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Link prediction uses observed data to predict future or potential relations in complex networks. An underlying hypothesis is that two
nodes have a high likelihood of connecting together if they share many common characteristics. The key issue is to develop different
similarity-evaluating approaches. However, in this paper, by characterizing the differences of the similarity scores of existing and
nonexisting links, we find an interesting phenomenon that two nodes with some particular low similarity scores also have a high
probability to connect together. Thus, we put forward a new framework that utilizes an optimal one-variable function to adjust
the similarity scores of two nodes. Theoretical analysis suggests that more links of low similarity scores (long-range links) could
be predicted correctly by our method without losing accuracy. Experiments in real networks reveal that our framework not only
enhances the precision significantly but also predicts more long-range links than state-of-the-art methods, which deepens our

understanding of the structure of complex networks.

1. Introduction

Modern science and engineering techniques increase our
availability to various kinds of data including online social
networks, scientific collaboration networks, and power grid
networks [1-5]. Many interesting phenomena could be
uncovered from these networks. For example, analyzing the
data of Facebook and Twitter helps find lost friends by only
counting their common friends [6, 7] and recommendation
systems in online stores [8, 9]. Restricted by instrument
accuracy and other obstacles, we only obtain a small fraction
or a snapshot of the complete networks [10, 11], promoting
us to filter the information in complex networks [12-14].
Link prediction is a straightforward approach to retrieve
networks by predicting missing links and distinguishing
spurious links [15-17]. Thus great efforts have been devoted to
link prediction in recent years [16, 18]. Link prediction is used
in different kinds of networks, including unipartite networks
and bipartite networks, where unipartite networks consist of
nodes with the same type (e.g., social networks and neural
networks) and bipartite networks consist of nodes with two

types (e.g., user-object purchasing networks and user-movie
networks) [19, 20].

In classical link prediction approaches, similarity scores
are computed first for two disconnected nodes, and then
nonexisting links in the top of the score list are predicted
as potential ones [16]. Consequently, the key issue is to
search effective score-assigning methods that are mainly
divided into three categories [16, 21]: similarity based algo-
rithms, Bayesian algorithms, and maximum likelihood algo-
rithms. First, similarity based algorithms [22-24] suppose
that similar nodes have a high probability to link together.
Similarities are evaluated by common neighbors, random
walk resource allocation, and some other local and global
indices. Second, Bayesian algorithms [25-27] abstract the
joint probability distribution from the observed networks and
then utilize conditional probability to estimate the likelihood
of a nonexisting link. Third, maximum likelihood algorithms
[28, 29] presuppose that some underlying principles rule the
structure of a network, with the detailed rules and specific
parameters obtained by maximum likelihood estimation.
Scores of nonexisting links are acquired through the details of
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these principles. Most of these methods favor predicting links
with high similarity scores and perform badly in the detection
of long-range links with low similarities.

In the aforementioned methods, the basic hypothesis that
two nodes with a high similarity score have a high likelihood
of connecting together lacks an in-depth illustration. Recent
works have demonstrated that long-range links exist exten-
sively in complex networks and play an important role in
routing, epidemical diffusion, and other dynamics [30, 31].
However, in practice, the endpoints of a long-range link
usually have weak interaction and low similarity [30], which
prevents the detection of long-range links by traditional
methods [32, 33]. Hence, the structural patterns underlying
the networks are of great importance to study.

Our study takes a different but complementary approach
to link prediction problem. By analyzing the score dis-
tributions of existing and nonexisting links, respectively,
we find an interesting phenomenon that the existing and
nonexisting links follow different connecting patterns in
respective of their similarity scores. Then, inspired by the
precision-recall curves [34-36], we propose a metric, named
precision-to-noise ratio (PNR), to characterize the ability to
distinguish potential links for different scores. PNR describes
the local precision of a given set of links with the same
score. Based on PNR, a novel framework, which projects
one-variable function to adjust the scores of a given method,
is put forward. We argue that the framework finds the
optimal transforming function that exploits the full capacities
of traditional link prediction methods and improves their
performance both on precision and on the detection of
long-range links. Experiments in six real-world networks
demonstrate the effectiveness of our method.

