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First, based on a linear passive capacitor C, a linear passive inductor L, an active-charge-controlled memristor, and a fourth-degree
polynomial function determined by charge, an integer-order memristive system is suggested. The proposed integer-order
memristive system can generate two-scroll, three-scroll, and four-scroll chaotic attractors. The complex dynamics behaviors are
investigated numerically. The Lyapunov exponent spectrum with respect to linear passive inductor L and the two-scroll, three-
scroll, and four-scroll chaotic attractors are yielded by numerical calculation. Second, based on the integer-order memristive
chaotic system with a four-scroll attractor, a fractional-order version memristive system is suggested. The complex dynamics
behaviors of its fractional-order version are studied numerically. The largest Lyapunov exponent spectrum with respect to
fractional-order p is yielded. The coexisting two kinds of three-scroll chaotic attractors and the coexisting three-scroll and
four-scroll chaotic attractors can be found in its fractional-order version.

1. Introduction

Chaos is an interesting phenomenon in nonlinear systems.
High irregularity, unpredictability, and complexity are the
typical characteristics of chaotic systems [1, 2]. These typical
characteristics have great applications in the following fields:
data encryption [3], secure communication [4–7], power grid
protection [8, 9], and so on [10–16]. Therefore, more and
more attentions have been attracted on the study of chaotic
systems in the last few decades [17–20]. In 1971, Chua
reported the fourth circuit element named memristor [21],
and a solid-state implementation of a memristor has been
successfully realized in Hewlett-Packard in 2008 [22]. After
then, the applications of a memristor have caught many
attentions in nonlinear science [23–28]. Meanwhile, chaotic
and hyperchaotic attractors have been found in many
memristor-based circuits [21, 23–26]. For example, Muthus-
wamy and Chua provided a memristor-based circuit with a

single-scroll chaotic attractor [24], Bao et al. reported a
memristor-based circuit with a double-scroll chaotic attrac-
tor [25], Teng et al. found a memristor-based circuit with
double-scroll and four-scroll chaotic attractors [26], and so
on [27, 28]. On the other hand, many real physical systems
such as electromagnetic wave propagation, dielectric polari-
zation, and heat conduction can be described by fractional-
order differential equations [29, 30]. Meanwhile, chaotic
phenomenon has been discussed in many fractional-order
nonlinear systems such as the fractional-order electronic
circuits [31], the fractional-order gyroscopes [32], the
fractional-order chaotic brushless DC motor [12], the
fractional-order microelectromechanical system [33], and
the fractional-order neural networks [34, 35]. So, more
attentions have been paid to research the chaotic behaviors
of fractional-order nonlinear systems.

Motivated by the above considerations, first, based on a
memristor-based chaotic circuit reported by Muthuswamy
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and Chua [24], Bao et al. [25], and Teng et al. [26], an
integer-order memristive chaotic system with two-scroll,
three-scroll, and four-scroll chaotic attractors is provided in
this paper. It is noticed that there is only a single-scroll cha-
otic attractor in [24], only a double-scroll chaotic attractor
in [25], and only double-scroll and four-scroll chaotic attrac-
tors in [26]. However, there are two-scroll, three-scroll, and
four-scroll chaotic attractors in our memristive system.
Meanwhile, the Lyapunov exponent spectrum, and phase
diagram for our memristive chaotic system are obtained.
Second, based on the proposed integer-order memristive
chaotic system with a four-scroll chaotic attractor, a
fractional-order version chaotic system is suggested. We find
that the coexisting three-scroll and four-scroll chaotic attrac-
tors and coexisting two kinds of three-scroll chaotic attrac-
tors are emerged in the fractional-order version. To the best
of our knowledge, this result is rarely reported.

The outline of this paper is organized as follows. In
Section 2, the concept of a memristor and some memristor-
based system are briefly reviewed. Based on the review,
we present an integer-order memristive chaotic system
with two-scroll, three-scroll, and four-scroll chaotic attrac-
tors and some basic dynamics behaviors are obtained. In
Section 3, based on the integer-order memristive chaotic sys-
tem with a four-scroll chaotic attractor, we present its
fractional-order version and we find that there are coexisting
chaotic attractors in its fractional-order system. In Section 4,
the conclusion is given.

