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Phasic activity of dopaminergic (DA) neurons in the ventral tegmental area or substantia nigra compacta (VTA/SNc) has been
suggested to encode reward-prediction error signal for reinforcement learning. Recent studies have shown that the lateral habenula
(LHb) neurons exhibit a similar response, but for nonrewarding or punishment signals. Hence, the transient signaling role of LHb
neurons is opposite that of DA neurons and also that of several other brain nuclei such as the border region of the globus pallidus
internal segment (GPb) and the rostralmedial tegmentum (RMTg). Previous theoreticalmodels have investigated the neural circuit
mechanism underlying reward-based phasic activity of DA neurons, but the feasibility of a larger neural circuit model to account
for the observed reward-based phasic activity in other brain nuclei such as the LHb has yet to be shown. Here, we propose a large-
scale neural circuit model and show that parallel excitatory and inhibitory pathways underlie the learned neural responses across
multiple brain regions. Specifically, the model can account for the phasic neural activity observed in the GPb, LHb, RMTg, and
VTA/SNc. Based on sensitivity analysis, the model is found to be robust against changes in the overall neural connectivity strength.
The model also predicts that striosomes play a key role in the phasic activity of VTA/SNc and LHb neurons by encoding previous
and expected rewards. Taken together, our model identifies the important role of parallel neural circuit pathways in accounting for
phasic activity across multiple brain areas during reward and punishment processing.

1. Introduction

The ability to adapt to uncertainty is critical for survival and
key to wellbeing. To investigate the underlying neural cor-
relates and mechanisms, many experimental and computa-
tional studies using stochastic scheduling of reward have been
carried out [1–9]. Experimental studies have demonstrated
that dopaminergic (DA) neurons in the ventral tegmental
area or substantia nigra compacta (VTA/SNc) and neurons in
the lateral habenula (LHb) play important roles in encoding
uncertainty of reward and punishment [5, 8].

As illustrated schematically in Figure 1 (top row), given
some unexpected reward (the presence of an unconditioned
stimulusUS such as food),DA (LHb) neurons exhibit a phasic

peak (dip) upon the presence of theUS [5, 8]. After several tri-
als of learning in the presence of a cue/stimulus, conditioning
takes place. The (expected) conditioned cue/stimulus (CS)
becomes associated with reward, and the DA (LHb) neurons
exhibit a phasic peak (dip) in activity upon the onset of the CS
(Figure 1, second row) [5, 8]. Note that the DA and LHb neu-
rons now do not respond to the unconditioned stimulus (US)
with a rewarding outcome [5, 8]. One can view this as postre-
inforcement learning: the agent has learned to completely
associate the cue/stimulus CS with the US (e.g., an auditory
tone with food), and the latter is no longer needed for further
learning. However, if there is an omission of reward (e.g.,
absence of food), there is an additional dip (peak) in activity
for the DA (LHb) neurons (Figure 1, third row) [5, 8].
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Figure 1: Schematic diagram of phasic activity of DA neurons (left orange part) and LHb neurons (right yellow part) given rewarding CS
(upper) and nonrewarding/aversive CS (bottom). Each row denotes one situation of outcome.

Instead of the unexpected rewarding outcome US, if we
now replace it with an unexpected nonrewarding or aversive
stimulus US (e.g., no food or mild electric shock), it has been
observed that phasic dip (peak) in the DA (LHb) neurons
occurs during the initial phase of the reinforcement learning
[5, 8] (Figure 1, fourth row).After learning, this information is
transferred to the CS, in which the DA (LHb) neurons exhibit
a phasic dip (peak) activity upon CS presentation while
staying at baseline activity level during US (Figure 1, fifth
row). When there is a sudden unexpected omission of such
US or when the US becomes rewarding, then there is a peak
(dip) in activity of the DA (LHb) neurons [8, 10, 11] (Figure 1,
bottom row). In summary, the phasic activities of DA and
LHb neurons signal uncertainty in reward and punishment.
Such signaling is also reflected in other brain regions such
as the border region of the globus pallidus internal segment
(GPb), the internal segment of the globus pallidus (GPi), and
the rostral medial tegmentum (RMTg) [2, 3]. However, it is
not clear how this information is transmitted within a larger
neural circuit.

To understand the underlying computation, previous
theoretical and computational studies have applied temporal
difference learning [8, 12–15] and neural circuit modeling to
understand the phasic activity of DA neurons [16–18] on the
basis that the phasic activity of DA neurons acts as a form
of reward-prediction error signal [8]. In particular, in the
model by Brown et al. [16], there are parallel pathways: one
pathway from the cortex through the striosome to VTA/SNc
and the other pathway from the cortex through the ventral
striatum (VS) to the pedunculopontine nucleus (PPTN)

and VTA/SNc. These two pathways cooperatively control
the activity of DA neurons (Figure 2). However, the phasic
activity of LHbneurons has not been taken into consideration
yet, especially given that LHb has substantial projections to
DA neurons in the VTA/SNc [5].

In this work, we propose a large-scale neural circuit
model by extending Brown et al.’s [16] model to investigate
the phasic activity of not only DA and LHb neurons, but
also the extended parts of the network such as the GPb, GPi,
and RMTg. In addition to the neural circuit pathways in
Brown et al. [16] that control DA signaling (see above), our
model also included pathways from the striosome and the
VS to the LHb and also one pathway from the LHb to the
VTA/SNc via RMTg.These additional pathways are necessary
to account for the observed phasic activity of LHb neurons
(Figure 2). Further, the pathway from LHb to VTA/SNc
via RMTg provides inhibition to the DA neural activity
when expected reward was omitted or when there is an
aversive outcome. This interareal connectivity is constrained
by currently available knowledge from physiological studies
(see below for supporting evidence).

Based on simulation results, our model can account for
various experimental observations of phasic activation with
rewarding or nonrewarding CS, together with or without
reward outcomes. Specifically, the model can account for a
shift of VTA/SNc and LHb neuron responses from outcome
to CS, which agrees with experiments. In addition, the model
can also account for the phasic activity of GPb and RMTg
neurons, whose responses are similar to those of LHb neu-
rons. Our model shed light on the mechanism of VTA/SNc
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Figure 2: Model circuit. Orange arrowheads denote excitatory pathways, blue circles denote inhibitory pathways, and hemidisks denote
synapses at which learning occurs. Black dashed lines denote dopaminergic signals. Evidence [21] shows that the ventral striatum (VS) excites
PPTN and ventral pallidum (VP). Striosome neurons project to GPi neurons which in turn project to GPb. Dopaminergic (DA) neurons are
excited by cortical inputs (𝐼𝑖) encoding conditioned stimuli and lateral hypothalamus inputs (𝐼𝑅) encoding unconditioned stimuli via the path
VS-VP-GPb-LHb-RMTg-VTA/SNc and the path VS-PPTN-VTA/SNc path. DA neurons are inhibited by 𝐼𝑖 via the path striosome-VTA/SNc.
Note that the striosome contains an adaptive spectral timing mechanism and can learn to generate lagged, adaptively timed signals [16]. LHb
neurons are excited by 𝐼𝑖 via the path striosome-GPi-GPb-LHb. LHb neurons are inhibited by 𝐼𝑖 and 𝐼𝑅 via the path VS-VP-GPb-LHb.

and LHbphasic activity at the neural circuit level, with impor-
tant roles from the parallel excitatory and inhibitory pathways
in the learned responses; namely, (i) the VS-PPTN-VTA/SNc
pathway excites DA, while the striosome-VTA/SNc pathway
inhibits DA; (ii) the VS-VP-GPb-LHb pathway inhibits LHb,
while the striosome-GPi-GPb-LHbpathway excites LHb; and
(iii) the LHb-RMTg-VTA/SNc pathway magnifies the phasic
activity of VTA/SNc. The model is also rather resilient to
overall changes in the interregional connections. Finally, our
model predicts that the striosome is important since it may
remember the timing of the previous reward and provide the
comparison signal with the present reward.

