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Considering the booming development of electric vehicle (EV), this article presents a novel control scheme analyzing EV multiple-
mode application in a number of distributed photovoltaic (PV) systems, which rationalizes the energy flow among the energy
system participants containing a power grid, a grid-connected PV system, power consumption devices, storage batteries, and
EV. Based on the control scheme, the authors propose two day-ahead optimal control strategies with different objective
functions: one is minimizing the daily electricity expense of an individual distributed PV system and the other is minimizing the
daily total expense of distributed PV systems which EV can be connected to. The model has been verified by the actual data and
forecast data, respectively. The results show under the individual objective, in the distributed PV system with EV, the electricity
expense can obtain an annual reduction of 27.18%. Furthermore, in the distributed PV system with a storage battery as well as
EV, the electricity expense can obtain an annual reduction from 30.67% to 81.49% with a storage battery capacity changing
from 1kWh to 20 kWh. Under the total objective, the total expense and even the individual expense have different degrees of
reduction. However, the specific benefits should be rerationally distributed by balancing the interests of all the distributed PV
systems. In addition, besides the application in the distributed PV systems, this model may have some potential on the

development of a regional energy system.

1. Introduction

Due to electric vehicles (EVs) in the past several years show-
ing an explosive development, researchers have found that
these mobile distributed storage units have great potential
in energy systems in future power grids, especially when
coordinated with renewable energy. Therefore, the literature
on the rational planning, optimal operation of EVs, and
renewable energy sources has mushroomed these years. Wu
et al. [1] briefly analyze the possible scenarios of using renew-
able energy to charge EVs. Chen and Duan [2] deal with the
daily EV mileage uncertainty by Monte Carlo simulation and
design an optimization and integration method of EV in
microgrids with minimizing the total cost of electricity as
the goal. EINozahy et al. [3] also use Monte Carlo simulation
to provide a probabilistic planning and scheduling method
for an energy storage system integrating EVs and photovol-
taic (PV) arrays in a distributed power grid. Guo et al. [4]

discuss a two-stage renewable energy generation parking lot
economy framework for EVs. The first stage processes uncer-
tainty of renewable energy, and the second stage controls EV
charging operation based on a predictive model. Considering
the smart grid with EV and PV power generation in an
islanding operation mode, Tang et al. [5] provide an online
reinforcement learning method called object representation
adaptive dynamic programming, which is for the adaptive
islanding control unit in smart grids. Hashemi et al. [6] pres-
ent a sensitivity analysis on feasibility of users supplying
energy into power grids, to determine the minimum storage
system capacity with different positions of low voltage power
grid configuration. It prevents the overvoltage caused by PV
high penetration, which presents a definition named residual
power curve (RPC). Paterakis et al. [7] give a detailed family
energy management system structure to determine the best
home appliance scheduling strategy based on demand
response on the following day when the price changes and
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power peak limits. Kaschub et al. [8] discuss the impact of
different incentives and tariffs on PV storage systems in
Germany. Cao [9] compares situations of integrated renew-
able energy to support the construction of the system with
the hydrogen energy vehicles and EVs, respectively, through
the reasonable control, which provides a better reference
for the implementation of EU’s 2050 line integration of
renewable energy vehicles. Kampezidou et al. [10] compare
the economic effects of two types of energy storage systems
including EVs and pumped storage on high-penetration
renewable energy systems. Assuncao et al. [11] present a
technical and economic evaluation model for the simulation
of EV battery, which is for the mismatch between demand
and PV power generation and guidance of economic policy.
Marra et al. [12] propose an energy storage strategy to reduce
voltage rise of PV feeders by coordinating the load of EVs as
an energy storage mode. An intelligent charging and dischar-
ging random scheduling method is proposed by Honarmand
etal. [13], which is for a large number of EVs in a parking lot.
Meanwhile, they design a self-scheduling model considering
PV power generation system and distributed generators in
the intelligent parking lot. For the traditional industrial
microgrid, Derakhshandeh et al. [14] put forward a kind of
electricity and thermal power generation scheduling coordi-
nation method, which considers the microgrid characteristics
of traditional industry, also with the application of EVs, PV
systems, and PV energy storage systems. Howlader et al.
[15] focus on the optimal operation scheme of the smart grid
with conventional thermal generators and distributed gener-
ation. To solve the optimal scheduling problem for hybrid
energy microgrid including PV, wind power generation, heat
and power cogeneration, energy storage systems, and EV, Liu
et al. [16] present an optimal scheduling model considering
demand response, with minimum total operation cost which
includes the cost of natural gas, the cost of power grid and EV
charging, and the discharging cost. In the study of Ju et al.
[17], wind power, PV power generation, EV, and conven-
tional power plants are combined into a virtual power plant;
considering the uncertainty and demand response, they
give a two-way stochastic optimal scheduling model for
the virtual plant. On that basis, they further improve the
original optimization scheduling model [18] by minimiz-
ing the cost, minimizing the energy consumption, and
maximizing the profit. Similarly, Coelho et al. [19] design
a multiobjective power dispatch model to minimize the
total cost of the microgrid of EVs, battery, maximum peak
load, extreme difference, and double Sharpe ratio index,
and the problem is formulated as a mixed-integer linear pro-
gramming problem. Jaramillo and Weidlich [20] also pro-
pose a multiobjective microgrid optimal scheduling model;
besides operating costs and peak power costs, environmental
indicators are also taken into account. Gao et al. [21] start
from the comfort and economy of the home users and divide
the load into three categories: fixed, shiftable, and adjustable
loads, and then optimize the scheduling of the home energy
system according to different kinds of load. Zhao et al. [22]
from residential customers” and public utilities” views build
an integrated demand response simulation optimization
framework for high penetration of EVs, PV, and energy
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storage systems under scenarios of TOU price, real-time
price, and curtailment price mechanism. Based on the actual
operation of dynamic optimization, Bracco et al. [23]
establish an intelligent multipower and sustainable building
microgrid test platform with the goal of minimizing cost
and CO, emissions at the University of Genova, Savona
University Campus, and experiments show that reasonable
scheduling optimization is feasible and effective.