2. An Integer-Order Memristive Chaotic System

The charge-controlled memristor [24, 26] is described by
a nonlinear I-V characteristic as VM =M q IM and q =
F q, IM . Here, VM , IM , and q are the voltage, current,
and charge associated to the device, respectively. M q is
the memristance, and F q, IM is the internal state function.
In [24, 26], two schematics of the simplest memristor-based
chaotic circuit with a linear passive inductor, linear passive
capacitor, and a nonlinear active memristor have been
reported. The state equations represent the current-voltage
relation for the linear passive capacitor, and the inductor is
described as

CdVC

dt
= IL,

LdIL
dt

= − VC +M q IL ,
1

where VC denotes the voltage of the linear passive capac-
itor C and IL denotes the current of the linear passive
inductor L.

In [24], the memristance M q is defined as M q =
β q2 − 1 , and the internal state function F q, IM is
defined as F q, IM = IM − α + IM q, where IM = −IL. The
memristor-based circuit in [24] has a single-scroll chaotic
attractor (for more details, see [24]), and its dynamics
are described by

CdVC

dt
= IL,

LdIL
dt

= − VC + β q2 − 1 IL ,

dq
dt

= −IL − α − IL q

2

In [26], thememristance is chosen asM q = δq4 + γq2 − β
and the internal state function is chosen as F q, IM = IM −
α − I2M q, where IM = −IL. The memristor-based circuit in
[26] has double-scroll and four-scroll chaotic attractors (for
more details, see [26]), and its dynamics are shown as

CdVC

dt
= IL,

LdIL
dt

= − VC + δq4 + γq2 − β IL ,

dq
dt

= −IL − α − I2L q

3

Now, based on [24, 26], an integer-order memristive sys-
tem is suggested in our paper. The memristance is defined as
M q = δq4 − β, and the internal state function is defined as
F q, IM = IM − α − I2M q. So, the integer-order memristive
chaotic system in this paper is suggested as

CdVC

dt
= IL,

LdIL
dt

= − VC + δq4 − β IL ,

dq
dt

= −IL − α − I2L q,

4

where C = 1F, δ = 0 5, β = 2 4, α = 0 75, and 1H ≤ L ≤ 8H.
The equilibrium points of system (4) can be calculated by

IL = 0,
− VC + δq4 − β IL = 0,

−IL − α − I2L q = 0
5

Obviously, only IL, VC , q = 0, 0, 0 is the equilibrium
point in system (4). The Jacobian matrix J at this equilibrium
point is

J =

0 1 0

−
1
L

2 4
L

0

0 −1 −0 75

, 6

and its eigenvalues are λ1 = 0 5 2 4/L + 2 4/L 2 − 4/L,

λ2 = 0 5 2 4/L − 2 4/L 2 − 4/L, and λ3 = −0 75. If

2 4/L 2 − 4/L ≥ 0, then λ1,2 > 0. If 2 4/L 2 − 4/L < 0, then
Re λ1,2 > 0. So, the equilibrium point IL, VC , q = 0, 0, 0
in system (4) is unstable.
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By numerical calculation, the Lyapunov exponent spec-
trum of integer-order memristive system (4) with respect to
linear passive inductor L can be obtained and is displayed
in Figure 1.

According to Figure 1, the maximum Lyapunov expo-
nent λ1 is positive for the suitable L. The positive Lyapunov
exponent λ1 indicates that the chaotic attractor is emerged
in system (4). Next, some results are shown as follows:

2.1. Two Kinds of Three-Scroll Chaotic Attractors Are
Emerged in System (4). Letting L = 1 734, the Lyapunov
exponents are λ1 = 0 0168, λ2 = 0, and λ3 = −0 3275. The
Lyapunov dimension is DL = 2 + λ1/ λ3 = 2 051; so, system
(4) is fractal. The chaotic attractor is shown in Figure 2.
The result in Figure 2 indicates that the three-scroll chaotic
attractor is emerged in system (4).

Letting L = 1 8, the Lyapunov exponents are λ1 =
0 0246, λ2 = 0, and λ3 = −0 3152. The Lyapunov dimension
is DL = 2 + λ1/ λ3 = 2 078; so, system (4) is fractal. The
chaotic attractor is shown in Figure 3. The result in
Figure 3 indicates that the three-scroll chaotic attractor is
emerged in system (4).

According to Figures 2 and 3, we find that two kinds of
three-scroll chaotic attractors are emerged in our integer-
order memristive chaotic system.