2. Materials and Methods

2.1. Model Architecture. Our proposed neural circuit model
is schematically shown in Figure 2, which is an extended
version of the model proposed by Brown et al. [16]. Namely,
we included the GPb, LHb, and RMTg neural populations
into the model based on more recent experimental findings
[2, 3, 19, 20]. The details of each part of our model are
described as follows.

2.1.1. LHb Inhibits SNC/VTA via RMTg. Most LHb neurons
are glutamatergic [22], but experiments showed that LHb
inhibits DA neurons. Firstly, in vivo recordings demon-
strate that most LHb neurons are excited by a nonreward-
predicting cue and are inhibited by a reward-predicting cue
when rhesus monkeys perform a visually guided saccade

task [5]. The phasic activity of LHb neurons is opposite
that of DA neurons in terms of responding to outcome
valence; LHb (DA) neurons are excited (inhibited) by non-
reward/punishment outcome/cue and inhibited (excited) by
reward outcome/cue [5, 8]. Secondly, LHb neurons respond
to cues earlier than DA neurons in unrewarded trials [5].
Thirdly, stimulating LHb neurons will inhibit DA neurons
[21]. The inhibition of LHb on DA neurons may arise
from the direct projection from LHb neuron to inhibitory
interneurons in the VTA/SNc [23] or indirectly through
some inhibitory nucleus. In fact, experiments have revealed
a path from the LHb to DA neurons through RMTg and
neurons in theRMTg seem to encode aversive stimuli [19, 20].
At the same time, the RMTg transmits negative reward-
prediction errors signal of LHb neuron to positive reward-
prediction errors signal of DA neurons [3]. For simplicity, we
only include the indirect path from LHb to DA neurons via
GABAergic RMTg.

2.1.2. GPb Excites LHb. Low intensity electrical stimulation
in GPb can evoke a short latency excitatory response in LHb
neurons [21].The excitation of GPb neurons on LHb neurons
may be mediated by acetylcholine or glutamate [2], or by
disinhibition through intra-LHb interneurons considering
the complexmicrocircuitrywithin theGP [2, 24]. In addition,
glutamatergic projections to LHb from rat’s entopeduncular
or primate’s GPb neurons have been observed in experiments
on nonhuman primates [25, 26]. In brief, there are excitatory
projections from GPb to LHb which form a pathway from
GPb to VTA/SNC via LHb and RMTg [19].



4 Complexity

Table 1: Model variables.

𝑆 The activation level of ventral striatal neurons𝐼𝑖 The 𝑖th CS input signal𝐼𝑅 The US input signal𝑊𝑖𝑆 CS-to-VS synaptic weights𝐺𝑊𝑆 Calcium signal𝑁+ Above-baseline dopamine burst signal𝑁− Below-baseline dopamine dip signal𝑥𝑖𝑗 Striosomal metabotropic response𝑟𝑗 Striosomal activity buildup rate parameter[𝐺𝑖𝑗𝑌𝑖𝑗]+ Striosomal calcium concentration𝑍𝑖𝑗 CS input-to-striosomal synaptic weights𝑃pre-excite The level of substance 𝑃 exciting PPTN𝑃pre-inhibit The level of GABA inhibiting PPTN𝑉𝑃pre-excite The level of substance 𝑃 exciting VP𝑉𝑃pre-inhibit The level of GABA inhibiting VP𝑃 The activation level of PPTN neurons𝑉𝑃 The activation level of VP neurons
inputpre 𝑃 The net effect of substance 𝑃 and GABA on PPTN
inputpre 𝑉𝑃 The net effect of substance 𝑃 and GABA on VP𝐺𝑃𝑏 The activation level of GPb neurons
LHb The activation level of LHb neurons
RMTg The activation level of RMTg neurons𝐷 The activation level of DA neurons

2.1.3. Conjectured Inputs to GPb from GPi. It has been
demonstrated that GPb neurons receive input from the
striatum, presumably from the striosome [27]. Hong and
Hikosaka [21] have observed that typical neurons in the exter-
nal and internal segments of the globus pallidus (GPe and
GPi) are first inhibited by striatal stimulation but GPb neu-
rons are often (but not always) excited or disinhibited by stri-
atal stimulations. They proposed that signals to GPb should
be mediated through inhibitory axon collaterals within the
striatum [28] or GPe [24]. Based on these observations, we
conjecture that striosome projects to LHb through GPi.

2.1.4. VP Inputs to GPb. In Brown et al.’s [16] model, VP
neurons are inhibited by the expectation of reward. However,
recent experiments observe that the majority of VP neurons
are excited by the expectation of a large reward [21].Thus, VP-
LHb connections could possibly be inhibitory [21].Therefore,
we assume that reward-related signals are transmitted to
the LHb through excitatory connections from the GPb and
inhibitory connections from the VP.

2.1.5. Excitatory Inputs from VS to VP and PPTN. Although
VS neurons are usually identified as GABAergic and inhibit
downstream neurons, Hong and Hikosaka [21] showed that
the striatal (GABAergic) neurons excite PPTN and VP
neurons. The excitation by VS neurons can be mediated by
substance 𝑃 [29, 30].Thus, we assume that VS directly excites
PPTN and VP.

2.2. Dynamical Equations, Input-Output Functions, and
Numerical Method. We assume neuronal homogeneity
within each brain region, such that each neural population’s
firing-rate activity within a brain region or nucleus can be
dynamically described by ordinary differential equations
typically with a decay term plus a term with an input-output
function: firing-rate type model (Wilson and Cowan, 1976;
see Mathematics and Equations). Specifically, the neural
population firing rate (output) is normalized, ranging from
zero to one. The input includes constant background input
to generate the spontaneous baseline firing activity for each
neural population (and brain region) and synaptic terms
in the form of coupling strengths to provide the interaction
between different neural populations (see Mathematics and
Equations). Some of the coupling strengths are subject to
change (i.e., plastic) dependent on the presence of reward
(see Figure 2). Furthermodeling details can be obtained from
the original model of Brown et al. [16]. The model variables
are summarized in Table 1. Parameters are adjusted to fit the
observed responses of neurons. Parameter values used for
simulations are given in Table 2. In all simulations, numerical
integration of the ordinary differential equations was
performedwith fourth-order Runge-Kuttamethod [31] using
a custom Python code. Codes are available upon request.

2.3. Simulation Protocol. We simulate 200 trials in one block
(Figure 3(a)). Every trial lasts for 10 simulated seconds
(Figures 3(b)–3(e)). In each trial, we apply different inputs to
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Table 2: Model parameters.

