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Structural health monitoring and fault state identification of key components, such as rolling bearing, located in the mechanical
main drive system, have a vital significance. The acquired fault signal of rolling bearing always presents the obvious nonlinear
and nonstationary characteristics. Moreover, the concerned features are submerged in strong background noise. To handle this
difficulty, a novel fault signal denoising scheme based on improved sparse regularization via convex optimization is proposed to
extract the fault feature of rolling bearing. In this paper, the generalized minimax-concave (GMC) penalty is firstly researched to
promote the sparsity of signal, which is based on traditional L1-norm and Huber function. It is designed to estimate the sparse
solutions more accurately and maintain the convexity of the cost function. Then, the GMC penalty is extended to 1-D first-
order total variation (TV) as nonseparability and nonconvex regularizer. Thus, a convex optimization problem, which involves a
quadratic data fidelity term and a convex regularization term, is developed in this paper. To accelerate the convergence of the
algorithm, it is solved by forward-backward (FB) iterative algorithm and thus the denoised signal can be obtained. In order to
demonstrate its performance, the proposed method is illustrated for numerical simulation signal and applied in the feature
extraction of the measured rolling bearing vibration signal.

1. Introduction

In the field of prognostics and health management (PHM)
to mechanical equipment, the actual collected vibration
signal contains wealthy information about operating status
[1–3]. It is worthy to note that the faulty characteristic
information can always be reflected from the measured sig-
nal. Rolling bearing is the key component in the main trans-
mission system, and its operating performance is directly
related to the status of the entire plant. When some faults
occur in them, it will inevitably affect the work safety and
production efficiency [4, 5]. Therefore, analyzing the possible
fault characteristics of the rolling bearings has an impor-
tant practical significance [6–8]. Modern signal processing

methods provide the main technical means of rolling bear-
ing fault diagnosis.

Generally, the acquired signal is coupled by useful infor-
mation and the strong noisy component, which has the typ-
ical nonlinear and nonstationary characteristics. Hence, the
main task of mechanical equipment structural health moni-
toring is to effectively remove the noise component and
improve the signal-to-noise ratio [9, 10]. Traditional signal
processing method is based on inner product operator, which
is built on the analyzed signal and basis function. The most
representative ones are short-time Fourier transform (STFT)
[11] and wavelet transform (WT) [12, 13]. Since the size
of the analyzed window is fixed, STFT lacks sufficient ca-
pacity to deal with the complex nonstationary signals. The

Hindawi
Complexity
Volume 2018, Article ID 2169364, 10 pages
https://doi.org/10.1155/2018/2169364

http://orcid.org/0000-0003-0471-0280
http://orcid.org/0000-0002-5571-2043
https://doi.org/10.1155/2018/2169364


performance of WT depends on the selection of wavelet
basis function and the decomposition level. Then, local
mean decomposition (LMD) algorithm is proposed as an
adaptive time-frequency analysis method [14]. However,
it still has the problem of mode aliasing. Variational
mode decomposition (VMD) [15, 16] is proposed based
on Wiener filtering, one-dimensional Hilbert transform,
and heterodyne demodulation analysis. It is still affected by
the selection of penalty parameter and the number of signal
components. Presently, synchrosqueezing transform (ST)
has attracted much attention due to its properties in time-
frequency reassignment [17, 18]. Nevertheless, its perfor-
mance is unsatisfied since the cross-term interference and
poor scale separation.

