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Introduction

The model theory of abelian groups was developed by Szmielew ([28] quantifier
elimination and decidability) and Eklof & Fisher [4], who observed that X;-
saturated abelian groups are pure injective. Eklof & Fisher related the structure
theory of pure injective abelian groups with their model theory.

The extension of this theory to modules over arbitrary rings became possible
after the work of Baur [1], Monk [14], Fisher [6] and Warfield [30]. Baur proved
that — for any fixed module M — every formula is equivalent to a boolean combina-
tion of positive primitive formulas ¢(xy, ..., x,,) (which assert the solvability of
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finite systems of linear equations with parameters xi,...,X,). The lattice of
pp-definable subgroups ¢(M) of M gives a lot of information: The elementary
type of M is determined by the indices ¢/Y(M) = (e (M):¢(M)) (e{1,2,...,}),
(Monk [14]). M is totally transcendental iff the lattice of pp-definable subgroups
of M is well-founded. Therefore totally transcendental modules are ‘compact’
(Garavaglia and Macintyre [9]).

Warfield and Fisher defined and developed the structure theory of pure
injective modules. (We use ‘compact’ for ‘pure injective’.) Fisher proved the
uniqueness of the representation of a compact module as the pure hull of a direct
sum of indecomposable compact (short: ‘indecomposable’) modules. This was
completed by a theorem of Zimmermann & Zimmermann-Huisgen [19]: The
endomorphism ring of an indecomposable module is local.

In [11] Garavaglia showed that a compact module with elementary Krull
dimension (i.e. there is no densely ordered chain of pp-definable subgroups) is the
pure hull of a direct sum of indecomposables. In a sense our paper is a
continuation of Garavaglias work. To keep our paper self-contained we reprove
the results mentioned above. In Section 1 Baur’s and Monk’s results are proved.
In Section 2 we give the characterization of totally transcendental and superstable
modules by means of their lattice of pp-definable subgroups [9]. In Sections 3 and
6 we present Warfield’s theory of smallness, pure hulls (this is also in [3], [11] and
[20] and prove a slight generalization of a theorem of Fisher:

6.1. Every compact module has a unique representation as the pure hull of a direct
sum of indecomposables and a compact module without indecomposable factors.

We begin our study of indecomposable modules in Section 4 with a new proof
of the theorem of Zimmermann & Zimmermann-Huisgen (4.3). Our main techni-
cal tool is based on this theorem: A syntactical characterization of indecomposa-
ble types (4.4): Let a be a non-zero element of the compact module M. There is a
minimal direct factor H(a) of M which contains a. (H(a) is unique up to an
isomorphism. M = H(a) if M is indecomposable.) We have:

4.4. H(a) is indecomposable iff for all pp-definable subgroups {,(M), yr,(M) not
containing a there is a pp-definable subgroup (M) st ac@e(M),
aé ¢ (M) 0 o(M)+ (M) N @(M).

As one application of 4.4 one can define a quasi compact topology on U, the set
of all isomorphism types of indecomposable R-modules. A base for the open sets
consists of all (¢/t) ={U U | ¢/¢(U)>1}. The closed sets are Uy, ={UeclU| U is
a direct factor of a module elementarily equivalent to M} (4.9, 4.10).

As a second application one can construct a lot of indecomposables:

4.8. If o/Y(M)>1, (@/Y) contains an element of U,
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Consequences are:
6.9. Every module is elementarily equivalent to a direct sum of indecomposables.

6.11. (1) the elementary type of the module M is determined by the invariants
Iy (M) =min{"*Plog ¢/ys(M) | ¢, s ppf}  (U€e)).

For the computation of the I, it is enough to let the pairs ¢, ¢ range over a
base of neighbourhoods (¢/¢) of U. For a suitable choice of bases we obtain (for
R =7) the Szmielew invariants as a special case (cf. 6.12, 9.6).

In Section 5 we determine the indecomposables in several cases: injective
indecomposables (5.10) and indecomposable R-modules for a commutative ring
R whose localization Rg at maximal ideals P8 are valuation rings (5.2) (proofs are
given in the case where all Ry are fields or discrete valuation rings.) Here we can
restrict ourselves to the case that R is a valuation ring, since for commutative
rings R:

5.4. Indecomposable R-modules are indecomposable Rg-modules for maximal

ideals .

For Dedekind rings R we give an explicit description of the topological space U
in 9.5. For effectively given Dedekind rings (e.g. R =Z) this yields the decidability
of the theory of all R-modules (9.7). This is a general theorem:

9.4. Let R be a recursive ring and (¢/{;), i €N, an effective enumeration of a base
of U={U,}jen-. Then the theory of all R-modules is decidable if ¢,/¢;(U;) depends
recursively on i, j.

Similarly we reprove the theorem of Koslov & Kokorin [21, 22] (generalized to
Dedekind rings): the decidability of torsion free abelian groups with a disting-
uished subgroup (9.10). In fact most of our general theory holds for more general
structures than modules: for abelian groups with a family of additive relations.

Let M be a module. When are all compact modules elementarily equivalent to
M the pure hull of a direct sum of indecomposables? By the above mentioned
result of Garavaglia this is the case, if M has elementary Krull dimension. Also if
the lattice of pp-definable subgroups of M is linearly ordered this is true. On the
other hand the pure hull of an atomless boolean ring is not the pure hull of a
direct sum of indecomposables.

In Section 7 we define the notion of ‘bounded width’ and show:

7.1. (1) If M has bounded width, then every compact module elementarily equival-
ent to M is the pure hull of a direct sum of indecomposables.
(2) If R is countable, the converse is true.
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The width of a module depends only on the structure of the lattice of
pp-definable subgroups. Elementary Krull dimension implies bounded width.

In Section 8 we study modules with elementary Krull dimension. (Often we say
simply ‘Krull dimension’, but we do not mean the classical notion.)

Here we assign to every pair ¢(M)c ¢(M) of pp-definable subgroups of a
module M an ordinal (or ) dim,,(¢/y), which measures the extent to which there
is ‘almost’ a dense chain of pp-definable subgroups between (M) and ¢(M).
Then M has Krull dimension iff dim,,(M/0)<cw. (Garavaglia has a similar
‘dimension’ in [11].) We prove in Section 8:

8.6. If R is countable or dimy(¢/) <o, dimy(@/ ) equals the Cantor-Bendixson
rank of the topological space (@/yr) MU,y

I do not know if the countability of the ring R is necessary.
Thus, if R is countable and M has Krull dimension, U,, must be countable. The
converse is also true:

8.1,8.4. Let R be countable. Then M has Krull dimension iff Uy, is countable iff
Uns has a Cantor—Bendixson rank, which is then dimy,(M/0).