The above lists the literature that considers the optimal
dispatching control of EVs. However, as the research topic
is still in its infancy, the specific criteria have not yet been
determined. Most of the current studies are based on
large-scale or medium-scale renewable energy power sta-
tions, so there are still a lot of problems that need to be
solved or improved for distributed PV systems. Besides the
above problems, there are few studies considering the mul-
tiple modes of EV which contain the application of G2V,
V2G, off-grid, and driving modes as well as testing them
in multiple locations.

The arrangement of this article is as follows: firstly, in
Section 2, the models of each participant in the distributed
PV system are illustrated. Secondly, the novel day-ahead con-
trol strategies are presented in Section 3 with different objec-
tive functions: one is minimizing the daily electricity expense
of an individual distributed PV system and the other is min-
imizing the daily total expense of distributed PV systems
which EV can be connected to. Thirdly, to verify the effec-
tiveness of optimal control strategies, the actual data of PV
generation and electricity demand are used first. Then, the
results are also calculated using forecast data which could
be used to discuss the feasibility under forecasting models.
Finally, the conclusions are summarized and future work is
briefly introduced.

2. Distributed PV System Model

A commonly distributed system involves the power grid, the
PV system, and the storage system. In this article, due to the
explosive development of EV, the authors take the EV with
vehicle-to-grid (V2G) function into consideration. To sim-
plify the model, a storage battery is used as a representative
of the storage system. The most important role of batteries
equipped in the distributed PV system is through charging
or discharging energy to improve the stability and economy
of the energy system, and contrary to the EV’s battery, it
can be seen as a fixed storage system. The first application
of EV battery must satisfy the normal function of EV as a
transport. On this basis, it can more be used as an auxiliary
storage system participating in the energy adjustment of a
distributed PV system. To better distinguish the fixed battery,
here, it is seen as a mobile storage system. In the following, a
model of each participant in the distributed PV system is
introduced or built, which is required in the optimal schedul-
ing control strategy.

2.1. PV Prediction Model. The PV array power output model
is selected from [24, 25]:

Epy = f (Voo Iscs Vi Ins Ny N, N, G, Temp, £,), - (1)
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where V5 is the open-circuit voltage, I is the short-circuit
current, V, is the voltage at maximum power point, I, is the
current at maximum power point, N is the serial number of
PV cells in one panel, Ny is the serial number of PV array,
N,, is the parallel number of PV array, G represents the solar

irradiance, Temp represents the temperature, and t,, repre-
sents the time interval of the recorded data.

As there must be the difference between the PV model
built with parameters from the manufacturer and data
recorded in the actual outside environment and the error
information of the historical data is missing in this paper,
here in this model, the authors assumed that the error of
PV power generation forecasting model is consistent with
the Gaussian distribution,

‘EPV - EPV‘
Erpy = E ~N(u,0). (2)
PV

In the above equation, Erpy represents the error between

the PV forecasting value fp; and the actual generation Epy.
Through setting the mean error ¢ and mean square deviation
0, the PV power generation forecasting values are randomly
generated under different conditions by MATLAB software.