Symbol Description Value
backgroundIC Baseline of CS input 0.30
backgroundIR Baseline of US input 0.20𝜏 Exponentially decaying time constant of CS/US input 20.0𝜏𝑆 The time constant of VS neurons 36.0𝜏𝑊𝑆 The time constant of the change of weight𝑊𝑖𝑆 6𝛼𝑊𝑆 CS-to-VS weight learning rate 13.0𝐶max
𝑊𝑆 Maximum CS-to-VS synaptic weight 4.00𝛽𝑊𝑆 CS-to-VS weight decay rate 13.00𝐷 The baseline activation level of DA neurons 0.194Γ𝐷 Phasic dopamine signal threshold 0.001𝛼𝑟 Striosomal spectrum spacing 16.5𝛽𝑟 Striosomal spectrum offset 30.9𝛼𝐺 Calcium activation rate 3.00𝐵𝐺 Calcium concentration maximum 5.00Γ𝐺 Calcium spike threshold 0.37𝛽𝐺 Calcium passive decay rate 12.00𝛼𝑌 Calcium recovery rate 0.108𝛽𝑌 Activity-dependent calcium inactivation rate 48.0Γ𝑌 Calcium inactivation threshold 0.18𝛼𝑍 Striosomal learning rate 500.00Γ𝑆 Striosomal output threshold 0.27𝐴𝑍 Maximum CS input-to-striosomal synaptic weight 20.0𝐵𝑍 CS input-to-striosomal synaptic weight decay rate 40.0𝜏𝑃1 The time constant of the change of 𝑃pre-excite 36.00𝜏𝑃2 The time constant of the change of 𝑉𝑃pre-inhibit 6.00𝑊𝑆𝑃 VS-to-pre-PPTN synaptic weight 1.00𝜏𝑉𝑃1 The time constant of the change of 𝑉𝑃pre-excite 36.00𝜏𝑉𝑃2 The time constant of the change of 𝑃pre-excite 6.00𝑊𝑆𝑉𝑃 VS-to-pre-VP synaptic weight 1.00

background𝑃 The background input to the PPTN 0.10𝑊𝑃 VS-to-PPTN input weight 3.00𝜏𝑃 PPTN neurons response time constant 36.00
background𝑉𝑃 The background input to the VP 0.10𝑊𝑉𝑃 VS-to-VP input weight 3.00𝜏𝑉𝑃 VP neurons response time constant 36.00Γ𝑃12 The difference signal threshold of the excitatory and inhibitory effects previous to PPTN 0.006Γ𝑉𝑃12 The difference signal threshold of the excitatory and inhibitory effects previous to VP 0.006𝜏GPb GPb neuron response time constant 36.00
backgroundGPb The background input to the GPb 0.60𝑊VPG VP-to-GPb synaptic weight 1.00𝑊SOG Striosome-GPb synaptic weight 0.35𝜏LHb LHb neuron response time constant 36.00
backgroundLHb The background input to the LHb 0.10𝑊𝐺𝐿 GPb-to-LHb synaptic weight 5.00ΓGPb GPb output signal threshold 0.45𝜏RMTg RMTg neuron response time constant 36.00
backgroundRMTg The background input to the RMTg 0.10𝑊𝐿𝑅 LHb-to-RMTg synaptic weight 2.00ΓLHb LHb output signal threshold 0.25𝜏𝐷 DA neuron response time constant 36.00
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Table 2: Continued.

Symbol Description Value
background𝐷 The background input to𝐷 0.40𝑊𝑅𝐷 RMTg-to-VTA/SNc synaptic weight 0.80𝑊𝑃𝐷 PPTN-to VTA/SNc synaptic weight 1.00Γ𝑃 PPTN output signal threshold 0.10ℎ𝐷 Maximum hyperpolarization of DA neurons 0.10
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Figure 3: Model simulation protocol. (a) Different inputs are applied to simulate different conditions. We simulated a total of 200 trials. In
the first 99 trials, we present reward CS input and reward US input to simulate the learning process, which associates the reward CS with the
reward US. In the 100th trial, we present reward CS input but nonreward US input; thus, one predicts a reward but does not receive it. In the
next 99 trials, we present nonreward CS input and nonreward US input to simulate the learning process, which associates the nonreward US
with the nonreward CS. In the 200th trial, we present nonreward CS input but reward US input, simulating the situation where one predicts
nonreward but receives it. (b)∼(e) Different inputs.The yellow dashed line indicates the time at which CS appears (2.0 s), and the green dashed
line indicates the time at which rewards are released or not (3.4 s). (b) Reward CS input. (c) Nonreward CS input. (d) Reward US input. (e)
Nonreward US input.
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simulate different conditions as follows. First, we simulate the
first to the 99th trial with rewarding CS and rewarding US:
learning trials. The network can associate the rewarding CS
with the rewarding US. The 100th trial is a “test” trial and
the network receives rewarding CS and nonrewarding US.
We then simulate the unexpected reward condition, that is,
nonrewarding CS and rewarding US. From the 101st trial to
the 199th trial, the network receives nonrewarding CS and
nonrewarding US. The network associates the nonrewarding
CS with the nonrewardingUS. At the 200th trial, the network
receives nonrewarding CS but rewarding US. See Figure 3(a)
for a summary of the learning protocol.

We implement different inputs from the cortex to the
VS and striosome based on four conditions: reward CS,
nonreward CS, reward US, and nonreward US. The reward-
ing/nonrewarding CS and US are shown in Figure 3 and their
mathematical expressions are given in the Mathematics and
Equations. Note that the inputs from the cortex are always
larger than zero (firing-rate activity cannot be negative in
value).

The motivation for such an implementation is based
on some observed lines of evidence. First, neurons in the
orbitofrontal cortex fire most strongly for cues that predict
large reward (with small penalty) and least strongly for cues
that predict large penalty (with small reward) relative to neu-
tral conditions (small reward and small penalty) [32, 33]. Sec-
ond, cortical neurons, including the frontal cortex, are known
to exhibit flexibility and mixed response properties; that is,
different cortical neurons could have different responses to
identical stimuli [34, 35]. For instance, an identical tone could
result in different responses from different cortical neurons
which could in turn separately transmit information to the
same neural “downstream” (e.g., in the midbrain). Third,
the expectation values of cue signaling are stored in the
cortex but not in the basal ganglia or LHb [36, 37]. The
phasic activity of DA neurons can result in plasticity in the
cortex and change the representation of cue signaling [38].
In fact, the activity profiles in Figures 3(d) and 3(e) look
similar to that of DA release or nonrelease (as measured,
e.g., in voltammetry [39]). Also, the sustained or persistent
activity in Figure 3(b) could represent (working) memory of
the cue, a commonly observed phenomenon in the frontal
cortical neurons [36, 37, 40], while the suppressed activity in
Figure 3(c) can be thought of as some inhibitory effect with
respect to the response in Figure 3(b).

3. Results

3.1. Shift of Phasic Response from US to CS. Many exper-
imental and theoretical studies have reported the shift of
DA neurons response from US to CS [41–43]. As discussed
previously, in the initial phase of learning, DA neurons are
phasically activated from the baseline upon the presentation
of an unpredicted reward. An accompanying cue is associated
with the rewarding outcome through a learning process. After
learning, the phasic activity at reward outcome subsequently
decreases to baseline, while a phasic activity now appears
upon cue onset (Figure 1).