As an application we give for modules M with Krull dimension an explicit
description of all compact N, elementarily equivalent to M (9.1). It turns out that
there is a smallest such N.

This is the first step towards our solution of the (uncountable) spectrum
problem for complete theories of infinite modules over a countable ring in Section
10.

Let for infinite M, I,(x) denote the number of non-isomorphic modules of
cardinality x which are elementarily equivalent to M. We show in 10.1 that
exactly 6 functions « +—> Iy,(k) (x >¥®,) occur. (The first function depends on a
parameter A, 1=\ <NX,). For the superstable case we use:

10.2. Every superstable module is the direct sum of a totally transcendental module
and a module of cardinality at most 2™,

For I,,(X,) we give some information in 10.3. E.g. that M has finite Krull
dimension if I,(Ry) <2%.

Finally we characterize R,-categorical (that is due to Baur [27]) and R;-
categorical modules in (10.6).

We conclude this paper with an investigation of some notions of stability theory
in the case of modules (this again was first done by Garavaglia in a special case
[10]). Note that every module is stable. In 11.1 we characterize ‘forking’ by means
of pp-definable subgroups. Then we determine regular and orthogonal types using
indecomposables (this is in the special case when M@ M =M.) It turns out that
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regular types correspond to certain indecomposables. (Most of the result in
Section 11 were independently obtained in [25], [26].)
I thank G. Cherlin and A Wettern for their valuable help.

Chapter I: Preliminaries

1. Elimination of quantifiers

We consider (unital) left modules over an associative ring R with 1.

R-modules are Lg-structures, where the language Ly contains 0, +, — and a
unary function symbol for every re R.

(The reader is invited to follow a suggestion of G. Cherlin: Look at abelian
groups, endowed not only with a family of endophisms but also with a family of
additive relations. Most of our general results remain valid. We make use of it in

an example: 5.7, 9.8.)

Definition. An equation is a formula
FiXyF Xyt X, = 0.

A positive primitive formula (ppf) has the form

v (~ AR As s v AN )
-y \ri/srrz-: ryIn/s
where the v, are equations. (y stands for a finite sequence y,, .. ., y, of variables.)

The main result of this section is the following theorem of Baur [1] and Monk
[14]:

Theorem 1.1. For every module M, every Lp-formula is equivalent to a boolean
combination of positive primitive formulas.

We list some remarks on pp-formulas.

{1) If R is a principal ideal domain or a valuation ring, the ‘Elementarieiier-
satz’ implies that every ppf is equivalent to a conjunction of formulas of type
Jyry=rx +- -+ r.X,.

(2) We assume the class of positive primitive formulas to be closed under A.

(3) The wvalidity of ppfs is preserved under extensions, products and

homamornhieme
AUV P rasanis,

4) A ppf o(x4,...,x,) defines a subgroup ¢(M™) of M™:
ME(0), MEe(x)rnp(y)— o(x—y)
If R is commutative ¢(M™) is a submodule of M™. ¢(M) is called a pp-definable
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subgroup of M. (pp-definable subgroups were introduced in [34] as ‘endlich
matrizielle Untergruppen’.)

Lemma 1.2. Let ¢(x, y) be a pp-formula and a € M. Then ¢(M, a) is empty or a
coset of ¢(M, 0). (a stands for a finite sequence a, ..., a, of elements of M.)

Proof. MEo(x, a) = (¢(y,0) < o(x+y, a)).

Corollary 1.3, Let a,be M, ¢o(x,y) a ppf. Then (in M) ¢(x,a) and ¢{(x, b) are
equivalent or contradictory.

Neote. The pp-definable subgroups are closed under N and +. If ¢(x), Y(x) are
ppf, we write

PN =Ny,
e+y=3Ty, zo(Y)Ad(Z)Ay+z=x.

By ¢ = we mean that Fe(x) — @(x).

For the proof of 1.1 we need two further lemmas:

¥ 2 1 A4 (MIT Neimann) 2t LT Adownnte aheliciv  ovoiine TE LT 4 o4
Lemma 1.4 (B.H. Neumann). Let I1; GENoCie aoveudan groups. i1j ripg+ o<

Ur-, H; + a; and Ho/(H, N H,) is infinite for i >k, then Hy+ ap< U¥*., H, +a;.
Lemma A (for sets A;). If A, is finite, then Agc UL, A, iff
X -p4 40N N Al 0. (Easy)

Ac{l,...k} ica i

Proof of Theorem 1.1. Fix M. We have to show: If ¢/(x, y) is in M equivalent to a
boolean combination of ppf, then also Vx4 is. Since ppf are closed under
conjunction, ¢ is M-equivalent to a conjunction of formulas

eo(X%, y) = @(X, y)v- v (x, y), ¢; ppf.

We can assume that already ¢ has this form.
Let H; = ¢;(M, 0). By 1.2 the ¢,(M, y) are empty or cosets of H;. (Think of y as
being fixed in M) Let Hy/(HyNH;) be finite for i=1,..., k and infinite for

i=k+1,...,n (k=0). By 1.4
MEVx = Vx (0o(x, ¥) = 01(x, ¥) V- - v (x, y)).

We apply Lemma A to the sets A, =¢,(My)
- T Ll AN o4 v

oM, ¥) N Nica @:(M, y) is empty or consists of N, cosets o
where

KHy N
f HyN---NH,,

N, = Hoﬂﬂ H/(H,N- - - N H)|.

icA
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Whence
MEVYx < Y (-1)4N, =0,

AeXN
where

_[A_f1 Y | = / e \\]
g e ey O\ As i\ .
H=1acit K] 3x | Polx y;/\!{s\A<ka YJU

[ o TN PSR SIS ends onlv on the indices Qo mim et e 5
LIIC chulllllg lUIllluld UCPCI Ud UILY OIl LIC INIUICCS IV, SHICC PP-dCHICTICCS dI

always true, the above proof shows:
Corollary 1.5 (Monk [14]). M, and M, are elementarily equivalent iff
o/ (My) = o/Y(My)  for all ppf < .

(Notation: ¢/ Pp(M) = (o(M): ¢ (M)) mod . We assume /(M) to be a natural

number or =, Convention: n-w=wx-n=w (n=1) etc.)