2.2. Electricity Load Forecast Model. A Bayesian neural net-
work (BNN) model is established to forecast the load
values with 16 load-related inputs. The vectors of inputs,
V,, are shown:

VI = |:t’ dT’ T’ Tn—l’ Tn—Z’ RH’ RHn—l’ RHn—Z’ Ln—l’ Ln—2’

"Ly 3 Lgs Lo aagt s L aar) 20 L aase) 7 L ey 72| -
(3)

To build the electricity demand forecast model, the input
factors which are mostly considered in the existing models
would be the time type and the meteorological type. Based
on the similar consideration, in this article, time of every
day, t; day type (which is defined as integers from 1 to 7 to
express Monday to Sunday, resp., and 8 to express special
holidays), d;; ambient temperature, T; and relative humidity,
RH, are firstly considered as the inputs. 7 is used to represent
the series order number of historical sample data’s intervals.
For instance, T, _; means the temperature vector observed
from one interval before the n interval, which is actually
the data from the previous interval. Due to no record
before the historical first interval, here T, is used as the
initial value to complement the vector. If other vectors
lack some items, the same complement method is used.
Besides these vectors, historical load data,L, are also used
in inputs to increase the accuracy of the forecast model.
With a similar meaning of subscript, the eight historical
data vectors in the latter half are actual load in the first
past interval, the second past interval, the third past inter-
val, the fourth past interval, the same interval of yesterday,
the same interval of the day before yesterday, the same
interval in last week with the same day type, and the same
interval in the week before last week with the same day

type, respectively. These eight inputs of the forecast model
basically cover the most relevant historical load values
within the past two weeks.

2.3. Storage Battery Model. The control algorithm of the stor-
age battery is designed by geometrical-logical control method
in another published article of the authors [26]. The key
point of this algorithm can be described as follows. Under a
time-of-use (TOU) electricity retail tariff, if it satisfies the
condition that the tariff is always higher than the feed-in-
tariff (FiT) even considering the inefliciencies of energy
transformation, ignoring initial capital and maintenance
costs of storage battery system, the best size of the battery
should equal the sum of the positive values obtained by the
load minus the PV generation in every interval within the
shoulder and peak time. When the maximum available stor-
age energy of a battery is less than the optimum size but is
larger than the surplus PV energy, the controller will fully
charge the battery before the peak time. If the available
energy of a battery at one day’s beginning is less than the sur-
plus PV energy, the beginning capacity should be used firstly
during the morning shoulder shortfall, then the rest should
be discharged completely during the morning off-peak time,
in order to make the battery empty in preparation for the fol-
lowing period of surplus PV generation.

Besides the above control algorithm of storage batteries,
the following (4), (5), and (6) are the assumption or basic
limitation on the storage batteries which must be satisfied:

Ep= EB+ -Eg, (4)
0<E, <P b
+ MaX harge
< < .
0 - EB’ - P MaXdischarge tll‘l’ (5)
-P, i, SEg <Py s

MaXdischarge MaXcharge

Ey -SoCy <Ep +(Ey—Ep )<Ep -SoCp ,  (6)
where Ej is the energy change of battery. When this param-
eter is positive, it means the battery has been charged during
that period; on the opposite, when it is negative, it means the
battery has been discharged during that time. To better dis-
tinguish the charging and discharging energy, the authors
define two parameters, Ep and Ej , respectively, to represent
them, which are limited to greater or equal to 0 and at the
same time only one can be greater than 0. If Ej is negative,
the battery is discharged and helping to meet the load. Equa-
tion (5) gives the limitations of the battery. In order to extend
the life of the battery, manufacturers commonly recommend
the optimal and the maximum charging and discharging
power rates. Py and Py represent the maximum

MaX charge MaX discharge
charging and discharging rates of the battery, based on man-
ufacturer recommendations. Under this case, the constraints
of the battery are two inequalities limiting the bidirectional
energy flow of the battery. Equation (6) further limits the bat-
tery’s state of charge (SoC) between the lower bound and
upper bound if needed. It should be noticed that here the
energy change of all the ordered periods from the initial time



interval to the current time interval is accumulated because
the SoC must satisfy this constraint in every moment during
the entire optimization duration. In this equation, Eg__is the
specified capacity of the storage battery. Ey represents the
initial battery energy. SoCy_ and SoCy  are the minimum
and maximum SoC of the battery, respectively. E5 is the
energy loss of the battery, mostly resulting from heat loss.

It is worth noting that all the parameters used to explain
the values related to direction in the model in this article are
nonnegative values. For the following illustration, a parame-
ter named B, ,, is also given here to represent the maximum
energy that could be used in the storage battery when it is
fully charged, which is also mentioned and applied in the
geometrical logical analysis battery control algorithm.

