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Time varying formation control problem for a group of quadrotor unmanned aerial vehicles (UAVs) under Markovian switching
topologies is investigated through a modified dynamic event-triggered control protocol. The formation shape is specified by a time
varying vector, which prescribes the relative positions and bearings among the whole agents. Instead of the general stochastic
topology, the graph is governed by a set of Markov chains to the edges, which can recover the traditional Markovian switching
topologies in line with the practical communication network. The stability proof for the state space origin of the overall closed-
loop system is derived from the singular perturbationmethod and Lyapunov stability theory. An event-triggered formation control
protocol in terms of a dynamically varying threshold parameter is delicately carried out, while acquiring satisfactory resource
efficiency, and Zeno behavior of triggering time sequences is excluded. Finally, simulations on six quadrotor UAVs are given to
verify the effectiveness of the theoretical results.

1. Introduction

Along with the increasing applications in various areas, such
as aerial photography, express delivery, and disaster relief,
formation control ofmultiagent systems has attracted consid-
erable attention frommany researchers [1, 2]. In particular, as
a typical class of physical systems with practical interest, the
quadrotor UAVs is widely used in the military and civilian
fields [3, 4]. Actually, due to the strong nonlinear coupling
and limited communication resources [5], the control prob-
lem of multiple quadrotor UAVs will be very challenging and
difficult [6]. Therefore, how to design the formation control
protocol formultiple quadrotorUAVs subject to limited com-
munication resources becomes a significant research focus.

A defining feature of formation control problem is that
multiple agents work together to accomplish a collabora-
tive formation task [7]. Several classic formation control
strategies, including leader-follower, virtual structure, and
behavior based methods, were applied in the scientific com-
munity [8, 9]. For example, formation control of multiple
quadrotorUAVs, based on position estimation [10], backstep-
ping design technique [11], and finite time algorithms [12],
respectively, was investigated so as to make a construct

and keep the formation shape during flying. It should be
pointed out that time varying formation tracking problems
arise in some scenarios, such as source seeking and target
enclosing. For example, time varying formation analysis
and design problems for multiagent systems with switching
topologies were solved in [13, 14]. Based on the fact that
multiagent systems subject to randomabrupt variations could
be modeled as the switching systems, then some results have
been obtained on it [14]. Compared with the previous works,
time varying formation control results formultiagent systems
with switching topologies were provided in [15, 16]. Besides,
due to random link failures, variation meeting the need and
sudden environmental disturbances [17], some dynamical
systems could be modeled as Markovian switching systems,
which were governed by a set of Markov chains [18, 19]. By
considering the complex network as Markovian switching
topologies, it plays a crucial role in the field of networked
control system [20].

In practice, under a limited bandwidth, it is necessary
and important to consider the issues of energy waste and
competition [21]. Therefore, event-triggered communication
mechanism was born at the right moment [22, 23]. As a
popular research topic, some latest event-triggered control

Hindawi
Complexity
Volume 2018, Article ID 8124861, 15 pages
https://doi.org/10.1155/2018/8124861

http://orcid.org/0000-0002-0420-4110
http://orcid.org/0000-0003-0668-5621
https://doi.org/10.1155/2018/8124861


2 Complexity

results were provided in [24–28]. In particular, compared
with the general event-triggered controller with a fixed
threshold parameter, the authors in [24, 29] developed the
dynamic/adaptive event-triggered control protocol of multi-
agent systems for acquiring satisfactory resource efficiency,
respectively. Meanwhile, take the strong nonlinear coupling
and underactuated of the quadrotor UAVs into account, time
scaling based control method has also been recognized as
a powerful tool in the analysis and design of controllers,
which is with crucial importance in applications to themobile
inverted pendulum [30], the ball-beam system [31], and the
quadrotor UAVs [32]. Therefore, it is of great importance
to extend the event-triggered formation results to multiple
quadrotor UAVs under Markovian switching topologies. In
addition, it is difficult to obtain all the transition rates
under the realistic communication environment [33]. So that
randomly occurring control strategy is more realistic and
meaningful to accomplish attitude stabilization and forma-
tion missions under the limited communication resources.

Motivated by these observations, the contributions of this
paper are proposing a novel time varying formation control
strategy and an event-triggered communication scheme to
solve the formation problem of multiple quadrotor UAVs
with Markovian switching topologies. The main highlights
of this paper are summarized as follows. First, a modified
graph of entire system is governed by a set of Markov
chains to the edges, and the traditional Markovian switching
topologies can be recovered through adjusting the modes of
edges and the transition rates. Second, the dynamic event-
triggered controller is derived from a time scaling based
control strategy, which consists of two parts: the closed-loop
system stability analysis based on the framework of singularly
perturbed theory and the event-triggered control scheme in
terms of a new dynamically varying threshold parameter
to guarantee time varying formation shape. Third, Marko-
vian switching topologies involve partly unknown transition
rates, which are of great importance to be considered and
thus closer to the realistic communication environment. In
addition, Zeno behavior can be excluded during the whole
running process. Finally, several simulations can illustrate the
theoretical results.

The rest of this paper is organized as follows. The
system dynamics and some preliminaries on graph theory
are introduced in Section 2; Section 3 provides main results
on event-triggered formation control for multiple quadrotor
UAVs. In Section 4, simulation results are given and this
paper is concluded in Section 5.

Notations 1. Throughout this paper, ‖ ∙ ‖ denotes 𝐿2-vector
norm and 𝜌(∙) stands for the spectral radius for matrices.The
notation 𝐴 ⊗ 𝐵 means the Kronecker product of matrices 𝐴
and 𝐵, and 𝜆max(∙) and 𝜆min(∙) represent its maximum and
minimum eigenvalues.

2. Preliminaries and System Formulation

2.1. GraphTheory. Define a time varying random undirected
graph𝐺(𝜔(𝑡)) = (], 𝜉(𝜔𝑖𝑗(𝑡)), 𝐴(𝜔(𝑡)))with a nonempty finite
vertex set ] = {]1, . . . , ]𝑁} and an edge set 𝜉(𝜔𝑖𝑗(𝑡)) ⊆ ] × ].

Different with the general ones, it consists of a time sequence
of random graphs in which the edge set 𝜉 varies with 𝑡.
Namely, each edge (]𝑖, ]𝑗) evolves according to a homoge-
neous Markov process 𝜔𝑖𝑗(𝑡), which takes values in 𝑆 ={1, 2, . . . , 𝑠} with the transition rate as

Pr {𝜔𝑖𝑗 (𝑡 + Δ) = 𝑞 | 𝜔𝑖𝑗 (𝑡) = 𝑝}= {{{𝜋𝑝𝑞Δ + 𝑜 (Δ) 𝑞 ̸= 𝑝1 + 𝜋𝑝𝑝Δ + 𝑜 (Δ) 𝑞 = 𝑝. (1)

Assume that 𝜔𝑖𝑗(𝑡) do not change infinitely fast; thus, 𝜔𝑖𝑗(𝑡) =𝜔𝑖𝑗(𝑡 + Δ 𝑡) if 0 < Δ 𝑡 < Δ. It means that the total number of
systemmodes is 𝑠(𝑁+1)𝑁/2 and the total transition rate is given
by

Pr {𝜔 (𝑡 + Δ) | 𝜔 (𝑡)}= ∏
𝑖,𝑗∈]

Pr {𝜔𝑖𝑗 (𝑡 + Δ) = 𝑞 | 𝜔𝑖𝑗 (𝑡) = 𝑝} . (2)

The weighted adjacency matrix 𝐴𝜔 ≜ 𝐴(𝜔(𝑡)) =[𝑎𝑖𝑗(𝜔𝑖𝑗(𝑡))] ∈ R𝑁×𝑁 is associated with 𝐺(𝜔(𝑡)). Here 𝑎𝜔𝑖𝑗 ≜𝑎𝑖𝑗(𝜔𝑖𝑗(𝑡)) > 0 if (]𝑖, ]𝑗) ∈ 𝜉(𝜔𝑖𝑗(𝑡)) and 𝑎𝜔𝑖𝑗 = 0 otherwise.
Assumed that there is no self-loop in the graph, which implies
that 𝑎𝜔𝑖𝑖 = 0. In this paper, the set of neighbors with respect
to the agent ]𝑖 is Ω𝜔𝑖 = {]𝑗 ∈ ] | (]𝑗, ]𝑖) ∈ 𝜉(𝜔𝑖𝑗(𝑡))}. A
graph 𝐺(𝜔(𝑡)) is connected, if there is a path between any
two vertices; otherwise, it is disconnected. A diagonal matrix𝐷𝜔 = diag{𝑑𝑖} ∈ R𝑁×𝑁 with 𝑑𝑖 = ∑𝑗∈Ω𝜔

𝑖

𝑎𝜔𝑖𝑗 being the 𝑖th
row sum of𝐴𝜔. Then, the Laplacian of the graph is defined as𝐿𝜔 = 𝐷𝜔−𝐴𝜔. Consider the formation with a leader-follower
structure by introducing a diagonal matrix 𝐿𝑙 = diag{𝑎𝑙𝑖𝑖} ∈
R𝑁×𝑁, which evolves according to the Markov process 𝜔0(𝑡)
with a finite mode set 𝑆0 = {1, 2, . . . , 𝑠0} and a time intervalΔ 0, where 𝑎𝑙𝑖𝑖 > 0 if V𝑖 is a leader and 𝑎𝑙𝑖𝑖 = 0 otherwise. Hence,
the interaction matrix is given by 𝐿𝐺 = 𝐿𝜔 + 𝐿𝑙.
Assumption 2. The undirected graph 𝐺(𝜔(𝑡)) is connected.
Remark 3. For simplicity, we just consider the undirected
graph in this paper, that is, 𝑎𝜔𝑖𝑗 = 𝑎𝜔𝑗𝑖. Note that, if the graph is
a general directed one, there will be some small differences. A
possible approach to consider a directed graph is to introduce
two Markov chains in each two agents; an alternative is to
extend the state space set 𝑆, which could be defined according
to theweight and direction of the graph. Both approaches will
be addressed in our future work.