Definition. M is a pure submodule of N, if M< N and
NEg(a) ©& Mke(a) for all ppf ¢ and ae M.

T AL 1 ) a7r

Examples. M< N, M a direct factor of N.

Corollary 1.6 (Sabbagh [29]). M is an elementary substructure of N iff M is pure in
N and elementarily equivalent to N.

Dacrn noo = sy Forzen
Proof. Since M=N, CVery LR-10uu

same boolean combination of ppfs.

il 1o 3 anAd s 2 1 4+ 4~ 4lan
uia n 1 ivi aliu 111 iv _C\iulvdlclll U uic

Corollary 1.7. Suppose L M<N. If L< N and M pure in N, then M< N.

Corollary 1.8. Let « be an infinite cardinal. Denote by [1.; M; the product of the
M, restricted to sequences with <k members #0. Then [[ic; M < [licx M

Proof. [1i.; M, is the directed union of the modules IT..; M, lJ|<«, which are

2el aared

direct factors of [];c; M;. Whence [[i<; M, is pure [[;c; Mi. One computes easily

(” ‘v,)JI o (M).
iel iel

Whence

<p/w(l'[ M) =[Terwm)= «p/w(f[ M)

icl iel iel
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We conclude this section with the introduction of a notion which will ease some
later computations

l?eﬁnition. “olP=/Y” is _the smallest transitive relation between pairs ¢ < ¢,
Y= ¢ of pp-formulas s.t. y<P< o= e/Yy<@/Py and (Y+8)/Y<8(YNd)<
(Y+8)/y.

Clearly

Lemma 1.9. o/ < /¢ implies o/y(M)< §/$(M).

2. The stability classification

We use the results of Section 1 to determine totally transcendental and
superstable modules by means of their pp-definable subgroups. (See [17] for
definitions.) We apply this in Sections 10 and 11.

Theorem 2.1. ((1) is due to Fisher, (2) & (3) to Macintyre and Garavaglia [9].)

(1) All modules are stable.

(2) M is totally transcendental iff there is no infinite descending sequence of
pp-definable subgroups of M.

(3) M is superstable iff there is no infinite descending sequence of definable
subgroups of M, each of infinite index in its predecessor.

Proof. Let B be a subset of M. By S,,(B) we denote the set of all complete types
over B which are realized in M, i.e. the set of all

tp(a/B) ={®(x, b) | bec B, ¢ a formula, Mk d(a, b)}.

N is stable in A if |Sy(B)|=<A for all M=N, |B|<A.

N is stable if N is stable in some infinite cardinal.

N is superstable if there is an infinite cardinal w s.t. N is stable in all A = u.

N is rotally transcendental if N | R, is stable in ¥, for all countable subrings
Ry R.

For fixed M every tp(a/B) is axiomatized by

tp™(a/b) =tp*(a/B) Utp (a/B),

where

tp*(a/b) ={e(x, b) | ¢ ppf, ME@(a, b)}
and

tp (a/B) ={—¢(x,b) | ¢ ppf, MF—e(a, b)},  (1.1).

Clearly tp~ is determined by tp*.
Proof of (1). By 1.3, tp*(a/B) contains—up to equivalence—at most one
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formula ¢(x, b) for every ppf ¢(x, y). Whence tp*(a/B) is determined by a partial
map F:ppf — B* in the sense that it is axiomatized by {¢(x, F(¢)) | ¢ ppf}. We
have

ISv(B) = (IB]+R)! R,

Thus N is stable in every A s.t. A = AR,

Proof of (2). Suppose there is no infinite descending sequence of pp-definable
subgroups in M. Then every type tp“(a/B) contains a formula ¢(a, b) with
minimal ¢(M, 0). It follows that

tp(a/B) ={y(x, b) | (M, b) = ¢:(M, b'), ¢ ppf}.

Therefore |Sy(B)|<|B|+|R|+R, (=number of formulas ¢(x, b)).
For the converse let ¢;(M) be a proper descending sequence of pp-definable
subgroups of M. Choose a; € ¢,(M)\g; .,(M). The types

Pn(x)={xeb!+e;(M)|icw}, me“2
where b =Y, m(j)a; are (in M) consistent and pairwisely contradictory. Whence
] ]

|Sn rRu({ao, as, .. })l = 2%

if Lg, contains the ¢,.
Proof of (3). Suppose there is no infinite descending sequence as in (3). Then
every type tp*(a/B) contains a ¢(x, b) s.t. ¢ (M, 0) is minimal w.r.t infinite index.
tp*(a/B) can be axiomatized by formulas y(x, b) s.t. ¢(M,0)< ¢(M, 0). But
there is only a finite number of nonequivalent (x, b’) for every ppf , where
¢(M, 0) is of finite index in ¢(M, 0). Whence

1Sn(B)| < (IB|+|R|+Ro) + 21",

for we have |B|+|R|+X, many choices of ¢(x, b) and then 2'R**> many choices of
the (x, b'). Thus M is stable in all A =2/RI*%,,

For the converse let ¢;(M) be an infinite descending sequence s.t. ¢;,,(M) is of
infinite index in ¢;(M). Choose ale (M), jew, pairwisely inequivalent
mod ¢, (M), i=0,1, ..., and define

P(X)={e(x—-b])|icw}, mne“w
where b7'=Y,_; a]®. The proof of [17; II 3.5 (5)= (2)] shows that M is not

superstable.

Corollary 2.2. (1) Let M be a pure submodule of N. Then N is totally transcenden -
tal (superstable) if M and N/M are totally transcendental (superstable).

(2) If M is totally transcendental, M* is totally transcendental.

(3) If M* is superstable, M is totally transcendental (k =R,).

Proof. (1) First we derive two formulas:

e(NIM)=o(N)+M/M, ¢ ppf. (1)
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‘D>’ js clear. Let

(P(x) :ay /\ ti(x, Y) = Oa
i<n
where the t; are linear expressions in x, y. If a+ M is in ¢(N/M), there are m; ¢ M
s.t. Ay A . t{a, y)=m; holds in N. Since M is pure in N, there is be M s.t.

