitoring scope and monitoring
points, the data throughout to be realized by the network
shall be increasingly higher. Finally, massive data will be
uploaded to the data center, belonging to the category of
big data. The computational results are practical and reliable.
The vehicle-bridge coupling vibration model with consider-
ing random traffic flows established in the paper is feasible.

2. Computational Model of Long-Span Bridges

This paper selected a long-span bridge with two towers as
the studied object, as shown in Figure 1. Span is as follows:
160m+ 160 m +426 m + 160 m + 160 m = 1066 m. Upper and
lower inclined webs are set on the fracture section to form a
wind guide nozzle. The total height of cable tower is
170.3m, and the horizontal distance between two cable
towers is 426 m. The cable tower main body is made of
concrete and forms an H-shaped tower. Compared with
common steel bridge structures, long-span bridges are
more complicated. Consolidation is the form of tower
bridge integration.

According to size parameters in Figure 1, a finite element
model of the long-span bridge was established by ANSYS.
Basically, the cross section of main beams can be deemed to
be longitudinally unchanged [16]. Beam4 elements were used
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FIGURE 2: Local mesh model of long-span bridges.

FIGURE 3: Boundary constraints of long-span bridges.

to simulate stiffening beams and cable towers. Mass21
elements were used to simulate torsion inertia moment and
additional bridge deck mass. Cable towers, piers, and beams
are connected by a coupled node method. Gravity rigidity
of the long-span bridge has a significant impact on structural
rigidity. In order to ensure the reliability of computational
results, accurate structure materials should be set. Finally,
4639 nodes and 8741 elements were divided for the complete
bridge. Local model of the long-span bridge was extracted, as
shown in Figure 2. It is shown in this figure that meshes of the
finite element model were relatively regular.

Connections between cable tower, pier, and girder are as
follows: CP command of nodes in ANSYS was used to couple
three translational freedom degrees and three rotational
freedom degrees between two nodes. The cable towers and
piers were processed by the complete consolidation, so free-
dom degrees in 6 directions were restrained, as shown in
Figure 3. Finally, vibration shapes of top 7 orders of the
bridge can be extracted, as shown in Figure 4. Modal frequen-
cies are 0.32Hz, 0.39 Hz, 0.45Hz, 0.72 Hz, 0.82 Hz, 0.91 Hz,
and 1.07Hz, respectively. Obviously, the frequencies are
distributed densely, satisfying the feature of dense distribu-
tion of natural frequencies of large infrastructures. In addi-
tion, it is shown in this figure that the first-order vibration
shape is mainly reflected by bending vibration of cable towers
and bridge deck; the second-order vibration shape is mainly

reflected by bending vibration of cable towers; the third-
order vibration shape is mainly reflected by second-order
bending vibration of the beam; the fourth-order vibration
shape is mainly reflected by bending vibration of beams
and piers; the fifth-order vibration shape is reflected by bend-
ing and torsion coupling vibration of the beam; and vibration
shapes of other orders are mainly reflected by bending and
torsion vibration of beams and cable towers as well. There-
fore, vibration shapes of the long-span bridge are not
completely the simple torsion or bending vibration. Some-
times, the vibration shapes are overlaid results of these two
vibration shapes.

3. Vibration Responses of Long-Span Bridges

3.1. Road Surface Roughness. The paper will study vehicle-
bridge coupling vibration responses. Therefore, bridge
deck roughness should be input into the computational
model. Bridge deck roughness refers to deviation levels of
the bridge surface relative to a standard plane. According to
a lot of experimental results, bridge deck roughness is an
argotic and steady Gauss random process with a mean value
of zero. Therefore, it could be simulated by different forms of
trigonometric series. Within the spatial frequency scope of
ny <n<mn,, the power spectrum density of bridge deck
roughness is G,(n). Based on a frequency spectrum
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FIGURE 4: Modal vibration shapes of top 7 orders for long-span bridges.

spreading form of the steady random process, the variance 02
of the bridge deck roughness could be expressed by [17-21]