Remark 4. With a limited bandwidth, the switching of 𝑎𝜔𝑖𝑗 is
caused by the sensing/detecting failure and communication
failure, which is passive. In fact, it is difficult to obtain all the
elements of the transition ratematrix, or some of the elements
are not necessary to guarantee the system stability. Since that,
the transition ratematrices are assumed to be partly accessed;



Complexity 3

O OO

O O

Agent 1 Agent 2

Agent i Agent N

1
2

i
N

1
2

i N

1
2

i
N

Ze

Xe
Ye

Figure 1: Group of the𝑁 quadrotor UAVs.

even some of them are unknown completely, which could be
descried as follows:

(𝑝11 𝑝12 ⋅ ⋅ ⋅ ?? ? ⋅ ⋅ ⋅ 𝑝2𝑠... ... d
...𝑝𝑠1 ? ⋅ ⋅ ⋅ 𝑝𝑠𝑠),

(? ? ⋅ ⋅ ⋅ ?? ? ⋅ ⋅ ⋅ ?... ... d
...? ? ⋅ ⋅ ⋅ ?) ,

(3)

where “?” represents the unknown transition rate.

2.2. Problem Formulation. Consider a group of𝑁 quadrotor
UAVs as shown in Figure 1; the dynamics of agent 𝑖 are given
as the following form [12]:�̈�𝑖 = (sin𝜓𝑖 sin𝜙𝑖 + cos𝜓𝑖 sin 𝜃𝑖 cos𝜙𝑖) 𝑢1𝑖𝑚𝑖 − 𝑘𝑥𝑖�̇�𝑖𝑚𝑖 ,̈𝑦𝑖 = (− cos𝜓𝑖 sin𝜙𝑖 + sin𝜓𝑖 sin 𝜃𝑖 cos𝜙𝑖) 𝑢1𝑖𝑚𝑖 − 𝑘𝑦𝑖 ̇𝑦𝑖𝑚𝑖 ,�̈�𝑖 = −𝑔 + (cos 𝜃𝑖 cos𝜙𝑖) 𝑢1𝑖𝑚𝑖 − 𝑘𝑧𝑖�̇�𝑖𝑚𝑖 ,̈𝜙𝑖 = 𝑙𝑖𝑢2𝑖𝐼𝑥𝑖 − 𝑙𝑖𝑘𝜙𝑖 ̇𝜙𝑖𝐼𝑥𝑖 ,̈𝜃𝑖 = 𝑙𝑖𝑢3𝑖𝐼𝑦𝑖 − 𝑙𝑖𝑘𝜃𝑖 ̇𝜃𝑖𝐼𝑦𝑖 ,�̈�𝑖 = 𝐾𝜓𝑖𝑢4𝑖𝐼𝑧𝑖 − 𝑘𝜓𝑖�̇�𝑖𝐼𝑧𝑖 ,

(4)

where 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 ∈ R are positions and 𝜙𝑖, 𝜃𝑖, 𝜓𝑖 ∈ (−𝜋/2, 𝜋/2)
denote the three Euler angles of rotation, representing pitch,
roll, and yaw, respectively. 𝑘𝜙𝑖,𝜃𝑖,𝜓𝑖 are the aerodynamic
friction coefficients, and 𝑘𝑥𝑖,𝑦𝑖,𝑧𝑖 are the coefficients of the
translation drag forces. 𝐼𝑥𝑖,𝑦𝑖,𝑧𝑖 are the quadrotor moments
of inertias, 𝑚𝑖 denotes the mass of the quadrotor, 𝑙𝑖 is half
length of the helicopter, 𝐾𝜓𝑖 is thrust to moment gain, and𝑔 is gravitational acceleration.

Each system dynamics consist of six degrees of freedom
model, which can be separated into position dynamic and
attitude dynamic. With the choice of state variables 𝑥1𝑖 = 𝑥𝑖,𝑥2𝑖 = �̇�𝑖; 𝑦1𝑖 = 𝑦𝑖, 𝑦2𝑖 = ̇𝑦𝑖; 𝑧1𝑖 = 𝑧𝑖, 𝑧2𝑖 = �̇�𝑖; 𝜙1𝑖 = 𝜙𝑖,𝜙2𝑖 = ̇𝜙𝑖; 𝜃1𝑖 = 𝜃𝑖, 𝜃2𝑖 = ̇𝜃𝑖; 𝜓1𝑖 = 𝜓𝑖, 𝜓2𝑖 = �̇�𝑖. Then, it can be
represented by�̇�1𝑖 = 𝑥2𝑖,̇𝑦1𝑖 = 𝑦2𝑖,�̇�1𝑖 = 𝑧2𝑖,�̇�2𝑖 = (sin𝜓𝑖 sin𝜙𝑖 + cos𝜓𝑖 sin 𝜃𝑖 cos𝜙𝑖) 𝑢1𝑖𝑚𝑖 − 𝑘𝑥𝑖𝑥2𝑖𝑚𝑖 ,̇𝑦2𝑖 = (− cos𝜓𝑖 sin𝜙𝑖 + sin𝜓𝑖 sin 𝜃𝑖 cos𝜙𝑖) 𝑢1𝑖𝑚𝑖− 𝑘𝑦𝑖𝑦2𝑖𝑚𝑖 ,�̇�2𝑖 = −𝑔 + (cos 𝜃𝑖 cos𝜙𝑖) 𝑢1𝑖𝑚𝑖 − 𝑘𝑧𝑖𝑧2𝑖𝑚𝑖 ,̇𝜙1𝑖 = 𝜙2𝑖,̇𝜃1𝑖 = 𝜃2𝑖,�̇�1𝑖 = 𝜓2𝑖,̇𝜙2𝑖 = 𝑙𝑖𝑢2𝑖𝐼𝑥𝑖 − 𝑙𝑖𝑘𝜙𝑖𝜙2𝑖𝐼𝑥𝑖 ,



4 Complexitẏ𝜃2𝑖 = 𝑙𝑖𝑢3𝑖𝐼𝑦𝑖 − 𝑙𝑖𝑘𝜃𝑖𝜃2𝑖𝐼𝑦𝑖 ,
�̇�2𝑖 = 𝐾𝜓𝑖𝑢4𝑖𝐼𝑧𝑖 − 𝑘𝜓𝑖𝜓2𝑖𝐼𝑧𝑖 .

(5)

As is well known to us, the quadrotor is under-
actuated and differentially flat. Accordingly, choose four
variables and specify the desired trajectory as 𝑅𝑑 =[𝑥𝑑(𝑡), 𝑦𝑑(𝑡), 𝑧𝑑(𝑡), 𝜓𝑑(𝑡)]𝑇.
2.3. Formation Definition. The formation shape can be de-
scribed by a vector 𝛿(𝑡) = [𝛿𝑇1 (𝑡), . . . , 𝛿𝑇𝑁(𝑡)]𝑇 ∈ R4𝑁,
where 𝛿𝑖(𝑡) = [𝛿𝑖𝑥(𝑡), 𝛿𝑖𝑦(𝑡), 𝛿𝑖𝑧(𝑡), 𝛿𝑖𝜓(𝑡)]𝑇 is the continuously
differentiable formation vector, such that

lim
𝑡→∞

(𝑥1𝑖 (𝑡) − 𝛿𝑖𝑥 (𝑡) − 𝑥𝑑 (𝑡)) = 0,
lim
𝑡→∞

(𝑦1𝑖 (𝑡) − 𝛿𝑖𝑦 (𝑡) − 𝑦𝑑 (𝑡)) = 0,
lim
𝑡→∞

(𝑧1𝑖 (𝑡) − 𝛿𝑖𝑧 (𝑡) − 𝑧𝑑 (𝑡)) = 0,
lim
𝑡→∞

(𝜓1𝑖 (𝑡) − 𝛿𝑖𝜓 (𝑡) − 𝜓𝑑 (𝑡)) = 0.
(6)

