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This paper realizes global stabilization for probabilistic Boolean control networks (PBCNs) with event-triggered state feedback
control (ETSFC). Via the semitensor product (STP) of matrices, PBCNs with ETSFC are converted into discrete-time algebraic
systems, based on which a necessary and sufficient condition is derived for global stabilization of PBCNs. Furthermore, an
algorithm is presented to design a class of feasible event-triggered state feedback controllers for global stabilization. Finally, an
illustrative example shows the effectiveness of the obtained result.

1. Introduction

As a central focus of genomic research, the way cellular
systems fail in diseases has attracted much attention [1, 2].
Various mathematical and computational models have been
constructed to describe the behavior of gene regulatory net-
works, such as Bayesian networks [3], differential equation
[4], and Boolean networks (BNs) [5]. By right of its simple
representation, BNs have attracted much attention, where
the state of each gene is described by two levels, either inac-
tive (0 or OFF) or active (1 or ON). The evolution of each
node is related to the states of some other nodes, including
itself sometimes, and determined by a series of logical func-
tions at each discrete-time point. BNs with control inputs
are named by Boolean control networks (BCNs), which are
essentially switched systems with switching among different
BNs [6].

Recently, a new matrix product, named the semitensor
product (STP), is presented by Cheng et al. [7]. It converts
the logical form of BCNs into the algebraic state space repre-
sentation (ASSR). Compared with other methods, such as
algebra geometry and symbolic dynamics, STP is more

convenient and scientific in the study of BCNs. In this area,
many interesting researches have been made, such as con-
trollability [8–10], stabilization [11–16], optimal control
[17], disturbance decoupling problems [18, 19], and func-
tion perturbation [20]. Besides, it has been proved that
STP is effective in the study of logical systems [21, 22], game
theory [23–25], fault detection [26], nonlinear shift register
[27, 28], and so on.

However, the determinacy of a Boolean function limits
the application of BCNs, due to the existence of the ran-
domness and measuring noise in the real word. Therefore,
it is necessary to extend the BCN to the PBCN, which can
be regarded as an undetermined system switching between
different constituent BCNs in terms of the probabilistic struc-
ture. Similar to BCNs, many extended results have been
derived for PBCNs, such as controllability [29–31] and stabi-
lization [31–33].

The stability and stabilization problems are two fun-
damental issues in the control of PBCNs. Reference [32]
presented a necessary and sufficient condition to judge
whether a PBCN can achieve global stabilization with
probability one in the finite time by state feedback
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controllers, and the controller design is also realized. As
mentioned in [31], a reachability matrix was defined to
study the asymptotic stability and stabilization of
PBCNs. But it is worth mentioning that the state feed-
back controllers here charge too much cost and need a
relatively long transfer period sometimes. Synchronously,
many interesting controllers were favorable for their
unique properties [18, 34, 35]; motivated by which, we
aim to design the ETSFC to overcome the cost of con-
trol and transfer period. The event-triggered control
not only has a wide application in BCNs [18, 36] but
also has smart grids [37], multiagent systems [38–43],
and so on. For example, [18] first presented two kinds
of event-trigger controllers to study the disturbance
decoupling problems of BCNs, and some necessary and
sufficient conditions were also obtained. In [36], authors
used a class of event-triggered controls to realize global
convergence for finite evolution and minimized the event
set triggering the state at a special case. But the stabili-
zation of PBCNs with ETSFC is still open but meaning-
ful in the realistic world.

The main constructions of this paper mainly focus on the
following two points.

(i) A series of reachability sets are defined, via which,
a necessary and sufficient condition for global stabili-
zation of PBCNs controlled by ETSFC is designed.

(ii) An algorithm is presented to design a class of event-
triggered state feedback controllers to realize global
stabilization of PBCNs.

The remaining part of this paper is constructed as fol-
lows. In Section 2, some notations are given and the STP of
matrices is introduced. In Section 3, we devote to investigate
the necessary and sufficient condition for stabilization of
PBCNs with ETSFC and design controllers to realize global
stabilization. Besides, an illustrative example is also given.
The conclusion is provided in Section 4.

