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Theorizing Routines with Computational Sequence Analysis: 

A Critical Realism Framework  

 

Abstract 

We develop a methodological framework to develop process theories on routines by 

leveraging large volumes of digital trace data following critical realism principles. Our 

framework starts with collecting and pre-processing digital trace data, corresponding to the 

empirically observed experience of critical realism. At the second and third steps of the 

framework, we identify a finite set of similar repetitive patterns (routines) through 

computational analysis. We accomplish this by combining frequent sub-sequence mining 

and clustering analysis to transform empirical observation into a set of routines that 

correspond to actual happening in critical realism. Then we employ a retroduction approach 

to identify generative mechanisms of the routines. At the final step, we validate the 

generative mechanisms by evaluating proposed processual explanations and/or eliminating 

alternatives. We provide an illustrative example of developing a process theory with regards 

to the collaboration pattern in Wikipedia.  

Keywords: Process studies, routines, sequence analytics, critical realism. 

 

INTRODUCTION 

 

Process studies offer deeper theoretical insights into how events and activities unfold over time. 

They allow scholars to uncover the underlying generative mechanisms that produce events and 

activities that are directly observable (Langley 1999; Pentland 1999; Van De Ven and Poole 1995). 

A stream of process studies focuses on the organizational routines. Routines are regular features 
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of the sequences of activities and events which form repetitive patterns in organizing (Gaskin et 

al. 2014; Salvato and Rerup 2011; Pentland 2003). While routines allow scholars to understand 

the dynamic aspects of how actions taken by actors shape and are shaped by unobservable social 

structures, we lack methodologies to develop processual theories centered on the generative 

mechanisms of routines leveraging large-scale digital trace data. Our paper provides a 

computational methodological framework to analyze digital trace data grounded with critical 

realism to discover routines and identify underlying generative mechanisms. 

 

As digital technologies are used extensively in organizing, scholars who study routines can 

leverage digital trace data. Digital trace data will be particularly useful in studying routines in new 

forms of organizing, such as online communities. However, theorizing routines with digital trace 

data poses two challenges: discovering routines and identifying generative mechanisms from 

large volumes of digital trace data.  

 

Firstly, identifying recurring patterns of sequenced organizing activities and/or events becomes 

much more challenging with a large volume of digital trace data. Feldman and Pentland (2003: 

95) characterized routines as “repetitive, recognizable patterns” (Pentland and Rueter 1994). 

Traditionally, scholars “construct [process] theory from qualitative “process data” collected in 

close contact with real contexts” (Langley 1999: 705). In such a setting, routines are usually 

shorter and more standardized with a clear beginning event and ending event (Pentland and 

Rueter 1994, Pentland et al. 2010), and relatively limited variations.  On the contrary, digital trace 

data has fine granularity with a volume that exceeds any human can process effectively. For 

example, Github.com records more than 20 different event types created by the developers 24/7, 

generating more than 200,000 events each day. As online communities are “fluid” (Faraj et al. 

2011), the interactions are much more diverse in actor, activity, and time. As such, how to identify 
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“repetitive and recognizable” patterns becomes an extremely challenging task for process 

scholars.  

 

Secondly, such an increased amount of data poses new challenges to the analytical capabilities 

and our fundamental understanding of the nature of the data and the way to analyze it. In the 

literature, as Pentland et al. (2010) argued, routines have been assumed to be directly observable 

and can reflect reality (Gaskin et al. 2014; Goh and Pentland 2019; Hansson et al. 2018; Lazer et 

al. 2009; Lindberg et al. 2016; Pentland and Hærem 2015; Schecter et al. 2018). These studies 

tend to focus on measuring the variance between different sequences to investigate the 

theoretical causes of the variance. However, as digital trace data is often collected from ongoing, 

sometimes never-ending, processes at different temporal stages, the results from comparing the 

entire sequence as the unit of analysis can be inappropriate and often impossible.   

 

We propose a critical realism-based methodological framework for conducting sequence analytics 

that leverages large-volume sequential digital trace data to advance processual theories by 

identifying routines and the underlying generative mechanisms. By sequence analytics, we refer 

to a systematic way of computationally analyzing digital trace data as a sequence of events to 

identify hidden temporal structures of the actual happening to uncover the underlying generative 

mechanisms that produce those events. Sequence analytics allows scholars to explore an 

unfolding sequence of events to identify routines and understand the process dynamics (Abbott 

1990; Gaskin et al. 2014). More specifically, we propose using sequential pattern mining and 

clustering with a critical realist perspective to identify the underlying generative mechanisms that 

give birth to directly observable instances of routines. By relying on critical realism, we use 

computational tools as a device (i) to observe “empirical” reality by explicating events and (ii) to 

identify demi-regularity (routines). 
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Our sequence analytics approach contributes to the growing body of computational studies on 

information systems (Gaskin et al. 2014; Lazer et al. 2009; Lindberg et al. 2016; Pentland and 

Hærem 2015; Schecter et al. 2018) by providing concrete computational tools and a philosophical 

foundation of discovering routines and the underlying generative mechanisms.  

After the introduction and background, we put forward an integrated methodological framework 

for computational process study. We explain the framework step-by-step with an empirical 

illustration. We conclude the paper by discussing the various threats to validity and reliability and 

the limitations.  

 

LITERATURE REVIEW 

 

Routines in Organizing and Computational Process Studies  

Extant process studies are predominantly conducted with inductive, qualitative approaches based 

on data often collected through in-depth interviews, direct observations, and longitudinal 

ethnographic studies (Langley 1999; Langley et al. 2013; Langley and Tsoukas 2016). However, 

a group of scholars focusing on routine often supplement qualitative interpretations with 

complementary quantitative or even computational analysis. Frequently, those studies treat 

routines as the unit of analysis (Pentland and Feldman 2005), and computational analysis is 

usually applied to quantify the routines' characteristics. Most of those studies (Gaskin et al. 2014; 

Goh and Pentland 2019; Hansson et al. 2018; Pentland and Hærem 2015; Schecter et al. 2018) 

focus on the traditional organizing setting, where routines can often be easily identified as 

completed processes of some standard or institutionalized practices. In those studies, data is 

usually collected through observations or interviews.  
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As digital trace data has increasingly become an important source of observing changes in society, 

Information Systems (IS) researchers have also started using computational methods to analyze 

digital trace data. The computational approach refers to efforts to develop a deeper understanding 

of individual and group behaviors using large scale digital trace data produced by the computing 

devices and systems used by human actors (Chang et al. 2014; Giles 2012; Lazer et al. 2009). 

While most computational studies focus on large-scale network analysis (Giles 2012; Liben‐

Nowell and Kleinberg 2007; Onnela et al. 2007), we have started to see computational 

approaches analyzing sequential data. We can group the contemporary approaches to 

computational analytics in process studies roughly into two streams.  

 

Researchers in the first stream use computational analytics to generate key measurements from 

process data to operationalize some constructs in their variance models. This approach is seen 

as the most straightforward way of applying sequence analysis in process studies (Langley and 

Tsoukas 2017). Gaskin et al. (2014) propose a computational approach to model process data 

as sequences and calculate various measurements through sequence analysis. Lindberg et al. 

(2016) measure routine variations using sequence analysis to conduct statistical tests to examine 

the relationships between these variations and interdependencies in online communities. Li and 

Zhou (2017) apply sequence analysis to measure the variability of the open-source software 

development process and then explored the relationship between process variability and 

developer mobility through econometric analysis. This line of studies is more like an updated 

version of a traditional quantification strategy (Garud and Van de Ven 1992; Langley 1999; Van 

de Ven and Polley 1995) where processes are quantified and abstracted into numeric constructs, 

which essentially transform a process study into a variance study.  

 

Another stream of researchers mostly follows an inductive approach and generally use 

computational analysis to complement traditional interview-based approaches. For example, 
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Berente et al. (2019) discuss how to leverage big data for grounded theory development by 

incorporating computational analysis. In this stream, scholars use computational analysis mostly 

to automate or assist discovering the concepts (Gioia et al. 2012). Then they develop process 

models by inductively formulating the dynamics among the discovered concepts. For example, 

Vaast et al. (2017) discover three major user roles in using social media (Tweeter) by first 

performing a clustering analysis, then modeling and identifying typical interaction patterns among 

different user roles using a network motif analysis. Based on the result, they then proposed a new 

explanatory theory. 

 

It is also worth noting that many computational process studies also use network tools, instead of 

sequence analysis tools, to explore the dynamics within the process. For example, Vaast et al. 