Define the desired position of agent 𝑖 as [𝑥𝑖𝑑, 𝑦𝑖𝑑, 𝑧𝑖𝑑, 𝜓𝑖𝑑]𝑇 =[𝛿𝑖𝑥 + 𝑥𝑑, 𝛿𝑖𝑦 + 𝑦𝑑, 𝛿𝑖𝑧 + 𝑧𝑑, 𝛿𝑖𝜓 + 𝜓𝑑]𝑇. For 𝑗 ∈ Ω𝜔𝑖 , there
exists 𝛿𝑖𝑗 = [𝛿𝑖𝑗𝑥, 𝛿𝑖𝑗𝑦, 𝛿𝑖𝑗𝑧, 𝛿𝑖𝑗𝜓]𝑇 = [𝛿𝑗𝑥 − 𝛿𝑖𝑥, 𝛿𝑗𝑦 − 𝛿𝑖𝑦, 𝛿𝑗𝑧 −𝛿𝑖𝑧, 𝛿𝑗𝜓−𝛿𝑖𝜓]𝑇. Hence, there are𝑁(𝑁−1)/2 such shape vectors
satisfying the following properties:𝛿𝑖𝑘 = 𝛿𝑖𝑗 + 𝛿𝑗𝑘,𝛿𝑖𝑖 = [0, 0, 0, 0]𝑇 ,𝛿𝑗𝑖 = −𝛿𝑖𝑗, ∀𝑖, 𝑗, 𝑘 ∈ 1, . . . , 𝑁. (7)

Remark 5. The formation reference vector 𝑅𝑑 is not available
to all agents, but the desired interdistances of agent 𝑖 and its
neighbors are known. Note that the time varying formation

vector 𝛿(𝑡) is not unique, and the relative position between
the reference vector 𝑅𝑑 and the formation can be adjusted.

Lemma 6 (see [34]). For any 𝑋,𝑌 ∈ R𝑛 and 𝜌1 > 0, it holds
that𝑋𝑇𝑌 ≤ 𝜌1𝑋𝑇𝑋/2 + 𝑌𝑇𝑌/2𝜌1.
3. Main Results

In this section, time varying formation control problem
for multiple quadrotor UAVs is solved through an event-
triggered control scheme. The system stability analysis and
exclusion of Zeno behavior are also provided.

3.1. Singularly Perturbed System. Define the error vectors as𝜎21𝑒𝑖1𝜙 = 𝜙1𝑖 − 𝜙𝑖𝑑,𝜎1𝑒𝑖2𝜙 = 𝜙2𝑖 − ̇𝜙𝑖𝑑,𝜎21𝑒𝑖1𝜃 = 𝜃1𝑖 − 𝜃𝑖𝑑,𝜎1𝑒𝑖2𝜃 = 𝜃2𝑖 − ̇𝜃𝑖𝑑,𝜎21�̃�1𝑖 = 𝜓1𝑖 − 𝜓𝑖𝑑,𝜎1�̃�2𝑖 = 𝜓2𝑖 − �̇�𝑖𝑑,𝑥1𝑖 = 𝑥1𝑖 − 𝑥𝑖𝑑,𝑥2𝑖 = 𝑥2𝑖 − �̇�𝑖𝑑,𝑦1𝑖 = 𝑦1𝑖 − 𝑦𝑖𝑑,𝑦2𝑖 = 𝑦2𝑖 − ̇𝑦𝑖𝑑,�̃�1𝑖 = 𝑧1𝑖 − 𝑧𝑖𝑑,�̃�2𝑖 = 𝑧2𝑖 − �̇�𝑖𝑑,

(8)

where 𝜎1 is positive constant denoted as perturbing parame-
ter, which satisfies 𝜎1 ≪ 1. The overall system can be written
as

∑
𝜙𝑖

fl
{{{{{
𝜎1 ̇𝑒𝑖1𝜙 = 𝑒𝑖2𝜙𝜎1 ̇𝑒𝑖2𝜙 = 𝑙𝑖𝑢2𝑖𝐼𝑥𝑖 − 𝑙𝑖𝑘𝜙𝑖𝜙2𝑖𝐼𝑥𝑖 − ̈𝜙𝑖𝑑,

∑
𝜃𝑖

fl
{{{{{
𝜎1 ̇𝑒𝑖1𝜃 = 𝑒𝑖2𝜃𝜎1 ̇𝑒𝑖2𝜃 = 𝑙𝑖𝑢3𝑖𝐼𝑦𝑖 − 𝑙𝑖𝑘𝜃𝑖𝜃2𝑖𝐼𝑦𝑖 − ̈𝜃𝑖𝑑,

(9)

∑
𝜓𝑖

fl
{{{{{
𝜎1 ̇̃𝜓1𝑖 = �̃�2𝑖𝜎1 ̇̃𝜓2𝑖 = 𝐾𝜓𝑖𝑢4𝑖𝐼𝑧𝑖 − 𝑘𝜓𝑖𝜓2𝑖𝐼𝑧𝑖 − ̈𝛿𝑖𝜓, (10)



Complexity 5

∑
𝑥𝑖

fl
{{{{{
̇̃𝑥1𝑖 = 𝑥2𝑖̇̃𝑥2𝑖 = (sin𝜓𝑖 sin𝜙𝑖 + cos𝜓𝑖 sin 𝜃𝑖 cos𝜙𝑖) 𝑢1𝑖𝑚𝑖 − 𝑘𝑥𝑖𝑥2𝑖𝑚𝑖 − ̈𝛿𝑖𝑥,

∑
𝑦𝑖

fl
{{{{{
̇̃𝑦1𝑖 = 𝑦2𝑖̇̃𝑦2𝑖 = (− cos𝜓𝑖 sin𝜙𝑖 + sin𝜓𝑖 sin 𝜃𝑖 cos𝜙𝑖) 𝑢1𝑖𝑚𝑖 − 𝑘𝑦𝑖𝑦2𝑖𝑚𝑖 − ̈𝛿𝑖𝑦,

∑
𝑧𝑖

fl
{{{{{
̇̃𝑧1𝑖 = �̃�2𝑖̇̃𝑧2𝑖 = −𝑔 + (cos 𝜃𝑖 cos𝜙𝑖) 𝑢1𝑖𝑚𝑖 − 𝑘𝑧𝑖𝑧2𝑖𝑚𝑖 − ̈𝛿𝑖𝑧.

(11)

System (9)–(11) has the standard form of a singularly
perturbed system with a two-time scale; that is, 𝑎𝑖 =[𝑒𝑖1𝜙, 𝑒𝑖2𝜙, 𝑒𝑖1𝜃, 𝑒𝑖2𝜃, �̃�1𝑖, �̃�2𝑖]𝑇 represents the attitude states with
fast time scale and 𝑝𝑖 = [𝑥1𝑖, 𝑥2𝑖, 𝑦1𝑖, 𝑦2𝑖, �̃�1𝑖, �̃�2𝑖]𝑇 represents
the position states with slow time scale. Roughly speaking,
in order to maintain a predefined formation shape for
multiple quadrotor UAVs, the attitude stabilization should be
guaranteed firstly.

3.2. Controller Design. Dynamic event-triggered control
scheme is introduced to themultiple quadrotor UAVs. Define
the following measurement errors:𝑒𝑖1𝜓 (𝑡) = �̃�1𝑖 (𝑡𝑖𝑘) − �̃�1𝑖 (𝑡) ,𝑒𝑖2𝜓 (𝑡) = �̃�2𝑖 (𝑡𝑖𝑘) − �̃�2𝑖 (𝑡) ,𝑒𝑖1𝑥 (𝑡) = 𝑥1𝑖 (𝑡𝑖𝑘) − 𝑥1𝑖 (𝑡) ,𝑒𝑖2𝑥 (𝑡) = 𝑥2𝑖 (𝑡𝑖𝑘) − 𝑥2𝑖 (𝑡) ,𝑒𝑖1𝑦 (𝑡) = 𝑦1𝑖 (𝑡𝑖𝑘) − 𝑦1𝑖 (𝑡) ,𝑒𝑖2𝑦 (𝑡) = 𝑦2𝑖 (𝑡𝑖𝑘) − 𝑦2𝑖 (𝑡) ,𝑒𝑖1𝑧 (𝑡) = �̃�1𝑖 (𝑡𝑖𝑘) − �̃�1𝑖 (𝑡) ,𝑒𝑖2𝑧 (𝑡) = �̃�2𝑖 (𝑡𝑖𝑘) − �̃�2𝑖 (𝑡) .