Notation 1. D≔ 0, 1 and Dn =D ×⋯×D

n

. Denote the ith

column of matrix A by Coli A and the set of all columns of
matrix A by Col A . Δn ≔ Col In , where In is an n × n iden-
tity matrix. β = lcm w, q is the least common multiple of w
and q. Denote the set of m × n logical matrices by Lm×n,
where m × n logical matrix B satisfies Col B ⊆ Col Im .
Denote the column vector of length k with all entries equal-
ing 1 and 0 by 1k and 0k, respectively. r = r1,… , rk T is
called a k-dimensional probabilistic vector if ri ≥ 0 and Σk

i=0
ri = 1, and the set of k-dimensional probabilistic vectors is
denoted by Υk. A m × n matrix C is called a probabilistic
matrix if Coli C ⊆ Υm holds for any i = 1, 2,… , n. The set
of allm × n probabilistic matrices is denoted by Υm×n. Define
operator “∘” of two probabilistic column vectors E and F as
E ∘ F = p1 ∧ q1,… , pn ∧ qn

T , where pi∧qi = 1 if and only if
piqi > 0, else pi∧qi = 0. The Khatri-Rao product of nmatrices
M̂1 ∗⋯∗ M̂n is defined as Colj L = ⋉n

i=1Colj M̂i .

2. Preliminaries

2.1. STP of Matrices.

Definition 1 (see [7]). Define the STP of matrix A ∈ Rm×w and
B ∈ Rp×q by

A⋉B = A ⊗ Iβ/w B ⊗ Iβ/p , β = lcm w, q , 1

and ⊗ is the tensor (or Kronecker) product.

Remark 1. If n = p, A⋉B = A ⊗ I1 B ⊗ I1 = AB. Thus, STP
is a generalization of the conventional matrix product. If no
confusion arises, the symbol “⋉” can be omitted.

Comparing with the general matrix product, the follow-
ing pseudocommutative properties of STP are presented.

Proposition 1 (see [7]). Multiply a column matrix X ∈ Rm×1
and any matrix N, then

X ⋉N = Im ⊗N X 2

Proposition 2 (see [7]). Multiply two column matrices X ∈
Rm×1 and Y ∈ Rn×1, then

Y ⋉X =W m,n ⋉X ⋉Y , 3

where W m,n = In ⊗ δ1m,… , In ⊗ δmm .

Let 1 ~ δ12 and 0 ~ δ22, then D ~ Δ2. Any logical functions
with n variables f Dn →D can be expressed as the equiva-
lent algebraic form by the following lemma.

Lemma 1. For f x1, x2,… , xn : Dn →D, there exists a
unique matrix Mf ∈L2×2n , called the structure matrix of
function f , such that

f x1, x2,… , xn =Mf ⋉
n
i=1xi, 4

where xi ∈ Δ2 and ⋉n
i=1xi = x1 ⋉⋯⋉ xn ∈ Δ2n .

2.2. Algebraic Representation of PBCNs by ETSFC.A probabi-
listic Boolean model with n nodes is

x1 t + 1 = f k11 x1 t ,… , xn t ,

x2 t + 1 = f k22 x1 t ,… , xn t ,
⋮

xn t + 1 = f knn x1 t ,… , xn t ,
t ≥ 0,

5

where xi ∈D are logic states. At each time step, f ji are chosen

from a given finite logical function set F i = f 1i , f 2i ,… , f lii
with probability pji , where Σli

j=1 f
j
i = 1 holds for any i = 1,

2,… , n. Ultimately, there are a total of π =Πn
i=1li models.

If we use the following matrix T to denote the index set
of π models:
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T =

1 1 ⋯ 1 1
1 1 ⋯ 1 2
⋮ ⋮ ⋮ ⋮ ⋮

1 1 ⋯ 1 ln

1 1 ⋯ 2 1
1 1 ⋯ 2 2
⋮ ⋮ ⋮ ⋮ ⋮

1 1 ⋯ 2 ln

⋮ ⋮ ⋮ ⋮ ⋮

l1 l2 ⋯ ln−1 ln

, 6

then the λth model can be defined by the λth row of

matrix T , denoted by Σλ = f λ11 , f λ22 ,… , f λnn , where λ =
Σn−1
i=1 λi − 1 Πn−1

j=i l j+1 + λn and 1 ≤ λi ≤ li. Moreover, the
probability of the λth model selected is computed to

Pλ =
n

i=1

pλii 7

Using Lemma 1, let x t = ⋉n
i=1xi t ; we convert the

logical form (5) into an algebraic form as

x1 t + 1 =M1x t ,
x2 t + 1 =M2x t ,

⋮

xn t + 1 =Mnx t ,

8

where Mi are chosen from M1
i ,… ,Mli

i with probability

p1i ,… , plii . Mj
i are the structure matrices of Boolean

functions f ki , i = 1,… , n, j = 1,… , li.
Denote Ex t as the mathematical expectation of state at

time t; the evolution of state expectation is

Exi t + 1 = E Mix t =Mix t , 9

where Mi = Σli
j=1p

j
iM

j
i and i = 1, 2,… , n.