(2017) use interaction networks among the different types of actors involved to identify motifs that 

represent typical interactions. Goh and Pentland (2019) similarly create activity networks using 

the sequence of activities collected from EMR logs. Meanwhile, Schecter et al. (2018) develop a 

relational event network method to analyze the sequence of relational events among actors, 

leveraging social network analysis. However, the richness of digital trace data is generally lost 

during the construction of these different types of networks, as complex events are often 

represented by nodes of a single attribute (e.g., actor (Vaast et al. 2017), action (Goh and 

Pentland 2019), or relational events (Pilny et al. 2016, Schecter et al. 2018)). As a result, the 

interpretation of the analysis result is usually relatively simple and is limited to the remaining 

attributes.  

 

Scholars are recently increasingly interested in applying process mining techniques (van der Aalst 

et al. 2007) to study organizing routines (Grisold et al. 2020). Process mining is a family of 

computational algorithms that use digital trace data (e.g., event logs) 1) to build process models 

(process discovery), 2) to check if process instances follow the prescriptive process model 



Journal of the Association for Information Systems 

7 

(conformance checking), and 3) to identify bottlenecks that create a negative performance of 

processes (van der Aalst et al. 2011). Given its origin in the workflow management system 

discipline, the process mining tool is designed to support workflow managers in developing 

workflow schema, monitoring the workflow instances according to the schema, and handling 

exceptions in the middle of the execution of workflow instances (Andrews et al. 2018). Noting the 

conceptual similarity between workflow schema and routines, Grisold et al. (2020) discuss how 

process mining techniques can be used to develop theories about endogenous-evolutionary and 

exogeneous-punctuated changes in routines. However, process mining techniques target 

structured business processes in which the beginning and the end of process instances are easily 

identified. On the other hand, many organizational processes, particularly in virtual settings, are 

unstructured, and the beginning and end of process instances can be obscure. The literature is 

still at the early stage (see Grisold et al. (2020)). There is a lack of any attempt to develop theories 

considering the multi-layered nature of routines. 

 

Sequence Analytics 

 

Sequence analytics is a branch of computational tools developed for conducting sequence 

analysis. Social science scholars have used computational sequence analysis for over three 

decades (Abbott 1990; Abbott and Forrest 1986). The most commonly used sequence analysis 

uses multiple sequence alignments, sometimes also called the optimal matching method (Abbott 

and Tsay 2000). By aligning and comparing different process sequences, scholars can categorize 

the sequences based on their similarity and identify patterns based on that categorization. These 

studies generally examine the whole course of the change process, as scholars are typically 

interested in the sequence of events in the context of actual history. Examples of patterns 

identified through this approach include career progress patterns (Abbott and Hrycak 1990; Blair-
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Loy 1999; Halpin 2010; Halpin and Cban 1998), life trajectory patterns (Stovel and Bolan 2004; 

Wilson 2001), vacation patterns (Bargeman et al. 2002; Shoval et al. 2015), management’s 

cognitive schema changes (Bingham and Kahl 2013), organizational change rhythms (Klarner 

and Raisch 2013), discursive history (Maguire and Hardy 2013), design processes (Gaskin et al. 

2014), and open-source development processes (Lindberg et al. 2016).  

 

Sequential pattern mining is a less frequently used sequence analysis approach that focuses on 

identifying the latent segment, termed a frequent sub-sequence, instead of comparing whole 

sequences. With sequential pattern mining, scholars seek to discover frequent sub-sequences as 

patterns in sequence data, which present the sequences of ordered events using a concrete 

notion of time. Events in time, codons, or nucleotides in amino acids, website traversal, computer 

networks, and characters in a text string are examples of where the existence of sequences may 

be significant and where the detection of a frequent sub-sequence might be useful (Mooney and 

Roddick 2013). Such frequent sub-sequences offer opportunities to identify “repetitive, 

recognizable patterns” (Feldman and Pentland 2003, p. 95).  

 

Computer scientists first developed sequential pattern mining to discover latent sequential 

patterns (Agrawal and Srikant 1995). Natural scientists use it to discover sequence motifs1 from 

biological sequence analysis (D’haeseleer 2006a). Although it was discussed in the social science 

literature shortly after it was invented (Abbott and Barman 1997), this approach has never been 

widely adopted by other scholars (Cornwell 2015: p.195).  

 

In this study, we propose applying sequential pattern mining to better understand routines in 

organizing leveraging digital trace data. In so doing, we draw on critical realism as the foundation 

                                                
1 Sequence motif in biology is the short but recurring pattern in DNA sequence that may carry 
special biological functions (D’haeseleer 2006b). 
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of the computational approach. We argue that we must understand the meaning of directly 

collected trace data in a broader social context. 

 

Critical Realism 

 

Critical realism is an alternative philosophical paradigm to both positivism and interpretivism in 

conducting social science research (Bhaskar 2013; Wynn and Williams 2012). It focuses on the 

causality of social and natural phenomena and tries to explain how and why such phenomena 

occur by identifying generative mechanisms.  

 

The ontological stance of critical realism is based on independent reality and stratified ontology. 

Independent reality indicates that the reality of our world exists independently of our perceived 

knowledge. With independent reality, scientific research is concerned with understanding things 

and their causality in two dimensions: intransitive and transitive (Bhaskar 1998). Things and 

entities in the intransitive dimension are real, while those in the transitive dimension are perceived 

and are therefore based on human perception. Our knowledge is created in the transitive 

dimension and based on observed events, while our theories about those events are caused by 

intransitive entities in the social and natural worlds. Therefore, knowledge in the intransitive 

dimension is not absolute and can be revised as more experience of events is accumulated via 

human observations or computing tools on intransitive entities in the world. 

 

The two-dimensional view of the world leads to a stratified ontology with three domains: real, 

actual, and empirical (Bhaskar 2013). The real domain includes entities, structures, and the 

causal powers inherent in them. Events are created when the causal powers of entities or 
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structures are enacted. The events created by causal powers may be different when the causal 

powers interact with the contextual factors of the settings. The domain of the actual is a subset of 

the domain of the real and includes events created by causal powers.  These are events that have 

actually occurred, whether they are observed by humans or not. The domain of the empirical is a 

subset of the domain of the actual and includes events that are experienced by human observers. 

Empirical data often differs from the actual data because of the observer’s interference 

(Danermark et al. 2001). 

 

Such an ontological view offers an alternative perspective to the commonly adopted positivist 

paradigm when analyzing digital trace data generated by human activities. Digital trace data 

represents “a slice” (Jungherr and Theocharis 2017, p. 99) of the activities that are monitored by 

information infrastructure and produced as the “by-product” of monitored activities (Howison et al. 

2011, p. 769). Digital trace data, therefore, is different from the sample data that is purposefully 

collected through deliberately designed instruments, which can be seen as having direct access 

to the real world in positivists' view. By viewing digital trace data as empirical observations of 

actual events2 generated by the underlying real mechanisms “in a specific contextual environment 

at a specified time” (Wynn & Williams 2012, p. 793), critical realism recognizes the ontological 

independence of the empirical observations. It holds an “open systems perspective” that the 

variations in empirical observations are caused by the underlying mechanisms and structures and 

the changing contextual conditions (Wynn & Williams 2012). This perspective is especially helpful 

when scholars need to analyze vast amounts of digital trace data with high variety generated in 

virtual environments, such as online communities. It requests scholars to go beyond the observed 

variances and look into the real structures and mechanisms underneath.  

                                                
2 Here, an event refers to a specific happening or action caused by the enactment of underlying  mechanisms (Wynn 

and Williams 2012).  
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In addition to providing a more appropriate ontological view of digital trace data, the 

epistemological assumptions of critical realism allow IS researchers to develop “context-specific 

causal explanations of socio-technical phenomena by explicating the specific mechanisms which 

generate them” (Wynn and Williams 2012, p. 795). Critical realism does not seek to deductively 

establish causal relationships among measured constructs like positivists do, nor inductively 

formulate dynamic relationships among identified concepts like interpretivism does (Gioia et al. 

2013). Instead, critical realism relies on retroductive reasoning to propose and find the best 

plausible explanations that can make sense of discovered patterns. As such, an iterative and 

multimethod-based approach to building the mechanisms that generate experiences (observable 

events) is the key artifact of the critical realism approach. The mechanisms need to be verified 

based on theory and the empirical data collected.  

 

Pentland and Rueter (1994) propose the influential grammatical model of routines, where routines 

can be viewed as a set of possible performances for a specific task that is “in part” defined by the 

grammar. What is left out of their model is the syntax that governs the construction of a routine. 