(12)

Let 𝜓𝑝𝑖 = ∑
𝑗∈Ω𝜔
𝑖

𝑎𝜔𝑖𝑗 (�̃�1𝑖 (𝑡𝑖𝑘) − �̃�1𝑗 (𝑡𝑗𝑘󸀠)) + 𝑎𝑙𝑖𝑖�̃�1𝑖 (𝑡𝑖𝑘) ,𝜓V𝑖 = ∑
𝑗∈Ω𝜔
𝑖

𝑎𝜔𝑖𝑗 (�̃�2𝑖 (𝑡𝑖𝑘) − �̃�2𝑗 (𝑡𝑗𝑘󸀠)) + 𝑎𝑙𝑖𝑖�̃�2𝑖 (𝑡𝑖𝑘) ,𝑥𝑝𝑖 = ∑
𝑗∈Ω𝜔
𝑖

𝑎𝜔𝑖𝑗 (𝑥1𝑖 (𝑡𝑖𝑘) − 𝑥1𝑗 (𝑡𝑗𝑘󸀠)) + 𝑎𝑙𝑖𝑖𝑥1𝑖 (𝑡𝑖𝑘) ,𝑥V𝑖 = ∑
𝑗∈Ω𝜔
𝑖

𝑎𝜔𝑖𝑗 (𝑥2𝑖 (𝑡𝑖𝑘) − 𝑥2𝑗 (𝑡𝑗𝑘󸀠)) + 𝑎𝑙𝑖𝑖𝑥2𝑖 (𝑡𝑖𝑘) ,

𝑦𝑝𝑖 = ∑
𝑗∈Ω𝜔
𝑖

𝑎𝜔𝑖𝑗 (𝑦1𝑖 (𝑡𝑖𝑘) − 𝑦1𝑗 (𝑡𝑗𝑘󸀠)) + 𝑎𝑙𝑖𝑖𝑦1𝑖 (𝑡𝑖𝑘) ,𝑦V𝑖 = ∑
𝑗∈Ω𝜔
𝑖

𝑎𝜔𝑖𝑗 (𝑦2𝑖 (𝑡𝑖𝑘) − 𝑦2𝑗 (𝑡𝑗𝑘󸀠)) + 𝑎𝑙𝑖𝑖𝑦2𝑖 (𝑡𝑖𝑘) ,𝑧𝑝𝑖 = ∑
𝑗∈Ω𝜔
𝑖

𝑎𝜔𝑖𝑗 (�̃�1𝑖 (𝑡𝑖𝑘) − �̃�1𝑗 (𝑡𝑗𝑘󸀠)) + 𝑎𝑙𝑖𝑖�̃�1𝑖 (𝑡𝑖𝑘) ,𝑧V𝑖 = ∑
𝑗∈Ω𝜔
𝑖

𝑎𝜔𝑖𝑗 (�̃�2𝑖 (𝑡𝑖𝑘) − �̃�2𝑗 (𝑡𝑗𝑘󸀠)) + 𝑎𝑙𝑖𝑖�̃�2𝑖 (𝑡𝑖𝑘) .
(13)

Then, the auxiliary control variables are given by

V𝜙𝑖 = −𝛼𝜙𝑒𝑖1𝜙 − 𝛽𝜙𝑒𝑖2𝜙,
V𝜃𝑖 = −𝛼𝜃𝑒𝑖1𝜃 − 𝛽𝜃𝑒𝑖2𝜃,
V𝜓𝑖 = −𝛼𝜓𝜓𝑝𝑖 − 𝛽𝜓𝜓V𝑖,
V𝑥𝑖 = −𝛼𝑥𝑥𝑝𝑖 − 𝛽𝑥𝑥V𝑖,
V𝑦𝑖 = −𝛼𝑦𝑦𝑝𝑖 − 𝛽𝑦𝑦V𝑖,
V𝑧𝑖 = −𝛼𝑧𝑧𝑝𝑖 − 𝛽𝑧𝑧V𝑖.

(14)

Therefore, the choice of control inputs

𝑢2𝑖 = 𝐼𝑥𝑖V𝜙𝑖𝑙𝑖 + 𝑘𝜙𝑖𝜙2𝑖 + 𝐼𝑥𝑖 ̈𝜙𝑖𝑑𝑙𝑖 ,
𝑢3𝑖 = 𝐼𝑦𝑖V𝜃𝑖𝑙𝑖 + 𝑘𝜃𝑖𝜃2𝑖 + 𝐼𝑦𝑖 ̈𝜃𝑖𝑑𝑙𝑖 ,
𝑢4𝑖 = 𝐼𝑧𝑖V𝜓𝑖𝐾𝜓𝑖 + 𝑘𝜓𝑖𝜓2𝑖𝐾𝜓𝑖 + 𝐼𝑧𝑖 ̈𝛿𝑖𝜓𝐾𝜓𝑖 ,

(15)

𝑢1𝑖 = 𝑚𝑖V𝑧𝑖 + 𝑚 ̈𝛿𝑖𝑧 + 𝑚𝑖𝑔 + 𝑘𝑧𝑖𝑧2𝑖
cos 𝜃𝑖𝑑 cos𝜙𝑖𝑑 , (16)

where the reference angles 𝜙𝑖𝑑 and 𝜃𝑖𝑑 are addressed as
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𝜃𝑖𝑑 = tan−1
cos𝜓𝑖𝑑 (V𝑥𝑖 + ̈𝛿𝑖𝑥 + 𝑘𝑥𝑖𝑥2𝑖/𝑚𝑖) + sin𝜓𝑖𝑑 (V𝑦𝑖 + ̈𝛿𝑖𝑦 + 𝑘𝑦𝑖𝑦2𝑖/𝑚𝑖)

V𝑧𝑖 + 𝑔 + ̈𝛿𝑖𝑧 + 𝑘𝑧𝑖𝑧2𝑖/𝑚𝑖 , (17)

𝜙𝑖𝑑 = tan−1
cos 𝜃𝑖𝑑 (sin𝜓𝑖𝑑 (V𝑥𝑖 + ̈𝛿𝑖𝑥 + 𝑘𝑥𝑖𝑥2𝑖/𝑚𝑖) − cos𝜓𝑖𝑑 (V𝑦𝑖 + ̈𝛿𝑖𝑦 + 𝑘𝑦𝑖𝑦2𝑖/𝑚𝑖))

V𝑧𝑖 + 𝑔 + ̈𝛿𝑖𝑧 + 𝑘𝑧𝑖𝑧2𝑖/𝑚𝑖 . (18)

Remark 7. It should be stressed that (17) and (18) are needed
to be nonsingular; in other words, the denominator of (17)
or (18) cannot be zero. In practice, the quadrotor has to take
a certain thrust to overcome gravity in order to maintain
hovering; otherwise, it would sink vertically. It means that the
denominator of (17) or (18) is approximate to 𝑔, and during
the flight, it will also be greater than zero based on the defined
domain of 𝑧 dynamics [𝑧1𝑖, 𝑧2𝑖, �̇�2𝑖]𝑇 ∈ 𝐷𝑧 = R × {|𝑧2𝑖| <𝑑𝑧2} × {|�̇�2𝑖| < 𝑑�̇�2} ⊂ R3, 𝑑�̇�2 ≪ 𝑔.
3.3. Dynamic Event-Triggered Communication. Figure 2
depicts the control law running in the 𝑖th quadrotor. Gen-
erally speaking, each agent updates its controller whenever
the designed trigger condition is reached, called the trig-
gered event. Based on local information, it decides when to
broadcast its current state over the network. In other words,
the key problem is to find a triggering rule that determines
when agent 𝑖 has to broadcast the new state information to its
neighbors.

In contrast to most of the existing works, a new dynamic
event-triggered communication mechanism is developed to
schedule interagent communication. The threshold param-
eter in the proposed event triggering condition will not
be fixed permanently but vary with time by following a
dynamic rule. The detailed dynamic rule is provided in the
following section.The event-triggered control strategy works
as follows: define a trigger function𝑓𝑖(𝑡) for each agent, which
depends on local information only; an event is triggered
as soon as the trigger condition 𝑓𝑖(𝑡) > 0 is fulfilled, while

each agent recomputes its control law in accordance with
the measurement error, such that all the agents could reach
and keep the predesigned formation shape. It will be shown
numerically that the dynamic event-triggered communica-
tion mechanism can achieve a better tradeoff between reduc-
ing data transmissions and preserving favorable formation
performance.

3.4. System Stability via Two-Time Scale. Thestability analysis
for each subsystemwill be done by starting from the faster one
to the slower one.Themain results of this paper are presented
next with the help of the following theorems.