2.4. EV Battery Model. Similar to the storage battery models,
here the following equations of the EV battery can be
obtained:

Egy = EEV+ —Egy (7)
0<Egy, < Elzv,,,axdmge “tins
0<Egy, <Eg S tins )
-P EV s g tin <Epy <P EV e tins

o 750Cey,, < Epy, + (Eev — Epv,,, ~ Eup)

<Egy_

size

E EV,

si: (9)

. SoCEvmax R

where Egy is the energy change of the EV battery. When this
parameter is positive, it means the EV battery has been
charged during the duration. If this value is negative, the
EV battery has been discharged and helping to meet the load.
Egy, is the energy change in G2V mode. Egy_is the energy
export in V2G mode. Equation (7) gives the energy usage
of the EV battery. Pgy and Ppy represent the

MaXcharge MaXgischarge

maximum charging and discharging rate of the EV battery,
respectively, based on manufacturer recommendations.
Equation (9) limits the SoC of the EV battery between the
lower bound and upper bound. Egy_ is the specific size of
the EV battery. Ey represents the initial battery energy.
SoCgy and SoCpy  are the minimum and maximum
SoC values of the EV battery, respectively. Egy, is the energy
loss of the EV battery, mostly resulting from heat loss. E,;,
represents the energy consumed when the EV is driving on
a certain trip between two known locations within some
time. Subscripts are used to distinguish the different trips

between locations if necessary, for example, E,;, =represents

the energy consumption of the EV battery between location a
and location b.

Due to the objective in this article which is to obtain the
minimum electricity expenses, the bill reductions should
compare with the V2G cost of the EV. In [27], this cost can
be calculated by the following:

C,=Eyyg Ny~ (Cqtre). (10)
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This equation is used to determine the cost to the EV
owner for allowing access to the stored energy in their vehi-
cles, where C, is the annual cost. Ey,; is the energy available
in each EV per dispatch in kWh. N, is the number of dis-
patches per year. Cy is the cost of battery degradation. r, is
the electricity price.

3. Proposed Control Strategies

As the EV has the transport function, it can move from one
location to another. In other words, when the EV is con-
nected to the grid of some parking place, its battery can be
applied as a small storage unit to that place.

A comprehensive analysis of EVs applied in the distrib-
uted PV systems can be shown in Figure 1. The box on the
top left shows two scenarios of one PV system, number 1
PV system, in which the left circle is the distributed PV sys-
tem with EV connected. The basic participants in one distrib-
uted PV system include power grid, grid-connected PV
generation, storage battery, electricity load, and EV, which
would provide or consume electric energy. The top right
box illustrates the two probabilities when the EV is out of
the number 1 PV system. One is that the EV is in another dis-
tributed PV system, the other is that the EV is driving on a
trip. The box on the lower left is all the given states of the dis-
tributed PV systems when the EV battery is connected to one
of them, and the lower right is the state of the distributed PV
system when the EV is driving on some trip from one distrib-
uted PV system to another or the EV is off-grid.

The main research content of this article is to design the
optimal energy flow of distributed PV systems with EV
multiple-mode application under the objective of minimizing
the electricity expense. Based on the model described in the
above section, the control structure of distributed PV systems
can be shown in Figure 2.

It can be seen from the figure that the distributed PV
system integral model includes PV generation forecast
model, BNN load forecast model, control model of storage
battery by geometrical logic analysis methodology, and
multiple-mode optimal control of EV battery in distributed
PV systems. In order to further discuss the control strategy
of distributed PV systems, the above diagram describes a
proposed two-level storage system control strategy based
on the actual situation of the system. That means in a storage
system which includes a storage battery and an EV battery,
the storage battery is preferred and firstly used. The techno-
logical development at this stage makes the storage equip-
ment still limited by a variety of factors, such as its cost,
life, and efficiency, so under such condition the authors make
the EV battery only as a secondary and auxiliary option for
storage purpose with reasonable and practical significance.
It can be found from the figure that the input parameters
for the second-level storage system are the remaining surplus
PV generation or electricity demand after the first-level con-
trol process of storage battery system.

A novel optimal model considering the EV-applied mul-
tiple modes can be formulated. Suppose there is an EV stor-
age aggregator which can control the EV battery charging
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F1Gure 2: Control schematic of the distributed PV systems with EV multiple-mode application.




and discharging schedule in all the distributed PV systems
which the EV can be connected to the grid.

From the above illustration, the following equilibrium
equations can be obtained. When the EV is in the number i
PV system, the EV battery is deemed as a storage device just
like a battery joining the energy flow in one distributed PV
system. On the contrary, other distributed PV systems do
not have EV battery participating in the energy change.

grid, (1) + Epy (t) — Eg (1)
Epy,

- - Eloadi(t> - EEV(t) =0,
i (1)+ Epv, (1)~ B (1)

= EBioag, (1) =0 (j € (LK) N j# ).
(11)

o> I e

In the above equation, integer i represents the num-
ber i of the ordered distributed PV systems in which the
EV battery is being connected to its power grid in time #; (¢)
represents the corresponding value in ordered period ¢ with
observation time interval t,, and the total number of
ordered periods is n; j represents other ordered distributed
PV systems without EV connection in time ¢, and 0 < j <k
but j# i, where k is the number of distributed PV systems.
Egia» Epys Ejoaa» Ep> and Egy are the energy change of the
grid, PV, load, battery, and EV battery in time ¢, respectively.
From an optimal economy view, in this article the proposed
optimal control model has been firstly designed with an
objective of minimizing electricity cost of one specific dis-
tributed PV system.

ng

min - C;= ) (My(t)- Eyg, (t) = FIT(t) - Egug (1)), (12)

t=1

where C; represents the electricity cost of the number i PV
system, #; is the final time order, M; and FiT are the electric-
ity retail tariff of number i PV system and feed-in-tariff of
solar energy, respectively, and E,;q and Eg;4 stand for the
energy imported from or exported to the grid in unit interval
tin» Tespectively. From actual condition analysis, this objec-
tive is likely to happen when the EV owner wants to obtain
the lowest electricity expense of his residence.