In linguistic theory, syntax is seen as the generative rules that describe the formation of 

grammatical sentences (Everaert et al. 2015). Feldman and Pentland (2003) propose ostensive 

and performative aspects of routines. Similarly, Becker (2005) argues that routines should be 

seen as a multi-level concept following a critical realist’s ontological view of three-level stratified 

reality (despite not directly using the term “critical realism”), suggesting to start from “recurrent 

action patterns” on the level of “empirical.” Therefore, critical realism offers an ideal philosophical 

view in studying routines, where performances of routines are captured as empirical observations, 

and routines are actual events generated by underlying mechanisms. 
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Traditionally, scholars who follow critical realism have primarily used qualitative methods that are 

not suitable for analyzing vast amounts of digital trace data. Wynn and Williams (2012) propose 

five methodological principles for case studies derived from critical realism, including explication 

of events, explication of structure and context, retroduction, empirical corroboration, and 

triangulation and multimethod. Other scholars have also proposed methodological approaches to 

critical realism research. For example, Fletcher (2017) proposes a flexible coding and data 

analysis process according to the critical realism approach. He uses a linear process of 

identification of demi-regularities, abduction, and retroduction to identify two generative 

mechanisms (namely, gender ideology at the household and farm level, and corporatization in 

Canadian culture) that shape the lives of prairie farm women in Canada using two types of data: 

extensive data (statistical) and intensive data (interview and focus groups in the context of 

Saskatchewan farm women’s experiences). Miller (2015) discusses how agent-based modeling 

can be used in critical realism to study various topics in organizing. Zachariadis et al. (2013) 

propose a multi-phase framework for applying critical realism in mixed-methods research. 

Henfridsson and Bygstad (2013) use a configurational approach to identify the generative 

mechanisms of the digital infrastructure evolution. 

 

Despite those early efforts, these methodologies are mainly dependent on manual work to collect 

and analyze data in different domains (empirical, actual, and real), thus not suitable for a large 

volume of digital trace data accumulated in real-time. The availability of large volumes of digital 

trace data together with a new breed of software tools specifically designed to deal with sequence 

data broadens the scope of the events that would not have been observed by human scientists 

without such tools and trace data. A new methodological framework based on the computational 

tools to help scholars to process observed data and then discover the generative mechanism is 
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urgently needed in a digitalized society where the interactions among people are becoming more 

real-time and complex.  

 

SEQUENCE ANALYTICS FRAMEWORK  

An Overview 

Broadly following the methodological principles of critical realism set out by Wynn and Williams 

(2012), we propose a five-step framework for conducting studies of routines using sequence 

analytics (Figure 1). In particular, we take a process-oriented approach. Howard-Grenville et al. 

(2016) argue that traditional routine studies take an entitative-oriented approach that considers 

routines as being similar to computer programming or genes and views them as building blocks 

that generate stability, efficiency, and a unique capacity within organizations assuming routines 

are designed to produce invariant outcomes regardless of who performs the routines.  

 

 

Figure 1 A sequence analytics framework for computational process research 
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In contrast, the process-oriented approach (Feldman and Pentland 2003) emphasizes human 

agency involved in routines, which emerge, persist, and change over time depending on the 

actions taken by human actors. The enactments of routines may differ depending on the contexts. 

The process-oriented approach to routines assumes a multi-layered structure of routines. The 

generative layer is different from the surface layer in which the enactments of routines are affected 

by different structures, actors, and temporal features. Therefore, the process-oriented approach 

is in line with the principle of critical realism. The variability of routines in the underlying layer can 

explain the variances of actions observed in the empirical layer.  

 

Our framework starts with collecting and pre-processing digital trace data, which corresponds to 

the empirically observed experience of critical realism. The second and third steps of the 

framework are concerned with identifying primitive patterns (i.e., groups of similar repetitive 

patterns) through computational analysis. From the perspective of process studies, these primitive 

patterns serve as a form of routines. Our view is that empirical observations collected from digital 

trace data are the performances of routines in the domain of the actual, which may vary in different 

contexts. Observed experiences contain actions taken by actors in certain orders. These are still 

difficult to translate into routines due to the vast number of observations and the high variety 

caused by specific contexts. We accomplished this by combining frequent sub-sequence mining 

and clustering analysis to transform empirical observations into actual happenings. The former 

analysis identifies latent patterns, while the latter identifies primitive patterns. A latent pattern is 

defined as a section of sequences that repeatedly appears in different processes; a primitive 

pattern is a meta pattern that represents a group of similar latent patterns.  

 

Once routines in the actual domain are identified, a retroduction approach is employed to identify 

the generative mechanisms of the routines. The final step is to validate the findings via assessing 
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identified mechanisms by evaluating proposed explanations and/or eliminating alternatives. Table 

1 shows how the sequence analytics method transforms empirical observations into routines from 

one domain to the next domain compared with the traditional critical realism approach. We argue 

that triangulation between the traditional and emerging computational methods is an important 

element that defines successful computational process research. 

 

Table 1 Stratified ontology in traditional versus sequence analytics-based critical realism studies 

Stratified ontology Traditional approach (Wynn 

and Williams) 

Sequence analytics  

Observed experiences: 

observed instances of many 

possible performances of 

routines. 

Researchers’ own observation: 

e.g., interview-based case 

study. 

Low volume, low variety, and 

less structured 

Digital trace data automatically 

collected by information 

infrastructure. 

High volume, high variety, and 

more structured.  

Actual Events: routines formed 

by subroutines and governed 

by the underlying 

mechanisms.  

Demi-regularities are identified 

through manual explication. 

Demi-regularities are identified as 

primitive patterns through 

sequence mining and clustering. 

Real Mechanism: the rules 

and structures that can 

generate the routine. 

Iteratively retroduce 

explanatory mechanisms.  

Iteratively retroduce explanatory 

mechanisms. 

 

 

The Overview of an Illustrative Example 

Below, we explain each step of our framework in detail. Along with each step, we demonstrate 

how the proposed framework can be applied in an empirical study by detailing the operational 

steps of sequence analytics. We also discuss key considerations for researchers to bear in mind.  

For the illustrative example, we use data collected from Wikipedia, the largest online collaborative 

project, with timestamped event logs, focusing on the collaboration activities among different 

participants. In such a virtual community, articles are being continuously edited by different 

participants; this makes it impractical to identify routines using traditional approaches and 

provides an ideal setting to demonstrate the use of our framework. In Wikipedia, there are two 



Journal of the Association for Information Systems 

16 

types of articles, namely, featured and non-featured articles. A featured article in Wikipedia is one 

of the “best articles Wikipedia has to offer.”3 Such articles have to meet some very strict criteria 

that emphasize accuracy, neutrality, completeness, and style.  

 

In this illustrative example, we show how we followed our framework to discover if and how 

featured articles are created through different collaboration patterns over time, compared to non-

featured articles. Collaboration patterns in Wikipedia represent repetitive and recognizable 

sequences of members' editing activities to develop articles and are the core routines of Wikipedia. 

By comparing the patterns of collaboration over time between featured and non-featured articles 

on Wikipedia, we use our sequence analytics framework to identify the generative mechanisms 

that cause certain types of collaborative patterns that result in high-quality Wikipedia articles.  

 

Step 1: Data Preparation 

The first step of sequence analytics is data preparation, which includes data collection and data 

processing. Researchers need to determine the source of the relevant data and secure access to 

it. Digital trace data is usually downloaded from the source, often by using customized scripts or 

APIs. Such data provides a means to capture the empirical reality. However, not all the data 

available is relevant to the focal study. Thus, one of the key tasks is to identify the necessary 

features of the events. This process creates the foundation for researchers to explicate the events 

further in the next step (Wynn and Williams 2012). Therefore, it is important to select and collect 

data that can carefully describe the essential features of target events.  The raw data collected is 

often in the format of system logs stored in a database. It may be structured (like HTTP logs) or 

unstructured (like the interview transcripts, historical archival data, or observational data often 

                                                
3 https://en.wikipedia.org/wiki/Wikipedia:Featured_articles 
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used in conventional process studies).  The raw data needs to be further processed into a proper 

format with the desired information for analysis.  

 

The data sources amenable to sequential analytics can include unstructured data like social 

media posts and articles on online communities like Reddit and structured data such as event 

logs from workflow management systems. These data may provide the timestamp, actor, and 

contents of events, which can be transformed into sequences of events. The collected data needs 

to be evaluated from three aspects as defined in Table 2 to avoid potential biases described in 

the table. 

 

Table 2 Evaluating data for sequential analytics 

Completeness 

of Event 

Is the system designed to 

capture all kinds of events or 

only specific types of 

events? 

It may cause “selection bias” if the system 

captures only certain types of events or 

different events are captured 

disproportionately. For example, the system 

always captures event A but only selectively 

captures event B. 

Temporal 

Accuracy  

Is the system designed to log 

the event in real-time or 

delayed/aggregated?  