The rest of the paper is organized as follows. In Section 2,
we first brief the link prediction problem and then introduce
our proposed method. In Section 3, we compare the perfor-
mances of our method and the classical methods. Finally, the
conclusion is given.

2. Materials and Methods

We give the link prediction formulism in Section 2.1 and the
baseline method in Section 2.2. Our proposed framework is
introduced in Section 2.3.

2.1. Network Formation and Metrics. Given a network A =
(@;j)nxn> E = {(i, j) | a;; # 0} with a;; = 1 if node i connects

to j; otherwise, @;; = 0. When evaluating the prediction

performance, we usually divide the links randomly into 1 p**
training set E' and p™ probe set EX (p" € (0,1)), with
ETNE? = 0 and ET|JE® = E. The goal is to accurately
predict the links in probe set only by using the information
in training set.

We first assign a score to each nonexisting link and
then choose links with the highest top-L scores as potential
ones. State-of-the-art similarity evaluation methods could
be utilized to carry out link prediction, including common
neighbors (CN), Jaccard index (JB), resource allocation index
(RA), local path index (LP), and structural perturbation
method (SPM) (see the part of Baseline and [38]).
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There are two popular metrics to characterize the accu-
racy: area under the receiver operating characteristic curve
(AUC) [39] and the precision [40, 41]. AUC can be inter-
preted as the probability that a randomly chosen missing
link (ie., a link in E) has a higher score than a randomly
chosen nonexisting link. Then, AUC requires #n times of
independent comparisons. We randomly choose a real link
and a nonexisting link to compare their scores. After n
different comparisons, we record n; times where real links
have higher scores, and 7, times where the two kinds of links
have the same score. The final AUC is calculated as

AUC=n1+O.5><n2.

@
If all the scores are given by an independent and identical
distribution, then AUC should be around 0.5. A higher AUC
is corresponding to a more accurate prediction.

Another metric is precision that characterizes the ratio of
correctly predicted links for a given prediction list. That is to
say, if the length of prediction list is L, among which L, links
are the right potential links, then the precision is

L,

Clearly, higher precision means higher prediction accuracy.
Intuitively, higher accuracy means higher AUC and higher
precision. In the experiments, we will see that precision has
little correlation with AUC and that improving the precision
may not result in the improvement of AUC.

2.2. Baseline Prediction Methods. There exists a large number
of score-assigning approaches in link prediction problem.
All these methods could be introduced into our framework.
Though we only investigate some state-of-the-art score-
assigning approaches, the results and conclusions are also
applicable for other score-assigning methods. The five score-
assigning approaches [6, 16] are as follows.

(i) Common Neighbor (CN). The metric supposes that if two
nodes i and j have more common neighbors, they are more
likely to connect together. The neighborhood overlap of the
two nodes is as follows:

s =raro)| (3)

where I'(7) is the neighbor set of nodeiand | - - - | indicates the
size of a set. The drawback of CN is that it favors large-degree
nodes. Though the similarity of two large-degree nodes is low,
they still have many common neighbors.

(ii) Jaccard Coefficient (JB). Jaccard is a conventional similar-
ity metric that aims to suppress the influence of large-degree
nodes, which is

Slgccard - Ir Q) ﬂ I (])I

T rouUrG)l
Since the similarity is normalized by the size of the union set
of the two nodes’ neighbors, low similarity still exists between

two large-degree nodes even though they may have many
common neighbors.

(4)
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(iii) Resource Allocation (RA). This index is inspired by the
resource allocation dynamics in complex networks. Given a
pair of unconnected nodes i and j, suppose that the node i
needs to allocate some resource to j, using common neigh-
bors as transmitters. Each transmitter (common neighbor)
starts with a single unit of resource and then distributes it
equally among all its neighbors. The similarity between i and
j can be calculated as the amount of resource received from
their common neighbors:

RA 1
IR )
2€el()NT() 2
Comparing with Jaccard method, RA could also suppress
the influence of large-degree nodes, but more specifically.
Different neighbors contribute to the similarity differently.
If two nodes prefer to connect low-degree nodes, it means
that they have a higher probability to share common interests
or characteristics. However, many pair-nodes have common
high-degree neighborhoods, resulting in that high-degree
nodes play a weak role when evaluating similarity. Based
on the idea, Adamic-Adar (AA) index is obtained by using
log(k,) instead of k in (5).