Essentially, the signal denoising can be achieved by the
calculation of a sparse approximate solution to the measured
vibration signal. Thus, the novel denoising method based on
convex optimization and sparsity has publicly employed in
signal processing and image enhancement [19, 20]. It has
been successfully applied in the field of mechanical fault diag-
nosis [21], spectral data processing, and baseline correction
[22]. Total variation (TV) is the main content of convex opti-
mization algorithm, which involves a quadratic data fidelity
term and a convex regularization term [23]. It is developed
on sparse signal models. Based on that, the first-order TV
[24] and higher degree TV (HDTV) [25] regularization
has been researched. However, the experimental analysis
demonstrated that it may work when the signal is piecewise
constant and it often produces undesirable staircase artifacts.
Subsequently, wavelet total variation denoising [26] is pro-
posed to improve the denoising performance, while the
estimation of noise variance and penalty function selection
is an inevitable question. Using either (1) L1-norm regulari-
zation and convex optimization or (2) nonconvex regulariza-
tion and nonconvex optimization, the calculation of a sparse
approximate solution to a linear system of equations is
often performed. However, it tends to provide solutions
that deviate the real values. Afterwards, a new penalty is
suggested, which is a multivariate generalization of the
minimax-concave (MC) penalty and is defined as generalized
MC (GMC) penalty [27, 28]. GMC penalty simultaneously
involves the generalized Huber function and the regular
L1-norm regularization. In other words, it is an innovative
nonseparability and nonconvex penalty function, which is
using for achieving the sparse enhancement and signal
smoothing. A nonseparable penalty has more superiority in
meeting the requirement of preserving the convexity of the
objective function [29]. The published result fully indicates
that the GMC penalty is obviously superior to the common
penalty function in noise artifacts removing for time-
frequency analysis [27].

For early and weak fault detection, it has the feature of
latent and dynamic response as the multifactor coupling
and complex transmission path [30]. Since the fault is in its
early state, the energy generated during the operation is
low, and the signal that can be received by the sensor after
attenuation is extremely weak [31]. Therefore, early failure
signal is easily submerged by background noise, and effective
extraction of these characteristics has been a difficult

problem. Inspired by the idea of jointing the nonconvex
penalty and convex optimization algorithm, the traditional
L1-norm regularization term is replaced by GMC penalty in
the TV denoising scheme in this paper so as to effectively
realize fault state identification. In order to verify the ratio-
nality and feasibility of the proposed method, it is used to
analyze the numerical simulation and the actual fault vibra-
tion signal of rolling bearings in the bearing test rig. The
result demonstrated that the proposed method has obvious
advantages over traditional methods such as WT, TV, and
complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) [32].

The rest of the paper is organized as follows. In Section 2,
the basic ideas of GMC penalty and the researched convex
optimization denoising algorithm are introduced. The simu-
lation signal analysis is described in Section 3. The fault-
bearing data from bearing test rig is analyzed in Section 4.
Section 5 gives the final conclusions.

2. Theory Descriptions

2.1. Generalized Minimax-Concave (GMC) Penalty. Gener-
ally, the objective function is convex, and the optimization
problem of constraint variable value in a convex set is called
convex optimization problem. The penalty function is a mea-
sure of constraint violation, which makes the constraint zero
when the constraint is satisfied. The one-dimension time
series x ∈ RN can be simply expressed as x = x1, x2,… , xN .
Then, the L1-norm and L2-norm is denoted as x 1 =∑n xn
and x 2 = ∑n xn

2 1/2
respectively.

The Huber function s x can be defined as:

s x =

1
2
x2, ∣x∣ ≤ 1

∣x∣ −
1
2
, ∣x∣ ≥ 1

1

The minimax-concave (MC) penalty ϕ x is defined as:

ϕ x =
∣x∣ −

1
2
x2, ∣x∣ ≤ 1

1
2
, ∣x∣ ≥ 1

2

Figures 1(a) and 1(c) have illustrated the Huber function
and MC penalty. Hence, the relationship between Huber
function and MC penalty can be described as

ϕ x = x − s x 3

Defining the scaled versions of the Huber function
and MC penalty is convenient. For b ≠ 0, the scaled Huber
function sb x is determined by

sb x =

1
2
b2x2, ∣x∣ ≤

1
b2

∣x∣ −
1
2b2

, ∣x∣ ≥
1
b2

4
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Similarly, the scaled MC penalty function ϕb x is
given by

ϕb x = x 1 − sb x 5

Figures 1(b) and 1(d) demonstrate the scaled Huber
function and scaled MC penalty, respectively. Let B ∈ RM×N

and we next define the generalized Huber function SB x as

SB x = inf
υ∈RN

υ 1 +
1
2

B x − υ 2
2 6

Then, we propose a multivariate generalization of theMC
penalty. The basic idea is to generalize (6) using the L1-norm
and the generalized Huber function. Thus, we define the gen-
eralized MC (GMC) penalty function ψB x as follows:

ψB x = x 1 − SB x 7

2.2. The Denoising Algorithm Based on Convex Optimization.
Let y ∈ RM be the original observed signal, A ∈ RM×N and
λ > 0 is the regularization parameter. A commonly used
approach to obtain an optimal sparse approximate solution
is to minimize the following objective function [24]:

Q x =
1
2

y −Ax 2
2 + λ x 1 8

Undoubtfully, this is a typical convex optimization prob-
lem of first-order TV denoising, which is comprised by a
quadratic fidelity term and an L1-norm regularization term.
To achieve the signal denoising and early fault feature extrac-
tion, a sparse regularization denoising algorithm based on
convex optimization is proposed in this paper. Specifically
speaking, the traditional L1-norm regularization item is

replaced by the GMC penalty term and it is extended to the
first-order TV denoising scheme. Thus, we redefine the
objective function F RN → R as follows:

F x =
1
2

y −Ax 2
2 + λψB Dx , 9

where A is an oversampled inverse discrete Fourier trans-
form, ψB:R

N → R is the generalized MC (GMC) penalty
defined by (7), λ is the regularization parameter, and the
symbol of Dx stands for the TV operator. The bidiagonal
matrix D ∈ R n−1 ×n is defined as

D =

−1 1

−1 1

M M

−1 1

10

The penalty ψB is parameterized by a matrix B and the
convexity of F x depends on B being suitably prescribed.
It also should be pointed out that the choice of B will depend
on A. If

BTB ≤
1
λ
ATA, 11

then F x is a convex function. It is easy to satisfy the convex-
ity condition. Given the matrix A ∈ RM×N N ≥M , we may
simply set

B =
γ

λ
A, 12
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(d) Scaled MC penalty function

Figure 1: Different penalty functions.
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where M is the signal length and N is the transform length.
It should be pointed out that 0 ≤ γ ≤ 1 always meets the
convexity condition. Generally, we use a nominal range of
0 5 ≤ γ ≤ 0 8 so as to obtain better performance. In order
to minimize the cost function by using the approximate
algorithms, we rewrite it as a saddle-point problem:

xopt, vopt = arg min
x∈RN

max
v∈RN

F x, v , 13

where F x, v = 1/2 y −Ax 2
2 + λ Dx 1 − λ v 1 − γ/2 A

Dx − v 2
2 is the saddle function and xopt presents the

denoised signal.
According to abovementioned, it is obvious that the

selection of regularization parameter λ also has a significant
influence in denoising performance. Commonly, we chose
λ = 2 to achieve the convergence of algorithm. Therefore,

the forward-backward (FB) iterative algorithm can be used
to solve the problem F x, v of this kind of saddle point
[33]. The resulting iterative threshold algorithm uses the
soft-threshold function, which is defined as

sof t y ; λ ≔
0 y ≤ λ

y − λ sign y y ≥ λ
14

The flowchart of the presented method in this paper is
plotted in Figure 2.

3. Simulation Signal Analysis

Without loss of generality, the numerical signal analysis is
used to simulate the rolling bearing fault feature identi-
fication. It is composed by frequency modulation signal,
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harmonic signal, and strong background noise components.
The numerical simulation signal can be expressed as follows:

s1 = 0 5 cos 2πf2t + sin 2πf1t ,

s2 = 0 3 sin 2πf3t ,

s3 = 1 5 ⋅ randn 1, 1024 ,

y = s1 + s2 + s3,

15

where s3 is expressed a Gaussian white noise with a variance
of 1.5, the composite signal y is a typical noisy multicompo-
nent signal and the feature frequency is, respectively, set as
f1 = 30 Hz, f2 = 200 Hz, and f3 = 100 Hz.