Further, we multiply equations in (9), which leads to the
following equation:

Ex t + 1 = LEx t , 10

where L = M̂1 ∗⋯ ∗ M̂n ∈ Υ2n×2n and ∗ is the Khatri-Rao
product.

Similarly, PBCNs with m inputs can be equivalently
described as

x1 t + 1 = f k11 x1 t ,… , xn t , u1 t ,… , um t ,

x2 t + 1 = f k22 x1 t ,… , xn t , u1 t ,… , um t ,
⋮

xn t + 1 = f knn x1 t ,… , xn t , u1 t ,… , um t ,

11

where xi t and uj t ∈D are states and inputs, respectively,

and functions f ij Dn+m →Dn are logical functions. By
Lemma 1, let x t = ⋉n

i=1xi t and u t = ⋉n
i=1ui t ; the

dynamic of PBCNs (11) can be converted into the following
algebraic discrete-time system:

x1 t + 1 = Lk11 u t x t ,

x2 t + 1 = Lk22 u t x t ,
⋮

xn t + 1 = Lknn u t x t ,

12

where Lj
i are the structure matrix of logical function f ji .

Taking the expected value on both sides of (12), we have

Ex1 t + 1 = L1u t Ex t ,
Ex2 t + 1 = L2u t Ex t ,

⋮

Exn t + 1 = Lnu t Ex t ,

13

where Li == Σli
j=1p

j
iL

j
i , i = 1, 2,… , n.

Multiplying (13) together, the algebraic state space repre-
sentation is as follows:

Ex t + 1 = Lu t Ex t , 14

where u t ∈ Δ2m is the control input and L = L1 ∗⋯∗ Ln ∈
Υ2n×2n+m .

The principle of ETSFC is that the controller only works
if x t equals to some designated states, consisting of set Λ,
and, in this case, the system switches into (14). Otherwise,
the system remains (10) and the controller does not work.
The state feedback controller u t is

u1 t = k1 x1 t ,… , xn t ,
u2 t = k2 x1 t ,… , xn t ,

⋮

um t = km x1 t ,… , xn t ,
 t ≥ 0,

15

where ki Dn →D are logical functions. Assume Ki is
the structure matrix of logical function ki, (15) can be
converted into

u t = Kx t , t ≥ 0, 16

where the state feedback gain matrix K = K1 ∗⋯ ∗ Km ∈
L2m×2n .

Define control sign f x t ∈ Δ2 depending on x t . If

f x t = δ12, the system corresponds to dynamic (10), and

f x t = δ22 makes the system correspond to PBCN (14).
Therefore, the dynamic of PBCNs controlled by ETSFC
is presented as
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x t + 1 = L̂f x t x t , 17

where L̂ = LLu t , u t is the ETSFC which only works
when f x t = δ22, that is,

f x t =
δ12, x t ∈ Δ2n \Λ,
δ22, x t ∈Λ,

18

where set Λ consists of the states triggering the state feedback
controller (16).

3. Main Results

In this section, the event-triggered stabilization of PBCNs
is investigated.

Definition 2. PBCN (14) is said to be globally stabilized to
state s∗ with probability one, if for any initial state x0 ∈ Δ2n ,
there is a positive integer U and a control sequence u such
that P x t ; x0, u = s∗ = 1, ∀t ≥U .

Then, for a nonempty set A ⊆ Δ2n , let R0 A = A, and
Rk A can be expressed by induction as follows:

Rk A = δj2n Colj L ∘ 12n − 〠
a∈⋃k−1

i=0 Ri A

a = 02n

19

Furthermore, define R A as

R A = ⋃
2n

i=1
Ri A 20

Remark 2. Rk A can also be represented as follows:

Rk A = δj2n P x t + 1 ∈ ⋃
k−1

i=0
Ri A , x t = δj2n = 1

21

Assuming s∗ = δr2n and the basins of s∗ by R δr2n , for
i ≥ 1, a series of sets are defined as follows:

Si′ = δj2n ∈
Δ2n

Ωi−1
there exists a δ

v j
2m such that Colj Blkvj L

∘ 12n − 〠
a∈Ωi−1

a = 02n ,

Si =
R Si′ ∪Ωi−1

Si′
,

22

where S0 = δr2n , S0 = R δr2n , Ω0 = S0 ∪ S0′, Si = Si′ ∪ Si,
and Ωi =⋃i

k=0Sk.
For the above sets, we have some useful properties below.

