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A 3D fractional-order nonlinear system with coexisting chaotic attractors is proposed in this paper. The necessary condition of the
existence chaos is 𝑞 ≥ 0.8477. The fractional-order system exhibits chaotic attractors with the order as low as 2.5431. The largest
Lyapunov exponent varying as fractional order 𝑞 is given. Furthermore, there are the coexisting “positive attractor” and “negative
attractor” in this fractional-order chaotic system, and the necessary condition for “positive attractor” and “negative attractor” is
obtained. Meanwhile, a control scheme for the stabilization of the unstable equilibrium is suggested via a single state variable linear
controller. Numerical results show that the control scheme is valid.

1. Introduction

Chaotic behaviors in nonlinear is a very interesting phe-
nomenon. The high irregularity, unpredictability, and com-
plexity in chaotic systems [1, 2] have been widely used in the
field of engineering and technology such as secure commu-
nications, image steganography, authenticated encryption,
motor control, and power system protection. Recently, coex-
isting chaotic attractors have been found in chaotic systems
[3–9]. For example, the coexisting chaotic attractors in a
3D no-equilibrium system were reported by Pham et al. [3],
the coexisting multiple attractors in Hopfield neural network
were found by Bao et al. [4], the coexisting chaotic attractors
in a hyperchaotic hyperjerk system were given byWang et al.
[5], the coexisting “positive attractor” and “negative attractor”
in a 3D autonomous continuous chaotic system were found
by Zhou and Ke [6], and so on [7–9]. Therefore, more and
more attention has been focused on the coexisting chaotic
attractors in nonlinear chaotic systems.

On the other hand, the fractional-order differential equa-
tions [10–12] can be accurately described in the real-world
physical systems such as viscoelasticity, dielectric polar-
ization, electrode-electrolyte polarization, electromagnetic

waves, heat conduction, diffusion-wave, and superdiffusion.
Chaotic behaviors have been found in many real-world
physical fractional-order nonlinear systems, for example,
the fractional-order chaotic brushless DC motor [13], the
fractional-order electronic circuits [14], the fractional-order
microelectromechanical system [15], and the fractional-order
gyroscopes [16].Therefore,more andmore attention has been
paid to the chaotic behaviors in fractional-order nonlinear
systems.

Motivated by the above discussions, based on a 3D
autonomous continuous chaotic system reported by Zhou
and Ke [6], we suggested a 3D autonomous continuous
fractional-order system. We have shown that the chaotic
system reported by Zhou and Ke [6] can be extended to its
fractional-order versionwhere the coexisting “positive attrac-
tor” and “negative attractor” can be observed. We obtained
that the fractional-order system with the order as low as
2.5431 exhibits chaotic attractors. Moreover, we obtained
the largest Lyapunov exponent varying as fractional order.
Finally, for the stabilization of the unstable equilibrium, one
control scheme is proposed via a single state variable linear
controller.
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The outline of this paper is organized as follows. In
Section 2, based on a 3D autonomous continuous chaotic sys-
tem reported byZhou andKe [6], the fractional-order version
nonlinear system is given, and some basic dynamical prop-
erties of this fractional-order version nonlinear system are
obtained including the necessary condition of the existence
chaos, the largest Lyapunov exponent varying as fractional
order, and the coexisting “positive attractor” and “negative
attractor.” In Section 3, by a single state variable, stabilization
of the unstable equilibrium points of the fractional-order
chaotic system is discussed. Finally, the conclusions are given
in Section 4.

2. System Model and Basic Characteristics

In this paper, the Caputo definition of the fractional deriva-
tive will be used in next. The Caputo definition of the
fractional derivative is described as

𝑐
0𝐷𝑞𝑡𝑔 (𝑡) = 1Γ (𝑘 − 𝑞) ∫𝑡0 𝑔(𝑘) (𝜏)(𝑡 − 𝜏)𝑞+1−𝑘 𝑑𝜏, 𝑘 − 1 < 𝑞 < 𝑘, (1)

where 𝑐0𝐷𝑞𝑡 is the Caputo operator, 𝑘 is the first integer which
is not less than 𝑞, and 𝑔(𝑘)(𝑡) is the 𝑘-order derivative in usual
sense of 𝑔(𝑡).