Our simulation can replicate this trend (Figure 4). When
the network receives the rewarding CS and rewarding US
(during the first 99 trials), DA neurons exhibit phasic activity
upon the US in the first trial (Figure 4(a)). In the second and
the subsequent trials, the peak appears upon the CS onset and
the previous peak activity upon US onset disappears (Figures
4(b) and 4(c)).

The parallel pathways in our model can account for the
shift in neural response from US to CS. At the beginning of
the learning phase, CS-to-VS synaptic weights 𝑊𝑖𝑆 and CS
input-to-striosomal synaptic weights 𝑍𝑖𝑗 are very small or
near zero. Thus, the activity of the striosome is maintained
at baseline level but the activity of VS has a peak upon
US onset. The peak activity of VS then propagates to the
LHb through the VS-VP-GPb-LHb pathway, which results
in a dip of the LHb activity upon US. Meanwhile, a phasic
input to DA neurons through the VS-VP-GPb-LHb-RMTg-
VTA/SNc pathway and VS-PPTN-VTA/SNc pathway leads to
a phasic activity of DA neurons upon reward US. The phasic
activity of DA neurons upon reward US in turn enhances
the positive reinforcement-learning signal N+ (see (7)) which
leads to stronger synaptic strengths of afferent inputs to VS
and striosome from the cortex: the increased synapse 𝑊𝑖𝑆
and 𝑍𝑖𝑗 will enhance CS signal pathways from VS to DA
via the PPTN (VS-PPTN-VTA/SNc) and VP (VS-VP-GPb-
LHb-RMTg-VTA/SNc), the pathway from striosome to DA
(striosome-VTA/SNc), and the pathway from striosome to
DA via GPb (striosome-GPi-GPb-LHb-RMTg-VTA/SNc).

The striosome in the model has an adaptive timing
spectrum, encoding the timing and the amount of reward
associated with the CS [16, 44, 45] (see (10)–(14)). Therefore,
through the VS-PPTN-VTA/SNc pathway, rewarding CS can
trigger phasic activity of DA neurons (Figures 4(a)-4(c)),
while nonrewarding CS can trigger a dip in activity (Figures
5(c)-5(d)).The signal of rewarding US through the striosome
inhibits DA neurons at the time when the rewarding US
is expected to be present, but the excitation of reward US
through the VS to VTA/SNc pathway via PPTN cancels
the inhibition of the CS, leading to a baseline activity of
DA neurons to reward US (Figures 4(c) and 5(a)). On the
contrary, nonrewarding US cannot trigger enough excitation
to cancel the inhibition caused by CS in DA neurons, leading
to a dip in activity uponnonrewardingUSonset (Figure 5(b)).

Experimental studies have shown that the phasic activity
of LHb is opposite that of DA neurons in terms of response
to reward valence, but with a similar shift in activity to DA
phasic activity. In our model, LHb neurons are inhibited
and show a dip in their activity upon rewarding US onset
(Figure 4(d)).The dip of LHb neural activity shifts fromUS to
rewarding CS in the following and subsequent trials (Figures
4(e)-4(f)). As mentioned previously, unexpected rewarding
US can switch on the pathways striosome-GPi-GPb-LHb and
VS-VP-GPb-LHb. However, before they are switched on, the
rewarding US will inhibit LHb neurons through the VS-VP-
GPb-LHb pathway (Figure 4(d)). Once the striosome-LHb
and VS-LHb pathways are switched on, the reward CS will
effectively inhibit LHb neurons through the VS-VP-GPb-
LHb pathway, leading to a dip at the time of the rewarding
CS. But the inhibition caused by the rewarding US will be
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Figure 4:The shift of DA and LHb neurons’ responses fromUS to CS. At the beginning of our simulation, the model circuit receives a reward
CS and a reward US. FR: neural firing-rate activity. (a) Response of dopamine neurons in the 1st trial: DA neurons exhibit a phasic peak upon
US before learning and do not respond to CS. (b) Response of DA neurons in the 2nd trial: the activity of DA neurons shows a peak upon CS
and a peak upon US.The response upon US is weaker than the response in the 1st trial. The responses of DA neurons in the 3rd to 98th trials
are similar to (b), but the peak uponUS gets weaker over trials. (c) Response of DA neurons in the 99th trial: the activity of DA neurons shows
a peak upon CS, but baseline responding to US after learning. (d) Response of LHb neurons in the 1st trial: LHb neurons exhibit a phasic dip
upon US before learning and do not respond to CS. (e) Response of LHb neurons in the 2nd trial: the activity of LHb neurons shows a dip
upon CS and a dip upon US. The response upon US is weaker than the response in the 1st trial. The responses of DA neurons in the 3rd to
98th trials are similar to (e), but the dip upon US gets weaker trial by trial. (f) Response of LHb neurons in the 99th trial: the activity of LHb
neurons shows a dip upon CS, but baseline responding to US after learning. (a), (b), and (c) show the shift of DA neural response from US to
CS after learning, while (d), (e), and (f) show the shift of LHb neural response.The yellow dashed line indicates the time at which CS appears
and the green dashed line indicates the time at which rewards are released or not.

canceled by excitation from the striosome-GPi-GPb-LHb
pathway leading to a baseline activity of LHb neurons at the
time of the rewarding US (Figure 4(f)).

3.2. Neural Pathways Underlying Learned Phasic Activity of
DA Neurons. The phasic activity of DA neurons has been

suggested to encode reward-prediction error and to play a
pivotal role in reinforcement learning [8, 46, 47]. DA neural
activity in our model shows reward-prediction error that
is consistent with experimental observations (Figure 5(f)).
For instance, after 99 trials of training, the network already
can associate the rewarding CS with the rewarding US.
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Figure 5: Acquired response of DA neurons. (a) The 99th trial: from the 1st to 99th trials, the model circuit receives a rewarding CS and
a rewarding US. The result shows that, after learning, DA neurons exhibit a phasic peak upon rewarding CS and a baseline in response to
reward outcome. (b)The 100th trial: themodel circuit receives rewarding CS and nonrewarding US.The result shows that DA neurons exhibit
a phasic peak when rewarding CS appears and exhibit a phasic dip at the time when the reward is expected. (c)The 199th trial: from the 101st
to 199th trials, the model circuit receives nonrewarding CS and a nonrewarding US. The result shows that, after learning, the DA neurons
exhibit a phasic dip upon nonrewarding CS and a baseline when there is no reward released at this trial. (d)The 200th trial: the model circuit
receives nonrewarding CS and rewarding US.The result shows that DA neurons exhibit a phasic dip when nonreward CS appears and exhibit
a phasic peak upon reward US. (e) The phasic activity of DA neurons under different situations. The thick red line indicates the activity of
DA neurons at the 99th trial, the narrow blue line indicates the activity of DA at the 100th trial, the thick blue line indicates the activity of DA
neurons at the 199th trial, and the narrow red line indicates the activity of DA neurons at the 200th trial. The yellow dashed line indicates the
time at which CS appears and the green dashed line indicates the time at which rewards are released or not. (f)The physiological experimental
result reprinted fromMatsumoto andHikosaka [5]. Red lines indicate reward trials, and blue lines indicate no reward trials. Full lines indicate
reward CS-to-reward US (red) and nonreward CS-to-nonreward US (blue), while dashed lines indicate reward CS-to-nonreward US (blue)
and nonreward CS-to-reward US (red).
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The DA neurons show a phasic activity upon CS onset (at
time 2 s in Figure 5(a)). But at the 100th trial, we simulate
the condition where the expected reward is omitted. DA
neurons are excited right after CS onset (2 s) and inhibited
at US presentation (3.6 s) (Figure 5(b)). The network now
reassociates the CS with the nonrewarding US after the
training from the 101st to 199th trials. The activity of DA
neurons then shows a dip at the time when nonrewarding
CS is presented at 2 s and shows baseline activity when the
nonrewarding US is presented at 3.6 s (Figure 5(c)). Finally,
at the 200th trial, we present both the nonrewarding CS and
rewarding US to simulate an unexpected reward condition.
DA neurons are inhibited upon CS presentation (2 s) but
excited at the time when rewarding US is presented once
again (3.6 s) (Figure 5(d)). The overall activity profile of DA
neurons is summarized in Figure 4(e), which is consistent
with experimental observations (Figure 5(f)).