02=J Gy(n)dn. (1)
Fitting expression of power spectrum density G,(n) of
the bridge deck roughness is as follows:

nl v
6,0 =Gyt | @
0
where 7 is spatial frequency; n, is referential space frequency;
G,(ny) is a bridge deck roughness coefficient; G,(n) is dis-
placement power spectrum density; and w is a frequency
index and w = 2. As for integral operation in (1), the scope
ny, < n < n, of spatial frequency can be divided into m small
intervals. Width of each small interval is An;. The roughness
power spectrum density value G,(n,q;) at the center fre-
quency 14, (i=1,2,...,m) of each small interval is used
to replace the G (1) value in the complete spatial frequency
scope 1, < n < n,. Therefore, (1) can be rewritten into

mid,i

‘731 = Z Gy (Mia i) An;. (3)

m
i=1

Through comparing (1) and (3), we can find that (3) is
integral in (1) using a discrete form. Hence, the computational
accuracy is affected to a certain extent. However, through
rational value option of the discrete interval, the computa-
tional error can be controlled within an allowable scope. In
order to obtain the random bridge deck roughness, a sine
wave function with spatial frequency of n, 34, (i=1,2, ..., m)

and standard deviation of (G, (14,)An;) 12 is used to denote

the bridge deck model. The sine wave function can be
denoted as follows:

q;(x) = /2Gy (Mg i)An; sin (27ngq % +6;). (4)

Sine wave functions corresponding to different intervals

are overlaid, so a random bridge deck roughness model can

be obtained.

q(x) = i

i=1

2Gy(Myia)An; sin (27n,9,x + 6;). (5)

mid,i

Formula (5) gives an expression of random bridge deck
roughness obtained by sine wave overlaying, where 0, is a
random number; x is determined according to the longitudi-
nal position; the discrete interval size An; can be set accord-
ing to the experience; each interval can be assumed to have
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FIGURE 5: Bridge deck roughness of long-span bridges.

the equal size. n,; is the center frequency of each interval,
which can be obtained according to the interval size An;
and the initial spatial frequency scope n; <n < n,. G (f,4;)
can be computed by (2). According to above computation
requirements, the MATLAB software was used to compile
the bridge deck roughness under given conditions, as shown
in Figure 5. It is shown in this figure that the bridge deck is
not completely smooth, and the maximum roughness
approaches 10mm. In this paper, we only studied the
dynamic response of towers and piers at the left side of the
long-span bridge. These two positions of the long-span
bridge are less than 600 m. Therefore, the length of the road
roughness is reasonable.

3.2. Random Traffic Flow in a Big Data Environment Using
the Wireless Sensor Networks. The paper researches vibration
responses of bridges under random traffic flow, so random
traffic flows need to be monitored. When vehicles run on a
bridge, the vehicle speeds, vehicle types, vehicle distances,
vehicle weights, and lanes would change randomly. All these
parameters shall be taken into account. Monitoring time is
long, so there are many data parameters to be monitored.
Size of data to be uploaded to the data center will be very
huge. In view of the large bridge spans, monitoring with
traditionally wired sensor networks must be confronted with
long wiring and high monitoring difficulty. Thanks to the
rapid development of big data technology [22, 23], micro-
computer system, sensor technology, wireless communica-
tion technology [24, 25], and low-power consumption
embedding technology, it is possible to acquire and process
data with a wireless sensor network [26, 27]. A wireless sen-
sor network is composed of micro and flexible sensor nodes
distributed in a monitoring area and transmits information
of collecting objects to a processing system through wireless
communication, so the collector can analyze and use the
information. Advantageous in micro size, low cost, high flex-
ibility, and so forth, wireless sensor networks have been
applied to many fields such as military reconnaissance, envi-
ronmental monitoring, medical health, intelligent transpor-
tation, smart grid, and building monitoring, as shown in
Figure 6. Random traffic flow parameters on a long-span
bridge are monitored in the paper, wherein they are featured
by large covering scope and a lot of data collection points, as
shown in Figure 7. According to the length of the long-span

bridge and the characteristics of these sensors, we have
arranged 24 sensors in the experimental test. Four sensors
are connected to one sink node, and 3 sink nodes are con-
nected to one base station. According to different monitoring
objects and purposes, there are many types of monitored
data. Hence, the monitored data shall be uploaded to the
monitoring center in time and shall be summarized and ana-
lyzed by the monitoring center in real time. Because of these
characteristics, the wireless sensor network shall guarantee
high efficiency of data transmission. With increase of moni-
toring scope and monitoring points, the data throughout to
be realized by the network shall be increasingly higher.
Finally, massive data will be uploaded to the data center,
belonging to the category of big data. Further, analysis and
statistics are conducted to the mass data. On this basis, ran-
dom traffic flows can be generated for bridge analysis. In
order to validate the subsequent simulation, the dynamic
response of the long-span bridge should be tested, so that
we have also placed some tested points on the cable tower
and pier.