Next, based on the 3D autonomous continuous chaotic
system reported by Zhou and Ke [6], a fractional-order
system is addressed as

𝑐
0𝐷𝑞𝑡𝑥1 = −𝑥1 + 0.5𝑥1𝑥3 + 𝑥2𝑥3,
𝑐
0𝐷𝑞𝑡𝑥2 = 4𝑥2 − 1.2𝑥1𝑥3,
𝑐
0𝐷𝑞𝑡𝑥3 = 𝑥1𝑥2 − 6𝑥3,

(2)

where fractional order 0 < 𝑞 < 1. Fractional-order system
(2) has five equilibrium points. They are 𝑆0 = (0, 0, 0),𝑆+1 = (4.4721, −1.5745, 1.1736), 𝑆−1 = (−4.4721, 1.5745,1.1736), 𝑆+2 = (4.4721, 3.8106, −2.8403), and 𝑆−2 = (−4.4721,−3.8106, −2.8403), respectively.

Now,we can obtain the eigenvalues of the five equilibrium
points. The eigenvalues of equilibrium point 𝑆0 are (−6, −1,
4). Thus, equilibrium point 𝑆0 is an unstable saddle point
of index one. The eigenvalues of equilibrium points 𝑆+1 and𝑆−1 are (−5.3957, 1.4912 + 3.2168j, 1.4912 − 3.2168j). Thus,
equilibrium points 𝑆+1 and 𝑆−1 are unstable saddle points of
index two. The eigenvalues of equilibrium points 𝑆+2 and𝑆−2 are (−6.7558, 1.1678 + 4.7892j, 1.1678 − 4.7892j). Thus,
equilibrium points 𝑆+2 and 𝑆−2 are unstable saddle points of
index two.

Tavazoei and Haeri [17] have obtained that a necessary
condition for a fractional-order nonlinear system to exist
chaotic is 𝑞 ≥ 2𝜋 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨arctan Im (𝜆)

Re (𝜆) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (3)

where 𝜆 is the eigenvalues of saddle equilibrium point of
index two in fractional-order nonlinear system.

Now, we can obtain the necessary condition of the
existence chaos in fractional-order system (2). According to
(3), we have the following:

𝑞 ≥ 2𝜋 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨arctan Im (𝜆)
Re (𝜆) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨= 0.7237 for equilibrium points 𝑆+1 and 𝑆−1 ;

𝑞 ≥ 2𝜋 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨arctan Im (𝜆)
Re (𝜆) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨= 0.8477 for equilibrium points 𝑆+2 and 𝑆−2 .

(4)

Thus, the necessary condition of existence chaos in fractional-
order system (2) is 𝑞 ≥ 0.8477. This result indicates that
fractional-order system (2) with the order as low as 2.5431 can
exhibit chaotic attractors.

In this paper, the improved version of Adams-Bashforth-
Moulton [18] (denoted by IVABM) numerical algorithm is
used to deal with fractional-order system (2). The IVABM
numerical algorithm will be introduced next. Now, consider
the fractional-order system

𝑐
0𝐷𝑞1𝑡 𝑥1 = 𝑔1 (𝑥1, 𝑥2, 𝑥3) ,
𝑐
0𝐷𝑞2𝑡 𝑥2 = 𝑔2 (𝑥1, 𝑥2, 𝑥3) ,
𝑐
0𝐷𝑞3𝑡 𝑥3 = 𝑔3 (𝑥1, 𝑥2, 𝑥3)

(5)

with initial condition (𝑥1(0), 𝑥2(0), 𝑥3(0)). Let 𝑙 = 𝑇/𝑁, and𝑡𝑛 = 𝑛𝑙 (𝑛 = 0, 1, 2, . . . , 𝑁). By IVABM numerical algorithm,
system (5) can be discretized as follows:𝑥1 (𝑛 + 1) = 𝑥1 (0)

