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Based on the 3D autonomous continuous Lü chaotic system, a new 3D autonomous continuous chaotic system is proposed in
this paper, and there are coexisting chaotic attractors in the 3D autonomous continuous chaotic system. Moreover, there are no
overlaps between the coexisting chaotic attractors; that is, there are two isolated chaotic attractors (in this paper, named “positive
attractor” and “negative attractor,” resp.). The “positive attractor” and “negative attractor” depend on the distance between the
initial points (initial conditions) and the unstable equilibrium points. Furthermore, by means of topological horseshoes theory and
numerical computation, the topological horseshoes in this 3D autonomous continuous system is found, and the topological entropy
is obtained. These results indicate that the chaotic attractor emerges in the new 3D autonomous continuous system.

1. Introduction

A very interesting phenomenon in nonlinear systems is
the possibility of chaos. Chaotic systems have some typical
characteristics including high irregularity, unpredictability,
and complexity [1, 2]. In 1963, the first chaotic attractor in
a smooth 3D autonomous continuous system was found by
Lorenz, which is called Lorenz chaotic system [3]. As the first
chaotic model, the Lorenz system reveals the complex and
fundamental behaviors of the nonlinear dynamical systems.
In 1999, Chen and Ueta reported another chaotic attractor in
a smooth 3D autonomous continuous system named Chen
chaotic system [4], which nevertheless is not topologically
equivalent to Lorenz’s. Afterwards, Lü and Chen carefully
discussed the 3D Lorenz chaotic system and the 3D Chen
chaotic system and discovered another chaotic attractor in
2002, which is called 3D Lü chaotic system [5]. The 3D Lü
chaotic attractor connects the 3D Lorenz attractor and 3D
Chen attractor and represents the transition from one to the
other. Moreover, research on chaotic systems has attracted
more andmore attention in the last few decades because of its

great applications in many fields like secure communication
[6], data encryption [7], power system protection [8], DC
motor control [8–10], flow dynamics [11], and so on [12–18].

On the other hand, coexisting chaotic attractors have
been reported in many nonlinear systems in the recent years
[19–23]. In [20, 21], the coexisting chaotic attractors were
found in some 4D smooth systems, and there are overlaps
between the coexisting chaotic attractors. In [22], Kengne et
al. reported a simple 3D autonomous jerk system with multi-
ple attractors; the chaotic system in [22] belongs to the gener-
alized Lü chaotic system family. In [23], Pham et al. found the
coexisting chaotic attractors in a novel 3D autonomous no-
equilibrium chaotic system, and there are overlaps between
the coexisting chaotic attractors. The chaotic system in [23]
belongs to the generalized Chen chaotic system family.
However, there are few results on the relationship between
the coexisting chaotic attractor and the initial conditions.

Motivated by the above discussions, a new 3D autono-
mous continuous chaotic system that has two isolated chaotic
attractors (two disconnected chaotic attractors) is reported in
this paper. Some basic dynamics behaviors of the new chaotic
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system such as dissipative, Lyapunov exponents spectrum,
bifurcation diagram, and phase diagram are obtained. It can
be found that this new chaotic systemhas two isolated chaotic
attractors or two disconnected chaotic attractors (named
“positive attractor” and “negative attractor” in this paper),
which depend on the distance between the initial points
(initial conditions) and the unstable equilibrium points.
The necessary condition for “positive attractor” or “negative
attractor” is obtained. Furthermore, the horseshoes and
entropy in this 3D chaotic system are also discussed bymeans
of topological horseshoes theory andnumerical computation.

The outline of our paper is organized as follows. In Sec-
tion 2, a new 3D autonomous continuous chaotic system is
addressed, and some basic dynamics behaviors of the new
chaotic system are yielded. In Section 3, the horseshoes and
entropy for the 3D chaotic system are investigated. In Section
4, the conclusion is given.