The accuracy of temporal measurement is 

crucial for sequence analysis as it forms the 

basis of creating the correct sequence. For 

example, the system logs event A in real-time 

but logs event B on the hour.  

Consistency 

of data 

Has the data been recorded 

in the same way, such as 

format and categorization, 

throughout the study? 

Inconsistency can lead to incorrect analysis 

results. For example, event A and event B 

are recorded as two separate events at first 

but then recorded as the same event A later 

due to a change of system definition. 

 

The processing of raw digital trace data requires a strong theoretical foundation to address 

several challenges. The key decision to make is how to define the events and create a sequence 

of events. Researchers are required to define the ontology of discrete “events” (Hui 2016). 

Langley (1999) discusses difficulties in defining events with process data concerning elements 
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that need to be included as part of an event. The conceptualizing of events should take both the 

theoretical needs and empirical availability into consideration. Theoretically, the ontology should 

align with the research interests and should assist in answering the research questions. 

Empirically, the ontology should have a connection with the data, either directly or indirectly. 

Normally, the process data should contain “what happened and who did what when” (Langley 

1999). Similarly, Pentland (1999) discusses several key features of a story when developing 

process theory through narrative: (1) sequential structure; (2) focal actor(s); (3) narrative voice; 

(4) evaluative context; and (5) other indicators of context. 

 

When developing an ontology, researchers' interference needs to be minimized so as not to 

nudge the coded empirical data into the domain of the actual. Thus, it should be as straightforward 

as possible while maintaining theoretical relevance. For example, Gaskin et al. (2014) develop an 

ontology with seven different elements (activity type, actor configuration, location, tool modality, 

tool affordance, artifact type, and dataflow) to conceptualize a design event using digital tools.   

 

Another key task with event ontology is to identify the proper unit and level of analysis. As the 

digital trace data collected often have a fine granularity, researchers need to decide whether to 

aggregate the data to a higher level via abstraction. The level of analysis should be chosen per 

the level of events that constitute the outcome under study. For our illustrative example, the 

research question under consideration is concerned with the collaboration pattern; therefore, the 

unit of events for the analysis is action on a Wikipedia article. 

 

While collecting and processing digital trace data, researchers should also pay close attention to 

potential issues related to data validity and reliability. Howison et al. (2011) identify several issues, 

particularly issues related to the information systems that generate the digital trace data, which 

can affect the validity and reliability of the digital trace data. They also provide recommendations 
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to deal with these issues. In short, researchers should always make a great effort to have a 

thorough understanding of how the system is designed and used and how the data is measured 

and recorded by the system. 

  

The Illustrative Example 

As the goal of the illustrative example is to understand collaboration patterns for creating featured 

articles, we collected records on actions related to edits of articles and interactions among actors. 

Wikipedia automatically records all types of user activities in its log system that can be retrieved 

through the official API4. We developed a Python script to download all the editing activities 

provided by the API. For each Wikipedia article, there are two types of pages. The first is the main 

page, which contains the actual content for readers. The other is the talk page, where contributors 

or readers may make comments. We collected revision histories for both pages over the first 90 

days5 of each article’s existence to understand the process of creating an article. According to 

Wikipedia’s API policy, each article's revision history tracks all changes: a change made to the 

main page shows an edit was made to the article content, and a change made to the talk page is 

shown as a comment on the discussion of the content. As shown in Table 3, we combined the 

main and talk pages' revision histories to create one single timeline based on the timestamp.  

 

Table 3 Example of collected data. 

Article Title Timestamp Contributor Action 

1911 in Iran 2015-05-21 20:49:54 UTC F4fluids Edit 

                                                
4 Such sequence-centric computational models, we believe, can be useful not only to qualitative scholars interested 

in process studies, but also to those who are interested in the computational method in general as a complementary 
approach to network-centric computational models that have gained popularity among IS scholars. While the 
network-centric approach focuses on discovering underlying latent structural features that affect social phenomena, 
the sequence-centric approach focuses on discovering latent temporal features that underpin changes in social 
entities.  We believe this would be particularly helpful for qualitative scholars who are interested in conducting 
process studies. 
5 We also collected 6 months’ data. The results are similar for the first 90 days, 120 days, and 180 days.  Therefore, 

we present the 90 days results for the simplicity of the case study.  
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1911 in Iran 2015-05-21 21:37:43 UTC Wgolf Edit 

1911 in Iran 2015-05-22 14:02:16 UTC F4fluids Edit 

1911 in Iran 2015-06-10 05:46:43 UTC Ser Amantio di Nicolao Talk 

 

We collected data from all 4,144 featured articles6 in English Wikipedia, which make up less than 

0.1% of the 5 million English Wikipedia articles. There was no restriction on the featured articles' 

topic, so these featured articles were selected from 30 different major topics through the 

nomination and review process7. To compare, we also collected the same set of data from a 

random sample of 4,000 English non-featured articles. Following suggestions by Langley (1999) 

and Pentland (1999), we developed the coding scheme using actor and action (see Table 4). This 

coding scheme reflects the ontology of our sequence analytics for the study. We classified actors 

as article creators or non-creators. Such classification was driven by our research interests to 

investigate the collaboration at the early stage of knowledge creation when the creator initiates a 

new Wikipedia article, and non-creator contributors make their contributions to it later.  

 

Table 4 Definition of collaboration events. 

Sequence Order ID The order of the event in the editing process based on the 
timestamp 

Actor Creator (CR) The initial contributor who created the Wikipedia article 

Non-Creator (NC) Any contributor other than the article creator 

Action Edits (ED) Make a change to the content of the article 

Talk (TK) Post a comment on the talk page of the article 

       

                                                
6 The time the data was collected was in Oct. 2016. 
7 Please refer to https://en.wikipedia.org/wiki/Wikipedia:Featured_articles for a full list of featured articles and the 

topics. 
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Action is comparable to the mixture of identifiable voice and additional information, as it is the 

recordable form representing the actor’s viewpoint from the digital trace data. Then, we classified 

actions as edit or talk, which are the two primary types of actions that a Wikipedia contributor can 

make. There are thus four types of events: creator-edit, creator-talk, non-creator-edit, and non-

creator-talk8.  

We then built the sequences of four types of events based on their timestamp. Table 5 shows 

how the data shown in Table 3 can be coded based on our ontology9. 

 

Table 5 Coding results. 

Article Title Article ID Timestamp Order ID Contributor Action Coding 

1911 in Iran 1 2015-05-21 20:49:54 UTC 2 CR ED CRED 

1911 in Iran 1 2015-05-21 21:37:43 UTC 3 NC ED NCED 

1911 in Iran 1 2015-05-22 14:02:16 UTC 4 NC ED NCED 

1911 in Iran 1 2015-06-10 05:46:43 UTC 5 NC TK NCTK 

The example sequence created based on the sample data is: CRED-CRED-NCED-NCED-NCTK 

 

Step 2: The Computation of Sequence Analytics 

 

Once the collected data have been processed into a proper format, we perform computational 

steps to discover latent patterns. Then we identify primitive patterns that represented groups of 

closely related latent patterns. These primitive patterns are then used to approximate the actual 

events (Wynn and Williams 2012) or routines in this study context.  

 

                                                
8 We also kept the events simple for illustrative purposes.  
9 Assume F4fluids is the article creator. 
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Step 2.1 Discovering the Latent Patterns 

 

Empirical observations may differ from actual events because of the variations caused by the 

specific context where the event takes place and using observations and perceptions (Wynn and 

Williams 2012). By discovering the latent patterns from multiple sequences collected from 

different instances at different times, we can overcome such issues. The discovery of the latent 

patterns can be achieved with computational approaches like sequential pattern mining.  

 

Sequential pattern mining was first introduced by Agrawal and Srikant (1995). The primary 

objective of sequential pattern mining is to find frequent sub-sequences in a large dataset 

(Fournier-Viger et al. 2017). Frequent sub-sequences are segments of events that appear 

statistically more frequently than others across different sequences. In other words, the events in 

the sub-sequence are not coexisting and are ordered sequentially by coincidence. Therefore, 

frequent sub-sequences represent latent patterns across different contexts. Figure 2 shows how 

the original sequence can be seen as a series of frequent sub-sequences, which are denoted by 

upper case letters. We would like to highlight that a frequent sub-sequence is not determined by 

the similarities between adjacent events but by the occurrences of ordered events across different 

sequences. In this example, we use the same lower-case letters to denote the events that 

appeared in similar sub-sequences (e.g., a1 may differ significantly from a2, while both come from 

A). There are four observed variants of A, including A1 and A’1 from sequence P1, and A2 and 

A’2 from sequence P2. It is often much more complex than the examples we show here.  
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Figure 2 Latent patterns discovered from the empirical process. 