=J i N<n i\¥ 7/ AR vl Wi I e

Iy Aicn ti(b, y)=m,; holds in N. Now a—b e ¢(N) and aco(N)+ M.
o/ $(N) = /(M) - o/ y(N/M), ¢ < ¢ ppfs. (2
Look at the following isomorphisms:

N

@ (N/M)/¢p(NIM) = (@ (N) + M)/(y(N) + M)
e (N)/(Y(N) + M) N o (N)) = o(N)/(Y(N) + ¢ (M))
=(@(N)/ p(N)/(p(N)+ ¢ (M)/(N)).

ii?

But
(W(N) + @ (M))/(N) = o(M)/Y(M).

We can assume that a descending sequence of pp-definable subgroups is always
given by a sequence ¢y ¢@,>¢,>---. (For otherwise we replace ¢; by
CoAQIA AQ;)

Now (2) shows, that if ¢,(M) or ¢,(N/M) is proper descending (with infinite

ndicec) than alery . (N ic nraner decconding (with infin indae) Canuvaraals

indices), then also ¢;{N) is proper descending {with infinite index). Conversely, if
¢;(N) is proper descending (with infinite index) ¢;(M) or ¢;(IN/M) contains such a
subsequence.

(2 & 3) ¢;(M) is proper descending iff ¢;(M*) is proper descending iff ¢;(M*) is
proper descending with infinite indices.

Lemma 2.3. If N is superstable and M an elementary submodule of N, N/M is
totally transcendental.

Proof. N/M is superstable. Since ¢/Y(M)=@/Y(N)=@/y(M) - o/Yy(N/M), we
have ¢/y(N/M)>1=> o/ (M) =wx. Whence a proper descending sequence of
pp-definable subgroups of N/M yields a descending sequence of pp-definable
subgroups of N with infinite indices.

Chapter II: Decomposition of compact modules

3. Algebraically compact modules

Definition. A module M is algebraically compact (we say ‘compact’) if every
homomorphism from a pure submodule N’ of a module N to M can be extended
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to a homomorphism from N to M.
N\
pure T A
]
N —-M

Notation. a pp-type is a type consisting of pp-formulas.

Theorem 3.1. For every Module M the following are equivalent:
(a) M is a direct factor in every pure extension.
(b) Every consistent pp-type p(x) over A<M, |A|<|R|+R,, is realized in M.
(c) Ewvery consistent pp-type p(x") over M is realized in M.
(d) M is compact.

Proof. (d) — (a). Let N be a pure extension of M. Apply the definition to the
diagram

N

I

to obtain h: N — M. Then N=M @D Ker h.

(a) = (c). Let a’ realize p in an elementary extension N of M. Since M is a
direct factor of N there is a projection w:N— M, w | M=id,,. Then m(a’)
realizes p in M.

(c) — (b). Clear.

(b) = (d). We note first that by 1.3, (b) implies that every consistent pp-type
p(x) over M is realized in M. Let N’ be a pure submodule of N and g a
homomorphism from N’ to M. Then g is a ‘partial homomorphism’ from N to M
in the following sense:

Definition. A partial mapping f from N to M which preserves pp-formulas (and
negations of pp-formulas), i.e.

NEkg(a) > MFe(f(a)), oppf, acdomf,
(=)

is called a partial homomorphism (isomorphism) from N to M.

Remark 3.2. If dom f is a pure submodule of N, then f is a partial homomorph-
ism (isomorphism) iff f is a homomorphism (isomorphism onto a pure submodule
of M).
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Now, to prove (d), let f: A — M be a maximal extension of g to a partial
homomorphism from N to M. Let be N be arbitrary. The pp-type

p(x)=f(tp*(b/A)) ={¢(x, f(a)) | NE@(b, a),ac A, ¢ pp}
is consistent in M. For if ¢;(x, f(a)), i <n are in p, then

NEIx A ¢i(x,a) and therefore ME3Ix A o,(x, f(a)).

i<n i<n

Let ¢ € M realize p. Then ' =fU{({b, ¢)} extends f. Thus be A.

Corollary 3.3. (1) M is compact iff every partial homomorphism from N to M can
be extended to a homomorphism from N to M.
(2) (|R|+Ro)"-saturated modules are compact.

Examples of compact modules are injective modules, finite modules, modules
with a compact topology which is compatible with the operations.

Lemma 3.4. (1) Direct summands of compact modules are compact.

(2) If the M, are compact and cf k >|R|+R,, then [15.; M; is compact.
Proof. (1) As the proof of 3.1 (a) — (c).

(2) Clearly [lic; M, is compact. But a pp-type with at most |R|+RX, many
parameters is already defined over a direct factor [[;c; M, |J|<«.

Lemma 3.5 (Garavaglia [8], Zimmermann [34]). (1) Totally transcendental mod-
ules are compact.
(2) M is totally transcendental iff M= is compact.

Proof. (1) Every pp-type over a totally transcendental module which is closed
under conjunction is principal (see the proof of 2.1(2)).

(2) If M is totally transcendental, then MZ- is totally transcendental (1.8,
2.2(2)), and compact.

If M is not totally transcendental, choose an infinite descending sequence ¢; (M)
of pp-definable subgroups and a; € ¢;(M)\ ¢;.,(M).

Define bieM® by b'=(agay,...,a-1,0,0,0,..). Then pkx)=
{¢:(x —b") | i e w} is consistent but not realized in M.

Remark. A compact module which is not totally transcendental is of power at
least 2%. (For the types constructed in the proof of 2.1(2) are pp.)

Definition. Let A be a subset of the compact module M. H(A) is called a hull of
A in M if
(a) H(A) is a compact pure submodule of M containing A.



Model theory of modules 161

(b) If B is a compact pure submodule of M and A <Bc H(A), then B=
H(A).

The following theorem is due to Fisher (unpublished, but see [3]).

Theorem 3.6. Let A be a subset of the compact module M. Then there is a hull
H(A) of A in M. H(A) is unique in the following sense: Let H(B) be a hull of B in
N. Then any partial isomorphism f: A—»B from M to N can be extended to an
isomorphism from H(A) to H(B).

Notation. The theorem makes the following notation possible: We call a type of
the form p(x) =tp*(a/0) (a € M) pp-complete. Then H(a) is— up to isomorphy ~
determined by p. We write H(a) = H(p).

Proof. To satisfy (b), H(A) has to be small over A in the sense of the

Definition. Let A < B be subsets of the module M. B is small over A if every
partial homomorphism f: B — N from M to N whose restriction to A is a partial
isomorphism is a partial isomorphism.

We construct small extensions using the following characterisation.