2. A New 3D Autonomous Continuous
Chaotic System

Normally, the 3D autonomous continuous chaotic systems
can be described by 𝑑𝑥/𝑑𝑡 = 𝐴𝑥 + 𝑓(𝑥). Here, 𝑥 = (𝑥1, 𝑥2,
𝑥3)
𝑇 is the state vector, 𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥))

𝑇 is the
nonlinear term of the 3D autonomous continuous chaotic
system, and the constant matrix 𝐴 = [𝑎𝑖𝑗] (𝑖, 𝑗 = 1, 2, 3) is
determined by the linear part of the 3D autonomous chaotic
system. According to the results [24] reported by Vanecek
and Celikovsk, the 3D autonomous continuous Lorenz
chaotic system satisfies 𝑎12𝑎21 > 0, the 3D autonomous con-
tinuous Chen chaotic system satisfies 𝑎12𝑎21 < 0, and the 3D
autonomous continuous Lü chaotic system satisfies 𝑎12𝑎21 =
0 (𝑎12 ̸= 0, 𝑎21 = 0). One can obtain that the chaotic system
in [22] satisfies 𝑎12𝑎21 = 0 (𝑎12 ̸= 0, 𝑎21 = 0), and the chaotic
system in [23] satisfies 𝑎12𝑎21 < 0. In this section, a new
3D autonomous continuous chaotic system that satisfies
𝑎12 = 𝑎21 = 0 (𝑎12𝑎21 = 0) will be discussed.

The 3D Lü chaotic system [5] is described as follows:

𝑥̇1 = −𝑎11𝑥1 + 𝑎12𝑥2,

𝑥̇2 = 𝑎21𝑥1 + 𝑎22𝑥2 − 𝑥1𝑥3,

𝑥̇3 = 𝑥1𝑥2 − 3𝑥3,

(1)

where 𝑎11 = 𝑎12 = 36, 𝑎21 = 0, 𝑎22 = 20, and 𝑎12𝑎21 = 0.
Now, based on the 3D Lü chaotic system (1), a new 3D

autonomous continuous system that satisfies 𝑎12 = 𝑎21 = 0 is
presented, and it is shown as follows:

𝑥̇1 = −𝑥1 + 0.5𝑥1𝑥3 + 𝑥2𝑥3,

𝑥̇2 = 𝑎𝑥2 − 1.2𝑥1𝑥3,

𝑥̇3 = 𝑥1𝑥2 − 6𝑥3,

(2)

where 0 ≤ 𝑎 ≤ 4. The second and third equations in system
(2) are similar to the second and third equations in system (1),
respectively. But, the first equation in system (2) is different
from the first equation in system (1). Obviously, 𝑎12 = 𝑎21 = 0

in system (2). So, system (2) is different from the 3D Lü cha-
otic system (1).

It is easily yielded that 𝜕𝑥̇1/𝜕𝑥1 + 𝜕𝑥̇2/𝜕𝑥2 + 𝜕𝑥̇3/𝜕𝑥3 =
𝑎 − 7 < 0. So, the new system (2) is a dissipative system, and
it can experience or develop attractors.

First, the Lyapunov exponents spectrum of system (2)
with respect to parameter 𝑎 can be obtained by numerical
calculation, which is displayed in Figure 1.

According to Figure 1, the maximum Lyapunov exponent
𝜆1 is positive for 0.06 ≤ 𝑎 ≤ 0.84, 0.91 ≤ 𝑎 ≤ 1.35, 1.45 ≤ 𝑎 ≤
1.85, 2.26 ≤ 𝑎 ≤ 3.28, and 3.42 ≤ 𝑎 ≤ 4.Therefore, the chaotic
attractor emerges in system (2) for suitable system parameter
𝑎.