Figure 3 shows the time and frequency responses of the
synthetic signal y with strong noisy signal components.
Figure 3(b) suggests that only the feature frequency f2 and
f3 can be inspected, and the baseline of frequency spectrum
has generated a drift. Unfortunately, the phenomenon of
frequency modulation, namely, f2 ± f1, is hardly identified
since the interference of noise components. Nevertheless, fre-
quency modulation is an important tool in fault state identi-
fication. Thus, we can make a conclusion that the traditional
frequency spectrum analysis method should be improved.
The immediate idea is that an effective denoising algorithm
is performed before frequency spectrum analysis.

Subsequently, the commonly used method wavelet
denoising and total variation (TV) denoising algorithm
have been employed to analyze the complex simulation
signal. The wavelet denoising is performed by wavelet
packet scheme. Moreover, the wavelet base function is
determined as “db5,” and the decomposition level is selected
as 5. Then, the signal reconstruction is achieved using the
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Table 1: The proposed algorithm in signal denoising.

Noise variance 0.5 0.9 1.3 1.5

RMSE 0.1522 0.1713 0.1854 0.2026
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coefficient of the node (3, 0). Figure 4 has plotted the result
generated by wavelet analysis in time domain and frequency
domain. Judging from Figure 4, we can make a conclusion
that the interesting components have been removed, and
WT denoising method has failed to feature extraction. Tra-
ditional TV denoising algorithm has also been regarded as
comparative analysis method in this paper, and the result
is shown in Figure 5. According to Figure 5, we observe that
most concerned signal components have been deleted, and
its performance is still unsatisfied.

Subsequently, CEEMDAN is employed to simulation
signal analysis, and the result is drawn in Figure 6. Original
signal is decomposed into nine intrinsic mode functions
(IMF). For the parameter setting for CEEMDAN algorithm,
the noise standard deviation is 0.2, and the number of reali-
zations is 200. It can be seen from Figure 6 that only the fea-
ture frequency f1 = 30 Hz can be found in IMF2 and IMF3.
Motivated by the classical first-order total variation (TV)
denoising scheme, a sparse regularization method based on
convex optimization is presented in this paper. In order to
verify the effectiveness of this method, the researched
method based on optimization method has also been applied
to it. The parameters of the proposed method are chosen as
γ = 0 8 and λ = 2. Figure 7 shows the result obtained by the
proposed method. It is obvious that the feature frequency
f2 and f3 can be clearly inspected. Most importantly, the
frequency modulation f2 ± f1 can also been determined.
Comparing Figure 3(b) with Figure 7, it is obvious that
the baseline in frequency domain has been corrected. The
experimental results completely demonstrate that this pro-
posed algorithm outperforms the classical wavelet denoising
and TV method.

The actual noise reduction effect is directly related to the
intensity of noise components. Theoretically, the smaller
noise intensity will lead to the better actual denoising per-
formance. When the intensity of Gaussian noise varies
from 0.5 to 1.5, the root mean square error (RMSE) between
the original noisy signal and the denoised signal is listed in
Table 1. The result illustrated that the proposed method has
advantage against the strong noise, and its robustness has
been proved. The algorithms are run on a computer with
an Intel Core i3-4160 CPU and 8.0GB RAM. The compu-
tational costs of four signal processing methods for the
simulated signal are listed in Table 2. Since the iterated
operation with 200 times, the computational efficiency of
CEEMDAN is low. It demonstrates that the computational
complexity of the proposed method is acceptable.

4. Experimental Analyses

Rolling bearing is an important component of rotating
machinery. Its main function is to support the mechanical
rotary body, reduce the friction coefficient of its motion,

and guarantee its accuracy. Practically, the measured bearing
failure signal is more complicated than the numerical simula-
tion signal. Hence, the proposed method is also used for
experimental signal analysis. The test rig was equipped with
a NICE bearing with the outer race fault shown in Figure 8.
The red circle indicates the location of the outer ring fault.
The following parameters about the rolling bearing are listed
in Table 3. The outer race fault conditions is expressed as
follows: 300 lbs of load, input shaft rate f r = 25 Hz, and
sample rate of f s = 48828 Hz. According to the theoretical
calculation, the characteristic frequency of the outer ring
fault is determined as f o = 80 Hz.