(iv) Local Path (LP). CN considers the intersection of neigh-
borhoods, which actually utilizes the one-path neighbors to
characterize similarity. LP takes a general consideration of
paths by considering two-path neighbors:

A= AT peAd, (6)

where A is the adjacent matrix of a network and € is a
small positive number. LP supposes that one-path neighbors
contribute more to the similarity than two-path neighbors.
LP is the low order parts of Katz method (s*** = A% + eA® +

EA - ), but with much lower computing complexity.

(v) Structural Perturbation Method (SPM). Lii et al. [6] sup-
pose that network structure follows consistency after some
random perturbation. In SPM, training set A” is divided into
a small fraction of perturbation set AA and the remaining set
AR (AT = AR + AA). AT has similar eigenvectors with AR,
but different eigenvalues. For the kth largest eigenvalues of
AT and AR,

A=A (A7) =2 (AF) = T,
k

(7)

where x; is the eigenvector of A%, corresponding to A, (A®).
The similarity matrix s = (s;;) yxn i

N
s= ) (A +AN) xx;.- (8)
k=1

SPM first divides a network into training set and probe
set and further divides the training set into perturbation set
and the remaining set. For a given division of training and
probe set, we calculate the average of 10 times independent
simulations of (8) as the similarity matrix.

Apart from the five similarity metrics introduced above,
for more similarity-evaluating methods, please refer to [42,
43].

2.3. The Proposed Method. We start our framework by rein-
vestigating the definition of precision. Supposing that s;; is
the similarity score of nodes i and j obtained by a prediction
method £ only based on training set E”, p,(s) is the similarity
distribution that a randomly chosen existing link in training
set has score s, and p,(s) is the similarity distribution that
a randomly chosen nonexisting link in the training set has
score s. Due to random division of training set and probe
set, links in the probe set should have the same similarity
distribution with that of the training set at high confidence
according to the law of large numbers [44, 45]. Thus we
would not differentiate similarity distribution of existing
links in the training and probe sets in the following paper. The
assumption is reasonable according to the statistical theory
if the size of samples goes to infinity [44, 45]. Since classical
methods only predict links with high scores, the estimated
precision of the method ¢ is written as

0_ |EP' J:)'"“ p,(s)ds
e [ pa(s)ds’

€

where |E”| is the size of EF, ¢ is a constant, and U is the
whole set of all possible links (U] = (1/2)N(N — 1)). Spax
is the maximum score. In real scenarios, the length of the
prediction list is usually the size of the probe set [16], which

requires ¢, subjecting to |U — ET| LZ pu(s)ds = |EP|. If
pr(s) < p,(s) ats > ¢, the precision p, — 0. Otherwise,
p.(s) > p,(s) gives rise to a high precision. Since only links
with top-L highest scores are predicted as potential links,
precision could be calculated by (2) [6, 16]. Equation (2) is
a much easier formula to describe precision than (9).

Most previous link prediction methods only predict links
with high similarity scores. We generalize (9) by considering
links of different similarities. Supposing that links with scores
sij € S = (51,5) U(s3584) -+~ U(Sp-15 52,) are predicted as
potential links, the precision is as follows:

P
|E | '[S:(SI’SZ) U(Gs3584) U(Sam—1>S2m) pr (S) ds

= , 10
Tou-E [, (s)ds 1o

:2) U380 U(Sam-1552m) DPn

where s; < s, < s3 < -+8,,,1 < Sy, To confine the
length of the prediction list, a precondition requires |U —
ET| Is pu(s)ds = |EP|. Note that, in most previous works, S =
(€y> Smax)> and equation (10) reduces to (9). Our generalized
precision equation (10) considers links with both high and
low scores.

The main concern is to select appropriate set S in (10) to
maximize the precision. We propose precision-to-noise ratio
(PNR) to determine S,

P (s)

PNR (s) = ;
(s) 2.)