 

Since the invention of sequential pattern mining, various algorithms have been developed. 

Sequential pattern mining is essentially an enumeration problem that should always have “a single 

correct answer” with the same criteria, regardless of which algorithms to use (Fournier-Viger et 

al. 2017). These algorithms are based on deterministic algorithms that only differ by their search 

strategies, so that some algorithms may be more efficient than others. 

 

To effectively apply those algorithms, many criteria can be set to limit the search strategy. 

Generally speaking, two criteria are applicable to most algorithms and also most relevant to 

process studies: occurrence frequency and length. Occurrence frequency, commonly referred to 

as support, is the most important criterion. Minimal support specifies the minimal percentage (or 

absolute number) of sequences in which the particular sub-sequences should be found. For 

example, if one dataset contains ten sequences and the minimal support is set to 70%, then a 

sub-sequence needs to appear in at least seven sequences to be considered a frequent sub-

sequence. Max length specifies the maximum number of events in a sub-sequence. For example, 

if the max length is set to 6, only sub-sequences with a length from 2 to 6 will be selected.  

 

Both theoretical considerations and computational constraints should drive the decision regarding 

minimal support and max length. On the one hand, how “repetitive and recognizable” a routine 

should be is not decisive, particularly when the dataset is large. Arguably, minimal support mainly 
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concerns the repetitiveness so that the larger the dataset is, the lower the minimal support may 

be set. Max length mainly concerns the recognizableness so that the longer the whole sequences 

are, the greater the max length may be set. On the other hand, lowering the minimal support and 

increasing the max length would significantly increase computing time. This may pose a 

significant constraint when dealing with very large datasets with long sequences. Therefore, it is 

usually a “trial-and-error” practice to balance the theoretical consideration and computational 

constraint. Traditional routine studies can often offer some inspirations to set up the parameters. 

For example, Pentland and Rueter (1994) report that the average length of their routines is 9.57 

with a standard deviation of 2.77. In another study, Pentland et al. (2010) report average length 

around 10 and 14 for two different routines. Based on our experience, the complexity of the task, 

stability of the organization, and heterogeneity of actors can all contribute to the potential length 

and support, such as routines in virtual communities often shorter than in traditional organizations. 

Generally, we suggest starting with lower constraints (e.g., minimal support 20% and max length 

8), which may require longer computation time but give a better overview, and then gradually 

adjusting them. APPENDIX A provides a summary of commonly used sequential pattern mining 

algorithms and other important search criteria.  

 

The Illustrative Example  

We used TraMineR (Gabadinho et al. 2011), an R package specially designed for sequence 

analysis in the social sciences. It has been used by many academic researchers in different 

disciplines, including IS (Lindberg et al. 2016).  We used seqefsub, a function of TraMineR, to 

identify frequent sub-sequences with a set of constraints. This function is based on a prefix-tree-

based search algorithm (Ritschard et al. 2013). APPENDIX B discusses the consideration of key 

parameters that we used in our example.  
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To understand different collaboration patterns from both micro-level (i.e., between different 

articles) and macro-level (i.e., across different parts of the Wikipedia community), we further broke 

down our data into five three-year periods (2001 to end of 2003; 2004 to end of 2006; 2007 to 

end of 2009; 2010 to end of 2012; 2013 to end of 2015)10. Table 6 shows the number of featured 

and non-featured articles in five time periods. The break-down is based on existing studies on 

Wikipedia growth in terms of the number of articles11 and active editors (Halfaker et al. 2012). We 

then performed sequential pattern mining analysis for each period using the parameter specified 

in APPENDIX B. Table 7 shows an example set of results for featured articles created during 

2001-2003. The sub-sequence ((CRED)-(NCED)) can be found in 60.13% of the featured articles 

created in that period. Similarly, ((NCED)-(NCED)) can be found in 53.50% of the featured articles. 

We present more detailed results in APPENDIX C. 

 

Table 6. Summary of Wikipedia articles from 2001 to 2015 

Period Featured Article  Non-featured 
Article 

2001-2003 1402 155 

2004-2006 1553 1021 

2007-2009 716 1289 

2010-2012 289 800 

2013-2015 171 672 

 

 

Table 7 An example of the sequential pattern mining result. 

Featured Article 

Sub-Sequence Percentage 

(CRED)-(NCED) 60.13% 

                                                
10 Although the number of featured and non-featured articles in each year can be uneven, in the three-

year time period, there are statistically sufficient samples for the comparison. 
11 https://en.wikipedia.org/wiki/Wikipedia:Modelling_Wikipedia_extended_growth 
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(NCED)-(NCED) 53.50% 

(CRED)-(NCED)-(NCED) 38.45% 

(NCED)-(NCED)-(NCED) 36.80% 

(CRED)-(CRED) 28.25% 

 

 

Step 2.2: Identifying the Primitive Patterns 

Sequential pattern mining helps us to discover those latent patterns. However, not every latent 

pattern should be seen to be a demi-regularity due to embeddedness, minor variations, 

overlapping, and incompleteness. Therefore, we need to further process the latent patterns 

through clustering analysis to identify the primitive patterns. Identifying the primitive patterns is 

the second step to move from the empirical domain to the actual domain. These patterns are a 

set of sequential patterns with a high level of abstraction that serves as primitive forms of a much 

larger number of latent sequential patterns. Primitive patterns constitute emergent demi-

regularities in our efforts to discover the generative mechanisms.   

 

Primitive patterns can be identified through clustering analysis.  A cluster represents a group of 

sub-sequences, the latent patterns identified in the previous step, that share similar patterns, 

allowing researchers to compare and contrast different latent patterns within and across different 

clusters. Such cross-comparisons of latent patterns across clusters, through a priori or an 

emergent theoretical lens, help scholars to make sense of the empirical findings. Figure 3 shows 

an example of how we can identify primitive patterns through clustering. Identifying clusters 

requires two major computational operations: creating a distance matrix based on sequence 

similarity/dissimilarity, and creating clusters based on the distance matrix12 (Maclndoe and Abbott 

2004). 

                                                
12 For clustering sequential data, there are also less common non-distance based methods based on 

feature extraction or hidden Markov models. However, these methods generally would cause loss of 
information (Xu and Wunsch 2005) so we do not include them in our discussion.  
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Figure 3 Primitive patterns (A and B) identified through clustering analysis. 

 

Measuring the dissimilarity between sequences is the most common and significant starting point 

for sequence clustering. The dissimilarity measure can be formulated through a mathematical 

definition of distance between sequences. There are three main methods to calculate the distance 

between sequences: distances between probability distributions, distance based on counts of 

common attributes, and optimal matching (Studer and Ritschard 2014). Generally, we 

recommend optimal matching, as it is the most commonly used one in social science for its 

simplicity and ease of use (Studer and Ritschard 2016). The results can vary with different 

methods, and we discuss the different measurements in detail in APPENDIX D.  

 

In the OM approach, the key parameter is the substitution matrix, which defines the substitution 

cost between each event type. While it is ideal to have the substitution matrix derived from prior 

theory, it is impractical if there are no prior studies. When theory-driven cost is unavailable, the 

researcher can choose to use either constant cost, which considers every substitution to be equal, 

or data-driven cost, which is derived from empirical data based on the observed probability of 

change. Whenever the data-driven cost is available, it should be preferred, as it better reflects the 

actual relationship between events. Wilson (2006) suggests using low substitution cost when the 

actual is unknown. Studer and Ritschard (2016) show that the data-driven substitution cost has a 
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limited effect. Similarly, in another study, Gauthier et al. (2009) show great similarity between the 

final results of constant cost and other empirically grounded cost strategies. 

 

After the distance matrix had been generated, we apply clustering techniques to create the 

clusters. We recommend hierarchical clustering over other popular clustering techniques, such 

as partitional clustering, as it generally provides more robust and deterministic results while 

allowing researchers to visually oversee the clustering (Mihaescu et al. 2009; Reddy and 

Vinzamuri 2013). In APPENDIX E, we provide a detailed discussion about our recommendation 

of hierarchical clustering and the key considerations in hierarchical clustering.   

 

The key parameter of hierarchical clustering is the linkage criteria to join clusters in the hierarchy. 