Now, setting the parameter 𝑎 = 2.5, the five unstable
equilibrium points in system (2) are 𝑠0 = (0, 0, 0), 𝑝+ =
(3.5355, 1.7202, 1.0136), 𝑝− = (−3.5355, −1.7202, 1.0136),
𝑞+ = (3.5355, −3.4880, −2.0553), and 𝑞− = (−3.5355, 3.4880,
−2.0553), respectively. The Lyapunov exponents are 𝜆1 =
0.5758, 𝜆2 = 0, and 𝜆3 = −5.1023, respectively.The Lyapunov
dimension is𝐷𝐿 = 2+𝜆1/|𝜆3| = 2.1129; this resultmeans that
system (2) is fractal. Therefore, the chaotic attractor emerges
in system (2) for parameter 𝑎 = 2.5. By numerical calculation,
it can be found that there are two isolated chaotic attractors,
which depend on the initial conditions. After a large number
of numerical calculations, one has that the chaotic attractor
depends on the distance between the initial points and the
unstable equilibriumpoints (𝑝+,𝑝−, 𝑞+, and 𝑞−). Some results
are shown as follows:

(1) When the initial point 𝑥0 = (𝑥1(0), 𝑥2(0), 𝑥3(0))
is closed to the unstable equilibrium point 𝑝+ or 𝑞+, the
new system (2) has the same chaotic attractor. This attractor
is named “positive attractor” in this paper, which refers to
𝑥1(𝑡) > 0. A necessary condition for a “positive attractor” is
𝑥1(0) > 0.

(2) When the initial point 𝑥0 = (𝑥1(0), 𝑥2(0), 𝑥3(0)) is
closed to the unstable equilibrium point 𝑝− or 𝑞−, the new
system (2) has the same attractor. This attractor is named
“negative attractor” in this paper, which refers to 𝑥1(𝑡) < 0.
A necessary condition for a “negative attractor” is 𝑥1(0) < 0.

Next, choose some initial conditions, for example.

Case 1 (the initial point 𝑥0 is closed to unstable equilibrium
point 𝑝+). Let the initial conditions be (2, 2, 2). The distance
between this initial point and unstable equilibrium points
𝑝+, 𝑝−, 𝑞+, and 𝑞− is 1.8464, 6.7420, 6.9944, and 7.0215,
respectively. Therefore, the initial point is closed to unstable
equilibrium point 𝑝+. So, the new system (2) has the “positive
attractor,” which is shown in Figure 2.

Case 2 (the initial point 𝑥0 is closed to unstable equilibrium
point 𝑝−). Let the initial conditions be (−2, −2, 2). The
distance between this initial point and unstable equilibrium
points 𝑝+, 𝑝−, 𝑞+, and 𝑞− is 6.7420, 1.8464, 7.0215, and 6.9944,
respectively. Therefore, the initial point is closed to unstable
equilibriumpoint𝑝−. So, the new system (2) has the “negative
attractor,” which is displayed in Figure 3.

Case 3 (the initial point 𝑥0 is closed to unstable equilibrium
point 𝑞+). Let the initial conditions be (3, −3, −2). The
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Figure 1: Diagram of the Lyapunov exponent spectrum varies with respect to parameter 𝑎.
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Figure 2: The “positive attractor” in system (2).
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Figure 3: The “negative attractor” in system (2).

distance between this initial point and unstable equilibrium
points 𝑝+, 𝑝−, 𝑞+, and 𝑞− is 5.6257, 7.3097, 0.7266, and 9.2092,
respectively. Therefore, the initial point is closed to unstable
equilibrium point 𝑞+. So, the new system (2) has the “positive
attractor,” which is shown in Figure 4.

Case 4 (the initial point 𝑥0 is closed to unstable equilibrium
point 𝑞−). Let the initial conditions be (−3, 3, −2). The
distance between this initial point and unstable equilibrium
points 𝑝+, 𝑝−, 𝑞+, and 𝑞− is 7.3097, 5.6257, 9.2092, and 0.7266,
respectively. Therefore, the initial point is closed to unstable
equilibriumpoint 𝑞−. So, the new system (2) has the “negative
attractor,” which is displayed in Figure 5.