Lemma 3.7. B is small over A iff tp*(b/A) b, tp(b/A) for every finite sequence
be B. (See proof of 2.1 for notation.)

Proof of 3.7. Assume tp"(b/A) f u tp(b/A). Then there is —p(x, a)ctp (b/A) s.t.
p(x)=tp*(b/A) U{p(x, @)} is consistent in M. Realize p in a compact elementary
extension N of M, by ¢. g =id, U{(b, ¢)} is a partial homomorphism from M to N,
extend it to a partial homomorphism f defined on B. f is not a partial
isomorphism — for ME—@(b, a), NF¢(c, a) — but partially isomorphic on A. Thus
B is not small over A.

Assume that the condition of 3.7 is satisfied. Let f:B-—=»C be a partial
homomorphism from M to N which is partially isomorphic on A. Extend the
partial homomorphism f '} f(A) to a partial homomorphism g from N to an
elementary extension M’ of M with domg=C.

For all bc B we have tp*(gf(b)/A)>tp*(b/A) and therefore tp(gf(b)/A)=
tp(b/A). Thus gf and f are partial isomorphisms. This shows that B is small over
A.

Corollary 3.8. AU{b,,...,b,} is small over A iff tp*(b/A)Fp tp(b/A).

Proof of existence (3.6). By 3.7 we can use Zorn’s lemma to obtain a maximal
small extension H(A) of A inside M. Property (b) is already clear: If B is a
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compact pure submodule of M lying between A and H(A), look at the projection
7 of M onto the direct factor B. 7 is partially isomorphic on A and therefore on
H(A). This is only possible if H(A)=B.

That H(A) is a compact pure submodule of M is the same as to say that every
M-consistent pp-type p(x) over H(A) is realized by an element of H(A). Let p be
given. Choose a maximal pp-type q over H(A) which extends p and is consistent
in M. Let be M be a realization of q. By maximality q Fus tp(b/H(A)), thus
H(A)U{b} is small over H(A) and therefore small over A. We conclude that
beH(A).

Since we can do the above construction inside a hull of A, we can conclude,
that all hulls of A are small over A. The arguments we gave up to now prove the
following

Corollary 3.10. B is a hull of A in M iff B is a maximal small extension of A in M
iff B is small over A, compact and pure in M.

Proof of uniqueness (3.6). Let H(B) a hull of B in N and f: A—» B a partial
isomorphism from M to N. Since H(B) is pure in N, f is also a partial
isomorphism from M to H(B). Extend f to a partial homomorphism g: H(A) —
H(B) from M to H(B) (which is compact). Since H(A) is small over A, g is a
partial isomorphism. Thus since H(A) is pure and compact in M, g(H(A)) must
be pure and compact in H(B), whence g(H(A))= H(B).

Corollary 3.11. (1) [H(A)|<(|A|+ )R,
(2) If M is totally transcendental, then |H(A)|<|A|+|R|+R,.

Proof. (1) We find an (JR|+R,)"-saturated N s.t. ASN, (N, a)oen =(M, @)gca
and |N|=<(A|+1)R*% But Hy(A)=Hy(A).

(2) Choose A = N< M, |N|=|A|+|R|+N,. Since N is compact (3.5(1)), we find
H(A)< N.

Definition. M is a pure hull of M if:

(a) M is a pure compact extension of M.

(b) If N is a compact pure extension of M, M is~over M —isomorphic to a
pure submodule of N.

Thus, if M is compact, it is its own pure hull.

Theorem 3.12 (Warfield [30]). Every module M has a unique pure hull M.

Proof. Let K be a compact elementary extension of M. Set M = Hg(M). M is
pure in M, since M is pure in K.
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If N is a compact pure extension of M, id,, is a partial isomorphism from K to
N, whence M is isomorphic to Hy(M). This shows that M is a pure hull of M.

If N happens to be another pure hull of M, N is isomorphic to a pure
submodule B of M, M < B. Since B is compact, B=M.

Corollary 3.13. B is the pure hull of M iff M is pure in B, B is compact and small
over M.

Corollary 3.14 (Sabbagh [31]). M is an elementary extension of M.

Proof. By the proof of 3.12 and 1.7.

4. Indecomposable modules

Definition. A non-zero compact module U is indecomposable if U is not the
direct sum of two non-zero modules.

Lemma 4.1. Let U be non-zero and compact. Then U is indecomposable iff
U=H{(a) for all ac U\0. (H(A) is defined before 3.6.)

Proof. If U=M @ N is a nontrivial decomposition and a € M\ 0, then U is not
the hull of a, since M is compact and pure in U.
If ac U\O, H(a) is a nontrivial direct factor of U.

Corollary 4.2. (1) There are at most 2R non-isomorphic indecomposable
R-modules.
(2) An indecomposable module has power at most 2'%
(3) If U is indecomposable and totally transcendental, |U|<|R|+X,.

I+N0.

Proof. (1) Every indecomposable is of the form H(p) (see 3.6 for notation).
(2) By 3.11(1).
(3) By 3.11(2).

The following characterization of indecomposables is due to Zimmermann &
Zimmermann-Huisgen. We give a new selfcontained proof.

Theorem 4.3. A non-zero compact module U is indecomposable iff iis
endomorphism-ring is local, i.e. for all fe End(U) 1-~f or f is an automorphism
of U.

Proof. If U is a nontrivial direct sum, the two projections satisfy 1 =1, + 7, but
neither 7, nor 7, is an automorphism. Whence End(U) is not local.
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Suppose now that U is indecomposable and feEnd(U) s.t. 1—f is not an
automorphism. We have to show that f is an automorphism. Choose a € U\0.

Then g and(rn is an automornhism of UJ iff g f ais a hafha] icomornhism from

il T IR ) S QI QRO PRSI O )3 1% J idr SOINOIPRIsI 11O

U to U. For, if g | a is partially isomorphic, g is a parnal isomorphism (U is small
over a). Then g(U) is a pure compact submodule of U and must therefore equal
U. Let f(a) = b. By our assumption 1—f is not isomorphic on a. Whence there is a
ppf ¢ s.t.

UFo(a), UFela—b).

Let now p(x) be a pp-type which extends tp*(b), is consistent with ¢(a —x) and
maximal with this property. Let ¢ € U realize p(x) U{w(a-—x)}, it follows c#0.
Since tp*(a) = tp*(b) =tp™(c), there is an endomorphism g of U which extends

the partial homomorphism a > ¢. The equation

a-g(c)=(g+1)(a~c)
together with Ukgp(a—c) im

x)U{p(a—x)}.
By the maximal choice of p we have

tp*(c)=tp*(g(c)) =p.