+ ℎ𝑞1Γ (𝑞1 + 2) [[𝑔1 (𝑥𝑝1 (𝑛 + 1) , 𝑥𝑝2 (𝑛 + 1) , 𝑥𝑝3 (𝑛 + 1))
+ 𝑛∑
𝑗=0

𝛼1,𝑗,𝑛+1𝑔1 (𝑥1 (𝑗) , 𝑥2 (𝑗) , 𝑥3 (𝑗))]] ,𝑥2 (𝑛 + 1) = 𝑥2 (0)
+ ℎ𝑞2Γ (𝑞2 + 2) [[𝑔2 (𝑥𝑝1 (𝑛 + 1) , 𝑥𝑝2 (𝑛 + 1) , 𝑥𝑝3 (𝑛 + 1))
+ 𝑛∑
𝑗=0

𝛼2,𝑗,𝑛+1𝑔2 (𝑥1 (𝑗) , 𝑥2 (𝑗) , 𝑥3 (𝑗))]] ,𝑥3 (𝑛 + 1) = 𝑥3 (0)
+ ℎ𝑞3Γ (𝑞3 + 2) [[𝑔3 (𝑥𝑝1 (𝑛 + 1) , 𝑥𝑝2 (𝑛 + 1) , 𝑥𝑝3 (𝑛 + 1))
+ 𝑛∑
𝑗=0

𝛼3,𝑗,𝑛+1𝑔3 (𝑥1 (𝑗) , 𝑥2 (𝑗) , 𝑥3 (𝑗))]] ,

(6)
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Figure 1:The largest Lyapunov exponent varying as fractional order𝑞.
where𝑥𝑝1 (𝑛 + 1)
= 𝑥1 (0) + 1Γ (𝑞1) 𝑛∑𝑗=0𝛽1,𝑗,𝑛+1𝑔1 (𝑥1 (𝑗) , 𝑥2 (𝑗) , 𝑥3 (𝑗)) ,𝑥𝑝2 (𝑛 + 1)
= 𝑥2 (0) + 1Γ (𝑞2) 𝑛∑𝑗=0𝛽2,𝑗,𝑛+1𝑔2 (𝑥1 (𝑗) , 𝑥2 (𝑗) , 𝑥3 (𝑗)) ,𝑥𝑝3 (𝑛 + 1)
= 𝑥3 (0) + 1Γ (𝑞3) 𝑛∑𝑗=0𝛽3,𝑗,𝑛+1𝑔3 (𝑥1 (𝑗) , 𝑥2 (𝑗) , 𝑥3 (𝑗)) ,𝛼𝑖,𝑗,𝑛+1
= {{{{{{{{{

𝑛𝑞𝑖+1 − (𝑛 − 𝑞𝑖) (𝑛 + 1)𝑞𝑖 , 𝑗 = 0(𝑛 − 𝑗 + 2)𝑞𝑖+1 + (𝑛 − 𝑗)𝑞𝑖+1 − 2 (𝑛 − 𝑗 + 1)𝑞𝑖+1 , 1 ≤ 𝑗 ≤ 𝑛1, 𝑗 = 𝑛 + 1,(𝑖 = 1, 2, 3) ,
𝛽𝑖,𝑗,𝑛+1 = ℎ𝑞𝑖𝑞𝑖 [(𝑛 − 𝑗 + 1)𝑞𝑖 − (𝑛 − 𝑗)𝑞𝑖] , 0 ≤ 𝑗 ≤ 𝑛, (𝑖 = 1, 2, 3) .

(7)

The error of this IVABM numerical algorithm is󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡𝑛) − 𝑥𝑖 (𝑛)󵄨󵄨󵄨󵄨 = 𝑜 (ℎ𝑝𝑖) ,𝑝𝑖 = min (2, 1 + 𝑞𝑖) , (𝑖 = 1, 2, 3) . (8)

We can yield the largest Lyapunov exponent varying as 𝑞
via IVABM numerical algorithm, which is shown in Figure 1,
where 0.8477 ≤ 𝑞 ≤ 1 and the initial condition is (−5, 2, 5).

According to Figure 1, we can obtain that the largest
Lyapunov exponent is larger zero for 0.8477 ≤ 𝑞 ≤ 1.
This result indicates that the chaotic attractor is emerged in
fractional-order system (2) for 0.8477 ≤ 𝑞 ≤ 1. For example,
let 𝑞 = 0.8477, the largest Lyapunov exponent is 0.9853, and
the chaotic attractor in fractional-order system (2)with initial
condition (−5, 2, 5) is shown as Figure 2.