(11)
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FIGURE 1: Schematic shows the proposed framework based on CN. (a) A snapshot of a large network. (b) Score of nonexisting links calculated
by CN method. (c) The top panel is the score distributions of existing and nonexisting links, p,(s) and p,(s). The bottom panel is PNR(s) =
P,(8)/p,(s). (d) Predicted links. State-of-the-art prediction methods follow the path (a)—(b)—(d), while our proposed framework follows

the path (a)—(b)—(c)—(d), which has an additional path PNR(s).

where PNR(s) measures the ability to distinguish real links
with the same score. Note that a nonexisting link in training
set may be an existing link in probe set. Given a nonexisting
link in training set with the similarity Sij» the probability that it
is an existing link in probe set (i.e., the precision) is p' = (|E)-
2,(s))/([U=ET|- p,(s)) = xPNR(s), where « = |E”|/|U - E|
is a constant.

The central issue of our framework is to use PNR(s)
to determine the optimal score set S. We first calculate the
similarity scores of all links only based on training set by
a traditional method. Second, p,(s), p,(s), and PNR(s) are
computed. Third, we reassign the scores of each link sl{j =
PNR(s;;), where s;; is the original similarity score by the
first step. Finally, we sort links in the descending order of s’
and links with top-L scores are predicted as potential links
(16, 18]. The optimal score set S, corresponds to the original
similarity scores whose reassigned scores rank in the top-L
score list.

Different kinds of similarity evaluations could be intro-
duced into the framework. Taking CN similarity method as
an example, our framework is as follows:

(1) Divide the links of a network into 1 — p* training set
and p'? probe set randomly.

(2) Calculate the similarity scores of all existing and
nonexisting links by CN method only according to
training set.

(3) Calculate PNR(s). Divide the scores into K uniform
bins and count how many existing (#1,;) and nonex-
isting (n,,;) links locate in each bin i (i.e., calculate
discrete p.(s), p,(s)). Then we obtain PNR(s,) =
Pr(sK)/ pa(si)s k=1,2,...,K. Note that if p,(s;) = 0,
we define PNR(s;) = 0.

(4) Obtain the readjusting scores of the nonexisting links
in training set by s = PNR(s).

(5) Determine the prediction list by choosing links with
L = |E”| highest scores s', and calculate the precision.

Figure 1 depicts the proposed framework based on
CN method. After obtaining the similarity scores of links
(Figure 1(a)—1(b)), traditional CN method directly predicts
potential links according to the scores (Figure 1(b)—1(d)),
while the proposed framework calculates PNR(s) (Figures
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TABLE I: Structural properties of the different real networks. Structural properties include network size (N), link number (E), degree
heterogeneity (H = (K (k)P), degree assortativity (), average clustering coefficient ((C)), average shortest path length ({d)), and sparsity.

Network N E H r (C) (d) Sparsity
Email 33696 180811 6.070 -0.060 0.170 4.08 32x107*
PDZBase 161 209 2.263 —0.466 0.001 5.11 1.6 x1072
Euroad 1039 1305 1.228 0.090 0.004 18.39 24%107°
Neural 297 2148 1.81 -0.163 0.292 2.46 49x 107
Roundworm 453 2025 4.485 -0.226 0.647 2.66 2.0x 107
USair 332 2126 3.464 —0.208 0.625 2.74 3.9%x 107
0.5

1(b)—1(c)) and later predicts potential links according to the
modified scores (Figures 1(c)—1(d)).

An important property of our framework is that if S
is determined according to PNR(s), that is, PNR(x) >
PNR(y), Vx €S, Vy € R -, the precision p, could exploit
tull capacity of a given similarity-evaluating method. PNR(s)
is the optimal transforming function fopt(s) = PNR(s).
It means that no matter how we transform the similarity
by other one-variable function, s” = f'(s), the precision
performance of s” cannot outperform the proposed method
by PNR(s). For the proof of the optimal PNR(s), please see
part I in the supplementary materials.

3. Experimental Results

We first describe the six real networks in Section 3.1. The
precision comparison between our method and the baseline
methods is given in Section 3.2. Finally, the characteristics of
the predicted links by different methods are investigated in
Section 3.3.