There are several common linkage criteria used in hierarchical clustering: single linkage, complete 

linkage, average linkage, and Ward’s linkage. The choice of linkage criteria can affect the 

formation of clusters. In other words, the transformation of the data can be altered by the 

researchers’ specifications to the clustering algorithms. We recommend Ward’s linkage over the 

others because, unlike other criteria that evaluate pairs of sequences between clusters, Ward’s 

linkage evaluates pairs of sequences within clusters (Cornwell 2015). That is to say, Ward’s 

linkage emphasizes the similarity of sequences within a cluster, while others emphasize the 

dissimilarity of sequences across clusters. Therefore, the Ward method better served our purpose 

of identifying demi-regularities through clustering sub-sequences. However, we also note that the 

Ward method has its limitations. For example, it tends to generate clusters with a similar number 

of sequences, and it does not perform well where there is a severe outlier issue (Cornwell 2015; 

Ketchen Jr and Shook 1996). Given the impact of linkage choice, we also recommend 

researchers try other criteria and visually inspect the clustering results. Such a clustering process 

can be iteratively calibrated with the retroductive reasoning in the next step. 
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The primitive patterns are demi-regularities that can then represent actual happenings that persist 

across different instances. These primitive patterns should be interpretable and theoretically 

meaningful. The purpose of primitive patterns is not to simply remove unnecessary or uncommon 

variations from the data but to go beyond individual observations and focus on the underlying 

process that can sometimes be varied and changed because of the specific contexts where it is 

performed.  

 

The Illustrative Example 

To identify further primitive patterns, we conducted a clustering analysis on frequent sub-

sequences discovered previously. The distances between sequences are calculated with the 

function seqdist in TraMinR. We used optimal matching (OM) as the measurement method. For 

the substitution cost (and based on the previous discussion), we set it as “constant,” as we could 

not find the prior research necessary for assigning a theory-based cost13.  

 

Next, since we identified only 172 sub-sequences with a maximum 8-event length from step 2, 

there is hardly any difference in computational efficiency between k-mean clustering and 

hierarchical clustering. We applied hierarchical clustering for the reasons we discussed above 

(Figure 4). We used the R built-in function agnes. While there are different quantitative methods 

(such as the elbow method and the silhouette method) to help determine the number of clusters 

(Ketchen Jr and Shook 1996), there is no universal choice. This is also not an issue specific to 

sequence analytics. The choice is often determined not only by quantitative numbers but also by 

theoretical standpoints and interpretability. It is also an iterative process, testing the different 

numbers of clusters through different criteria and methods.  

 

                                                
13 Please also refer to APPENDIX D for further discussion on the decision of substitution cost. 
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Figure 4 Dendrogram of clustering analysis14 

 

A study by Ketchen and Shook (1996) on the application of clustering analysis in strategy research 

suggests that combined use of multiple methods can improve confidence in the results. Here, the 

choice is mainly between 3 clusters and 6 clusters. We performed an analysis with both choices 

and checked the results through manual inspection. We found that the 3-cluster model produces 

a more reliable interpretation, as shown in APPENDIX F. Therefore, we identified three primitive 

patterns: non-creator dominated sequences (cluster 1), mixed short sequences (cluster 2), and 

creator-dominated sequences (cluster 3). All the sub-sequences we discovered can be seen as 

some form of variation of these three generic meta-sequences. The process of article creation 

can be characterized by a combination of the three generic meta-sequences. 

 

In Figures 5, 6, and 7, we summarize the highest probability (the probability of the most frequently 

occurring sequence) of each meta-sequence appearing for articles created in different periods15. 

 

                                                
14 The solid line represents cutoff for 3 clusters and the dash line represents cutoff for 6 clusters. 
15 For the purpose of illustration, we set occurrence to 30% if the pattern is not detected as a frequent 

sub-sequence. The actual occurrence will be lower than 30%. 
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Figure 5 Non-creator-dominated pattern changes over time. 

 

 

  

Figure 6 Mixed short pattern changes over time. 
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Figure 7 Creator dominated pattern changes over time. 

 

Step 3: Interpreting the Results 

 

In this step, using primitive patterns identified through sequence analytics and their relationships, 

researchers seek to explore the underlying generative mechanisms through retroduction. The 

results from sequence analytics require context-dependent interpretations through retroductive 

reasoning to identify the real mechanisms from possible alternative explanations. The purpose of 

retroduction is to identify possible mechanisms that can produce the observed events. However, 

since the critical realist acknowledges that the underlying mechanisms are not directly observable 

and that the observed events are usually constrained by human perception, there may be multiple 

possible mechanisms that may generate the observed events (Wynn and Williams 2012).  Thus, 

we need to identify plausible candidate mechanisms that “if they existed, would generate or cause 

that which is to be explained” (Mingers 2004), and then select the one with the best explanatory 

power. The existing literature can offer a good starting point to identify these candidate 
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mechanisms. In APPENDIX G, we provide several examples of how existing theories may help 

us derive potential generative mechanisms. 

 

The Illustrative Example 

Based on our sequential pattern mining analysis and clustering analysis, we identified three 

primitive patterns in the online collaboration on Wikipedia. From Figures 5 to 7, we can see a 

steady upward trend for all three meta-sequences in the featured article creation processes that 

are not seen in the non-featured article creation ones. While this change partly comes from the 

increased total number of edits, the reason is probably more complex than that. While it is 

commonly believed that Wikipedia is built by “the wisdom of the crowd” (Aaltonen and Seiler 2015; 

Kittur and Kraut 2008; Ransbotham and Kane 2011), the dramatic increase in the creator 

dominated pattern in the creation of featured articles belies such an assumption.  

 

The results of our analysis show that the collaboration patterns are quite different for the featured 

and non-featured articles, and the differences become even more pronounced over time, 

particularly after 2006. During the early years of Wikipedia (i.e., 2001 to 2003), the collaboration 

patterns are fairly similar between the featured and non-featured articles. However, the featured 

articles created during this period have more non-creator continuous editing than non-featured 

articles. At that time, Wikipedia was still a little-known website, and usually, the contributors were 

technophiles16. To some extent, they were more homogenous than the contributors in later years, 

and they were more likely to share similar visions and beliefs. The majority of original article 

creators did not make significant efforts in continuous editing in either type of article (less than 

the 30% threshold). 

                                                
16 https://meta.wikimedia.org/wiki/Research:Wikipedia_Editors_Survey_2011_April 
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Figure 8 Change of collaboration patterns of Wikipedia17 

 

After 2004, however, as Wikipedia started growing rapidly and was drawing an increasing number 

of editors worldwide, we see a change in the collaboration patterns. For the articles created 

between 2004 and 2006, continuous editing, from both the creators and non-creators, nearly 

doubled for both featured and non-featured articles. Since 2007, as Wikipedia’s growth slowed, 

the collaboration patterns changed once again. However, the changes differed from each other 

depending on whether the articles were featured or non-featured. There was another large 

increase in creator-dominated patterns for featured articles created between 2007 and the end of 

2009. During the same period, the collaboration patterns for non-featured articles remained 

roughly the same. There was even a drop in non-creator dominated edits. Since 2010, as the 

decline of Wikipedia has stabilized, the change in collaboration patterns has continued. In 

particular, the increase in creator-dominated activity continues with featured articles, while non-

                                                
17 The growth of Wikipedia is based on existing studies we referred to in an earlier section. This figure is 

mainly for illustration of approximate trends. 
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creator-dominated actions have stayed the same for both featured and non-featured articles (see 

Figure 8).  

 

Looking at our results through the four modes of change proposed by Van de Ven and Poole 

(1995), we propose a life cycle as shown in Figure 9 as a process model of online collaboration's 

dynamic evolution. The life cycle perspective is appropriate in this context as the changes in 

collaboration patterns of Wikipedia have to do with the changes of users over time as the 

community grows. Our model extends the stage model proposed by Iriberri and Leroy (2009) 

suggest that an online community may go through its life cycle: inception, creation, growth, 

maturity, and death. The latter four stages are relevant to our framework as the inception of a 

vision cannot be captured through the empirical data. 

 

 

Figure 9 The life cycle of online collaboration and corresponding stages of the online 
community. 
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We use the dash-line box to highlight the potential collaboration patterns as the community 

decreases. Looking at each stage as a micro-online community where people collaborate around 

a particular topic, our analysis shows how creator-dominated and non-creator-dominated 

collaboration patterns can grow and decline as the community changes. Our model provides an 

underlying generative mechanism – the ongoing tension between the online community's 

homogeneity and heterogeneity – that produces the distinct stages as the community grows. As 

the community grows, norms, policies, roles, and procedures become institutionalized (Bagozzi 

and Dholakia 2002; Fleming and Waguespack 2007; Murray and O'Mahony 2007; O'Mahony and 

Ferraro 2007; Ransbotham and Kane 2011). At the same time, more heterogeneous members 

join the community because of the online community's fluid nature (Faraj et al. 2011). As a result, 

tension rises between the original homogenous members and the newly joined more 

heterogeneous members (Eaton et al. 2011; Zhang et al. 2016). When tension is not properly 

managed (as can be seen in favoring old members), new editors are discouraged and deterred 

from contributing. Simultaneously, the old editors become experienced in creating good articles 

following the Wikipedia standards and policies. Therefore, we see a steady increase in creator 

dominated patterns in articles created in the later years. 