Proposition 3 (see [32]). One has

(i) Ω1 = δr2n , then Ωt = δr2n , ∀t ≥ 1,
(ii) if Ωt−1 =Ωt , for some t ≥ 1, then Ωj =Ωt , ∀j ≥ t.

Theorem 1. System (17) is globally stabilized to a designated
state s∗ = δr2n with probability one, if and only if, the following
conditions are satisfied:

(i) Colr L = δr2n or there exists an integer 1 ≤ vr ≤ 2m
satisfying Colr Blkvr L = δr2n .

(ii) There exists an integer 0 ≤N ≤ 2n − 1 such that
ΩN = Δ2n .

Proof 1. Sufficiency: condition (i) shows that P x t + 1 =
δr2n ∣ x t = δr2n = 1 holds by the designed controller.
According to condition (ii) and the constructing procedure
of Si′ and Si, for any initial state x0 = δj2n ∈ Δ2n \ δr2n , it
claims that x0 ∈ S0 or x0 ∈ ⋃

N
i=1Si′ or x0 ∈ ⋃

N
i=1Si. Therefore,

there are three cases.

Case 1: If x0 = δj2n ∈ S0, there exists a positive integer

kj satisfying δ
j
2n ∈ Rkj

δr2n , which implies that

P x kj = δr2n ∣ x 0 = x0 = 1.

Case 2: If x0 = δj2n ∈ Sij′, we can find a control u = δ
vj
2m such

that Lux0 = L ⋉δ
v j
2m ⋉δ

j
2n = Colj Blkvj L ∈Ωi−1.

Case 3: If x0 = δj2n ∈ Sij , there exists T j′ such that P x T j′
∈ Sij′ ∪Ωi−1 ∣ x 0 = x0 = 1. The case in Sij′ has

been discussed before. Alternatively, the state in
Ωi will enter Ωi−1.

In a word, every state x0 ∈ Δ2n will arrive at δj2n with
probability one.

Necessity: system (17) is globally stabilizable to s∗ = δr2n
with probability one; δr2n should be fixed.

Assume that condition (ii) does not hold; any state in
Δ2n \ΩN cannot be steered into δr2n via the intermittent con-
trol, which is in contradiction with Definition 2.

In the following, we aim to prove that the smallest integer
N∗ satisfying condition (ii) is no more than 2n − 1. It is
enough to show that

∣Ωτ∣ ≥ τ + 1, 23

where 0 ≤ τ ≤N . We will show it by induction. When τ = 1,
if S0 ∪ S1 < 2, that is, S0 ∪ S1 = 1, thus S0 ∪ S1 = δr2n . By
Proposition 3, it holds that ΩN = δr2n , which is a contradic-
tion with Definition 2.

Suppose that Ωτ−1 ≥ τ, for some 0 ≤ τ ≤N . It can be
immediately obtained that

4 Complexity



Ωτ ≥ Ωτ−1 ≥ τ 24

If Ωτ ≤ τ + 1, then

Ωτ = Ωτ−1 = τ, 25

which means that Ωτ =Ωτ−1. Proposition 3 implies that
Ωτ−1 =ΩN = Δ2n , which is a contradiction to the minimality
of integer N .

Moreover, it also holds that ΩN = Δ2n = 2n ≥N + 1,
that is to say, N ≤ 2n − 1.

Assume that conditions (i) and (ii) in Theorem 1 hold,
then the event-triggered state feedback controllers can be
designed by the following algorithm.

Proof 2. We only need to prove that system (17) is globally
stabilized to δr2n under the controller designed above. For
the desired state δr2n , if Colr L = δr2n , along the trajectory of
(10), x t ; x0 = δr2n , for any t ≥ 0, only if x0 = δr2n , that is, δ

r
2n

∈Λ; else, find a δvr2n such that Colr Blkvr L = δr2n . Thus, sys-
tem (17) can stay at the desired state δr2n with probability one.

For any initial state δj2n ∈ Δ2n \ δr2n , we split it into three
cases: x0 ∈ S0 or x0 ∈ ⋃

N
i=1Si′ or x0 ∈ ⋃N

i=1Si.

Case 1: For x0 ∈ S0, according to the proof of Theorem 1,
it will reach δr2n .

Case 2: For x0 = δj2n ∈ ⋃
N
i=1Si′, there exists a zj such that

δj2n ∈ Szj′. Because δ
j
2n ∈ Λ, it will trigger the con-

troller (16), under which, Colj Blkvj L ∈Ωz j−1.