According to Figures 2, 3, 4, and 5, we can obtain that
the new system (2) has two isolated chaotic regions: one is
named “positive attractor” and other one is named “negative
attractor” in this paper. It is worth mentioning that there are
also two isolated chaotic attractors for any other parameter 𝑎.
For example, let 𝑎 = 3.5; the Lyapunov exponents of system
(2) are 𝜆1 = 0.5698, 𝜆2 = 0, and 𝜆3 = −4.2189, respectively.
Two isolated chaotic attractors in the new system (2) are
shown as Figure 6, where the initial conditions of “positive
attractor” and “negative attractor” are (3, −3, −2) and (−3, 3,
−2), respectively.

In addition, let 𝑎 = 2.2; the Lyapunov exponents of system
(2) are 𝜆1 = 0, 𝜆2 = −0.5250, and 𝜆3 = −4.5310, respectively.
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Figure 4: The “positive attractor” in system (2).
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Figure 5: The “negative attractor” in system (2).
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Figure 6: The “positive attractor” and “negative attractor” in system (2).

So, there is no chaotic attractor, and there is periodic orbit
which is shown in Figure 7.

Finally, the bifurcation diagram of variables 𝑥2 and 𝑥3
with respect to parameter 𝑎 is displayed in Figure 8. It can
be observed that the bifurcation diagram coincides well with
the Lyapunov exponents spectrum.

Remark 1. Obviously, the Lü chaotic system (1) and system
(2) in this paper are invariant under the transformation
(𝑥1, 𝑥2, 𝑥3) → (−𝑥1, −𝑥2, 𝑥3). However, the geometries of

chaotic attractors of the Lü chaotic system (1) and system (2)
are quite different. Firstly, for a given initial condition, the
state variable 𝑥1 in the Lü chaotic system (1) can be greater
than zero or less than zero. Conversely, the state variable
𝑥1 in system (2) can only be greater than zero or can only
be less than zero. Secondly, for arbitrary initial conditions,
the state variable 𝑥3 in the Lü chaotic system (1) can only
be greater than zero. Conversely, the state variable 𝑥3 in
system (2) can be greater than zero or can be less than
zero.
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Figure 7: The periodic orbit in system (2) for 𝑎 = 2.2.
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Figure 8: The bifurcation diagram of variables 𝑥2 and 𝑥3 with respect to parameter 𝑎.

3. Horseshoes and Entropy in
New Chaotic System (2)

First, some theoretical criteria of topological horseshoes are
recalled.

Let 𝑋 be a metric space, 𝐷 is a compact subset of 𝑋, and
𝑓:𝐷 → 𝑋 is a map satisfying the assumption that there exist
𝑚mutually disjoint compact subsets𝐷1, 𝐷2, . . . , 𝐷𝑚 of𝐷; the
restriction of 𝑓 to each𝐷𝑖, that is, 𝑓 | 𝐷𝑖, is continuous.

Definition 2 (see [25]). For each 1 ≤ 𝑖 ≤ 𝑚, let 𝐷1𝑖 and 𝐷
2
𝑖 be

two fixed disjoint compact subsets of𝐷𝑖. A connected subset
𝑙 of𝐷𝑖 is said to connect𝐷

1
𝑖 and𝐷

2
𝑖 , if 𝑙∩𝐷

1
𝑖 = ⌀ and 𝑙∩𝐷2𝑖 =

⌀, and we denote this by𝐷1𝑖 ↔ 𝐷2𝑖 .