3.1. Datasets. To verify the effectiveness of the proposed
method, we measure the performance of our framework
in six empirical networks from diverse disciplines and
backgrounds: (1) email [46]: Enron email communication
network covers all the email communication within a dataset
of around half million emails; nodes of the network are
email addresses and if an address i sent at least one email
to address j, the graph contains an undirected link from i
to j; (2) PDZBase [47]: an undirected network of protein-
protein interactions from PDZBase; (3) Euroad [48]: inter-
national E-road network that locates mostly in Europe; the
network is undirected, with nodes representing cities and
links denoting e-road between two cities; (4) neural [49]: a
directed and weighted neural network of C. elegans; (5) USair
[6]: an directed network of flights between US airports in
2010; each link represents a connection from one airport to
another in 2010; (6) roundworm [49]: a metabolic network of
C. elegans.

Different real networks contain directed or undirected,
weighted or unweighted links. To simplify the problem, we
treat all links undirected and unweighted. Besides, only the
giant connected components of these networks are taken into
account. This is because for a pair of nodes located in two
disconnected components, their similarity score will be zero
according to most prediction methods. Table 1 shows the
basic statistics of those networks.
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Singular points

0.1

A
00 T I T I T
0.85 0.90 0.95 1.00
AUC
® CN 4 1r
A B p spMm
V RrRA

FIGURE 2: AUC and precision of the USair network obtained by
five different approaches: common neighbors (CN), Jaccard index
(JB), resource allocation index (RA), local path index (LP), and
structural perturbation method (SPM). The results are obtained by
50 independent simulations. SPM method achieves high precision,
yet low AUC, and JB has low precision, but high AUC (>0.9).

3.2. Precision Evaluation. In the experiments, we set pH =
10% that means the networks are randomly divided into 90%
training set and 10% probe set. All the experiments are the
average of 50 independent simulations.

Figure 2 shows AUC and precision of five different
methods in USair network. In Figure 2, CN method achieves
low AUC, yet high precision, whereas RA method achieves
similar AUC with methods of CN, JB, and SPM, but much
lower precision. Apart from USair network, the deviation
between AUC and precision also exists in other real-world
networks (see FIG. SI in the supplementary materials). The
main reason is that AUC characterizes the score difference
between existing and nonexisting links in the whole net-
works, whereas precision only counts the links with top-L
high scores. Specifically, from the perspective of score dis-
tributions, AUC = jj;o pr(x) f_xoo Pn(y)dx dy. Comparing
with (10), the definitions of the two metrics are completely
different, resulting in little correlation between them.

Figure 3 shows PNR and the score distributions of exist-
ing and nonexisting links for USair network by CN method.
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TABLE 2: Maximal precision comparison of the proposed methods and traditional high-similarity methods for six real-world networks.
Traditional precision is obtained by the maximum of traditional methods, that is, max{CN, Jaccard, RA, LP, SPM}. Proposed precision is
obtained by our framework, that is, max{PNRcy, PNRy,,ras PNRy 4, PNR;p, PNRgpy ).

Email PDZBase Euroad Neural Roundworm USair
Traditional p,,, 0.0171 0.0032 0.0052 0.0107 0.2651 0.4670
Proposed p,.. 0.0313 0.3159 0.0674 0.0392 0.3475 0.5309
) : : : 30 . . . . . .
0.1 4 J
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FIGURE 3: Similarity distributions and the corresponding PNR(s) of USair network, where the similarity is obtained by CN method. (a)
Similarity distributions of the existing and nonexisting links, p,(s) and p,(s), respectively. (b) PNR(s) as a function of similarity in USair

network.

In Figure 3(a), the scores of existing and nonexisting links
follow power law distribution largely. High scores sometimes
correspond to low PNR, especially at Similarity = 60 (see
Figure 3(b)). Nevertheless, some low scores achieve high
PNR, indicating that for a nonexisting link in training set
with this particular score, the link is likely to be an existing
link in probe set. For a nonexisting link in training set
with high score, yet with low PNR, it has a high proba-
bility not to be an existing link in probe set. The similar
phenomenon also exists in other networks (see FIG. S2 in
the supplementary materials). In consequence, the foun-
dation of traditional methods, which suppose that similar
nodes have a high likelihood to form links, is confronted
with great challenges in precisely predicting links of low
similarities.