Another possible objective may be the minimization of
the total electricity cost for all the distributed PV systems in
which the EV battery may participate in.

=

f

M»

min total

(Mi(0) Egua, (1) ~ FET(0) - Egag, (1)).
(13)

I
—
~

i =1

The authors would like to assess, when multiple locations
share one EV controller, whether the total electricity cost
could be effectively reduced or not. Through the calculations
under these two different objectives, the optimal scheduling
problem can be analyzed and solved from different views.

The following equations are the constraints of the distrib-
uted PV system with net metering when EV is being con-
nected to the grid:

Complexity

subject to Egrid<t> = Egrid,r(t) - Egrid,’ (t)’
Egrid+ (t) < Eload(t) + EB(t) + EEV(t)’ (14)
Egia (1) <Epy(t).

This equation gives the limitations of electricity energy
from and into the grid. When considering the energy bal-
ance, it can be found that the maximum energy import
occurs when all the electrical devices simultaneously con-
sume electricity from the grid, and the maximum energy
export occurs when all the surplus PV generation is fed into
the grid. When the EV is being connected to the grid, the
EV battery is available for bidirectional interaction.

On the contrary, when the EV is out of the distributed PV
system, the above equation should be

0< EgricLr (t) < Eload(t) + EB(t)’
0<Eg;q (1) <Epy(t).

The constraints should also contain the limitations on the
storage battery and EV battery.

Under this way, the total Ey,s in this article can be
expressed as

(15)

ng
Eyyg= Z Egridi+ : (16)
i=1

4. Results and Discussion

Here, this verification scenario of two distributed PV systems
is assumed as the description in the following. During the
working day, the EV owner usually should stay in his work-
place, so he drives the EV from home to the workplace and
parks the EV there during the working hours. The time of
oft-grid covering one trip is assumed as half hour. In this arti-
cle, the working hours are assumed from 9:00 to 17:00. Then,
after the working hours, he drives the EV home and leaves
the EV connected to the charging pile during the night. That
is to say under this scenario, most of time in the working
days, the EV is mainly parked in the owner’s home or parking
area of the workplace. If in these two locations, the EV can
both be connected to the grid and participate in the energy
systems, the proposed optimal control strategy should effec-
tively reduce the expense of electricity.

The following is a case as an example using a whole year
historical data of number 13 in 300 households with PV users
from July 1, 2010, to June 30, 2011, which is provided by Aus-
grid Company, a utility in Australia [28]. The data includes
the electricity load, PV size, PV generation with half-hour
interval, and also postcode to express the location. The spe-
cifichome is with a 2.22 kW PV system, and the average elec-
tricity consumption was 11.99kWh per day, which had a
typical load shape with a small peak in the morning and a
larger peak in the afternoon. The meteorological correlation
parameters are from the Bureau of Meteorology, Australia.
To better illustrate and design the economic control strategy,
Sydney’s actual three-level time of use price is chosen as a
whole integrated control strategy for specific operations and
result analysis, which includes off-peak time (0:00-7:00 and
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22:00-24:00), shoulder time (7:00-14:00 and 20:00-22:00).
and peak time (14:00-20:00) in one day. The electricity retail
tariff (which is 0.13$ in off-peak time, 0.21$ in shoulder time,
and 0.53$ in peak time) and the FiT (0.08%/kWh) are both
from the Independent Pricing and Regulatory Tribunal
(IPART). The efficiencies of the PV system are the same as
[26], which include the efficiency of DC/DC, 0.95; the effi-
ciency of DC/AC or AC/DC, 0.95; the efficiency of the bat-
tery charging state, 0.85; and the efficiency of the battery
discharging state, 0.9. In the case, EV monitoring data is
provided by Smart Grid Smart City [29], which follows 20
EVs of i-MiEV type from Mitsubishi brand. They recorded
the data with very detailed information of EV application,
such as the parameters of time, state of charge (SoC) of
the EV battery, mileage, charging time of every start and
end, trip time of every start and end, and also distance,
average velocity, and simple description of trip destination.
In the following computation, the authors apply the average
value of EV trip as the common trip features in which the
average trip time is 18 minutes and the average battery con-
sumption of one trip is 1.88kWh and assume that the
charging efliciency is the same as discharging efliciency,
which is 74.6% from the EV brochure supplied by the man-
ufacturer. Due to the consideration of battery reasonable
application, the SoC of the storage battery and the EV bat-
tery is controlled within 20%~100%. The actual load data
used for the workplace is calculated, the average half-hour
load value of the Chemical and Biomolecular Engineering
Building in Sydney University in one year from Dec 1,
2007, to Nov 30, 2008. Because there is no PV system in
this building and the goal of the validation is to show the
effectiveness of the proposed optimal control strategy, here
the second distributed PV system is simplified to energy
system with power grid and load only.