 

Step 4: Validating the finding 

 

Once scholars have identified the generative mechanism through the retroductive process, the 

conclusion is supportive rather than conclusive (Mingers 2004). Therefore, we need to validate 

the identified mechanisms. This can be done by assessing and eliminating alternative 

explanations. One commonly used approach is empirical corroboration, which corroborates 

potential mechanisms with empirical evidence (Wynn and Williams 2012). For example, Bygstad 

(2010) compared the explanatory power of an identified mechanism with the explanatory powers 
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of other possible alternatives in the empirical setting to eliminate the alternatives. Williams and 

Karahanna (2013) sought corroboration through repeated confirmation, including confirmation 

from multiple participants and cases. Another validation approach is triangulation, in which multi-

methods and/or data sources can be utilized to confirm the validity of the proposed mechanism. 

For example, Zachariadis et al. (2013) and Volkoff et al. (2007) leveraged data obtained from 

different sources to confirm their mechanisms. 

 

Advances in computational science also provide potential ways of validating the findings. For 

example, machine learning and artificial intelligence share a similar philosophy. By analyzing a 

set of data, the computer tries to learn the classifier/reasoning with the best predictive power in 

other data sets. Thus, it is theoretically possible that scholars can design a “classifier” based on 

the mechanism identified through sequence analytics and test its explanatory power using digital 

trace data from other cases. In reality, there is no universal way to validate the identified 

mechanism. Validation is often seen not as a separate step but more as part of the iterative 

retroductive process (Fletcher 2017; Zachariadis et al. 2013). 

 

The Illustrative Example 

The validation of the generative mechanism was achieved in several different ways. First, it was 

done as part of the iterative retroductive process in step 4, where we selected the life cycle over 

the other potential modes proposed by Van de Ven and Poole (1995). The other three modes do 

not provide comparable explanatory power to the life cycle model. The patterns we see from our 

data do not match any possible patterns generated by the other three. 

 

Second, we sought confirmation from empirical corroboration and triangulation. Besides 

collaboration patterns, we also expected a change in the editors’ characteristics, which was not 
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observed in our data but should be caused by the life cycle mechanism as the community goes 

through different stages. Such a change in characteristics then leads to a change in collaboration 

patterns. To confirm our expectation, we utilized other data sources, such as discussions between 

editors on Wikipedia, official reports, and other studies. For example, there are intense 

discussions among users, surveys, and official projects by  Wikipedia that try to address editor 

engagement and retention.  A report suggests that editing on Wikipedia by the creator to create 

a good article has now become newcomer-unfriendly 18. Another study found that potential new 

editors are driven away and that the newcomers encounter difficulties getting into the inner circle 

of Wikipedia (Halfaker et al. 2012).  

 

DISCUSSION 

Our primary contribution is a novel methodological framework for applying computational 

sequence analytics to build a process theory of routines based on critical realism. Our framework 

provides a philosophical foundation and an operational prescription for IS scholars to investigate 

and theorize changes in routines using digital trace data. With our framework, scholars can use 

computational tools to detect and visualize latent temporal patterns of routines. Table 8 

summarizes key decisions on methodological principles, potential issues, and recommendations 

for each step of the framework. Our position is that the discovery of such latent patterns allows 

scholars to go beyond the observed patterns' variance and focus on the underlying generative 

mechanisms and social forces that produce those observe patterns. Our framework offers a 

powerful means of leveraging a large volume of digital trace data of virtual activities produced by 

the information infrastructure in studying routines in organizing.   

                                                
18 Some examples include: https://commons.wikimedia.org/wiki/File:Editor_Survey_Report_-

_April_2011.pdf; https://en.wikipedia.org/wiki/Wikipedia:Please_do_not_bite_the_newcomers; 

https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Editor_Retention; 
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Table 8 Summary of the sequence analytics framework 

Steps Decision Methodological principle Potential issues Recommendations 

Data preparation What is the best way to 

define the events and create 

the sequence with digital 

trace data generated by the 

system? 

Determine the level of events 

and the constituent parts of 

the structure when 

developing the event ontology 

and creating the sequence. 

The validity and reliability of 

the digital trace data. 

Focus on the analysis level 

and parts that are most 

relevant for the research 

objectives. 

Sequence 

analytics 

- Discovering 

latent patterns 

What is the best way to 

extract common events 

from digital trace data? 

What are the most 

appropriate computational 

techniques? 

Explicate the event, structure, 

and context through 

sequence mining.  

Unreliable results from 

inappropriate use of 

computational techniques. 

Become familiar with the 

underlying assumptions and 

requirements of different 

computational approaches. 

 

Sequence 

analytics – 

Identifying 

primitive patterns 

What is the best way to 

further abstract common 

event sequences into demi-

regularities? 

Explicate the event, structure, 

and context through 

classifications. 

The level of further 

abstraction may vary, 

depending on the 

specification of computation 

techniques, such as the 

number of clusters.  

Establish a balance 

between interpretability and 

the number of demi-

regularities. Provide 

triangulation with other 

methods.  

Interpretation What is the most likely 

explanation for the identified 

demi-regularities? 

Identify plausible causal 

mechanisms. 

Over retroduction leads to a 

generative mechanism that 

has no or a weak linkage 

with the demi-regularities. 

Given that it is a “thought 

trial” (Weick 1989) that 

needs to be done in an 

iterative manner know the 

possibility of alternative 

mechanisms. 

Validation Does the proposed 

mechanism indeed have the 

better causal power to 

explain the observed 

experience? 

Find empirical corroboration 

to demonstrate the proposed 

mechanism. 

Context-specific validation 

may lose the generality of 

the findings. 

Apply the proposed 

mechanism in other 

settings. 

Compare with other studies. 
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In particular, we propose a critical realist approach to address the multi-layered nature of the 

routines by treating the digital trace data, which is large in volume but lean in context, as empirical 

observations. Empirical observations collected through digital trace data represent varieties of 

routines, where routines are generated by the underlying mechanisms and just realizations of 

many possible routines that can be generated, with possible variances and noises introduced 

during the realization in specific contexts. In the past, scholars conducting critical realistic studies 

had to make great efforts to collect and analyze data, often manually, to move from the empirical 

domain to the real domain. Such an approach is extremely challenging to study non-traditional 

forms of organizing due to the immense variation because of the diversity of the settings and 

many unobservable factors. Furthermore, moving from the empirical observation to underlying 

mechanisms becomes even more important when a large amount of digital trace data becomes 

available and can depict the latent patterns. Therefore, our framework offers scholars a means to 

uncover generative mechanisms from digital trace data collected even in non-traditional settings. 

With primitive patterns identified by sequence analytics, researchers can delve below the surface 

of casual relationships and focus on the underlying mechanisms. 

 

We show how various computational techniques may well align with the ontological assumptions 

of critical realism. The underlying assumption of sequence analytics is that the input sequences 

are not randomly generated, and there are latent stochastic relationships among the events in the 

sequence. The generative mechanisms shape these latent relationships. Therefore, some 

sequential patterns may appear more frequently than others, and sequence analytics offer a more 

efficient way to identify those patterns, which can be considered an approximation process of the 

observable phenomena. In our framework, we suggest a two-stage approach with sequential 

mining and clustering. Researchers would analyze a stratified ontological view of critical realism 

to approximate the actual from the empirical observation. In the first stage, the sequential pattern 

mining approach does not transform the observation, as it merely identifies the sub-sequences 
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that appear more often across different processes. In the second stage, the clustering analysis 

aims to classify these sub-sequences based on similarity. Each group represents a demi-

regularity produced by the generative mechanism, and each group member is a realized 

observation. As the clustering is done by computing the similarity, the result's validity can be 

significantly affected by the alignment between the true relationship and algorithm assumptions. 

This is especially important because the true relationship, as the transition probability in the 

Markov process19, is often unknown or difficult to obtain. For example, the distance between two 

different sequences may change due to the different substitution costs specified in the optimal 

matching algorithm, leading to different clustering results. Similarly, the clusters' memberships 

may change dramatically due to the randomness of initial centroids and the number of clusters in 

k-mean clustering. It assumes that the observations that share a similar distance to the centroids 

should be considered in the same group. 

 

Furthermore, our framework also makes a broader contribution to critical realistic research in IS. 

As there is so far no unitary framework and methodology for applying critical realism in research 

(Archer et al. 2016), it is problematic for IS scholars to adopt this philosophical way of thinking. 