Thus —since U = H(c) —our above remark shows that g is an automorphism. But
then

lies Ukpl(a—
Fela

tp*(b) = tp*(c) =tp*(a) = tp™(b),

i.e. also f is an automorphism.

Definition. Let p(x) be a pp-complete type. We call p indecomposable if H(p) is
indecomposable. (See 3.6 for notation.)

Note that every indecomposable has the form H(p).

The next theorem is a translation of 4.3 to characterize indecomposable types.
Theorem 4.4. A pp-complete type p is indecomposable iff (x=0)¢p and for all
pp-formulas s, W, not in p there is a pp-formula ¢ €p s.t.

W Ne)+ W Ne)ép.

Example. If the set of pp-definable subgroups of M is linearly ordered, pp-

r\mr\]pfp tvneg which do not conta ain Y—ﬂ are indecomposable
mp:Cic 1ypes wiica Ce not niam

(&9 Aic NCCCOIIIPUSAVIC,

Proof. Let H(p) = H(a), where tp™(a) =p.
Assume first that p does not satisfy the above condition. If x=0& p, we have
H(a)=0 and p is not indecomposable. Otherwise there are s, ¥, ¢ p s.t. for all
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vep
(Y Ne)+(PNe)ep.

Then {a=x+y, ¥ (x), Yyo(Y)}IUp (x)Up*(y) is consistent in H(a). Choose a
realization b, ¢ and an endomorphism f of H(a) s.t. fla)=>b. Since H(a)F
Y1{(f(a)), f is not an automorphism, since H(a)Fy((1—-f)(a)), 1—f is not an
automorphism. Thus End(H(a)) is not local.

Now assume that End(H(a)) is not local. We have f e End(H(a)) s.t. neither f
nor 1—f is an automorphism. Then f | @ and (1—f) | a are not partially isomor-
phic. Thus there are s, Y, é p s.t. H(a)E ¢, (f(a)) and H(a)E¢,((1—f)(a)). The
equation a = f(a)+ (1—f)(a) shows that

H(a)F(y1N@)+(2Ne))(a) for all ¢ ep.

Notation. Let y(x), ¢(x) be a pair of pp-formulas s.t. Yy <¢. We say ¢/fep
instead of pep & —wep.

Corollary 4.5. Let A be a finite subset of the indecomposable type p. Then there is
e/Pep s.t. for all pp-formulas x, xNe< ¢ if ixeA and o < x if x€A. Thus
Fon—p— A A

Proof. Iterated application of 4.4. Note: ¢fy<a/x for all a/x e A.

Corollary 4.6. Let p be indecomposable and &/, a/x € p. Then there is ¢/ € p s.t.
elv<a/x and <Y< <¢.

Proo_f Choose ¢/Pep s.t. Gld<colx and yNGcy<<@. Set ¢ =Y +¢ and
Y=d+i.

The next lemma shows that there are a lot of indecomposable types.

Lemma 4.7. Let g be an M-consistent type consisting of ppfs and negations of ppfs.
Suppose that —x=0ecq and that for all —w, W,eq there is a ¢<q s.t
(Y Ne+idpNe)eq.

Then we can construct an M-consistent indecomposable extension p of q as
follows: Choose a maximal pp-type p* which is M-consistent with q. Set p=
p*U{~x | x¢p, xprf}.

Proof. Since qUp™* Fy, —x for all ppf xép™, p is an M-consistent pp-complete
type. We show that p satisfies the condition of 4.4,
Let ¢, ¥» ¢ p. Then there are Gep*, W, ..., W, €q s.t.

MEGA—WLA AW, — s, i=1,2.
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Choose ¢; €q s.t. = € g, where
J11 =N +(NG;) and lZ‘i+1 = W1 NG+ (‘L: NG

Set ¢ =@ A A" A, (ep). Then MEp A, — . Whence MFo A — i,
and therefore MF (¢ A ) +(@ Ad,) — W, This implies (@ A )+ (@ AY) € p.

Corollary 4.8. Suppose ¢/ys(M) > 1. Then there in an M-consistent indecomposable
type which contains o/

Proof. Take q={—x=0, 4, ¢} in 4.7. (To be precise, close q under logical
equivalence.)

Corollary 4.5 enables us to topologize the set U® of all isomorphism types of
indecomposable R-modules in the following manner: For every pair ¢/ of
pp-formulas set

(ely) ={U U | ¢/p(U)>1}.

Theorem 4.9. The sets (/) form the basis of a topology on UR. UX and all (¢/)
are quasicompact. If p is indecomposable and /s € p, then the

(e/),  (elbep,d=db=e<=§)
form a basis for the neighbourhoods of H(p).

Proof. Let U= H(p)e (¢J) (i =1,2), &/ €p. Suppose that a € U realize p and
Ukg(a,), UEW(a). By 3.7, tp*(ai/a)Fy tp(ai/a). Whence there are ppf
p:(x, a)etp (a/a) s.t.

Fupi(x, a) = @(x) A (x).

Thus the formulas 3y (p;(y, x) A ¢;(y)) and Vy (p;(y, x) — "i(y)) are in p. By 4.5
there is a pair o/x €p s.t. o A~y implies these formulas. We have then

Ue(a/x)<=(o/) (i=1,2).

When we choose ¢/ as in 4.6, we have U € (¢/¢) < (a/x).
It remains to show that (¢/) is quasicompact. Assume that no finite subset of
@/ ))icr covers (@/y). Then by compactness the theory

{e/g>1YU{p/¢ =1]ieI}U“R-module”

is consistent. Let M be a model of it. By 4.8 there is an M-consistent indecompos-
able type q containing ¢/¢. Since H(q) is a direct factor of an compact module
elementarily equivalent to M, one sees that H(g) is not contained in any of the

(@), ie L But H(q) e (¢/¢).
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Proof. By 4.5 and 4.9. If {U},., is closed, set M=, U..

Corollary 4.11. If o/y(M)>1 for all pairs ¢/ in a base & of neighbourhoods of U,
then Ul

g %
Proof. Let U=H(p), ¢/Yep. Choose a/xc¥ with (d/x)=(¢/¥). The next
remark implies ¢/y(M)>1. Thus p is M-consistent. We show, that (o/x) < (¢/¢),
o/x(M)>1=> ¢/y(M)>1: By 4.9 there is an indecomposable M-consistent type
q with a/x eq. By assumption H(q) < (o/t). Since H(q) is a direct factor in a
module elementarily equivalent to M, ¢/y(M)>1.