The test scenario only contains two distributed systems
and one EV application in a whole year; therefore, it is not
a very big problem, and the authors simply chose the self-
contained function “fmincon” in MATLAB software to solve
it, and in order to ensure the correctness of the solutions, we
assumed the initial battery and EV battery as fully charged
(SoCy(0) =100% and SoCgy(0) =100%). The program of
the proposed control model has been run on Dell XPS13
laptop, with the Intel Core i7 and 1.9 GHz of CPU master
frequency. The average running time is around half an
hour once for the whole year. The memory features after
the program running are 3937 MB of physical memory
(RAM), 4963 MB of page file (swap space), and 6990 MB
of virtual memory (address space) in use.

The results of annual electricity expense under different
conditions are listed in Table 1. The different conditions
include the storage battery capacity changes, with or without
EV, and the objective function changes. B, ,, as abovemen-
tioned represents the available capacity of the storage battery.
The results show that if the distributed PV system only with
the storage battery capacity increases from 1 kWh to 20 kWh
and without EV application, the electricity expense can
obtain a reduction from 13.44% to 58.39%. If the distributed
PV system with the storage battery capacity increases from
1kWh to 20kWh and with an EV application, the electricity

TasLE 1: Computing result comparison of the whole year under
different conditions.

Electricity expense  Electricity
Blectricity Electricity with EV ($) expense
P ten
(kwh) Vléi;[/h?gzl)t without min(C,,,) min(C;) objective
EV (%) min(C;)
(%)
0 891.34 0 819.35 649.03 27.18
1 771.53 13.44 727.18 618.00 30.67
2 683.08 23.36 645.87 540.77 39.33
3 618.34 30.63 591.47 476.57 45.97
4 570.86 35.95 543.69 429.24 51.84
5 536.24 39.84 510.92 393.86 55.81
10 436.47 51.03 393.78 270.21 69.68
15 388.23 56.44 333.45 201.17 77.43
20 370.93 58.39 300.54 164.99 81.49

expense can obtain a reduction from 30.67% to 81.49%. From
the table, under the condition of only with EV as a mobile
storage equipment and not equipped with other storage
equipment, the customer residential electricity expense
could get a 27.18% saving when the objective is min(C;).
With the storage battery capacity increasing, electricity con-
sumption saving values gradually increased. However, in
the actual energy system design and application, the storage
capacity leads to the cost increasing of storage system.
Under this way, the designer must compare the saving with
the cost and take the degradation, life, and other related
factors of storage system into consideration to determine
the reasonable storage system capacity which can generate
the maximum benefit.

The results obtained above are calculated by the actual
historical data of PV generation and electricity demand
and mainly discuss the relevant conclusions and effective-
ness of the optimization control under the designed distrib-
uted PV system control strategy in this article. While the
EV battery is parking in the workplace energy system, it
could play a role in shifting load. It indicates that the EV
battery is charged during the lower price period and dis-
charged in the higher price period in order to reduce the
workplace electricity consumption. Under this control, the
workplace applies the EV battery as a storage unit to reduce
the expense on electricity, and the EV battery is charged by
the workplace grid power to a certain degree. This can be
seen as the application of EV, a mobile storage system,
achieves a win-win situation. However, the specific benefits
should be rerationally distributed by balancing the interests
of all participants.

Further, the feasibility and effectiveness of the control
strategy are analyzed with day-ahead predicted PV genera-
tion and demand. Due to the missing information of PV
modules, here the authors assume the error of PV predic-
tion model conforming to the Gaussian distribution which
is introduced in Section 2.1, and to simplify the calculation,
the average error y is set as 0. Since in the selected customer’s



TaBLE 2: Performance of the load forecast model.

Samples (17520) MSE R?
Training set (10512, 60%) 3.77e-2 8.55¢e—1
Validation set (3504, 20%) 0 0
Test set (3504, 20%) 5.29¢-2 7.85e—1

energy system, the recorded PV generation is generally less
than 1kWh in the recorded time interval of half an hour,
the standard deviation o is set as 0.1 and 0.2, respectively.
To realize the above settings, the MATLAB software is
chosen to generate the forecasting PV power values under
our assumptions and different deviations by a function
named “random.”