Same as the results reported by Zhou and Ke [6], there
are coexisting “positive attractor” and “negative attractor”
in fractional-order system (2). The chaotic attractor in

fractional-order system (2) can be decided by the initial
conditions; that is, the chaotic attractor depends on the
distance from the initial point (initial condition 𝑥0 =(𝑥1(0), 𝑥2(0), 𝑥3(0)) to the unstable points [6]. Next, the
distances from the initial point to points 𝑆+1 , 𝑆−1 , 𝑆+2 , and 𝑆−2
are denoted by 𝐿+1, 𝐿−1, 𝐿+2, and 𝐿−2, respectively. Same as [6],
the following results can be obtained:

(1) If the initial point (initial condition) is near the
unstable 𝑆+1 or 𝑆+2 , there is the same chaotic attractor in
fractional-order chaotic system (2), which is called “positive
attractor” by Zhou and Ke [6], where the “positive attractor”
means 𝑥1(𝑡) > 0 and a necessary condition for “positive
attractor” is 𝑥1(0) > 0 [6].

(2) If the initial point (initial condition) is near the
unstable 𝑆−1 or 𝑆−2 , there is the same chaotic attractor in
fractional-order chaotic system (2), which is called “negative
attractor” by Zhou and Ke [6], where the “positive attractor”
means 𝑥1(𝑡) < 0 and a necessary condition for “negative
attractor” is 𝑥1(0) < 0 [6].

Next, some numerical simulations are given for 𝑞 = 0.9.
Here, the largest Lyapunov exponent is 0.763 for 𝑞 = 0.9.
Case 1 (the initial point is near unstable saddle point 𝑆+1 or𝑆−1 ). For example, choose the initial conditions as (4, −1, 1).
Therefore, 𝐿+1, 𝐿−1, 𝐿+2, and 𝐿−2 are 0.7636, 8.8563, 6.1735, and
9.7172, respectively. Therefore, the initial point (4, −1, 1) is
near unstable saddle point 𝑆+1 . Therefore, the fractional-order
system (2) has the “positive attractor,” which is shown as
Figure 3.

For example, choose the initial conditions as (−4, 1, 1).
Therefore, 𝐿+1, 𝐿−1, 𝐿+2, and 𝐿−2 are 8.8563, 0.7636, 9.7172, and
6.1735, respectively. Therefore, the initial point (−4, 1, 1) is
near unstable saddle point 𝑆−1 . Thus, fractional-order system
(2) has the “negative attractor,” which is shown as Figure 3.

Case 2 (the initial point is near unstable saddle point 𝑆+2 or𝑆−2 ). For example, choose the initial conditions as (4, 3, −2).
Therefore, 𝐿+1, 𝐿−1, 𝐿+2, and 𝐿−2 are 5.5875, 9.1586, 1.2594, and
10.9026, respectively. Therefore, the initial point (4, 3, −2)
is close to unstable saddle point 𝑆+2 . Thus, fractional-order
system (2) has the “positive attractor,” which is shown as
Figure 4.

For example, choose the initial conditions as (−4, −3, −2).
Therefore, 𝐿+1, 𝐿−1, 𝐿+2, and 𝐿−2 are 9.1586, 5.5875, 10.9026, and
1.2594, respectively. Therefore, the initial point (−4, −3, −2)
is close to unstable saddle point 𝑆−2 . Thus, fractional-order
system (2) has the “negative attractor,” which is shown as
Figure 4.

According to Figures 3 and 4, the coexisting chaotic
attractors are found in fractional-order chaotic system (2).
These results indicate that the chaotic system reported by
Zhou and Ke [6] can be extended to its fractional-order ver-
sion where the coexisting “positive attractor” and “negative
attractor” can be observed.

Remark 1. There are overlaps between the coexisting chaotic
attractors in [3–5, 7–9]. However, there are two iso-
lated chaotic attractors in fractional-order chaotic system
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Figure 2: The chaotic attractor in fractional-order system (2).
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Figure 3: The “positive attractor” and “negative attractor” in fractional-order system (2).
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Figure 4: The “positive attractor” and “negative attractor” in fractional-order system (2).