Figure 6 shows the precision difference between the
proposed PNR methods and the baseline methods. Our
proposed method enhances precision remarkably compared
with the original methods in most cases. Some fluctua-
tion exists in these methods, due to the limited size of
networks. Table 2 gives the maximal precision increase-
ment in the six networks. In Table 2, precision is obtained
by the maximum of traditional methods and PNR meth-
ods, respectively, that is, max{CN,Jaccard, RA,LP,SPM}
and max{PNRcy, PNR}, ,rq> PNRg 4, PNR;p, PNRgpy ). Our
method outperforms state-of-the-art methods in the six
networks. Besides, Figure 4 shows the influence of the probe
set size on the precision performance. We find that our
method outperforms classical methods when p™ > 0.85,
except for JB method when p > 0.6. Other networks have
similar results (see FIG. S3 in the supplementary materials).
However, according to the theoretical analysis (see the first
part in the supplementary materials), our method should
perform better than, or at least equally to, the classical

0.2 4

0\0—0—0\.
—e

Ap

—-0.2 4 /V a
l>{7£ﬁ/ 1
/
04 vV -
T T T T T T T T
0.6 0.7 0.8 0.9 1.0
p" = L/|E|
-m— CN -v- LP
~e- JB SPM
~A- RA

FIGURE 4: The precision difference Ap as a function of probe set size
p™" = L/|E| in Usair network. Ap = Ppxg = Porigina- Ap > 0 means
that our method outperforms the original methods. In the panel,
when pf > 0.85, Ap > 0.

methods. The reason is that we suppose the network structure
is not influenced by the random division of training and
probe set. Thus, the training subnetwork should have similar
structure with the original networks. The assumption is
rational when p' is small. If the size p" of the probe set is
large, the training sets have many differences with the entire
networks, which violates the assumption of our method.
Therefore, our method performs well when the fraction of the
probe set is small.
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— JB
— JB(PNR)

FIGURE 5: The comparison of the predicted edges between JB and the corresponding PNR methods in the Usair network. In the panel, we
predict 10 edges for both JB and PNR;; methods. The Usair network is divided into different communities by the method in [37]. Nodes in
the same community have the same color and short geographical distances. Our method (blue lines) predicts more edges between faraway
nodes in different communities, while the original JB method (red lines) only predicts edges between close nodes.

3.3. Characteristics of the Predicted Links. Long-range links
play an important role in the dynamics of networks and
it is of much significance to predict long-range links [32,
50]. Figure 5 gives a comparison of the predicted links
between JB and the corresponding PNR methods in the
Usair network. In Figure 5, our method predicts more links
between faraway nodes in different communities, while the
original JB method only predicts links between close nodes.
Community detection method in [37] is utilized in Figure 5.
However, it is difficult to evaluate long-range links solely
based on community divisions. Since long-range links usually

have long distances and low similarities, we would investigate
the average distance and average similarity of the predicted
links by our proposed framework.

The distance d;; of a link e; is the shortest distance
between nodes i and j only based on training set. Since the
endpoints of the predicted links do not connect directly, d;; >
2. 'The average distance of the predicted links is

- 1
dpredict = z Z dij . (12)

e;j€predcited links
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FIGURE 6: Precision comparison of the proposed methods (red) and traditional high similarity based methods (cyan) for six real-world
networks. (a) Email network. (b) PDZBase network. (c) Euroad network. (d) Neural network. (¢) Roundworm network. (f) USair network.
Results are the average of 50 independent simulations. Our proposed framework increases precision in most cases.