Definition 3 (see [25]). Let 𝑙 ⊂ 𝐷𝑖 be a connected subset; we
say that 𝑓(𝑙) is suitably across 𝐷𝑗 with respect to 𝐷1𝑗 and 𝐷

2
𝑗 ,

if 𝑙 contains a connected subset 𝑙󸀠 such that𝑓(𝑙󸀠) ⊂ 𝐷𝑗,𝑓(𝑙
󸀠)∩

𝐷1𝑗 = ⌀, and𝑓(𝑙󸀠)∩𝐷2𝑗 = ⌀; that is,𝐷1𝑗
𝑓(𝑙󸀠)
←󳨀󳨀→ 𝐷2𝑗 . In this case,

we denote it by 𝑓(𝑙) 󳨃→ 𝐷𝑗. In case that 𝑓(𝑙) 󳨃→ 𝐷𝑗 holds true

for every connected subset 𝑙 ⊂ 𝐷𝑗 with𝐷
1
𝑖

𝑙
←→ 𝐷2𝑖 , we say that

𝑓(𝐷𝑖) is suitably across𝐷𝑗 with respect to two pairs (𝐷
1
𝑖 , 𝐷
2
𝑖 )

and (𝐷1𝑗 , 𝐷
2
𝑗), or 𝑓(𝐷𝑖) 󳨃→ 𝐷𝑗 in case of no confusion.

Theorem 4 (see [26]). Suppose that the map𝑓 : 𝐷 → 𝑋 satis-
fies the following assumptions:

(1)There exist𝑚mutually disjoint compact subsets𝐷1, 𝐷2,
. . . , 𝐷𝑚 of𝐷; 𝑓 | 𝐷𝑖 is continuous.

(2) The relation 𝑓(𝐷𝑖) → 𝐷𝑗 holds for every pair with 𝑖, 𝑗
taken from 1 ≤ 𝑖, 𝑗 ≤ 𝑚. Then there exists a compact invariant
set 𝐾 ⊂ 𝐷, such that 𝑓 | 𝐾 is semiconjugate to the full 𝑚-
shift dynamics 𝜎 | ∑𝑚 , and the topological entropy is 𝑒𝑛𝑡(𝑓) ≥
log𝑚.

Remark 5. The 𝑚-shift is also called the Bernoulli 𝑚-shift.
The symbolic series space ∑𝑚 is the collection of all bi-
infinite sequences:

𝑠 = {. . . , 𝑠−𝑛, . . . , 𝑠−1, 𝑠0, 𝑠1, . . . , 𝑠𝑛, . . .} , (3)

where 𝑠𝑖 ∈ {0, 1, . . . , 𝑚 − 1}. The shift map 𝜎 is defined as

𝜎 (𝑠) = {. . . , 𝑠−𝑛+1, . . . , 𝑠0, 𝑠1, 𝑠2, . . . 𝑠𝑛+1, . . .} . (4)

It is well known that ∑𝑚 is a Cantor set, which is compact,
totally disconnected, and perfect. As a dynamical system
defined on ∑𝑚 , 𝜎 has a countable infinity of periodic orbits
consisting of orbits of all periods, an uncountable infinity of
periodic orbits, and a dense orbit. A direct consequence of
these three properties is that the dynamics generated by the
shift map are sensitive to initial conditions. Mathematically,
the topological entropy ent(𝑓) > 0 measures its complexity,
which roughly means the exponential growth rate of the
number of distinguishable orbits as time advances. When
𝑚 > 1, ent(𝑓) > 0; therefore the system is chaotic. For
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more details of the above symbolic dynamics and horseshoes
theory, we refer the reader to [25–28].

Corollary 6 (see [27]). If 𝑓𝑝(𝐷1) 󳨃→ 𝐷1, 𝑓𝑝(𝐷1) 󳨃→ 𝐷2,
𝑓𝑞(𝐷2) 󳨃→ 𝐷1, and 𝑓𝑞(𝐷2) 󳨃→ 𝐷2, then there exists a compact
invariant set 𝐾 ⊂ 𝐷, such that 𝑓𝑝+𝑞 | 𝐾 is semiconjugate to
2-shift dynamics, and 𝑒𝑛𝑡(𝑓) ≥ (1/𝑝 + 𝑞) log 2.