The above phasic responses of DA neural activity asso-
ciated with the learned stimuli can be understood based
on the two parallel pathways in the circuit: the VS-PPTN-
VTA/SNc and the striosome-VTA/SNc pathways. It should
be noted that, after the 1st trial, the synaptic strengths 𝑊𝑖𝑆
and 𝑍𝑖𝑗 are not zero, so VS responds to both rewarding CS
and rewarding US. Then, the DA neurons are excited by
the rewarding CS through the VS-PPTN-VTA/SNc pathway.
When rewarding US is presented, the signal of rewarding
CS triggers the activity of striosomal neurons and directly
inhibits DA neurons. However, this inhibition is canceled
out by the excitation from rewarding US through the VS-
PPTN-VTA/SNc pathway.Thus, the activity of DA neurons is
effectively maintained at baseline (Figure 5(a)). By the 99th
trial, the network has already associated the rewarding CS
with rewarding US.

Now, if the rewarding US is omitted (at the 100th trial),
no excitation counterbalances the direct inhibition from the
striosome, leading to a dip in the activity of DA neurons
(Figure 5(b)). This continues until the 199th trial. When
the network is presented with a nonrewarding CS followed
by nonrewarding US, the direct inhibitory pathway from
striosome to DA neurons has been turned off, DA neurons
show phasic activity upon nonrewarding CS onset, and the
activity of DA neurons is maintained at baseline at the time
of nonrewardingUS (Figure 5(c)).With a subsequently unex-
pected rewardingUS in trial 200,DAneurons are now excited
through the VS-PPTN-VTA/SNc pathway while the nonre-
warding CS still causes a dip in the activity (Figure 5(d)).

3.3. Neural Pathways Underlying Learned Phasic Activity of
LHb Neurons. Experimental studies have shown that phasic
activity of LHb behaves in an opposite way to that of DA
neurons [5]. Hence, it has been suggested that LHb neurons
play a key role in the coding of the aversive/negative signals
[48, 49]. Experiments have been carried out to investigate the
activity of several brain nuclei, such as GPb [2] and RMTg
[3], to explore the possible functional relationship with these
brain regions.

Here, we simulate the activity of these nuclei and the
results are consistent with the experimental observations.
Our simulations show that the phasic responses of LHb

neurons shift from US to CS. LHb neurons show a phasic
dip when the unexpected rewarding US was presented in the
first trial (Figure 4(d)). In the following trials, the dip shifts
to the time when the rewarding CS presented (Figures 4(e)-
4(f)) and baseline activity is observed with rewarding CS
(Figure 6(a)) and a small phasic activity upon nonrewarding
US (Figure 6(b)). After the training of nonrewarding CS
from the 101st to the 199th trials, LHb neurons show a
phasic activity upon nonrewarding CS (2 s) while maintain-
ing a baseline level at the time of the nonrewarding US
(Figure 6(c)). At the 200th trial, LHb neurons show a peak
activity with the nonrewarding CS but a big dip in activity
given an unexpected rewarding US (Figure 6(d)). The overall
activity profile of LHb neurons (Figure 6(e)) agrees with the
experimental observations (Figure 6(f)).

The above-mentioned learned phasic activity of LHbneu-
rons can be explained with two parallel pathways: striosome-
to-LHb pathway via GPi and GPb and the VS-to-LHb
pathway via VP and GPb. For instance, at the 99th trial,
the synaptic strengths W 𝑖𝑆 and Z𝑖𝑗 are not zero, which
means that the network has already completely associated
the rewarding CS with rewarding US. The rewarding CS
can inhibit LHb neurons through the inhibitory striatum-
VP-GPb-LHb pathway. When the rewarding US appears,
the inhibition through the striatum-VP-GPb-LHb pathway
will be canceled out by the excitation from the striosome-
GPi-GPb-LHb pathway, resulting in a baseline level of LHb
neural activity upon reward omission. At the 100th trial, LHb
neurons show a dip in the presence of the rewarding CS. But
the omission of reward implies that the excitation through
striosome-GPb-LHb pathway cannot be canceled out, which
leads to a small phasic activity of LHb neurons upon reward
omission. At the same time, the synaptic strength Z𝑖𝑗 from
the cortex to the striosome decreases to zero. When next the
nonrewarding CS is paired with a nonrewarding US (from
the 101st to the 200th trial), LHb neurons show a phasic
activity at the time of the nonrewarding CS onset because of
the inhibition through the striatum-VP-GPb-LHb pathway.
In the 200th trial, unexpected rewarding signal switches on
the inhibitory pathway striosome-GPb-LHb, which leads to
a dip in activity of the LHb neurons.

3.4. Learned Phasic Activity of GPb and RMTg. Experiments
have shown that the GPb and RMTg neurons display phasic
responses to CS and US. In our model, the interaction
between striosome-GPi-GPb pathway and VS-VP-GPb path-
way leads to the phasic activity of GPb neurons upon CS and
US presentation. In particular, the GPb, LHb, and RMTg are
also connectedwith effectively excitatory synapses (Figure 2),
and hence their phasic activities should be correlated with
that of the LHb, with the same explanations of activity profiles
as for the LHb (Figures 7 and 8). Moreover, the LHb-RMTg-
VTA/SNc pathway only magnifies the phasic activity of DA
neurons and does not qualitatively change the activity profile
of DA neurons.