When the random traffic flow was obtained, we have
prepared a program to use the random traffic flow. In the
program, the vehicle lane, vehicle type, vehicle weight, vehi-
cle speed, and roughness spectrum were considered. Finally,
the prepared program was combined with the ANSYS soft-
ware because ANSYS can output the command script file.
Detailed methods, steps, and processes of numerical analysis
on vehicle-bridge coupling vibration based on ANSYS are
shown in Figure 8. At first, a structural finite element model
of long-span bridges is established; structural information of
the bridge is input; corresponding mass and rigidity matrixes
are obtained. The above random traffic flow model which
considers parameters of all the vehicles passing through the
bridge, including arrival time, vehicle speed, vehicle type,
vehicle weight, and horizontal position as well as the bridge
deck roughness, is input into the vehicle-bridge coupling
vibration program. In this way, vehicle-bridge coupling
vibration responses with consideration of the random traffic
flow can be obtained in the ANSYS software.

3.3. Analysis and Discussion on Vibration Responses. Vibra-
tion displacements and accelerations at cable towers and
piers of the long-span bridge are computed, as shown in
Figure 9. In this paper, we have only concerned the dynamic
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FIGURE 6: Application of the wireless sensor network.

response at the cable tower and pier because there are a lot of
reported papers which have studied the dynamic response at
the bridge surface, and dynamic responses at the cable tower
and pier were rarely reported. It is shown in this figure that
vibration displacements and accelerations at the cable tower
are obviously more than those at piers. The pier is a round
structure made of reinforced concrete. It has the biggest
rigidity among all the structures and will generate the mini-
mum responses to vehicle loads.

4. Experimental Verification of the
Computational Model of Long-Span Bridges

Such complicated model of the long-span bridge is affected
by many parameters, so its correctness should be verified
by experimental test. As shown in Figure 7, the wireless
sensor network technology is used to test the dynamic
response of the long-span bridge under random traffic
flow. In the testing process, the wind speed is very small,
so its impact can be neglected. Time domain vibration dis-
placements of experimental test are compared with numeri-
cal simulation results, as shown in Figure 10. It is shown in
this figure that experimental results and numerical simula-
tion results basically had the consistent changing trends. At
some peaks, experimental values are slightly more than
numerical simulation results. The reason is that boundary
conditions of the numerical simulation are relatively ideal
states and only consider effects of random traffic flow on
the bridge, but they neglect actual wind excitation. In addi-
tion, material characteristics of the numerical simulation
can hardly be kept consistent with actual values. Wind speeds
in experimental test are low, and excitation borne by the

bridge is mainly generated from vehicles, so results between
numerical simulation and experimental test do not have big
errors. This result proves the reliability of the vehicle-bridge
coupling model in the paper.

5. Prediction of Vibration Responses for Long-
Span Bridges Based on the PSO-BPNN Model

As mentioned, vibration responses of the long-span bridge
are computed using finite element simulation. However,
the computational process of this method is complicated
and proposes high requirements for computer perfor-
mance and resources. Therefore, the paper considers using
a more advanced intelligent method to predict vibration
responses of the long-span bridge. BP neural network
model is a typical multilayer feed forward neural network.
With a strong capacity of information classification and
recognition, it can achieve approximation problem of any
function [28-31]. It performs very well in self-learning,
self-organization, fault tolerance, and nonlinear mapping,
so it is widely applied in scientific and technological fields.
A typical BP network is composed of three layers includ-
ing input layer, hidden layer, and output layer. One or
more than one hidden layer may be set. As for network
structure, nerve cells between the upper layer and the
lower layer are not connected. Each unit of the lower layer
is completely connected to each unit of the upper layer.
Nerve cells on each layer are not connected. Increase of
the hidden layers can reduce errors and increase training
accuracy. But as a result, the network will become compli-
cated and the network operation time will be too long.
When only one hidden layer is set, the accuracy will be
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FiGure 7: Collection of random traffic flow loads using the wireless sensor network.

low, and the network generalization ability will be weak.
Therefore, the quantity of hidden layers in a network must
be selected rationally according to complexity degree of map-
ping relations in actual issues, with network training accu-
racy and network operation speed as the selected standards.