The BNN method is introduced to establish the cus-
tomer’s electricity load forecasting model, which has been
illustrated in Section 2.2. The data used to calculate is still
from Ausgrid company as the above descriptions. The total
number of samples is 17520 and is randomly divided into
60% as the training set, 20% as the validation set, and 20%
as the test set by MATLAB software, respectively. The MSE
and R-squared values of the electricity demand forecast
model are shown in Table 2.

From the historical data of this chosen sample, the
repeatability and regularity of the electricity consumption
way are relatively weak. For this type of user, higher predic-
tion accuracy may require the customer to provide relevant
factors as detailed as possible or supply own defined schedule
of electricity demand. However, it is very difficult to realize
such requirements. Thus, here even the prediction perfor-
mance is lower compared to some other customers’ from
the 300 households of Ausgrid, it roughly could be seen to
meet the basic test needs.

In order to compare the designed control strategy per-
formance using actual historical data and predicted values
as inputs, respectively, the authors calculate the results of
six different input conditions under the objective function
min(C;). The results are listed in Table 3; Ly, is the histor-
ical data of load and PVy expresses the historical data of
PV generation, respectively; Ly is the forecasting data of
load and PV expresses the forecasting data of PV, respec-
tively. It can be seen from the table that, as discussed above,
the customer’s power consumption mode has a relatively
weak repeatability and strong randomness and the perfor-
mance with demand prediction is inferior to other cases,
which leads to a bigger difference than with other inputs.
When the standard deviation of the PV generation error
increases, the difference between the actual and the forecast-
ing inputs increases, which is consistent with the assumption
of the model performance.

In order to compare the above results intuitively, Figure 3
illustrates the customer annual consumption varied with
the increasing storage battery capacity. It is obvious that
the minimum residential annual electricity expense under
min(C;) is lower thanmin(C,,,). Under the min(C,,),
the EV owner’s residential electricity expense also signifi-
cantly reduced compared to the case without EV. This indi-
cates that EV as a mobile storage system to participate the

Complexity

energy conversion of multiple parking places can obtain sig-
nificant economic benefits through reasonable optimal
scheduling control.

From the figure, it is also evident that the increase of the
storage battery capacity could reduce the difference between
the actual consumption and the calculated consumption by
the forecast inputs. This indicates that the storage battery
has a certain role to improve the overall optimal control
performance in the distributed PV system. This improve-
ment in performance can be converted to economic benefits,
so as to provide a reference when the designers consider the
cost of storage system.

Through the above calculation and discussion, the error
of annual electricity expense with forecast inputs is less
than 10% by comparison with actual inputs. Here, the
authors go a step further to discuss the control model with
predicted inputs. In the following, Table 4 shows some sit-
uations to see when the model would be out of work with
increasing deviation.

As the performance of the electricity demand is already
known by the forecast load model, a simple way to change
the predicted input is just to assume the forecasting PV
generation with different o values. Table 4 shows the
results under different assumptions with B, =5 kWh and
min(C;). Due to the PV generation values used in the com-
puting which are almost all smaller than 1, the assumed value
range of o is big enough under this condition. That means
when the ¢ value is assumed as 0.5, the average error will
be greater than 50%, and when o is assumed as 1.0, the aver-
age error will be greater than 100%. That is already the most
extreme situation and nearly would not happen. From the
results listed in the table, it can be seen that even when o is
0.5, the annual electricity expense under the designed control
scheme is still very close to the results obtained with the
actual data. However, when o is 1.0, the results are greatly
deviated from the actual input operation. Thus, under this
extreme condition, the control strategy is invalid. It is note-
worthy that this failure situation is basically impossible to
happen. Therefore, the overall scheme of the distributed sys-
tems established can meet the practical application and has
notable economic benefits.

5. Conclusion

Considering the booming development of the electric vehicle
(EV), this article presents a novel control scheme analyzing
EV multiple-mode application in a number of distributed
photovoltaic (PV) systems, which rationalizes the energy
flow among the energy system participants containing power
grid, grid-connected PV system, power consumption devices,
storage battery, and EV. In this article, the EV with V2G
mode is seen as a mobile storage system, and multiple mode
represents the EV that can be applied with G2V, V2G, off-
grid, and driving modes and also can be used in multiple
locations. In the control scheme, the PV prediction model
with an error satisfying Gaussian distribution and load fore-
cast model based on Bayesian neural network learning
method are used as the inputs of the control framework.
According to the inputs, the authors propose two day-
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TaBLE 3: Results of annual electricity expenses under min(C;) with different inputs.
. Ly &PVy Ly &PV Ly &PV, Ly &PV,
min(C;) (8) Ly &PV Ly &PVy 0=0.1 7=02 o=0.1 0=0.2
649.03 583.42 636.96 611.67 571.56 547.15
5 393.86 330.41 391.14 376.48 397.54 400.62
B, x (kWh) 10 270.21 234.42 268.12 255.34 231.26 221.16
15 201.17 186.59 198.10 188.73 184.55 175.44
20 164.99 163.09 164.20 155.98 160.89 152.13
e
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Capacity of storage battery B, (kWh)
— Ly & PVy; (without EV) -»= Ly & PV under min(C,,))
—— Ly &PVy —— EV battery without mobility
v Ly &PV (0=0.1) —o— EV only change energy in owner’s PV system
0 Ly &PVy(0=02)
F1Gure 3: Change of annual consumption on electricity with varied available storage battery capacity.
TaBLE 4: Results of annual electricity expense with B, =5 kWh and min(C;) under different ¢ of forecasting PV model.
Assumed o in PV prediction model 0.01 0.05 0.1 0.2 0.5 1
Annual electricity expense under the objective function min(C;) 393.86 394.77 397.54 400.62 399.54 2.41