Our study shows an alignment between critical realism and sequence analytics with digital trace 

data to study the social phenomenon. We believe such an alignment can also be applied to other 

research applying pattern recognition analytics in big data studies. This is especially true when 

the dramatically increased data size provides diminishing benefits to traditional quantitative 

approaches, such as statistics.  

 

                                                
19 Here we use the Markov process only as a representative stochastic process to give an 
example of how latent relationships may be translated into a computational model specification. 
The interdependency between events can be more complex in many cases.  
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Our framework also addresses one of the weaknesses in the way computational methods are 

applied in social science. Namely, computational approaches are commonly criticized for having 

a predictive capability but lacking explanatory capability. Muller et al. (2016) discussed how the 

use of computational analysis in social sciences generally follows either an explanatory or a 

predictive approach, where explanatory studies mainly rely on statistical analysis, and predictive 

studies primarily use data-driven approaches like data mining. Particularly, they criticized that 

data mining “is not quite in line with the traditional scientific method” because science should be 

about finding explanations rather than finding patterns (Muller et al. 2016, p. 291). Such an issue 

is often related to the epistemological perspective of positivism in most data-driven predictive 

studies. Our framework answers such critics by showing that computational tools, such as 

sequential pattern mining and clustering in our case, can fit well with critical realism as a legitimate 

method of scientific inquiry. Our methodological framework aims to offer causal generative 

mechanisms that produce the empirical patterns observed through computational tools. 

Computational techniques process the empirical observations from the big data into primitive 

patterns representing actual happenings that humans may not observe. While such 

computationally generated primitive patterns may not necessarily be true actual happenings, they 

depict what the actual happening is likely to be. We consider these primitive patterns as “the 

computational actual.” While studies using computational analysis as a predictive approach 

usually stop at this point, with computational results as the conclusion, studies following our 

framework do not end here and are followed by further retroductive examination to find the 

underlying mechanisms that cause the computational actual identified by computational analysis. 

 

Table 9 compares this study with other similar studies on routines from contribution, philosophical 

paradigm, computational methods, and data perspectives. While most studies focus on modeling 

routines and develop theories based on interpretivism and positivism, this paper provides a 

systematic approach to identify and theorize generative mechanisms with regards to routines 
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based on critical realism. The majority of the studies in Table 9 adopt network modeling to 

represent the sequence of actions for theorizing routines.  
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Table 9. Comparison among recent routine studies based on computational methods 

 

Studies Contribution Philosophical 

paradigm 

Computational 

methods 

Data 

Pentland et al. 

2010 

To conceptualize patterns as network of actions and 

compute network metrics so as to allow researchers to 

investigata generative mechanisms of routines. 

Interpretivism  Network analysis Digital trace data 

(workflow event logs) 

Gaskin et al. 

2014 

To measure the variations among sociomaterial 

routines, which can be used together with qualitative 

data as a mix-method approach to study organizational 

routines. 

Interpretivism Lexicon modeling 

and sequence 

analysis 

Qualitative field data 

Vaast et al. 

2017 

To discover patterns of interdependence as network 

motifs so as to investigate how social media use affords 

new forms of collective engagement.  

Critical realism Clustering and 

network motif 

analysis 

Digital trace data 

(tweets) 

Schecter et al. 

2018 

To identify patterns of interactions so as to test if they 

are associated with process quality indicators, 

coordination and information sharing. 

Positivism Relational event 

modeling  

Digital trace data 

(system logs of online 

team game) 

Goh and 

Pentland 2019 

To compute the quantitative metrics, such as 

complexity, of the narrative network, and then combine 

with qualitative data so as to theorize the dynamics of 

routines.  

Interpretivism Network analysis  Digital trace data 

(scrum sheet) and 

field data (archive, 

interviews, 

observation). 

Griswold et al. 

2020 

To propose process mining as a computational tool for 

theorizing change processes in organizations. 

Positivism / 

Interpretivism 

Process mining Digital trace data 

Our framework To provide a computational methodological framework 

to analyze digital trace data grounded with stratified 

ontology from critical realism, which can be used to 

discover routines and identify underlying generative 

mechanisms 

Critical realism Sequence analytics, 

clustering methods 

Digital trace data 
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While network modeling has an advantage in analyzing structural characteristics of sequences of 

actions, it tends to analyze sequential relationships as interdependences between adjacent 

events in the network. The relationships among non-adjacent events in a process cannot be fully 

captured by this method. The sequence analytics proposed in this paper has an advantage in 

identifying primitive patterns and analyzing their evolution paths. Viewing digital trace data as 

empirical obvervations in stratified ontology, our framework can also take full advantage of 

scalability for big data sets. The digital trace data has also been utilized and translated to derive 

the generative mechanism through the retroduction based on the critical realism paradigm. 

Among the studies summarized in Table 9, Vaast et al. (2017) also take critical realism to develop 

a theory. Still, their focal point is the emerging roles of actors in social media and their 

interdependencies to enable collective actions. In their study, the unfolding processes, tweet 

threads, are modeled as interdependence among three types of users, ignoring the temporal 

order of actions taken by the users. Thus, this approach does not suit routine studies. 

   

LIMITATIONS AND CONCLUSION 

 

Our framework is not without limitations. The first limitation comes from the pitfall inherent in big 

data. Because information systems collecting the process data are not designed for researchers’ 

needs, they collect all types of data, only some of which may be irrelevant to the researcher’s 

focal problem. They also provide far too much data. Therefore, it is important to have clear data 

needs for the study and start with a parsimonious data ontology. 

 

The second limitation is the reliability of the digital trace data. Howison et al. (2011) discussed 

several reliability and validity issues when using digital trace data for social network analysis. In 

particular, the system's reliability and practice and the reliability of system-generated data are the 
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most relevant issues for process studies. The system's reliability and practice concerns the 

system's use and whether users utilize it in the way for which it was designed. The use of the 

system may also change over time due to system updates or user changes. Understanding the 

actual use of the system helps researchers to get an accurate interpretation. The reliability of 

system-generated data mainly concerns the system’s recording process. For example, time zone 

management and inconsistent recordings are two critical issues for process studies. 

 

The third limitation is the reliability of the computer algorithm. A computer algorithm is commonly 

developed based on certain assumptions and constraints to achieve the best performance. It is 

imperative for researchers to fully understand those assumptions and constraints to obtain reliable 

results. For example, a matching penalty is a critical part of a multi-sequence alignment used to 

calculate the distance of two sequences. In natural science, a matching penalty is developed from 

prior studies and experiments. Given the variety of social problems, it is often hard to develop 

such a universal matching penalty. Thus, Wilson (2006) suggested using a low penalty where the 

actual penalty is unknown. 

 

Lastly, as new computational techniques are developed rapidly in different disciplines, we may 

have overlooked other potential algorithms and models, especially in natural science.  There are 

approaches to identify sequence motifs directly from the input sequence (D’haeseleer 2006), 

which essentially combine sequence mining and clustering in one model. For example, there are 

deterministic optimization-based approaches, such as the Mixture Model by Expectation-

Maximization (Bailey and Elkan 1994), and probabilistic optimization-based approaches, such as 

“Gibbs sampling” (Thijs et al. 2002). Similarly, sequence mining techniques, such as concise 

sequence pattern mining, can discover concise representations of patterns aggregated from the 

original dataset (Fournier-Viger et al. 2017). However, we believe it is more important for social 

scientists to ensure the alignment between the algorithmic assumptions and the research 
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objectives than to adopt the latest techniques. By separating sequence mining and clustering, our 

approach offers a clearer view of how latent patterns are identified through a “trial-and-error” 

process of sequence mining. The adjustment of search needs to be supervised with theoretical 

considerations. It also provides better transparency to the researchers to follow the approximation 

process. Researchers would see how latent patterns identified from sequence mining can be 

transferred into primitive patterns through clustering. Such a capability is especially helpful when 

the choice of algorithms and their specifications may result in different outcomes. The importance 

of aligning the algorithmic assumptions and the research objectives is also why some of the state-

of-the-art machine learning algorithms, such as deep learning, are also not appropriate for our 

framework, as the overall mining and clustering process is considered to be a black box that limits 

the interpretability (Chen et al. 2018; Lipton 2018). 

 

Despite these limitations, we believe our computation framework for studying routines offers a 

useful alternative for scholars interested in building new process theories. We introduce sequence 

analytics as a methodological tool. Our framework brings a critical realist perspective with 

computational methods. It shows how sequential pattern mining and hierarchical cluster analysis 

can be combined to support process-oriented studies of routines by illustrating how to identify 

routines and their evolutions.  
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