In order to find a horseshoes in system (2) with parameter
𝑎 = 2.5 and initial conditions (−2, −2, 2), we will first
utilize the technique of cross section and the corresponding
Poincaré map. By taking the set

Π = {(𝑥1, 𝑥2, 𝑥3) | 𝑥2 = 1.8, 𝑥̇2 > 0} (5)

as a Poincaré section plane, we chose the corresponding
Poincaré map𝐻 : Π → Π as follows: for each x = (𝑥1, 𝑥3) ≜
(𝑥1, 1.8, 𝑥3) ∈ Π, 𝐻(x) is taken to be the first return point
in Π under the flow with the initial condition x. Then, we
use a MATLAB GUI program called “A toolbox for finding
horseshoes in 2D map” [27]. After many attempts, we find a
topological horseshoes by a similar method proposed in [27],
as shown in Figure 9.

As shown in Figure 10, we find two subsets 𝐷1 and 𝐷2,
where the coordinates of four vertices of𝐷1 are

[−8.842643136, 3.160443654] ,

[−9.179288567, 2.956713578] ,

[−8.309621205, 2.374627645] ,

[−8.057137132, 2.578357722] ;

(6)

and the coordinates of four vertices of𝐷2 are

[−7.362805931, 2.156345421] ,

[−7.503074861, 1.938063196] ,

[−6.703541963, 1.486946599] ,

[−6.605353713, 1.661572378] .

(7)

Numerical computation shows that the two subsets under
𝐻 are continuous, and their images are illustrated in Figures
10(a) and 10(b), respectively.
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Figure 10: A new horseshoes of the map.

It is easy to see from Figure 10(a) that 𝐻(𝐷1) passes
through 𝐷1 and 𝐷2 between their top and bottom sides and
transversely intersects 𝐷1 with 𝐷

1
1 and 𝐷

2
1 and intersects 𝐷2

with𝐷12 and𝐷
2
2. So each connected subset𝐷1, if it is connec-

tion of 𝐷11 and 𝐷
2
1, then its images under 𝐻 must be across

𝐷1 with respect to 𝐷11 and 𝐷
2
1 and across 𝐷2 with respect to

𝐷12 and 𝐷
2
2. Then we have 𝐻(𝐷1) 󳨃→ 𝐷1 and 𝐻(𝐷1) 󳨃→ 𝐷2.

Similarly, we have𝐻(𝐷2) 󳨃→ 𝐷1 from Figure 10(b) too.
According to the topological horseshoes Corollary 6,

there exists a compact invariant set Λ ⊂ 𝐷, such that 𝐻2 |
Λ is semiconjugate to 2-shift dynamics and the topological
entropy of𝐻 is ent(𝐻) ≥ (1/2) log 2, which indicates that the
map is chaotic indeed.

By the same way, a horseshoes in system (2) with
parameter 𝑎 = 2.5 and initial conditions (2, 2, 2) can be
obtained. Therefore, the chaotic attractor emerges in system
(2) for parameter 𝑎 = 2.5.

4. Conclusions

In this paper, a 3D chaotic system satisfying 𝑎12 = 𝑎21 = 0
is suggested. Some basic dynamics behaviors such as dissipa-
tive, Lyapunov exponents spectrum, bifurcation diagram, and
phase diagram are obtained.The coexisting chaotic attractors
are found in this 3D chaotic system, and there are two isolated
chaotic attractors (named “positive attractor” and “negative



Complexity 7

attractor,” resp.) that depend on the distance between the
initial points and the unstable equilibrium points. There are
no overlaps between the “positive attractor” and “negative
attractor.”

Furthermore, by means of topological horseshoes theory
and numerical computation, a horseshoes in system (2) with
parameter 𝑎 = 2.5 is obtained. Meanwhile, we obtained that
the topological entropy is ent(𝑓) ≥ (1/2) log 2. These results
indicate that the chaotic attractor emerges in system (2) for
parameter 𝑎 = 2.5.
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