Case 3: For x0 = δj2n ∈ ⋃
N
i=1Si, there exists an integer ij

such that for δ
i j
2n , we claim that it will enter into

the set Sij′ ∪Ωi j−1 and the state in Sij will enter

into Ωi j−1, which has been discussed in Case 2.

By mathematical induction, system (17) will stabilize
to δr2n .

Remark 3. If Colr L =δr2n , the controller (16) will be trig-
gered forever and we can only cut down the cost on
transient routes.

Remark 4. When l1 = l2 =⋯ = ln = 1, PBCN (14) deduces a
conventional BCN. The obtained results also can be applied
to the event-triggered stabilization of BCNs. Thus, our
result can be regarded as a generalization of that in [36]
to some extent.

Example 1. Consider the following probabilistic Boolean
network:

X t + 1 = f1 X t , Y t , Z t ,
Y t + 1 = f2 X t , Y t , Z t ,
Z t + 1 = f3 X t , Y t , Z t ,

26

where f1 ∈ f 11, f 21 with probabilistic 1/2, 1/2, respectively,
and f2 ∈ f 21, f 22 with probabilistic 2/3, 1/3, respectively.

f 11 X, Y , Z = X∧Z ∨ Y∧¬Z ∨ ¬Y∧Z ,
f 21 X, Y , Z = X∧Y ∨ ¬X∧¬Y∧Z ,
f 12 X, Y, Z = X∧Y∧Z ∨ X∧¬Y∧¬Z ∨ ¬X∧Y∧¬Z ,
f 22 X, Y , Z = X∧¬Y∧¬Z,
f3 X, Y , Z = 1

27

Then we can obtain

L =

2
3 0 0 0 0 1

3 0 0

0 0 0 0 0 0 0 0
1
3

1
2

1
2 0 0 1

6 1 0

0 0 0 0 0 0 0 0

0 0 0 1 0 1
3 0 0

0 0 0 0 0 0 0 0

0 1
2

1
2 0 1 1

6 0 1

0 0 0 0 0 0 0 0

28

Assume the control system is given as

X t + 1 = u1 t ∧ f1 X t , Y t , Z t ,
Y t + 1 = u2 t ∧f2 X t , Y t , Z t ,
Z t + 1 = f3 X t , Y t , Z t ,

29

Similarly, we obtain L as follows:

L =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1
2

1
2 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 2
3 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 1
2

1
2 0 1 1

3 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30

In a word, the dynamics of this system can be described as

x t + 1 = LLu t f x t x t , 31

Next, we will design the ETSFC to stabilize system (31) to δ78.
By Algorithm 1, Ωi, i = 0, 1,… , can be calculated as follows.
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Step 1: Since Col7 L ≠ δ78, then δ78 ∈Λ and there exists
u = δ12 such that Col7 Blk1 L = δ78

Step 2: By the dynamic x t + 1 = Lx t , we can calcu-
late R1 δ78 = δ58, δ88 , R2 δ78 = δ48 , and
Rk δ78 = δ48, δ58, δ88 ,k ≥ 3, so R δ78 = δ48,
δ58, δ78, δ88 .

Step 3: Let Ω0 = S0 = R δ78 , then Δ2n \Ω0 = δ18, δ28,
δ38, δ68 . Next, we consider dynamic x t + 1 = Lu
t x t . For δ18, there exists u = δ12 such that Col1
Blk1 L ∈Ω0. For δ28, there exists u = δ12 such
that Col2 Blk1 L ∈Ω0. For δ

3
8, there exists u =

δ12 such that Col3 Blk1 L ∈Ω0. For δ68, there
exists u = δ22 such that Col6 Blk2 L ∈Ω0.

So S1′ = δ18, δ28, δ38, δ68 and Ω1 = Δ8. Thus, the PBCN (31) is
globally stabilized to δ78 via ETSFC by Theorem 1. In terms
of Algorithm 1, set Λ can be expressed by Λ = δ18, δ28,
δ38, δ68, δ78 and one of the feasible state feedback matrices
K can be δ2 1, 1, 1, 2, 2, 2, 1, 1 .

4. Conclusion

In this technique, the global stabilization of PBCNs has been
investigated by ETSFC. Under the framework of STP, the
algebraic representation of PBCNs has been obtained from
the logical form. A necessary and sufficient condition has
been derived based on reachability sets. Finally, we have
designed a class of feasible event-triggered state feedback
controls to realize global stabilization. A numerical example
has shown the effectiveness of our results.
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