Analogously, the average similarity of the predicted links is

— 1
Spredict = T S
e;;€predcited links

ij> 13)
where s;; is the similarity of nodes i and j in training set.
Figure 7 shows the difference of the average distances
obtained by PNR method and the corresponding original
methods. Generally, PNR method achieves a higher average
distance than the corresponding original methods in the six
networks, especially for SPM in Email network and LP in
USair network, whereas for many cases, PNR and the original

methods have the same average distance d = 2. It is because
that the distance of most unconnected nodes are 2, revealing
that most commonly used methods incline to predict triangle
edges. Therefore, our method has little influence on the
average distance. However for some sparser networks, such as
neural and USair networks, the average distance is improved
by our framework, especially for LP in USair network.
Previous works show that the two endpoints of a long-range
link usually have a high distance or low similarity. Since
PNR framework could increase the average distance of the
predicted links, it can be conjectured that more long-range

links are predicted. Besides, integrating Figures 6 and 7, we
can find that our framework predict more long-range links
correctly.

Furthermore, Figure 8 shows the difference of average
similarity obtained by PNR method and the corresponding
original methods. In Figure 8, PNR method achieves a lower
average similarity than the corresponding original methods
in the six networks, except RA method in roundworm
network. The reason is that PNR has much fluctuations due
to the limited size of networks, bringing about the unusual
phenomenon of RA in roundworm network. Similar to the
analysis of average distance, we show that PNR methods are
beneficial to the prediction of long-range links, which agrees
with the conclusion from Figure 7.

4. Conclusion

In summary, we systematically study the drawbacks of
similarity-based link prediction methods and show that some
link prediction methods achieve high AUC, yet low precision.
Based on the differences of the similarity distributions of
existing and nonexisting links, we propose a metric (PNR)
to explain the problem of high AUC and low precision.
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FIGURE 7: Comparison of average distance of the PNR predicted links with that of the corresponding original methods for different networks.
(a) Email network. (b) PDZBase network. (c) Euroad network. (d) Neural network. (¢) Roundworm network. (f) USair network. Results are
the average of 50 independent simulations. Our proposed framework increases the average distance on the whole, which indicates that more

long-range links are predicted correctly.

Two nodes with some particular low scores also have a
high likelihood of forming links between them. Furthermore,
we prove that PNR is the optimal one-variable function to
adjust the likelihood scores of links. Experiments in real
networks demonstrate the effectiveness of PNR, and the
precision is greatly enhanced. Additionally, the proposed
framework could also reduce the average similarity and
increase the average distance of the predicted links, which
indicates that more missing long-range links can be detected
correctly.

Though the proposed approach investigates link predic-
tion in unipartite networks, it could also be generalized to
bipartite and other kinds of networks. What is more, our
method provides a novel way to explore the connecting
patterns of real networks that may inspire other better score-
assigning methods in the future.
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Supplementary Materials

In the supplementary materials, we prove that PNR(x) is
the optimal transferring function in Section 1. The deviation
of AUC and precision in different networks is shown in
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FIGURE 8: Comparison of average similarity of the PNR predicted is linked with that of the corresponding original methods for different
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Results are the average of 50 independent simulations. Our proposed framework reduces the average similarity on the whole, which indicates

that more long-range links are predicted correctly.

Section 2. The PNR performances of different methods in
different networks are shown in Section 3. In Section 3,
we first plot the PNR(x) by different methods in FIG. S2
and then show the influence of the probe set size on the
precision in Fig. S3. FIG. S1 (color online), AUC and precision
of six real-world networks (see Table 2) by five different
popular approaches. Results are average of 50 independent
simulations. In the experiments, p” = 0.1 means that we
utilize 90% existing edges as training set to predict the other
10% edges (probe set). FIG. S2 (color online), PNR for six
networks by five different methods. (a) Email network. (b)
PDZBase network. (c) Euroad network. (d) Neural network.
(e) Roundworm network. (f) USair network. Results are the
average of 50 independent simulations and are obtained only
according to training set. For different methods and different
networks, scores are normalized to 0~1 with .., = (s
= Smin)/(Smax — Smin)- FIG. S3 (Color online), the precision
difference A p as a function of probe set size p” = L/| E|
in the four networks, where A p is the difference between
the five classical and the corresponding PNR methods, Ap =
PpNR ~ Poriginal- AP > 0 means that our method outperforms

the original methods. In the panels, when p" > 0.85, Ap > 0.
(Supplementary Materials)
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