BP neural work is widely applied in many fields and also
achieves some effects [32-34]. However, results are not very
ideal sometimes in practical application. There are still some
problems as follows: (1) Training speed of the BP neural net-
work is too slow. A relatively simple model may be converged
to the set error accuracy through multiple times of training.
(2) Convergence to the global minimum value cannot be
ensured. (3) Selection of hidden layer and node quantity does
not have a scientific basis. The quantities can only be deter-
mined according to an empirical formula. Hence, the struc-
ture is big and complicated with large redundancy.
Convergence time of the algorithm will be longer. (4) Learn-
ing and memorization of networks are not stable. (5) Gener-
alization problem of learned networks exists, namely,
whether rules can be approximated and whether a lot of
unlearned input vectors will be processed correctly. Aiming
at mentioned defects of BP neural network, experts and
scholars in the artificial intelligent field have made a lot of

researches and proposed many improvement proposals to
increase convergence speed of BP network and reduce the
possibility of getting trapped in local minimum values. For
example, a particle swarm optimization algorithm can be
introduced to optimize the BP neural network or improve
the BP neural network learning algorithm so as to achieve
improvement or supplement.

Particle swarm optimization (PSO) algorithm is an
optimization algorithm based on swarm intelligence theo-
ries and is also an effective global optimization algorithm
[35-38]. PSO is featured by evolutionary techniques and
group intelligence, where the optimum solution in compli-
cated space is searched through cooperation and competition
between particles in a group. Compared with a traditional
evolutionary algorithm, PSO adopts a speed displacement
model with simple operations and inherits the global search
strategy based on groups. Because of the memorization func-
tion, each particle can store good search conditions, and opti-
mization ability can be improved. PSO algorithm is a global
optimization algorithm. It is featured by very simple con-
cepts, fewer parameters, easy realization, high global search
ability, high robustness, and so on Hence, PSO and BP neural
networks have very high complementarily. At present,
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optimization of BP neural network using the particle
swarm algorithm mainly involves the following two
aspects, namely, optimization of network connection
weights and thresholds and optimization of a network
topology structure. Compared with the optimization of
network weights and thresholds, optimization of a network
structure is complicated. Besides, changes of the network
structure will affect dimensional changes of PSO solution
space. Therefore, its realization is difficult, and conver-
gence speed of the algorithm will be affected. For above
reasons, the paper selects the first type to optimize BP
neural network, as shown in Figure 11.

The PSO-BP neural network model is used to predict
vibration responses of the long-span bridge. Vibration
responses obtained by numerical computation in Section 4
are divided into two parts. The first part is vibration
responses of the first 30 min, which is used to train the
PSO-BP neural network model as training data, as shown
in Figure 12. It is shown in Figure 12 that after 30 min of

training, the performance of PSO-BP neural network model
becomes stable. Therefore, the trained model can be used to
predict vibration responses of the last 30 min. Predicted
results are compared with real values, as shown in
Figure 13. Figure 13 presents comparison between predicted
values and real values of vibration responses at cable tower
and pier of the long-span bridge. It is shown in Figure 13 that
predicted values and real values of the neural network at each
position point basically have the consistent changing trends;
only some peak values are different; the maximum error of
predicted values is less than 10%. Hence, it is feasible to pre-
dict vibration responses of the long-span bridge using the
PSO-BP neural network model.

In order to verify advantages of the prediction model, we
have extracted the predicting process of the vibration dis-
placement at cable tower using the PSO-BP neural network
model. Then, it is compared with the BP neural network
model and GA-BP neural network model, as shown in
Table 1. In fact, the compared algorithms BPNN and GA-
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FiGUure 10: Comparison of bridge vibration responses between experiment and simulation.