Theorem 8. Consider the 𝑖th quadrotor dynamics, which is
also a singularly perturbed system. Then, there always exists𝜎∗1 > 0 such that the state space origin of the closed-loop system
(9)–(11) is exponentially stable with 𝜎∗1 > 𝜎1 > 0.
Proof. The proof is set down in the following five items.(1) System (9)–(11) has a unique equilibrium point at[𝑎𝑇𝑖 , 𝑝𝑇𝑖 ]𝑇 = 0.(2)The quasi-steady-state solution of closed-loop system
(9)-(10) is 𝑎𝑖 = 𝑎∗ = ℎ(𝑡, 𝑝𝑖). Hence, by substituting 𝜎1 =0 into (9)-(10), the isolated root is given by 𝑎∗ = 0. It is
noteworthy that the isolated root evaluated in (16)–(18) gives
the specific values 𝜙∗𝑖𝑑, 𝜃∗𝑖𝑑, and 𝜓∗𝑖𝑑.(3) System (9)–(11) and the isolated root have bounded
partial derivatives in compact sets.(4) By considering 𝜎1 = 0 and using the isolated root into
(11), the following slow dynamics system is obtained:

∑
𝑥𝑖

fl
{{{{{
̇̃𝑥1𝑖 = 𝑥2𝑖̇̃𝑥2𝑖 = (sin𝜓∗𝑖𝑑 sin𝜙∗𝑖𝑑 + cos𝜓∗𝑖𝑑 sin 𝜃∗𝑖𝑑 cos𝜙∗𝑖𝑑) 𝑢1𝑖𝑚𝑖 − 𝑘𝑥𝑖𝑥2𝑖𝑚𝑖 − ̈𝛿𝑖𝑥,

∑
𝑦𝑖

fl
{{{{{
̇̃𝑦1𝑖 = 𝑦2𝑖̇̃𝑦2𝑖 = (− cos𝜓∗𝑖𝑑 sin𝜙∗𝑖𝑑 + sin𝜓∗𝑖𝑑 sin 𝜃∗𝑖𝑑 cos𝜙∗𝑖𝑑) 𝑢1𝑖𝑚𝑖 − 𝑘𝑦𝑖𝑦2𝑖𝑚𝑖 − ̈𝛿𝑖𝑦,

∑
𝑧𝑖

fl
{{{{{
̇̃𝑧1𝑖 = �̃�2𝑖̇̃𝑧2𝑖 = −𝑔 + (cos 𝜃∗𝑖𝑑 cos𝜙∗𝑖𝑑) 𝑢1𝑖𝑚𝑖 − 𝑘𝑧𝑖𝑧2𝑖𝑚𝑖 − ̈𝛿𝑖𝑧.

(19)

The local stability of the slow dynamics (11) can be derived
by using event-triggered control method. For the sake of
simplicity, it will be given inTheorem 12 later.

(5)Toobtain the boundary layer system, by deriving 𝑎−𝑎∗
with respect to scaled time 𝜅 = 𝑡/𝜎1 and setting 𝜎1 = 0, the
boundary layer system is obtained:
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Figure 2: Block diagram of the event-based control strategy.

𝑑𝑑𝜅𝑒𝑖1𝜙 = 𝑒𝑖2𝜙,𝑑𝑑𝜅𝑒𝑖2𝜙 = −𝛼𝜙𝑒𝑖1𝜙 − 𝛽𝜙𝑒𝑖2𝜙,𝑑𝑑𝜅𝑒𝑖1𝜃 = 𝑒𝑖2𝜃,𝑑𝑑𝜅𝑒𝑖2𝜃 = −𝛼𝜃𝑒𝑖1𝜃 − 𝛽𝜃𝑒𝑖2𝜃,
(20)

𝑑𝑑𝜅�̃�1𝑖 = �̃�2𝑖,𝑑𝑑𝜅�̃�2𝑖 = −𝛼𝜓𝜓𝑝𝑖 − 𝛽𝜓𝜓V𝑖. (21)

Thus, for the 𝜙𝑖 and 𝜃𝑖 subsystems

𝑑𝑑𝜅𝑒𝑖𝜙 = 𝐴𝜙𝑒𝑖𝜙 󳨐⇒𝑑𝑑𝜅 [𝑒𝑖1𝜙𝑒𝑖2𝜙] = [ 0 1−𝛼𝜙 −𝛽𝜙][𝑒𝑖1𝜙𝑒𝑖2𝜙] ,𝑑𝑑𝜅𝑒𝑖𝜃 = 𝐴𝜃𝑒𝑖𝜃 󳨐⇒𝑑𝑑𝜅 [𝑒𝑖1𝜃𝑒𝑖2𝜃] = [ 0 1−𝛼𝜃 −𝛽𝜃][𝑒𝑖1𝜃𝑒𝑖2𝜃] .
(22)

It is obvious that 𝐴𝜙 and 𝐴𝜃 are Hurwitz, where system (22)
is exponentially stable. Meanwhile, the stability result of 𝜓𝑖
subsystem will be established inTheorem 10 as follows.

According to [32], there are sufficient conditions to claim
that there exists 𝜎∗1 such that 𝜎∗1 > 𝜎1 > 0 guarantees that sys-
tem (9)–(11) achieves the following limit lim𝑡→∞[𝑎𝑇𝑖 , 𝑝𝑇𝑖 ]𝑇 =0.
Remark 9. Based on the system stability analysis by the
singular perturbation method, instead of using the feedback
angles 𝜙𝑖, 𝜃𝑖,𝜓𝑖, the control input 𝑢1𝑖 is related to the reference
angles 𝜙𝑖𝑑, 𝜃𝑖𝑑, 𝜓𝑖𝑑, and the coupling between the attitude
subsystem and the position subsystem is diminished.

Theorem 10. Given �̃�𝑝𝑖 = ∑𝑗∈Ω𝜔
𝑖

𝑎𝜔𝑖𝑗 (𝑒𝑖1𝜓 − 𝑒𝑗1𝜓) + 𝑎𝑙𝑖𝑖𝑒𝑖1𝜓 and�̃�V𝑖 = ∑𝑗∈Ω𝜔
𝑖

𝑎𝜔𝑖𝑗 (𝑒𝑖2𝜓 − 𝑒𝑗2𝜓) + 𝑎𝑙𝑖𝑖𝑒𝑖2𝜓, then define 𝐸𝑖𝜓 = [�̃�𝑝𝑖,�̃�V𝑖]𝑇 and Ψ̃𝑖 = [𝜓𝑝𝑖 − �̃�𝑝𝑖, 𝜓V𝑖 − �̃�V𝑖]𝑇. Consider the yaw sub-
system (21); the system stability could be obtained through the
distributed control law (14) and (15) and the following event-
triggered communication condition:𝑓𝑖 (𝑡) = 󵄩󵄩󵄩󵄩󵄩𝐵𝑇2𝑄𝐸𝑖𝜓󵄩󵄩󵄩󵄩󵄩 − 𝜎 (𝑡) 󵄩󵄩󵄩󵄩󵄩𝐵𝑇2𝑄Ψ̃𝑖󵄩󵄩󵄩󵄩󵄩 , (23)

where 𝜎(𝑡) = 𝑒−𝜇𝑒𝑠 is the dynamic threshold parameter with𝑒𝑠 = ∫𝑡𝑖𝑘0 𝑒𝑖𝜓𝑇𝑒𝑖𝜓𝑑𝑠, 𝑒𝑖𝜓 = [𝑒𝑖1𝜓, 𝑒𝑖2𝜓]𝑇, 𝜇 > 0, and the initial value𝜎(0) = 𝜎0 ∈ (0, 1), which ensures that 𝑓𝑖(𝑡) ≤ 0 always holds.
Proof. Obviously, 𝜎(𝑡) is a monotone nonincreasing func-
tion;thus,𝜎(𝑡) ≤ 𝜎0 always holds. Particularly, if the threshold
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parameter is preset as a constant 𝜎0 before dynamic event-
triggered controller is implemented, this is called the static
event-triggered controller. Define 𝐵1 = [1, 0]𝑇, 𝐵2 = [0, 1]𝑇,
and �̃�𝑖 = [�̃�1𝑖, �̃�2𝑖]𝑇. Based on (13), (21) becomes𝑑𝑑𝜅�̃�𝑖 = 𝐵1𝐵𝑇2 �̃�𝑖 + 𝐵2 (−𝛼𝜓𝜓𝑝𝑖 − 𝛽𝜓𝜓V𝑖) . (24)

Hence, it follows from [35] that there exist positive constants𝛼0, 𝛼𝜓, and 𝛽𝜓 such that12 (𝑄𝐵1𝐵𝑇2 + 𝐵2𝐵𝑇1𝑄) − 𝜌0𝑄𝐵𝑇2𝐵2𝑄 + 2𝐼2 ≤ 0 𝑄 > 0, (25)

where 𝑄 = [𝛼0, 𝛼𝜓; 𝛼𝜓, 𝛽𝜓], 𝐵𝑇2𝑄 = [𝛼𝜓, 𝛽𝜓], and0 < 𝜌0 ≤ (1 − 𝜌12 − 𝜎202𝜌1)𝜆min (𝐿𝐺) . (26)

Let Ψ = [�̃�1, . . . , �̃�𝑁]𝑇 and 𝐸𝜓 = [𝑒1𝜓, . . . , 𝑒𝑁𝜓 ]𝑇. Consider the
following Lyapunov function:𝑉𝜓 = 12Ψ𝑇 (𝐼𝑁 ⊗ 𝑄)Ψ. (27)