5. Some examples

We study indecomposable R-modules U in three special cases.

(1) R is commutative and for every maximal ideal I is Rgy — the localization at
M —a field or a discrete valuation ring. (Examples are Dedekind rings or von
Neumann regular rings.)

(2) (See the first remark in Section 1.) R is a Dedekind ring, U= (U, V) is an
indecomposable pair consisting of a torsionfree U and a submoduie V.

(3) U is injective

The following observation is well known.

A The inderaninneshle nndiidoe ave AN (=1 KIA A
JlCl“ nec Luucturuyuouunc 11 ruuuutca ure “//J\« \Il = 1)y, INJ LYy L)

e ]

p €LoN

Lemma 5.1. Let A be a discrete valuation ring, I its maximal ideal, K its quotient
coi,

tha
ine

of A, K. These modules are pairwise non-isomorphic.

Proof. Let 1=A - p. We note first that the ‘Elementarteilersatz’ implies that
every pp-formula is equivalent to a conjunction of formulas

Jyp y=p™x, p™x=0.

(1) The given modules are compact. K and K/A are divisible, therefore injec-
tive and compact. A/ has n+1 pp-definable subgroups and is therefore
compact. The pp-definable subgroups of A are Ap" and 0. Thus if ¢,(A, b,) 2
os(A, b,) 2 e(A, bs) 2 - and ¢ ey (A, b)), (¢;) is a Cauchy sequence converging
to an element which realizes {¢;(x, b;) | i € @}. This shows that A is compact.

(2) The given modules are indecomposable. K and K/A have the following

nranerty: If v v aro nan_7zorn thon thore are ¢ »-c A ¢t ov — ,m-/-n Thic imnliac
PIOPCriy. I X, ¥ areée non-Zero, incn wiere are §, rc A s.1. SX Y7 V. 11is impss

that K and K/A are indecomposable.
Let k be the residue class field A/ For every A-module M[p]=
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{xe M| px =0} and M/pM are k-vector spaces. If M is A/D", dim (M[p]) =1.
Thus, if N; @ N, is a decomposition of M, we have dim, (N;[p]) =0 (say). Then

PR

1V1 lb lUIblUﬂerC dIIU must UC U

If M= A, dim, (M/pM) = 1. Thus, if N, ® N, is a decomposition of M, we have
e.g. dim, (N;/pN;) =0. Then N, is divisible and must be 0. Thus A is indecompos-
able and the pure hull of A.

(3) All indecomposables occur. Let U be an indecomposable A-module.
Chnance o ’T\ n We writo

avUovr o YYL VWIILC

h(a) =sup{n | p" divides a (in U)}  (‘height’)
and
Ann(a)={re A | ra=0} (‘annihilator’).

If Ann(a)=Ap""!, we have Ann(p"a)=9I. Whence we can assume that
Ann(a) =IM or Ann(a)=0.
Case 1: h(a)=n, Ann(a)=IM. Choose be U s.t. p"b=a. Then Ab=A/P"*!

L 1o+l 1 AL o osasien i FT Thacafaan YT_AL~AI(YY)H+1
via b—1+IR ana Ao is purc in U. Therefore U = ADZ AJIN

Case 2: h(a)=o, Ann{(a)=0. Then a is uniquely divisible (in U) by all
re A\0. Ka is a well-defined submodule of U and isomorphic to K. Therefore
U=Ka=K.

Case 3: h(a)=n, Ann(a)f_ Choose be U s.t. p"b=a. Ab=A is then pure
in U Whence U=H(Ab)=Ab=A.

Case 4: h{a)=x, Ann(a)=IR. By compactness there is a sequence a¢=a,
pa;.1 = a;, in U. Let M be the submodule generated by {a,};.... Then M=KJA via

a;—>1/p"""+A. Thus U=M=K/A.

Our proof shows that every compact non-zero A-module has an indecomposa-
ble direct factor. This follows also from the fact that every A-module has Krull
dimension. See 7.3, 8.2.

Remark. Let R be a valuation ring, K its quotient field. A fractional ideal is an
additive subgroup of K which is closed under multiplication with elements of R.
The indecomposable R-modules are

I_A—/§=pure hull of A/B,
where B & A are fractional ideals.
Z,/_B and 613 are isomorphic
iff A/B and C/D are isomorphic iff A =xC, B =xD (xe K\0).

Sketch of proof. Up to logical equivalence the pp-formulas ¢(x) are conjunction
of formulas ¢,,(x)=3yay=bx (acR,be R\aR).

Tha 1 Tats haoty 1+ farmanl
1€ Oy réialicns oCiween tilse IOImiuias are

F @ p(x) = @cap(x) (¢ divides da).
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Using 4.4 one sees that indecomposable types p correspond to pairs a, h of
proper ideals via

P(x)={@o,(x) | beatU{npos(x)| b¢ a}
U{@a1(x) | ag b} U{@uap(x) | a € h}.

It is easy to check that these types are just the types of the non-zero elements in
the modules A/B. These modules are clearly small over every non-zero element.
This proves the first assertion.

Let K be an immediate maximally valued extension of the valued field K. To
every fractional ideal A of K there corresponds, a fractional A = RA of K. A/B
is a pure submodule of the compact module A/B. A type which is realized in A/B
is realized in A/B and therefore in A/B (for y+ B and z + B are of the same type,
if they have the same value). But if A/B and C/D realize a common non-zero
type, they are isomorphic. This proves the second assertion.

Note, that —using 5.4 - we have also determined the indecomposables for all
commutative rings R where all localizations at maximal ideals are valuation rings
(e.g. for Priifer rings).

A local-global principle (5.4) allows us to transfer the result of 5.1 to more
general rings.

Theorem 5.2. Let R be a commutative ring for which all the localizations Ry, at
maximal ideals are fields or discrete valuation rings.

The indecomposable R-modules are Ry, if Ry is a field, and Ryy/ Rt (n=1),
Quot(Ryyp)/Rap, R, Quot(Ryy) if Ry is a discrete valuation ring, where I is any
maximal ideal (all modules are viewed as R-modules.)

Examples are:

Dedekind rings, e.g. Z. The indecomposable abelian groups are Z(p") = cyclic
group of order p"” (n=1), Z(p™) = the Pruefer group, Z, = the p-adic integers and
Q, (p a prime number).