BPNN models are not the most advanced, but they have been
widely used in many engineering. Additionally, BPNN and
GA-BPNN models have the same topology structure with
the proposed PSO-BPNN model, so they can form a valid
comparison with the proposed PSO-BPNN model. The
termination condition for training iterations of three kinds
of neural network models is to reach the set critical error
0.016 or the maximum iteration 500. It is shown in
Table 1 that the PSO-BP neural network model converges
to the set critical error after it is iterated to the 226th gen-
eration, whereas at this moment, the other two neural net-
work models are not converged. The reason is that PSO
can accelerate convergence of the neural network model.

The training errors are 0.08 and 0.016, respectively, when
the BP neural network reaches the maximum iteration
500, and GA-BP neural network reaches the 398th gener-
ation, but errors using the BP neural network are still
more than the set critical error 0.016. During the complete
iteration, both neural network models get trapped in local
extremes and cannot jump out, so iterations are repeated.
Therefore, the complete process of training and prediction
is time-consuming. The PSO-BP neural network model
can effectively avoid local extremes and search global opti-
mal values, so that it is least time-consuming in the com-
plete process. In addition, it is shown in Table 1 that the
relative error of predicted values of PSO-BP neural
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FIGURE 12: Training of PSO-BP neural network model.

network is only 2.71%, which is obviously less than the
predicted results of other two neural network models.
Also, the predicting time using PSO-BP neural network
model is less than the other two kinds of algorithms, as
shown in Table 1. According to above analysis, we can
find that application of the PSO-BP neural network model
proposed by the paper in predicting vibration responses is
highly efficient and accurate.

6. Conclusions

(1) Modal frequencies of the long-span bridge are
0.32Hz, 0.39 Hz, 0.45Hz, 0.72Hz, 0.82Hz, 0.91 Hz,
and 1.07 Hz, respectively. Obviously, the frequencies
are distributed densely, satisfying the feature of dense
distribution of natural frequencies of large infrastruc-
tures. In addition, vibration shapes of the long-span
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TaBLE 1: Comparison of predicted results for three kinds of neural network models.

Predicting Training Amount of RMS of predicted results Real results Relative errors Predicting
algorithms errors iterations (mm) (mm) (mm) time
BPNN 0.08 500 20.1 184 9.23 1.05 hours
GA-BPNN 0.016 398 19.2 184 4.34 0.70 hours
PSO-BPNN 0.016 226 18.9 184 2.71 0.50 hours

()

3)

bridge are not completely the simple torsion or bend-
ing vibration. Sometimes, vibration shapes are over-
laid results of two vibration shapes.

In this paper, the experimental test was completed by
the wireless sensor network technology. The tested
time was too long, and parameters are too many, so
that the collected data will be very huge, belonging
to the category of big data. Then, experimental results
and numerical simulation results are compared to
perform the consistent changing trends. At some
peaks, experimental values are slightly more than
numerical simulation results. The reason is that
boundary conditions of the numerical simulation
are relatively ideal states and only consider effects of
random traffic flow on the bridge, but they neglect
practical wind excitation. In addition, material char-
acteristics of numerical simulation can hardly be kept
consistent with actual values. Wind speeds in experi-
mental test are low, and excitation borne by the
bridge is mainly generated from vehicles, so results
between numerical simulation and experimental test
do not have big errors. This result proves the reliabil-
ity of the vehicle-bridge coupling model in the paper.

The PSO-BP neural network model is used to predict
vibration responses of the long-span bridge. Pre-
dicted values and real values of the neural network
at each position point basically have the consistent
changing trends, only some peak values are different,
and the maximum error is less than 10%. Hence, it is
feasible to predict vibration responses of the long-
span bridge using the PSO-BP neural network model.

(4)

In order to verify advantages of the prediction model,
it is compared with the BP neural network model and
GA-BP neural network model. The PSO-BP neural
network model converges to the set critical error after
it is iterated to the 226th generation, while the other
two neural network models are not converged. The
reason is that PSO can accelerate convergence of the
neural network model. The training errors are 0.08
and 0.016, respectively, when the BP neural network
reaches the maximum iteration 500, and GA-BP neu-
ral network reaches the 398th generation, but errors
using the BP neural network are still more than the
set critical error 0.016. In addition, the relative error
of predicted values of PSO-BP neural network is only
2.71%, which is obviously less than the predicted
results of other two neural network models. We can
find that application of the PSO-BP neural network
model proposed by the paper in predicting vibration
responses is highly efficient and accurate.
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