3.5. Robustness Analysis of Two Parallel Pathways’ Model.
Having shown the important role of the parallel circuit
pathways in reproducing the phasic activities observed in
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Figure 6: Acquired response of LHb neurons. (a)The 99th trial: from the 1st trial to the 99th trial, themodel circuit receives rewarding CS and
rewarding US. The result shows that, after learning, LHb neurons exhibit a phasic dip upon rewarding CS and a baseline activity in response
to rewarding outcome. (b)The 100th trial: the model circuit receives rewarding CS and nonrewarding US.The result shows that LHb neurons
exhibit a phasic dip when rewarding CS appears and exhibit a phasic peak at the time when the reward should be released. (c) The 199th
trial: from the 101st trial to the 199th trial, the model circuit receives nonrewarding CS and nonrewarding US. The result shows that, after
learning, LHb neurons exhibit a phasic peak upon nonrewarding CS and a baseline activity due to omission of reward at this trial. (d) The
200th trial: the model circuit receives nonrewarding CS and rewarding US. The result shows that LHb neurons exhibit a phasic peak when
nonrewarding CS appears and exhibit a phasic dip upon rewarding US. (e) The phasic activity of LHb neurons under different situations.
The thick red line indicates the activity of LHb at the 99th trial, the narrow blue line indicates the activity of LHb at the 100th trial, the thick
blue line indicates the activity of LHb at the 199th trial, and the narrow red line indicates the activities of LHb at the 200th trial. The yellow
dashed line indicates the time at which CS appears and the green dashed line indicates the time at which rewards are released or not. (f) The
physiological experimental results reprinted from Hong and Hikosaka [2]. Red lines indicate reward trials, and blue lines indicate no reward
trials. Thick lines indicate reward CS-to-reward US (red) and nonreward CS-to-nonreward US (blue), while narrow lines indicate reward
CS-to-nonreward US (blue) and nonreward CS-to-reward US (red).
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Figure 7: Acquired response of GPb neurons. (a)∼(e) Similar to Figure 6. (f)The physiological experimental result reprinted fromHong and
Hikosaka [2].

experiments, we next further investigate the robustness of the
phasic activities in our model with respect to connectivity
strength variation. Specifically, we increase or decrease all
synapticweights by 10%andmonitor how the phasic activities
change.

First, we found that the phasic activities of DA and LHb
neurons did not change substantially when we increased or
decreased the following synaptic weights by 10%:𝑊SVP,𝑊RS,𝑊SP, 𝑊PD, 𝑊SOG, 𝐴𝑍, and 𝐶max

𝑊𝑆 (data not shown). Second,
weights of synapses on the pathway VP-GPb-LHb-RMTg-
VTA/SNc were found to influence the tonic baseline activity
of DA neurons, which we define as 𝐷. Hence, we change 𝐷
whilemaintaining the phasic activity of DA and LHb neurons

when we increase or decrease the weights of the synapses
along this pathway (see Table 3). In Figures 9 and 10, we
show the activity of DA neurons and LHb neurons given
three different sets of synaptic weights from VP to GPb and
corresponding baseline activities 𝐷. We can see that DA and
LHb neurons continue to demonstrate their characteristic
phasic activity profiles. In brief, our neural circuit model is
robust to the variation of synaptic weights.

4. Discussion

We extended a previous neural circuit model [16] by incor-
porating the nuclei GPb, LHb, and RMTg, and the model
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Figure 8: Acquired response of RMTg neurons. (a)∼(e) Similar to Figure 6. (f) The physiological experimental result from Hong et al. [3].

could account for various experimental data from separate
works. Specifically, the model could exhibit the shift of DA
and LHb neural responses fromUS to CS presentation times.
Our simulations also replicated the phasic activity of DA,
LHb, GPb, and RMTg neurons observed in experiments.The
DA (LHb) neurons exhibited a phasic peak (dip) upon reward
CS and maintenance of baseline activity in response to a
rewarding outcome but a phasic dip (peak) if the reward
is omitted. By contrast, the DA (LHb) neurons exhibited
a phasic dip (peak) in response to a nonrewarding CS or
punishment CS and maintenance of baseline activity in
response to the nonrewarding US, but a phasic peak (dip) if
a reward occurs or the aversive US is omitted. The acquired

Table 3: Baseline activity of DA neurons given increased or
decreased synaptic weights.

Synaptic weight +10% −10%𝑊𝑉𝑃𝐺 0.20307 (4.508%) 0.18608 (−4.235%)𝑊𝐺𝐿 0.17691 (−8.955%) 0.21327 (9.758%)𝑊𝐿𝑅 0.18006 (−7.334%) 0.20875 (7.431%)𝑊𝑅𝐷 0.16571 (−14.719%) 0.22102 (13.746%)

responses of GPb and RMTg neurons are similar to that of
LHb neurons. These acquired responses are consistent with
experimental data [2, 3, 5, 8] and behavioral experiments [50].
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Figure 9: The phasic activity of DA neurons given different weights of synapses from VP to GPb. Yellow lines indicate the activity of DA
neuronswhen𝑊VPG equals 1.00 and𝐷 equals 0.19431, blue lines indicate the activity when𝑊VPG equals 1.10 and𝐷 equals 0.20307, and red lines
indicate the activity when𝑊VPG equals 0.90 and𝐷 equals 0.18608. (a) Trial 1: phasic peak activity responds to unconditional reward. (b) Trial
2: the phasic activity shifts to the cue. (c) Trial 99: the phasic activity upon the cue and baseline activity upon the reward. (d) Trial 100: the dip
activity upon reward omission. (e) Trial 199: the dip activity upon nonrewarding cue. (f) Trial 200: the peak activity upon unexpected reward.

Our model provides insights into the neural circuit
mechanism of DA and LHb phasic activity. In particular,
parallel excitatory and inhibitory pathways underlie the
learned responses: striatum-to-PPTN-to-VTA/SNc pathway
excites DA, while striosome-VTA/SNc pathway inhibits DA;

striatum-to-VP-to-GPb-to-LHb pathway inhibits LHb, while
striosome-to-GPb-to-LHb pathway excites LHb; LHb-to-
RMTg-to-VTA/SNc pathway magnifies the phasic activity of
DA. Under different task conditions, we apply different CS
and US inputs to the model. The model has a feedback loop
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Figure 10: The phasic activity of LHb neurons given different weights of synapses from VP to GPb. Yellow lines indicate the activity of LHb
neuronswhen𝑊VPG equals 1.00 and𝐷 equals 0.19431, blue lines indicate the activity when𝑊VPG equals 1.10 and𝐷 equals 0.20307, and red lines
indicate the activity when𝑊VPG equals 0.90 and𝐷 equals 0.18608. (a) Trial 1: phasic dip activity responds to unconditional reward. (b) Trial 2:
the phasic activity shifts to the cue. (c) Trial 99: the phasic activity upon the cue and baseline activity upon the reward. (d) Trial 100: the peak
activity upon reward omission. (e) Trial 199: the peak activity upon nonrewarding cue. (f) Trial 200: the dip activity upon unexpected reward.

in which DA can modulate the corticostriatal synapses and
the corticostriosome synapses. This will in turn affect the
DA responses, closing the loop. After learning, the weights
of these synapses stabilize and remain unchanged. This led
to the emergent phasic activity profiles of the nuclei in

the circuit, with the parallel pathways balancing out one
another. In addition, we found striosome to be a key brain
nucleus which remembers the timing of previous rewards
and encodes the predicted rewards. In fact, there are recent
experimental works [51] that support our model prediction.
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In our model, we predict neurons in the striosome to
encode expected reward, but there are alternative theories.
For example, Cohen et al. [52] found that there were three
types of VTA neurons and VTA GABAergic neurons may
signal expected reward, which could be a key variable for
dopaminergic neurons to calculate reward-prediction error.
Recent works [53–55] highlight the importance of VTA
GABAergic neurons. Averbeck and Costa [56] proposed that
the amygdala can learn and represent expected values like
the striatum, and they predicted that the amygdala may
play a central role in reinforcement learning and the ventral
striatum may play less of a primary role. Wagner et al.
[57] suggested that the cerebellar granule cells may encode
the expectation of reward. Luo et al. [58], Li et al. [59],
and Hayashi et al. [60] found that serotonin neurons in
the dorsal raphe nucleus can encode reward signals. Some
physiological and theoretical works [17, 18, 61–63] focus onD1
and D2 receptors in the ventral striatum and suggested that
they play an important role in computing reward-prediction
error. Future neural circuit modeling effort would need to
incorporate such findings.