2.2. The Four-Scroll Chaotic Attractor Is Emerged in System
(4). Letting L = 1 4, the Lyapunov exponents are λ1 = 0 0663,

λ2 = 0, and λ3 = −0 3593. The Lyapunov dimension is DL =
2 + λ1/ λ3 = 2 1845; so, system (4) is fractal. The chaotic
attractor is displayed in Figure 4. The result in Figure 4
indicates that the four-scroll chaotic attractor is emerged in
system (4).

2.3. The Two-Scroll Chaotic Attractor Is Emerged in System
(4). Letting L = 4, the Lyapunov exponents are λ1 = 0 0397,
λ2 = 0, and λ3 = −0 3364. The Lyapunov dimension is DL =
2 + λ1/ λ3 = 2 1180; so, system (4) is fractal. The chaotic
attractor is displayed in Figure 5. The result in Figure 5
indicates that the two-scroll chaotic attractor is emerged in
system (4).
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Figure 1: The Lyapunov exponent spectrum varies as linear passive
inductor L.
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Figure 2: Three-scroll chaotic attractor in integer-order memristive
system (4).
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Figure 3: Three-scroll chaotic attractor in integer-order memristive
system (4).
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Figure 4: Four-scroll chaotic attractor in integer-order memristive
system (4).
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Figure 5: Two-scroll chaotic attractor in integer-order memristive
system (4).
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According to the above results, the proposed integer-
ordermemristive chaotic system (4) in this paper can generate
two- to four-scroll chaotic attractors. This result is different
with many previous results [21, 23–28].

3. A Fractional-Order Memristive Chaotic
System with Coexisting Chaotic Attractors

In this section, based on integer-order memristive chaotic
system (4), a fractional-order version with coexisting chaotic
attractors is given.

According to Figure 4 in Section 2, the four-scroll chaotic
attractor is emerged in integer-order memristive system (4)
with C = 1F, δ = 0 5, β = 2 4, α = 0 75, and L = 1 4. Now,
based on this case, a fractional-order version memristive
system is suggested, which is shown as follows:

dpVC t

dtP
= IL t ,

dpIL t

dtP
= −

VC t + 0 5q4 t − 2 4 IL t

1 4 ,

dpq t

dtP
= −IL t − 0 75 − I2L t q t

7

Here, 0 92 ≤ p ≤ 1 is the fractional-order version and
dpVC t /dtp = t

0 t − τ −pdVC τ /Γ 1 − p , dpIL t /dtp = t
0

t − τ −pdIL τ /Γ 1 − p , and dpq t /dtp = t
0 t − τ −pdq τ /

Γ 1 − p .
Now, by the improved version of Adams-Bashforth-

Moulton numerical algorithm [36], nonlinear fractional-
order system (7) with initial condition (IL 0 , VC 0 , q 0 )
can be discretized as follows:

VC n + 1 =VC 0 + τp

Γ p + 2 IsL n + 1 + 〠
n

j=0
α j,n+1IL j ,

IL n + 1 = IL 0 + τp

Γ p + 2
− Vs

C n + 1 + 0 5 qs n + 1 4 − 24 IsL n + 1
1 4

+ 〠
n

j=0

αj,n+1 − VC j + 0 5 − q j 4 − 24 IL j

1 4 ,

q n + 1 = q 0 + τp

Γ p + 2

IsL n + 1 − 0 75 − IsL n + 1 2 qs n + 1

+ 〠
n

j=0
αj,n+1 −IL j − 0 75 − IL j 2 q j ,

8

where

The approximation error is as follows:

VC tn −VC n = o τ1+p ,

IL tn − IL n = o τ1+p ,

q tn − q n = o τ1+p

10

In this numerical algorithm, T is the total time length
of numerical calculation, N is the iterative calculation

time, and τ = T/N is the step length. So, tn = nτ n = 0, 1,
2,… ,N .

Next, we study the dynamical behaviors for fractional-
order system (7) by the improved version of Adams-
Bashforth-Moulton numerical algorithm [36]. First, using
numerical calculation, the largest Lyapunov exponents
(Largest LE) of fractional-order system (7) with respect to
fractional-order p can be obtained, which is shown in
Figure 6.