The time domain waveform and frequency spectrum
analysis results of the collected vibration signals are plotted
in Figure 9. From the Figure 9(a) of the time response about
measured bearing fault signal, the impact characteristics
are obvious. However, we cannot detect the characteristic
frequency of the outer ring in Figure 9(b). The frequency
spectrogram analysis result indicates that the components
of measured faulty signal are complicated. As the inter-
ference of the strong noisy components, the fault feature
frequency can hardly been identified. The ideal result is
to remove unnecessary signal components by effective
denoising algorithm, and to retain or amplify the related
signal components.

Then, the common signal processing methods, such as
wavelet analysis and TV denoising, have been applied to
the real inspected signal. For the method of wavelet denois-
ing, we perform the wavelet packet decomposition denoising
scheme. It should be noted that the wavelet base function is
determined as “db5,” and the decomposition level is selected
as 3. The coefficient of the node (2, 0) is used to signal recon-
struction. Figures 10(a) and 10(b) show the results obtained
by wavelet denoising and TV denoising, respectively. There
is no obvious feature frequency corresponding to outer ring

Table 2: Computational costs of four signal processing methods for simulated signal.

Method Wavelet denoising TV denoising CEEMDAN Proposed method

Computational costs 0.52 0.46 52 0.49

Figure 8: A photo of outer race fault.

Table 3: Rolling element bearing parameters.

Roller
diameter/mm

Pitch
diameter/mm

Number of
elements

Contact
angle

0.235 1.245 8 0
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fault in Figure 10(a). Figure 10(b) suggested that the method
of TV denoising has removed most of the useful signals,
which is not suitable for vibration signal processing.

Similarly, CEEMDAN is also used to analyze the experi-
mental data, and the corresponding result is plotted in
Figure 11. Unfortunately, only the characteristic frequency
of the outer ring fault f o and its double frequency 2f o can
be inspected in IMF2, while the unwanted signal components
have not been removed and it interfere with the identification
of fault features. Since CEEMDAN still lacks theoretical sup-
port and exits the problem of mode aliasing, it fails to analyze
the complex nonstationary vibration signal.

Finally, the proposed method based on GMC penalty
function is performed to validate the method and illustrate
its superiority. The concerned parameter of the proposed
algorithm is chosen as γ = 0 5 and λ = 2, respectively. The
computed result is drawn in Figure 12. Obviously, feature

frequency of outer ring fault f o and its multiple frequencies
(2f o, 3f o, 4f o, 5f o, and 6f o) had been both identified in
Figure 12. Meanwhile, the rotational frequency f r can also
be determined. The abovementioned characteristics fully
indicate that the fault occurs in the outer ring, which is
in accordance with the actual situation. Through the compar-
ative analysis between Figures 10 and 12, the results show
that the proposed method has obvious advantages in the fault
state recognition of rolling bearings under the environmental
of strong noise.

Theoretically, traditional signal processing methods such
as fast Fourier transform and wavelet transform are based on
the idea of matching the analyzed signal to the base function.
Its performance largely depends on the signal structure and
the base function selection. CEEMDAN is a typical signal
adaptive decomposition algorithm, while it is restricted by
endpoint effect and mode mixing. Distinguished it, convex
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optimization denoising algorithm such as the proposed
method is a typical iterative optimization process for objec-
tive functions. Using the nonconvex penalty function or cost
function to realize the high efficiency, it is more suitable for
analyzing the complex vibration signals.

5. Conclusions

For rolling bearing fault diagnosis, a novel method based on
the improved sparse regularization via convex optimization
is proposed in this paper. The main findings of this paper
include (1) based on L1-norm and the Huber function, a
novel nonconvex penalty function has been researched,
namely, GMC penalty. It is employed to achieve the sparse
representation of the signal and estimate the sparse solutions
more accurately. (2) The proposed method is firstly put for-
ward by combining the GMC penalty and TV denoising
scheme. It is designed to enhance the performance of noise

reduction for the complex vibration signals. (3) Compared
with the traditional methods such as WT and TV denoising,
the proposed method has better performance, as demon-
strated by both numerical and experimental studies.
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