Then, its derivative is𝑑𝑑𝜅𝑉𝜓 = Ψ𝑇(𝐼𝑁 ⊗ 𝑄𝐵1𝐵𝑇2 + 𝐵2𝐵𝑇1𝑄2 )Ψ− Ψ𝑇 (𝐿𝐺 ⊗ 𝑄𝐵2𝐵𝑇2𝑄)Ψ− Ψ𝑇 (𝐿𝐺 ⊗ 𝑄𝐵2𝐵𝑇2𝑄)𝐸𝜓.
(28)

Based on Lemma 6, the following inequality holds:Ψ𝑇 (𝐿𝐺 ⊗ 𝑄𝐵2𝐵𝑇2𝑄)𝐸𝜓≤ 𝜌12 Ψ𝑇 (𝐿𝐺 ⊗ 𝑄𝐵2𝐵𝑇2𝑄)Ψ+ 12𝜌1𝐸𝑇𝜓 (𝐿𝐺 ⊗ 𝑄𝐵2𝐵𝑇2𝑄)𝐸𝜓.
(29)

Based on (23) and (25), (28) can be written as𝑑𝑑𝜅𝑉𝜓 ≤ Ψ𝑇(𝐼𝑁 ⊗ 𝑄𝐵1𝐵𝑇2 + 𝐵1𝐵𝑇2𝑄𝑇2 )Ψ− 𝜆min (𝐿𝐺)Ψ𝑇 (𝐼𝑁 ⊗ 𝑄𝐵2𝐵𝑇2𝑄)Ψ + 𝜌12 Ψ𝑇 (𝐿𝐺⊗ 𝑄𝐵2𝐵𝑇2𝑄)Ψ + 12𝜌1𝐸𝑇𝜓 (𝐿𝐺 ⊗ 𝑄𝐵2𝐵𝑇2𝑄)𝐸𝜓≤ Ψ𝑇(𝐼𝑁 ⊗ [𝑄𝐵1𝐵𝑇2 + 𝐵1𝐵𝑇2𝑄𝑇2− (1 − 𝜌12 − 𝜎2 (𝑡)2𝜌1 )𝜆min (𝐿𝐺)𝑄𝐵2𝐵𝑇2𝑄])Ψ≤ −2𝜌 (𝑄)𝑉𝜓.

(30)

Hence, 𝑉𝜓 ≤ 𝜎1𝑉𝜓(0)𝑒−2𝜌(𝑄)𝑡, and lim𝑡→∞(𝜓1𝑖(𝑡) − 𝛿𝑖𝜓(𝑡) −𝜓𝑑(𝑡)) = 0 exponentially.
Next, Zeno behavior is excluded. For any 𝑡 > 𝑡𝑖𝑘, it follows

from (23) that󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 𝑑𝑑𝜅 (𝐿𝐺 ⊗ 𝐵𝑇2𝑄)𝐸𝜓󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ √𝛼2𝜓 + 𝛽2𝜓 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩 (󵄩󵄩󵄩󵄩󵄩𝐸𝜓󵄩󵄩󵄩󵄩󵄩+ √𝛼2𝜓 + 𝛽2𝜓 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩 ‖Ψ‖ + √𝛼2𝜓 + 𝛽2𝜓 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝐸𝜓󵄩󵄩󵄩󵄩󵄩)≤ (𝜎 (𝑡) + (1 + 𝜎 (𝑡))√𝛼2𝜓 + 𝛽2𝜓 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩)⋅ √𝛼2𝜓 + 𝛽2𝜓 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩 ‖Ψ‖ ,
(31)

where ‖Ψ‖ ≤ √2𝜎1𝜌(𝑄)𝑉𝜓(0)𝑒−𝜌(𝑄)𝑡. Hence,󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 𝑑𝑑𝜅 (𝐿𝐺 ⊗ 𝐵𝑇2𝑄)𝐸𝜓󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩≤ (𝜎 (𝑡) + (1 + 𝜎 (𝑡))√𝛼2𝜓 + 𝛽2𝜓 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩)⋅ √𝛼2𝜓 + 𝛽2𝜓 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩√2𝜎1𝜌 (𝑄)𝑉𝜓 (0)𝑒−𝜌(𝑄)𝑡.
(32)

Thus,󵄩󵄩󵄩󵄩󵄩(𝐿𝐺 ⊗ 𝐵𝑇2𝑄)𝐸𝜓󵄩󵄩󵄩󵄩󵄩≤ 𝜎1 (𝜎 (𝑡) + (1 + 𝜎 (𝑡))√𝛼2𝜓 + 𝛽2𝜓 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩)⋅ √𝛼2𝜓 + 𝛽2𝜓 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩√2𝜎1𝜌 (𝑄)𝑉𝜓 (0)𝑒−𝜌(𝑄)𝑡 (𝑡 − 𝑡𝑘) . (33)

The next event 𝑡𝑘+1 will not be triggered before ‖(𝐿𝐺 ⊗𝐵𝑇2𝑄)𝐸𝜓‖ = 𝜎(𝑡)‖(𝐿𝐺 ⊗ 𝐵𝑇2𝑄)Ψ‖. Thus, a lower bound on
the interevent intervals is given by 𝜏 = 𝑡 − 𝑡𝑘 that solves the
following equation:𝜎 (𝜏) 󵄩󵄩󵄩󵄩󵄩(𝐿𝐺 ⊗ 𝐵𝑇2𝑄)Ψ󵄩󵄩󵄩󵄩󵄩= 𝜎1𝜏 (𝜎 (𝜏) + (1 + 𝜎 (𝜏))√𝛼2𝜓 + 𝛽2𝜓 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩)⋅ √𝛼2𝜓 + 𝛽2𝜓 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩√2𝜎1𝜌 (𝑄)𝑉𝜓 (0)𝑒−𝜌(𝑄)𝑡. (34)

Therefore, for all 𝑡𝑘 ≥ 0 the solutions 𝜏(𝑡𝑘) are greater than or
equal to 𝜏 given by𝜎 (𝜏) = 𝜎1𝜏 (𝜎 (𝜏) + (1 + 𝜎 (𝜏))√𝛼2𝜓 + 𝛽2𝜓 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩) (35)

which is strictly positive, so Zeno behavior is excluded. This
completes the proof.

Remark 11. It should be pointed out that the vectors 𝜙𝑖𝑑
and 𝜃𝑖𝑑 are obtained inside of the controller; as shown in
Figure 2, the pitch and roll attitude dynamics are not event-
triggered. In other words, only the yaw angle in the attitude
subsystem is controlled through an event-triggered strategy.
In addition, compared with some existing works, in which
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assuming 𝜓1𝑖 = 0 in the position control loop, the yaw angle
is not always zero in practice. Since that the control method
is more suitable in this paper.

After the attitude angles reach quasi-steady states, hierar-
chically, 𝜎1 = 0, 𝜙1𝑖 → 𝜙𝑖𝑑, 𝜃1𝑖 → 𝜃𝑖𝑑, 𝜓1𝑖 → 𝜓𝑖𝑑. Substituting
(14), (16)–(18) into (19), it is possible to show that the closed-
loop position subsystem can be written aṡ̃𝑥1𝑖 = 𝑥2𝑖,̇̃𝑥2𝑖 = −𝛼𝑥𝑥𝑝𝑖 − 𝛽𝑥𝑥V𝑖,̇̃𝑦1𝑖 = 𝑦2𝑖,̇̃𝑦2𝑖 = −𝛼𝑦𝑦𝑝𝑖 − 𝛽𝑦𝑦V𝑖,̇̃𝑧1𝑖 = �̃�2𝑖,̇̃𝑧2𝑖 = −𝛼𝑧𝑧𝑝𝑖 − 𝛽𝑧𝑧V𝑖.

(36)

Without loss of generality, we only provide the proof along𝑥-subsystem in the following.