ahead optimal control strategies with different objective
functions; one is minimizing the daily electricity expense of
individual distributed PV system and the other is minimizing
the daily total expense of distributed PV systems which EV
can be connected to. The control structure makes the cus-
tomer obtain a lowest expense on electricity through the
storage battery system control in the first level by geometri-
cal logic analysis methodology and EV optimal scheduling
control with multiple-mode application in the second level.
The model has been verified and analyzed by the actual his-
torical data and forecast data, respectively. The results show
that if the distributed PV system only with the storage bat-
tery and without EV application is being used, the electricity
expense can obtain a reduction from 13.44% to 58.39% with
the battery capacity increasing from 1 kWh to 20 kWh. If the
distributed PV system without storage battery and with EV
application is being used, the electricity expense can obtain
a reduction of 27.18%. Furthermore, when the distributed
PV system with the storage battery increases as well as EV
application, the electricity expense can obtain a reduction

from 30.67% to 81.49%. Under the total objective, the total
expense and even the individual expense have different
degrees of reduction. However, the specific benefits should
rerationally distributed by balancing the interests of all dis-
tributed PV systems. Besides economic consideration, the
models explained in this article can be easily introduced into
the environment and energy conservation goals. In addition,
this model may have some potential on the development of
regional energy system. Future work will focus on further
improving the performance of PV generation forecast
model and the electricity demand forecast model and sup-
plementing reasonable real-time control strategy to obtain
a higher benefit.

Nomenclature

The forecasting PV output in unit time interval
(kWh)

The open-circuit voltage (V)

Ige: The short-circuit current (A)



o

B :
MaXcharge

MaXgischarge

Egy :
Pgy

MaXcharge

PEV

MaXdischarge

The voltage at maximum power point (V)

The current at maximum power point (A)

The serial number of PV cells in one panel
The serial number of PV array

The parallel number of PV array

The solar irradiance (kW/m?)

The temperature (°C)

Unit time interval, which is 30 min in this paper
The error between the PV forecasting value and
the actual PV generation (kWh)

The forecasting PV value (kWh)

The actual PV generation (kWh)

The mean error

Mean square deviation

Vectors of inputs in BNN load forecasting
model

Time of every day

Day type

Ambient temperature (°C)

Relative humidity (%)

The series order number of historical sample
data’s intervals

Historical load data (kWh)

The battery energy change (kWh)

The charging energy (kWh)

The discharging energy (kWh)

The maximum charging rates of battery (kW/h)

The maximum discharging rates of battery
(kW/h)

The specified capacity of the storage battery
(kWh)

The initial battery energy (kWh)

The minimum SoC of battery

The maximum SoC of battery

The energy loss of the battery (kWh)

The capacity of the storage battery (kWh)
The maximum energy could be used in the
storage battery when it is fully charged (kWh)
The battery energy change of EV battery (kWh)
The energy change by G2V mode (kWh)

The energy export by V2G mode (kWh)

The maximum charging rate of the EV battery
(kW/h)

: The maximum discharging rate of the EV

battery (kW/h)

The initial state of battery (kWh)

The minimum SoC of EV battery

The maximum SoC of EV battery

The energy loss of the EV battery (kWh)

The energy consumed when the EV is driving
on a certain trip between two known locations
within some time (kWh)

The annual cost of V2G ($)

The energy available in each EV per dispatch
(kWh)

The number of dispatches per year

Complexity

Cy: The cost of battery degradation ($)

T The electricity price ($/kWh)

k: The number of distributed PV systems

i The ordered distributed PV systems in which

the EV battery is being connected to its power
grid in time ¢

J: The other ordered distributed PV systems
without EV connection in time ¢

g The final time order

t: The ordered period with observation time
interval £,

C: The minimizing electricity cost of one specific

distributed PV system ($)

The minimization of the total electricity costs
for all the distributed PV systems which an EV
battery may participate in ($)

Ly The historical data of load

PVy: The historical data of PV generation
Lg: The forecasting data of load
PV The forecasting data of PV generation.
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