(2); that is, there are no overlaps between the coexist-
ing chaotic attractors in fractional-order chaotic system
(2).

3. Stabilization of the Unstable
Equilibrium Points of the Fractional-Order
Chaotic System (2)

First, a result on stability of fractional-order nonlinear system
is recalled. Consider the fractional-order nonlinear system as
follows:

𝑐
0𝐷𝑞𝑡𝑦 (𝑡) = 𝐻 (𝑦 (𝑡)) = 𝑀𝑦 (𝑡) + 𝑓 (𝑦 (𝑡)) , (9)

where 0 < 𝑞 ≤ 1, 𝑦(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡))𝑇 ∈ 𝑅𝑛
denotes the state vector, 𝐻 : 𝑅𝑛 → 𝑅𝑛 is a nonlinear vector
field,𝑀 ∈ 𝑅𝑛×𝑛 is a constant matrix, and 𝑓(𝑦(𝑡)) and𝑀𝑦(𝑡)
denote the nonlinear and linear parts of𝐻(𝑦(𝑡)).
Lemma 2 (for more details, see [19]). Fractional-order non-
linear system (9) is said to be asymptotically stable if the next
two conditions hold:

(i) 𝑓(𝑦(𝑡))|𝑦(𝑡)=0 = 0, and lim𝑦(𝑡)→0(‖𝑓(𝑦(𝑡))‖/‖𝑦(𝑡)‖) =0,
(ii) |arg 𝜆𝑖(𝑀)| > 0.5𝑞𝜋(𝑖 = 1, 2, . . . , 𝑛), and 𝑞‖𝑀‖ > 1,

where 𝜆𝑖(𝑀) and ‖𝑀‖ denote the eigenvalues and the 𝑙2-norm
with respect to matrix𝑀, respectively.
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Next, we discuss how to stable the unstable equilibrium
point in fractional-order chaotic system (2) via single state
variable linear controller. Now, let the unstable equilibrium
points in system (2) be (𝑥1, 𝑥2, 𝑥3), and the controlled
fractional-order system is shown as follows:
𝑐
0𝐷𝑞𝑡𝑥1 = −𝑥1 + 0.5𝑥1𝑥3 + 𝑥2𝑥3 + 𝑘1 (𝑥2 − 𝑥2) ,
𝑐
0𝐷𝑞𝑡𝑥2 = 4𝑥2 − 1.2𝑥1𝑥3 + 𝑘2 (𝑥2 − 𝑥2) ,
𝑐
0𝐷𝑞𝑡𝑥3 = 𝑥1𝑥2 − 6𝑥3 + 𝑘3 (𝑥2 − 𝑥2) ,

(10)

where 0.8477 ≤ 𝑞 ≤ 1 and 𝑘𝑖(𝑥2 − 𝑥2) (𝑖 = 1, 2, 3) is
a linear controller determined by a single state variable 𝑥2.𝑘𝑖 (𝑖 = 1, 2, 3) ∈ 𝑅 are feedback gains determined later.

Theorem 3. Let real matrix be

𝐴 = (− (1 − 0.5𝑥3) (𝑥3 + 𝑘1) (0.5𝑥1 + 𝑥2)−1.2𝑥3 (4 + 𝑘2) 1.2𝑥1𝑥2 (𝑥1 + 𝑘3) −6 ) , (11)

and choose suit feedback gains 𝑘𝑖 (𝑖 = 1, 2, 3); if |arg 𝜆𝑖(𝐴)| >0.5𝑞𝜋 (𝑖 = 1, 2, 3), then the unstable equilibrium points(𝑥1, 𝑥2, 𝑥3) of fractional-order chaotic system (2) in controlled
system (10) are asymptotically stable.