To obtain the results consistent with experiments, we
have adopted several assumptions. First, we assumed that
the striatal neurons excite the PPTN and ventral pallidum.
Striatal neurons are usually identified as GABAergic and
inhibitory, but they may excite downstream neurons through
disinhibitory effect or substance 𝑃 released by striatal neu-
rons [29, 30]. In fact, it has been demonstrated that substance𝑃 mediates the excitatory interaction between striatal neu-
rons to VP neurons [29] and striatal projection neurons [30].
Second, we hypothesized that the striosome projects to the
GPi which in turn projects to the GPb. Although we have
no direct evidence, Hong and Hikosaka [21] have observed
that typical GPe andGPi neurons are first inhibited by striatal
stimulation and GPb neurons are often (but not always)
excited by striatal stimulation. They proposed that inputs
to GPb were mediated through inhibitory axon collaterals
within the striatum [28] or GPe [24].

While developing the model, we have tried to add mini-
mal features to the previousmodel of Brown et al. [16]. Hence,
it is worthy of note that we have ignored several factors to
simplify the model. Specifically, we ignored the connections
between some brain nuclei, such as the cortex-to-GPb [2],
VP-to-RMTg [3], LHb-to-LHb, cortex-to-LHb [48], and DA-
to-striatum [64] pathways.We also did not consider the direct
LHb-to-VTA [65] and VTA-to-LHb [66] connections in our
simulation, but we mimicked the overall inhibition of LHb
on VTA. We have also ignored the different types of activity
of many brain nuclei. For instance, studies have suggested
three types of GPb neurons: reward-positive type, reward-
negative type, and direction selective type [2]. Our model
only considers the reward-negative type since the majority
of the neurons of Gpb are of the reward-negative type and
this type of neurons may play a key role in reward-related
information transmission.

Despite the assumptions in the model, our neural circuit
model can still implement the computation for reward-based
phasic signaling and reinforcement learning, as observed in
a variety of experiments. The phasic activities in multiple

brain regions represent prediction error signals, which not
only associates the cue with outcome but also memorizes
the specific time interval between the two. This requires the
neural system to hold the information predicted by the cue,
compare the information with the outcome, and report the
result of the comparison. In our model, the time spectrum
of the striosome and the parallel excitatory and inhibitory
pathways provided the platform for such computation. The
peak activity of DA and LHb neurons functions in comple-
mentary roles, encoding reward and nonreward/punishment
information separately and alleviating any flooring (limiting)
effect of the dip in activity of either neuron type. Our novel
neural circuit model with parallel pathways provides an
instantiation of such complex neural computation.

5. Mathematics and Equations

This section lists the mathematical equations of the model
(Figure 2). We give the model circuit different inputs to
simulate different conditions.We use differential equations to
simulate the firing rates (or the activity levels) of the neurons
in different brain nuclei.Themodel variables are summarized
in Table 1, the fixed parameters are summarized in Table 2,
and the mathematical expressions are below.

(i) Different Inputs in Each Trial (Figure 2). The cortex, espe-
cially the orbitofrontal cortex (OFC), encodes the expectation
future outcome and their response reflects the value conveyed
by the combination of reward and punishment of the cue
[36, 37]. Furthermore, OFC neurons fired most strongly for
cues that predict large reward or small penalty and least
strongly for cues that predict large penalty or small reward
relative to neutral conditions [32, 33]. Therefore, we set a
larger value for rewarding cue and smaller but positive value
for nonrewarding cue as follows.

Reward CS input is as follows:

𝐼𝐶-reward
=

{{{{{{{{{

background𝐼𝐶 0 <= 𝑡 <= 2
background𝐼𝐶 + 0.60 2 < 𝑡 <= 3.60
background𝐼𝐶 + 0.60𝑒−(1/𝜏)(𝑡−3.60) 𝑡 > 3.60.

(1)

We set backgroundIC = 0.30 and 𝜏 = 20.
When the network receives a reward CS, the inputs from

the cortex increase abruptly and last until the time when
the expected reward should be given. Then, the inputs decay
exponentially to baseline activity level.

Nonreward CS input is as follows:

𝐼𝐶-nonreward
=

{{{{{{{{{

background𝐼𝐶 0 <= 𝑡 <= 2
background𝐼𝐶 − 0.20 2 < 𝑡 <= 3.60
background𝐼𝐶 − 0.20𝑒−(1/𝜏)(𝑡−3.60) 𝑡 > 3.60.

(2)
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Reward US input is as follows:

𝐼𝑅-reward
=

{{{{{{{{{

background𝐼𝑅 0 <= 𝑡 <= 3.40
background𝐼𝑅 − 0.80 3.40 < 𝑡 <= 3.60
background𝐼𝑅 − 0.80𝑒−(1/𝜏)(𝑡−3.60) 𝑡 > 3.60.

(3)

We set background𝐼𝑅 = 0.20.
When the network receives a reward US, the inputs from

the lateral hypothalamus increase abruptly and last for a
very short duration. Then, the inputs decay exponentially to
baseline activity level.

Nonreward US input is as follows:

𝐼𝑅-nonreward = background𝐼𝑅. (4)

If the network does not get reward or gets nonreward
(aversion or punishment), we assume the inputs in this trial
do not change, and the inputs remain at baseline level.

(ii) Differential Equations. First, the changes of activation
level of ventral striatal cells (𝑆) are governed by [16]

1𝜏𝑆
𝑑𝑑𝑡𝑆 = −𝑆 + (1 − 𝑆) [∑

𝑖

𝐼𝑖𝑊𝑖𝑆 + 𝐼𝑅𝑊𝑅𝑆] . (5)

The activity level of striatal cells changes in the wake of its
passive decay and excitation from CS inputs and US inputs.
The weight𝑊𝑅𝑆 is fixed while the weight𝑊𝑖𝑆 can be changed.

The weight𝑊𝑖𝑆 is governed by [17, 18]

1𝜏𝑊𝑆
𝑑𝑑𝑡𝑊𝑖𝑆

= 𝐺𝑊𝑆𝑆 [𝛼𝑊𝑆𝑁+𝐼𝑖 (𝐶max
𝑊𝑆 − 𝑊𝑖𝑆) − 𝛽𝑊𝑆𝑁−𝑊𝑖𝑆] .

(6)

The synaptic weight changes are induced by phasic dopamine
burst or dip signal, 𝑁+ and 𝑁− (defined in (7) and (8)).
Learning is gated by delayed release of a second messenger
and calcium signal 𝐺𝑊𝑆 is governed by (9) and (11) at a rate𝑟 = 12.5.