Vs
C n + 1 =VC 0 + 1

Γ p
〠
n

j=0
βj,n+1IL j ,

IsL n + 1 = IL 0 + 1
Γ p

〠
n

j=0
βj,n+1

− VC j + 0 5 q j 4 − 2 4 IL j

1 4 ,

qs n + 1 = q 0 + 1
Γ p

〠
n

j=0
βj,n+1 −IL j − 0 75 − IL j 2 q j ,

αj,n+1 =
np+1 − n − p n + 1 p,  j = 0,
n − j + 2 p+1 + n − j p+1 − 2 n − j + 1 p+1,  1 ≤ j ≤ n,
1,  j = n + 1,

βj,n+1 =
τp n − j + 1 p − n − jp

p
, 0 ≤ j ≤ n

9
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According to Figure 6, the largest Lyapunov exponent is
larger than zero for 0 92 ≤ p ≤ 1. The positive largest Lyapu-
nov exponent indicates that the chaotic attractor is emerged
in fractional-order system (7). Next, some results are shown
as follows:

3.1. Coexisting Three- and Four-Scroll Chaotic Attractors in
System (7) for p = 0 935. Letting p = 0 935, the Largest LE is
0.3251. Therefore, fractional-order system (7) has chaotic
behavior. The chaotic attractor can be obtained by numerical
calculation. Here, we find that there are coexisting three-
scroll and four-scroll chaotic attractors which depend on
the initial conditions. For example, let the initial condition
be (−2,−1,−1) and (−2,1,1). The four-scroll chaotic attractor
(black line) and three-scroll chaotic attractor (red line) are
shown in Figure 7.

3.2. Coexisting Two Kinds of Three-Scroll Chaotic Attractors
in System (7) for p = 0 94. Letting p = 0 94, the Largest LE is
0.3864. Therefore, fractional-order system (7) has chaotic
behavior. The chaotic attractor can be obtained by numerical
calculation. Here, we find that there are coexisting two kinds
of three-scroll chaotic attractors which depend on the initial
conditions. For example, let the initial condition be
(−2,−1,−1) and (−2,1,1). The two kinds of three-scroll
chaotic attractors (black line, red line) are shown in Figure 8.

3.3. Four-Scroll Chaotic Attractor in System (7) for p=0.99. Let-
ting p = 0 99, the Largest LE is 0.2247. Therefore, fractional-
order system (7) has chaotic behavior. By numerical

calculation, we find that the four-scroll chaotic attractor is
emerged in fractional-order system (7). The four-scroll
chaotic attractor is shown in Figure 9.

According to Figure 9, four-scroll chaotic attractor is
emerged in fractional-order system (7). This result is just
as that of integer-order memristive chaotic system (4) with
L = 1 4.

According to Figure 8, the coexisting two kinds of three-
scroll chaotic attractors are obtained in fractional-order sys-
tem (7) and the two kinds of three-scroll chaotic attractors
do not exist in integer-order memristive chaotic system (4)
with L = 1 4. So, two kinds of three-scroll chaotic attractor
are newly produced.

According to Figure 7, the coexisting three-scroll and
four-scroll chaotic attractors are emerged in fractional-order
system (7). But, there is only a four-scroll chaotic attractor
in integer-order memristive chaotic system (4) with L = 1 4.
So, the three-scroll chaotic attractor is newly produced.

In summary, for integer-order memristive chaotic system
(4) with L = 1 4, there is only a four-scroll chaotic attractor.
However, for its fractional-order version, it can produce
two kinds of new three-scroll chaotic attractors and has coex-
isting three-scroll and four-scroll chaotic attractors. These
results in Section 3 are rarely reported in the previous
literature.

4. Conclusions

By a linear passive capacitorC, a linear passive inductor L, and
an active-charge-controlled memristor, an integer-order
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Figure 6: The Largest LE varies as fractional-order p.
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attractors in system (7).

−4

4

−2

2

0

q
(t

)

−4 −2 0
IL(t)

2 4

(−2, 1, 1)

( −2, −1, −1)

Figure 8: The coexisting two kinds of three-scroll chaotic attractors
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memristive system is devised in this paper. The memristance
M q is defined as a fourth-degree polynomial function deter-
mined by charge, that is,M q = δq4 − β. By numerical calcu-
lation, the Lyapunov exponent spectrum of the proposed
memristor-based chaotic circuit with respect to linear passive
inductor L is yielded. The proposed integer-order memristive
system can generate two-scroll, three-scroll, and four-scroll
chaotic attractors for suitable linear passive inductor L.

Furthermore, based on the proposed integer-order mem-
ristive system with a four-scroll chaotic attractor for L = 1 4,
a fractional-order version memristive system is given. By
numerical calculation, we obtain the largest Lyapunov expo-
nent with respect to fractional-order p. This fractional-order
version memristive system can newly produce two kinds of
three-scroll chaotic attractors, and the coexisting three-
scroll and four-scroll chaotic attractors are obtained.
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