Proof. Let 𝑦1 = 𝑥1 − 𝑥1, 𝑦2 = 𝑥2 − 𝑥2, and 𝑦3 = 𝑥3 − 𝑥3; then
controlled system (10) can be changed as
𝑐
0𝐷𝑞𝑡𝑦1 = − (1 − 0.5𝑥3) 𝑦1 + (𝑥3 + 𝑘1) 𝑦2+ (0.5𝑥1 + 𝑥2) 𝑦3 + 0.5𝑦1𝑦3 + 𝑦2𝑦3,
𝑐
0𝐷𝑞𝑡𝑦2 = −1.2𝑥3𝑦1 + (4 + 𝑘2) 𝑦2 − 1.2𝑥1𝑦3 − 1.2𝑦1𝑦3,
𝑐
0𝐷𝑞𝑡𝑦3 = 𝑥2𝑦1 + (𝑥1 + 𝑘3) 𝑦2 − 6𝑦3 + 𝑦1𝑦2.

(12)

Thus, the unstable equilibrium points (𝑥1, 𝑥2, 𝑥3) in
fractional-order chaotic system (2) are changed as the point(𝑦1, 𝑦2, 𝑦3) = (0, 0, 0) in system (12).

One can easily obtain that point (𝑦1, 𝑦2, 𝑦3) = (0, 0, 0)
is the origin of system (12). Therefore, the problem of
stabilization of the unstable equilibrium points in fractional-
order chaotic system (2) is turned to the problem of stabiliza-
tion of fractional-order system (12). If the origin of system
(12) is asymptotically stable, then the unstable equilibrium
points (𝑥1, 𝑥2, 𝑥3) of fractional-order chaotic system (2) in
controlled system (10) are asymptotically stable.

Now, controlled system (12) can be rewritten as
𝑐
0𝐷𝑞𝑡𝑦 (𝑡) = 𝐴𝑦 (𝑡) + 𝑓 (𝑦 (𝑡)) , (13)

where 𝑓(𝑦(𝑡)) = ((0.5𝑦1 + 𝑦2)𝑦3 −1.2𝑦1𝑦3 𝑦1𝑦2)𝑇.
First, it is easy to obtain that 𝑓(𝑦(𝑡))|𝑦(𝑡)=0 = 0, and󵄩󵄩󵄩󵄩𝑓 (𝑦 (𝑡))󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩
= √ [(0.5𝑦1 + 𝑦2) 𝑦3]2 + (−1.2𝑦1𝑦3)2 + (𝑦1𝑦2)2𝑦21 + 𝑦22 + 𝑦23
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Figure 5: The time evolution of state variables 𝑥𝑖 (𝑖 = 1, 2, 3).
≤ √[(0.5𝑦1 + 𝑦2)]2 + (−1.2𝑦3)2 + (𝑦2)2,

lim
𝑦(𝑡)→0

󵄩󵄩󵄩󵄩𝑓 (𝑦 (𝑡))󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩≤ lim
𝑦(𝑡)→0

√[(0.5𝑦1 + 𝑦2)]2 + (−1.2𝑦3)2 + (𝑦2)2 = 0.
(14)

Thus, the first condition in Lemma 2 is satisfied.
Second, according to

𝐴 = (− (1 − 0.5𝑥3) (𝑥3 + 𝑘1) (0.5𝑥1 + 𝑥2)−1.2𝑥3 (4 + 𝑘2) 1.2𝑥1𝑥2 (𝑥1 + 𝑘3) −6 ) , (15)

𝑞‖𝐴‖ > 1, and using |arg 𝜆𝑖(𝐴)| > 0.5𝑞𝜋(𝑖 = 1, 2, 3), we can
yield that the second condition in Lemma 2 is satisfied.

Therefore, according to Lemma 2, the origin of system
(12) is asymptotically stable. That is, the unstable equilibrium
points (𝑥1, 𝑥2, 𝑥3) of fractional-order chaotic system (2) in
controlled system (10) are asymptotically stable. The proof is
finished.

Remark 4. In our control scheme, the linear controller is only
determined by one single state variable, so our control scheme
is different from many previous control schemes.

4. Numerical Simulations Results

Next, in order to show the effectiveness of the proposed
control approach, the numerical simulations are performed
for 𝑞 = 0.9.

For the unstable equilibrium point 𝑆0 = (0, 0, 0), if we
choose 𝑘1 = 𝑘3 = 0, 𝑘2 = −7, then 𝐴 = ( −1 0 00 −3 0

0 0 −6
). Thus, we

obtain 𝜆1 = −1, 𝜆2 = −3, 𝜆3 = −6, and 𝑞‖𝐴‖ > 1. According
toTheorem 3, the unstable equilibrium point 𝑆0 in controlled
system (10) is asymptotically stable. Figure 5 displays the time
evolution of state variables. Here, the initial conditions be
(7, 6, 3).