The positive reinforcement-learning signal 𝑁+ derives
from excitatory phasic fluctuations of the dopamine signal
above the baseline:

𝑁+ = [𝐷 − 𝐷 − Γ𝐷]+ . (7)

The complementary negative reinforcement-learning sig-
nal 𝑁− derives from inhibitory phasic fluctuations of the
dopamine signal below baseline:

𝑁− = [𝐷 − 𝐷 − Γ𝑁]+ . (8)

Second, striosomes play an important role in the phasic
activities of DA neurons and LHb neurons because of its tim-
ing spectrum mechanism: a spectrum of striosomal MSPN

second messenger activities 𝑥𝑖𝑗 responds to the 𝑖th input at
rates 𝑟𝑗:

𝑑𝑑𝑡𝑥𝑖𝑗 = 𝑟𝑗 [−𝑥𝑖𝑗 + (1 − 𝑥𝑖𝑗) 𝐼𝑖] , (9)

where the second messenger buildup rates are given by

𝑟𝑗 = 𝛼𝑟𝛽𝑟 + 𝑗 . (10)

The activities 𝑥𝑖𝑗 induce intracellular calcium dynamics
within a given spine (𝑗) at delays determined by 𝑟𝑗. The
intracellular calcium spike is represented by the quantity[𝐺𝑖𝑗𝑌𝑖𝑗]+, where

𝑑𝑑𝑡𝐺𝑖𝑗 = 𝛼𝐺 (𝐵𝐺 − 𝐺𝑖𝑗) 𝑓𝐺 (𝑥𝑖𝑗 − Γ𝐺) − 𝛽𝐺𝐺𝑖𝑗, (11)

𝑑𝑑𝑡𝑌𝑖𝑗 = 𝛼𝑌 (1 − 𝑌𝑖𝑗) − 𝛽𝑌 [𝐺𝑖𝑗𝑌𝑖𝑗 − Γ𝑌]+ . (12)

In (11), 𝑓𝐺(𝑥) is a step function:

𝑓𝐺 (𝑥) = {{{
1
0

(𝑥 > 0)
(𝑥 < 0) . (13)

In the brief interval when the calcium concentration at a
particular spine exceeds a threshold activity Γ𝑆, CS-striosomal
weight𝑍𝑖𝑗 at that particular spine becomes eligible for change
that may be induced by dopaminergic bursts (𝑁+) or dips(𝑁−).

𝑑𝑑𝑡𝑍𝑖𝑗
= 𝛼𝑍 [𝐺𝑖𝑗𝑌𝑖𝑗 − Γ𝑆]+ ((𝐴𝑍 − 𝑍𝑖𝑗)𝑁+ − 𝐵𝑍𝑍𝑖𝑗𝑁−) .

(14)

Third, the changes in the level of PPTN (𝑃) are described by
the following differential equations:

1𝜏𝑃1
𝑑𝑑𝑡𝑃pre-excite = −𝑃pre-excite + (1 − 𝑃pre-excite)𝑊𝑆𝑃𝑆 (15)

1𝜏𝑃2
𝑑𝑑𝑡𝑃pre-inhibit = −𝑃pre-inhibit + (1 − 𝑃pre-inhibit)𝑊𝑆𝑃𝑆 (16)

1𝜏𝑃
𝑑𝑑𝑡𝑃 = background𝑃 − 𝑃

+ (1 − 𝑃)𝑊𝑃 inputpre 𝑃,
(17)

where

inputpre 𝑃

= {{{
[𝑃pre-excite − 𝑃pre-inhibit − Γ𝑃12]+ 𝑃pre-excite > 𝑃pre-inhibit
− [𝑃pre-inhibit − 𝑃pre-excite − Γ𝑃12]+ 𝑃pre-excite < 𝑃pre-inhibit.

(18)

𝑃pre-excite and 𝑃pre-inhibit can be regarded as the effect of
substance 𝑃 and GABA on PPTN. Ventral striatum neurons
can secrete substance 𝑃 and GABA. Substance 𝑃 excites
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the following neurons, while GABA inhibits the following
neurons; inputpre 𝑃 denotes the net effect of substance 𝑃 and
GABA. The authors believe that this explanation is more
realistic, but it needs more physiological experiments to be
testified. The changes of the activity level of PPTN neurons
depend on the background inputs, its decay, and the net effect
from the striatum.

Fourth, the changes in the level of ventral pallidum (VP)
are described by the following differential equations:

1𝜏𝑉𝑃1
𝑑𝑑𝑡𝑉𝑃pre-excite = −𝑉𝑃pre-excite

+ (1 − 𝑉𝑃pre-excite)𝑊𝑆𝑉𝑃𝑆

1𝜏𝑉𝑃2
𝑑𝑑𝑡𝑉𝑃pre-inhibit = −𝑉𝑃pre-inhibit

+ (1 − 𝑉𝑃pre-inhibit)𝑊𝑆𝑉𝑃𝑆
1𝜏𝑉𝑃

𝑑𝑑𝑡𝑉𝑃 = background𝑉𝑃 − 𝑉𝑃
+ (1 − 𝑉𝑃)𝑊𝑉𝑃 inputpre 𝑉𝑃,

(19)

where

inputpre 𝑉𝑃 = {{{
[𝑉𝑃pre-excite − 𝑉𝑃pre-inhibit − Γ𝑉𝑃12]+ 𝑉𝑃pre-excite > 𝑉𝑃pre-inhibit

− [𝑉𝑃pre-inhibit − 𝑉𝑃pre-excite − Γ𝑉𝑃12]+ 𝑉𝑃pre-excite < 𝑉𝑃pre-inhibit. (20)

The explanation is similar to (15)∼(18). The changes of the
activity level of VP neurons result from the background
inputs, its decay, and the net effect from the striatum.

Fifth, changes in the level of GPb neurons are described
by the following differential equation:

1𝜏GPb
𝑑𝑑𝑡𝐺𝑃𝑏 = backgroundGPb − GPb + (1 − GPb)

⋅ (𝑊SOG ∑
𝑖,𝑗

[𝐺𝑖𝑗𝑌𝑖𝑗 − Γ𝑆]+ 𝑍𝑖𝑗 − 𝑊VPG𝑉𝑃) .
(21)

The changes of the activity level of GPb neurons are deter-
mined by the background inputs, its decay, and the inhibitory
effect from VP neurons and the disinhibitory input from
striosomes.

Sixth, changes in the level of LHb neural activity are
described by the following differential equation:

1𝜏LHb

𝑑𝑑𝑡LHb = backgroundLHb − LHb

+ (1 − LHb)𝑊𝐺𝐿 [GPb − ΓGPb]+ .
(22)

The changes of the activity level of LHb neurons result from
the background inputs, its decay, and the excitatory input
from the GPb.

Seventh, changes in the level of RMTg neurons are
described by the following differential equation:

1𝜏RMTg

𝑑𝑑𝑡RMTg

= backgroundRMTg − RMTg

+ (1 − RMTg)𝑊𝐿𝑅 [LHb − ΓLHb]+ .
(23)

The changes of the activity level of RMTg neurons depend
on the background inputs, its decay, and the excitatory input
from the LHb.

Eighth, changes in the level of dopaminergic neurons (𝐷)
are described by the following differential equation:

1𝜏D
𝑑𝑑𝑡𝐷 = background𝐷 − 𝐷

+ (1 − 𝐷) (𝑊𝑃𝐷 [𝑃 − Γ𝑃]+ − 𝑊𝑅𝐷RMTg)
− (𝐷 + ℎ𝐷)∑

𝑖,𝑗

[𝐺𝑖𝑗𝑌𝑖𝑗 − Γ𝑆]+𝑍𝑖𝑗.
(24)

The changes of the activity level of dopaminergic neurons
depend on the background inputs, its decay, the inhibitory
effect fromRMTg neurons and striosomes, and the excitatory
input from the PPTN.
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