Theorem 12. Given 𝑥𝑝𝑖 = ∑𝑗∈Ω𝜔
𝑖

𝑎𝜔𝑖𝑗 (𝑒𝑖1𝑥 − 𝑒𝑗1𝑥) + 𝑎𝑙𝑖𝑖𝑒𝑖1𝑥 and𝑥V𝑖 = ∑𝑗∈Ω𝜔
𝑖

𝑎𝜔𝑖𝑗 (𝑒𝑖2𝑥 −𝑒𝑗2𝑥)+𝑎𝑙𝑖𝑖𝑒𝑖2𝑥, then let 𝐸𝑖𝑥 = [𝑥𝑝𝑖, 𝑥V𝑖]𝑇 and𝑋𝑖 = [𝑥𝑝𝑖 − 𝑥𝑝𝑖, 𝑥V𝑖 − 𝑥V𝑖]𝑇. Considering the position sub-
system (19), the system stability could be obtained through
the distributed control law (16)–(18) and the following event-
triggered communication condition:𝑓𝑖 (𝑡) = 󵄩󵄩󵄩󵄩󵄩𝐵𝑇2𝑄0𝐸𝑖𝑥󵄩󵄩󵄩󵄩󵄩 − 𝜎 (𝑡) 󵄩󵄩󵄩󵄩󵄩𝐵𝑇2𝑄0𝑋𝑖󵄩󵄩󵄩󵄩󵄩 , (37)

where 𝜎(𝑡) = 𝑒−𝜇𝑒𝑠 is the dynamic threshold parameter with𝑒𝑠 = ∫𝑡𝑖𝑘0 𝑒𝑖𝑥𝑇𝑒𝑖𝑥𝑑𝑠, 𝑒𝑖𝑥 = [𝑒𝑖1𝑥, 𝑒𝑖2𝑥]𝑇, 𝜇 > 0 and the initial value𝜎(0) = 𝜎0 ∈ (0, 1).
Proof. Let 𝑥𝑖 = [𝑥1𝑖, 𝑥2𝑖]𝑇; the 𝑥-subsystem could be
rewritten as ̇̃𝑥𝑖 = 𝐵1𝐵𝑇2𝑥𝑖 + 𝐵2 (−𝛼𝑥𝑥𝑝𝑖 − 𝛽𝑥𝑥V𝑖) . (38)

Similarly, there exist positive constants 𝛼0, 𝛼𝑥, and 𝛽𝑥 such
that12 (𝑄0𝐵1𝐵𝑇2 + 𝐵2𝐵𝑇1𝑄0) − 𝜌0𝑄0𝐵𝑇2𝐵2𝑄0 + 2𝐼2 ≤ 0𝑄0 > 0, (39)

where 𝑄0 = [𝛼0, 𝛼𝑥; 𝛼𝑥, 𝛽𝑥]. Note that 𝐵𝑇2𝑄0 = [𝛼𝑥, 𝛽𝑥], and
let 𝑋 = [𝑥1, . . . , 𝑥𝑁]𝑇 and 𝐸𝑋 = [𝑒1𝑥, . . . , 𝑒𝑁𝑥 ]𝑇. Design the
following Lyapunov function:𝑉𝑥 = 12𝑋𝑇 (𝐼𝑁 ⊗ 𝑄0)𝑋. (40)

Then, its derivative is�̇�𝑥 = 𝑋𝑇(𝐼𝑁 ⊗ 𝑄0𝐵1𝐵𝑇2 + 𝐵2𝐵𝑇1𝑄02 )𝑋− 𝑋𝑇 (𝐿𝐺 ⊗ 𝑄0𝐵2𝐵𝑇2𝑄0)𝑋− 𝑋𝑇 (𝐿𝐺 ⊗ 𝑄0𝐵2𝐵𝑇2𝑄0) 𝐸𝑋.
(41)

Based on Lemma 6, the following inequality holds:𝑋𝑇 (𝐿𝐺 ⊗ 𝑄0𝐵2𝐵𝑇2𝑄0) 𝐸𝑋≤ 𝜌12 𝑋𝑇 (𝐿𝐺 ⊗ 𝑄0𝐵2𝐵𝑇2𝑄0)𝑋+ 12𝜌1𝐸𝑇𝑋 (𝐿𝐺 ⊗ 𝑄0𝐵2𝐵𝑇2𝑄0) 𝐸𝑋.
(42)

Based on (37) and (39), (41) can be written as�̇�𝑥 ≤ 𝑋𝑇(𝐼𝑁 ⊗ [𝑄0𝐵1𝐵𝑇2 + 𝐵1𝐵𝑇2𝑄𝑇02− (1 − 𝜌12 − 𝜎2 (𝑡)2𝜌1 )𝜆min (𝐿𝐺)𝑄0𝐵2𝐵𝑇2𝑄0])𝑋≤ −2𝜌 (𝑄0) 𝑉𝑥.
(43)

Hence, 𝑉𝑥 ≤ 𝑉𝑥(0)𝑒−2𝜌(𝑄0)𝑡, and lim𝑡→∞(𝑥1𝑖(𝑡) − 𝛿𝑖𝑥(𝑡) −𝑥𝑑(𝑡)) = 0 exponentially.
Next, Zeno behavior is excluded. For any 𝑡 > 𝑡𝑖𝑘, one has󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 𝑑𝑑𝑡 (𝐿𝐺 ⊗ 𝐵𝑇2𝑄)𝐸𝑋󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ √𝛼2𝑥 + 𝛽2𝑥 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩 (󵄩󵄩󵄩󵄩𝐸𝑋󵄩󵄩󵄩󵄩+ √𝛼2𝑥 + 𝛽2𝑥 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩 ‖𝑋‖ + √𝛼2𝑥 + 𝛽2𝑥 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝐸𝑋󵄩󵄩󵄩󵄩)≤ (𝜎 (𝑡) + (1 + 𝜎 (𝑡))√𝛼2𝑥 + 𝛽2𝑥 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩)⋅ √𝛼2𝑥 + 𝛽2𝑥 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩 ‖𝑋‖ ,

(44)

where ‖𝑋‖ ≤ √2𝜌(𝑄0)𝑉𝑥(0)𝑒−𝜌(𝑄0)𝑡. Hence,󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 𝑑𝑑𝑡 (𝐿𝐺 ⊗ 𝐵𝑇2𝑄)𝐸𝑋󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩≤ (𝜎 (𝑡) + (1 + 𝜎 (𝑡))√𝛼2𝑥 + 𝛽2𝑥 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩)⋅ √𝛼2𝑥 + 𝛽2𝑥 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩√2𝜌 (𝑄0) 𝑉𝑥 (0)𝑒−𝜌(𝑄0)𝑡.
(45)

Thus,󵄩󵄩󵄩󵄩󵄩(𝐿𝐺 ⊗ 𝐵𝑇2𝑄)𝐸𝑋󵄩󵄩󵄩󵄩󵄩≤ (𝜎 (𝑡) + (1 + 𝜎 (𝑡))√𝛼2𝑥 + 𝛽2𝑥 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩)⋅ √𝛼2𝑥 + 𝛽2𝑥 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩√2𝜌 (𝑄0) 𝑉𝑥 (0)𝑒−𝜌(𝑄0)𝑡 (𝑡 − 𝑡𝑘) .
(46)
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Figure 3: Initial mode of interaction topology.

The next event 𝑡𝑘+1 will not be triggered before ‖(𝐿𝐺 ⊗𝐵𝑇2𝑄)𝐸𝑋‖ = 𝜎(𝑡)‖(𝐿𝐺 ⊗ 𝐵𝑇2𝑄)𝑋‖; it means𝜎 (𝑡) 󵄩󵄩󵄩󵄩󵄩(𝐿𝐺 ⊗ 𝐵𝑇2𝑄)𝑋󵄩󵄩󵄩󵄩󵄩≤ (𝜎 (𝑡) + (1 + 𝜎 (𝑡))√𝛼2𝑥 + 𝛽2𝑥 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩)⋅ √𝛼2𝑥 + 𝛽2𝑥 󵄩󵄩󵄩󵄩󵄩𝐿𝐺󵄩󵄩󵄩󵄩󵄩⋅ √2𝜌 (𝑄0) 𝑉𝑥 (0)𝑒−𝜌(𝑄0)𝑡 (𝑡𝑘+1 − 𝑡𝑘) .
(47)

By the same graphical argument as in the proof ofTheorem 10,
it can be concluded that a lower bounded on the interevent
times is given by 𝜏, so Zeno behavior is excluded.

This completes the proof.

Remark 13. Compared with the existing works, the threshold
parameter of event triggering condition will not be fixed per-
manently but vary with time by following the measurement
errors. Since that it can achieve a better tradeoff between
reducing event times and preserving favorable formation per-
formance.

4. Simulation Results

In this section, simulations are given to demonstrate the
effectiveness of the theoretical results. Consider a group
of agents, which consists of six quadrotor UAVs, and the
dynamics can be written as (4). The system parameters are
shown in Table 1. Furthermore, the initialmode of undirected
topology 𝐺(𝜔(𝑡)) is given in Figure 3. A special case is
considered, where 𝜔0 takes the switch value in 𝑆0 = {1, 2, 3, 4,5, 6}with an equal probability 1/6 and the time interval Δ 0 =5 s. Meanwhile, assume that each Markov chain 𝜔𝑖𝑗 takes
values in a finite state space 𝑆 = {0, 1}, and the time intervalΔ = 1 s. Otherwise, each undirected edge has aMarkov chain,
and the six agents have 15 chains totally. The transition rate
matrices are considered as Table 2.

As an example, the time evolutions of some Markov
chains are depicted in Figure 4.

Let the initial states of six quadrotor UAVs be[𝑥1 (0) , 𝑦1 (0) , 𝑧1 (0) , 𝜙1 (0) , 𝜃1 (0) , 𝜓1 (0)]𝑇= [1, 1, 0, 0, 0, 0]𝑇 ,
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Figure 4: Evolutions of some Markov chains.