For the unstable equilibrium point 𝑆+1 = (4.4721,−1.5745, 1.1736), if we choose 𝑘1 = 𝑘3 = 0, 𝑘2 = −8,
then 𝐴 = ( −0.4132 1.1736 0.66155−1.40832 −4 5.36652

−1.5745 4.4721 −6
). Thus, we obtain 𝜆1 =−0.5726, 𝜆2,3 = −4.9203 ± 4.9982j, and 𝑞‖𝐴‖ > 1. According
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Figure 6: The time evolution of state variables 𝑥𝑖 (𝑖 = 1, 2, 3).
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Figure 7: The time evolution of state variables 𝑥𝑖 (𝑖 = 1, 2, 3).
toTheorem 3, the unstable equilibrium point 𝑆+1 in controlled
system (10) is asymptotically stable. Figure 6 shows the time
evolution of state variables. Here, the initial conditions are
(2, 4, 2).

For the unstable equilibrium point 𝑆−1 = (−4.4721,1.5745, 1.1736), if we choose 𝑘1 = 𝑘3 = 0, 𝑘2 = −4, then 𝐴 =( −0.4132 1.1736 −0.66155−1.40832 0 −5.36652
1.5745 −4.4721 −6

). Therefore, we obtain 𝜆1 = −0.5418,𝜆2,3 = −2.9357 ± 4.1682j, and 𝑞‖𝐴‖ > 1. According to
Theorem 3, the unstable equilibrium point 𝑆−1 in controlled
system (10) is asymptotically stable. Figure 7 shows the time
evolution of state variables. Here, the initial conditions are
(1, 7, 2).

For the unstable equilibrium point 𝑆+2 = (4.4721, 3.8106,−2.8403), if we choose 𝑘1 = −2.1597, 𝑘2 = −7, 𝑘3 =−9.4721, then 𝐴 = ( −2.42015 −5 6.046653.40836 −3 5.36652
3.8106 −5 −6

). Thus, we obtain 𝜆1 =−10.8877, 𝜆2,3 = −0.2662 ± 1.040j, and 𝑞‖𝐴‖ > 1. According
toTheorem 3, the unstable equilibrium point 𝑆+2 in controlled
system (10) is asymptotically stable. Figure 8 shows the time
evolution of state variables. Here, the initial conditions are
(5, 4, −3).

For the unstable equilibrium point 𝑆−2 = (−4.4721,−3.8106, −2.8403), if we choose 𝑘1 = −7.1597, 𝑘2 = −7, 𝑘3 =9.9721, then 𝐴 = ( −2.42015 −10 −6.046653.40836 −3 −5.36652
−3.8106 5.5 −6

). Thus, we obtain 𝜆1 =−9.3229, 𝜆2,3 = −1.0486 ± 0.8095j, and 𝑞‖𝐴‖ > 1. According
toTheorem 3, the unstable equilibrium point 𝑆−2 in controlled
system (10) is asymptotically stable. Figure 9 shows the time
evolution of state variables. Here, the initial conditions are
(−7, −6, −2).

The simulative results in Figures 5–9 show the effective-
ness of our control scheme.
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Figure 8: The time evolution of state variables 𝑥𝑖 (𝑖 = 1, 2, 3).
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Figure 9: The time evolution of state variables 𝑥𝑖 (𝑖 = 1, 2, 3).
5. Conclusions

In this paper, a fractional-order chaotic system is proposed.
The necessary condition of existence chaos in this fractional-
order chaotic system is 𝑞 ≥ 0.8477. The largest Lyapunov
exponent varying as fractional order 𝑞 is given.The coexisting
“positive attractor” and “negative attractor” can be observed,
and the necessary conditions for “positive attractor” and
“negative attractor” are obtained.Meanwhile, by a single state
variable, a linear controller is used for the stabilization of the
unstable equilibrium points of the fractional-order chaotic
system.The numerical results show that the control approach
is effective.
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