[𝑥2 (0) , 𝑦2 (0) , 𝑧2 (0) , 𝜙2 (0) , 𝜃2 (0) , 𝜓2 (0)]𝑇= [3, −1, 0, 0, 0, 0]𝑇 ,[𝑥3 (0) , 𝑦3 (0) , 𝑧3 (0) , 𝜙3 (0) , 𝜃3 (0) , 𝜓3 (0)]𝑇= [−3, 2, 0, 0, 0, 0]𝑇 ,[𝑥4 (0) , 𝑦4 (0) , 𝑧4 (0) , 𝜙4 (0) , 𝜃4 (0) , 𝜓4 (0)]𝑇= [−2, −2, 0, 0, 0, 0]𝑇 ,[𝑥5 (0) , 𝑦5 (0) , 𝑧5 (0) , 𝜙5 (0) , 𝜃5 (0) , 𝜓5 (0)]𝑇= [3.5, 2, 0, 0, 0, 0]𝑇 ,[𝑥6 (0) , 𝑦6 (0) , 𝑧6 (0) , 𝜙6 (0) , 𝜃6 (0) , 𝜓6 (0)]𝑇= [−3, 1, 0, 0, 0, 0]𝑇 .
(48)

The desired trajectory is given by 𝑅𝑑 = [0, 0, 0.05𝑡, 𝜋/30]𝑇,
and the formation shape specified by the desired interagent
distances is described as

𝛿𝑖 (𝑡) = [[[[[[
𝛿𝑖𝑥 (𝑡)𝛿𝑖𝑦 (𝑡)𝛿𝑖𝑧 (𝑡)𝛿𝑖𝜓 (𝑡)

]]]]]] =
[[[[[[[[
3 sin(0.2𝑡 + (𝑖 − 1) 𝜋3 )3 cos(0.2𝑡 + (𝑖 − 1) 𝜋3 )00

]]]]]]]]
(49)

whichmeans that if the quadrotor system achieves the desired
time varying formation, then the six quadrotor UAVs will
follow a circle while keeping a phase separation of 𝜋/3.
In order to verify the effectiveness and advantage of the
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Table 1: The system parameters of quadrotor UAVs.

Parameters Nominal value Parameters Nominal value𝑙𝑖 0.20m 𝑘𝑥𝑖 0.010N/m⋅s−1𝑚𝑖 1.79 kg 𝑘𝑦𝑖 0.010N/m⋅s−1𝐼𝑥𝑖 0.03 kg⋅m2 𝑘𝑧𝑖 0.010N/m⋅s−1𝐼𝑦𝑖 0.03 kg⋅m2 𝑘𝜙𝑖 0.012N/rad⋅s−1𝐼𝑧𝑖 0.04 kg⋅m2 𝑘𝜃𝑖 0.012N/rad⋅s−1𝑔 9.81m/s2 𝑘𝜓𝑖 0.012N/rad⋅s−1𝐾𝜓𝑖 0.40N⋅m
Table 2: Transition rate matrices of the Markov chains in graph.

Edges (V1, V2); (V2, V4); (V4, V5)(V3, V5); (V3, V6) (V1, V3); (V2, V3); (V2, V6)(V5, V6); (V1, V5) (V1, V4); (V1, V6); (V2, V5)(V3, V4); (V4, V6)
Transition rate
matrices

[[0.2 0.80.4 0.6]] [[0.5 0.5? ? ]] [[? ?? ?]]
Table 3: Event times of all agents.

Agent ]1 ]2 ]3 ]4 ]5 ]6
Case 1 131 123 109 126 143 115
Case 2 62 48 67 60 61 54

developed formation control protocol, the following two
cases are evaluated:

Case 1. The distributed event-triggered function (23), (37)
and the controller are implemented with the parameters as
follows: 𝜎0 = 0.6,𝜎1 = 0.1,𝜇 = 0.3,𝛼𝜙 = 𝛼𝜃 = 𝛼𝜓 = 4.0,𝛽𝜙 = 𝛽𝜃 = 𝛽𝜓 = 3.2,𝛼𝑥 = 𝛼𝑦 = 𝛼𝑧 = 2.0,𝛽𝑥 = 𝛽𝑦 = 𝛽𝑧 = 1.8.

(50)

Simulation results are shown in Figures 5 and 6. The
response curves of formation trajectory and attitude are
given in Figure 5, which reveal that positions of six agents
successfully achieve and maintain a predesigned formation
shape. As depicted in Figure 6, it demonstrates the snapshots
of position trajectories of the six robots at 𝑡 = 0 s, 𝑡 = 5 s,𝑡 = 20 s, and 𝑡 = 40 s, respectively.
Case 2. Thesame formation task is carried out by implement-
ing the event-triggered controller with a constant threshold
parameter 𝜎(𝑡) = 𝜎0 = 0.6. The aforementioned results
derived from theorems indicate that the formation con-
trol problem is feasible under the general event-triggered

Table 4: Comparison results in Cases 1 and 2.

Signals Case 1 Case 2
Mean𝑒𝑖1𝜙 −0.0281 −0.0856𝑒𝑖1𝜃 −0.0257 −0.0849�̃�1𝑖 −0.0319 −0.1147𝑥1𝑖 0.0156 0.0664𝑦1𝑖 0.0221 0.0702�̃�1𝑖 −0.0202 −0.0445
Standard deviation𝑒𝑖1𝜙 0.1075 0.2490𝑒𝑖1𝜃 0.1196 0.2772�̃�1𝑖 0.1402 0.3128𝑥1𝑖 0.0809 0.1824𝑦1𝑖 0.0873 0.1905�̃�1𝑖 0.0894 0.1943

controller. Figure 7 shows the trajectories of positions and
attitude angles within 50 s and Figure 8 shows the snapshots
of position trajectories at 𝑡 = 0 s, 𝑡 = 5 s, 𝑡 = 20 s, and 𝑡 = 40 s,
respectively.

The actual event release instants for all agents are shown
in Figures 9 and 10. A quantitative comparison of how many
events on each agent are actually transmitted is provided in
Table 3, and Table 4 shows the mean and standard deviation
for each error signal in 20 s ≤ 𝑡 ≤ 50 s.
Remark 14. Some conclusions could be summarized as fol-
lows:
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Figure 5: Trajectories of the agents within 50 s in Case 1.
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Figure 6: Position snapshots of the six agents in Case 1.
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Figure 7: Trajectories of the agents within 50 s in Case 2.
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Figure 8: Position snapshots of the six agents in Case 2.

(1) Simulation results in both Cases 1 and 2 show that
the formation shape could be guaranteed under Markovian
switching topologies with partially unknown transition rates.(2) In Figure 5, the convergence time of 𝜓 and �̇� (i.e.,
0.80 s) is shorter than that of 𝑥, �̇�, 𝑦, ̇𝑦, 𝑧, and �̇� (i.e., 7.20 s);
these plots have different time horizons; it confirms the two-
time-scale structure controller derived from the perturbing
parameter 𝜎1. Particularly, the reason why the convergence
time of 𝜙 and 𝜃 in Figure 5 is as long as that of the position
states is that 𝜙 and 𝜃 are tracking the reference 𝜙𝑖𝑑 and 𝜃𝑖𝑑
rather than zero.

(3)As shown in Figures 6 and 8, at 𝑡 = 0 s, 𝑡 = 20 s, and 𝑡 =40 s, the real shape of six agents is always uniform. When 𝑡 =5 s, there is a little difference because the graph is randomly
governed by Markov chains.(4) Compared with Case 2, there are more events for all
agents in Case 1, which means that it has more potential to
reduce the occupancy of limited communication resources
in Case 2. That is because the threshold parameter 𝜎(𝑡) is
fixed as 𝜎0 all the time, while in Case 1, 𝜎(𝑡) is monotonically
nonincreasing (shown in Figure 11). Generally, the larger the
value of the threshold parameter is, the less events are derived.
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Figure 10: Events times of all agents in Case 2.
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Figure 11: The threshold parameters in Cases 1 and 2.

(5) Based on most of the computed performance indexes
in Table 4, the controller in Case 1 can achieve better
formation performance than that in Case 2. Although less
events are derived by using a fixed threshold parameter, the
formation performance is compromised.

5. Conclusion

In this paper, formation control problem of multiple quadro-
tor UAVs underMarkovian switching topologies is addressed
through an event-triggered control strategy. Markovian
switching topologies are redesigned through utilizing the
Markov chains to the edge set, which could recover the tradi-
tional ones by adjusting themodes of edges and the transition
rates. Then, a predesigned formation shape can be kept along
with a distributed formation controller constructed with a
reasonably event-triggered updated rule, even subject to the
unknown transition rates. Rigorous analyses of the con-
vergence results are obtained based on singular perturbations
theory and Lyapunov stability theory. In addition, Zeno
behavior is excluded for the triggered time sequences. Sim-
ulation results have been given to illustrate the effectiveness
of the proposed control strategy. In some of the cases, the
velocity states are unmeasurable. Since that, event-triggered
formation control problem for multiple quadrotor UAVs
without collision subject to output feedback will be consid-
ered in our future work.
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