Regular von Neumann rings (commutative, x> divides x). Here all localizations
Rygr=R/IN are fields. Thus e.g. if R is a boolan ring the indecomposable
R-modules are Z(2) with R-module structure coming from a ring homomorph-
ism R — Z(2). Thus the indecomposables correspond to the ultrafilters.

Proof. The given modules are indecomposable as Rg-modules. That they are
also indecomposable as R-modules is a general fact: Let S be a multiplicative
subset of the commutative ring R. An S™'R-module is then nothing else than an
R-module with unique division by elements of S. (See Bourbaki, ‘Algebre
commutative’). This is reflected by the trivial fact that we can translate every
Lsg pp-formula into an equivalent pp-formula of Ly (multiply the coefficients
by elements of S). Therefore the following lemma is easy to prove:
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Lemma 5.3. Let S be multiplicative subset of the commutative ring R, M, N be
S~ !'R-modules and gkM, gN the same modules regarded as R-modules. Then

(1) M=N iff RM=gN.

(2) M is compact (injective, indecomposable) iff gRM is compact (injective,
indecomposable).

(3) M is small over the subset A iff xM is small over A.

(4) N is a pure submodule (direct factor, pure hull) of M iff gN is a pure
submodule (direct factor, pure hull) of gkM.

That the modules given in 5.2 are the only indecomposable R-modules follows
from 5.1 and the next theorem.

Theorem 5.4. Let R be a commutative ring. Then every indecomposable R-module
is an Rgp-module for some maximal ideal IN.

Proof. Since R is commutative, multiplication by an element of R is an en-
domorphism of every R-module. But the endomorphism ring of an indecomposa-
ble U is local (4.3). Thus

IM={re R| x> rx is not an automorphism of U}

is a maximal ideal of R and U is an Rgp-module.

We add another application of localization. First we note the following compu-
tational fact:

Lemma 5.5. Let S be a multiplicative subset of the commutative ring R, M an
S-module and ¢(x) a pp-formula of Lg. Then

e(ST'M) =S (e(M)),

and therefore

%le e(ST'M) iff saee@(M) for some seS.

Theorem 5.6 (Garavaglia). Let M be an R-module, R commutative. Then M=
Dy My, where I ranges over all maximal ideals of R.

Proof. It is well known that |N| =[]y |Ng| mod ». Now by 5.5

1) =TT oMMl = TT I (M (M| = 1 D Maz).
m m m

Next we treat ‘indecomposable pairs’. First note that most of our general theory
holds for more general structures:
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Let L be any language containing 0, +, —. An additive L-structure % is an
L-structure which is an abelian group (w.r.t. 0, +, —) and where

f*:A" — A is a homomorphism (f an n-place function symbol, in L),

R¥< A" is a subgroup (R an n-place relation symbol in L).

pp-formulas are of the form 3x ¢ where ¢ is a conjunction of atomic formulas.
It is now clear how to define “pure, compact, indecomposable, small, pure hull,
etc.” for additive structures.

R-modules are additive Lg-structures which satisfy r(sx)=(rs)x and rx+sx =
(r+s)x and 1x =x.

Now let R be a ring and L =L, U{P}, P a unary predicate. A pair (U, V)
where V is a submodule of the R-module U, is a special additive L-structure.

Theorem 5.7. Let R be a Dedekind ring and V a submodule of the torsion-free
R-module U. The pair (U, V) is indecomposable iff it is of the form (Quot(R), 0),
(QuOt(R)a QuOt(R)), (RfB) ié% : %n)’ (RfB, O) or (QUOt(Rﬁ)) RﬂS), % a pnme ldeal,
n=0.

Proof. By 5.4 (generalized version) we can assume that R is a discrete valuation
ring. Let Rp be the maximal ideal, K the quotient field of R and K the quotient
field of R.

The pairs (K, 0), (K, K), (R, ﬁp“), (R, 0) are indecomposable since U is
indecomposable as an R-module and V is a pp-definable submodule.

Assume (K, R) = (U,, V,) ®(U,, V,), a non-trivial decomposition. Then ~since
R and K/R=K/R are indecomposable —we have e.g. V, =0 and V,=U,. But
then K cannot be the divisible hull of R.

It remains to show that (K, R) is compact. An adaptation of the Elementar-
teilersatz yields that—for all pairs of R-modules—every ppf o(x;,...,x,,) is
equivalent to a ppf

0=Q,(x)A - AO=Q(X)ATIY1, ..., Voo Z1s e - -5 Ze

(p“‘ylle(x)

AD™Y, = Ry(x)
/\81,1y1 + M + Sl'byb +pm‘21 Esl(x) mOd P

AS Y1+ + Sy + Pz, =8, (x) mod P
Aty Y1+ ity = Ti(x) mod P

Aty Y1+ Y = Ty(x) mod P)

where Q,, R;, S;, T; are R-linear combinations of the x, n, m; =0 and s,;, t;; € R.
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Since in the case of (K, R) the y, 2; exist uniquely, the pp-definable subgroups
of (K, R) are the Ra (a € K). The completeness of the valued field K entails now
the compactness of (K, R).

Finally we show that all indecomposable torsionfree pairs are in our list. For
this we note that by the above Elementarteilersatz a substructure (W, X) of
(U, V) - U torsionfree —is pure iff for all p"

wWNp'U=p"W, WN(V+p"U)=X+p"W
and W, X are R-submodules.

One sees that (R, Rp™), (R,0), (K, R) are the pure hulls of (R, Rp"), (R, 0)
resp. (K, R).

Let (U, V) be indecomposable, V a submodule of the torsionfree U. Then U/V
is compact and, by the proof of 5.1, U/V is zero or contains a direct factor of the
form R/Rp" (n=1), R, K or K/R.

Case 1: U/V=0. Then U=V is indecomposable and (U, V)=(K, K) or
=(R,R).

Case 2: U/V has a direct factor R/Rp"” (n=1). Let a+ V correspond to
1+ Rp”. Then p™a is divisible by p* iff k divides m and p™a is divisible by p*
mod V iff k divides m mod n. Therefore (Ra, Rp"a)=(Ra, VN Ra) is a pure
substructure of (U, V). Thus (U, V) is the pure hull of (Ra, Rp™a)=(R, Rp™) and
(U, V)=(R, Rp". )

Case 3: U/V has a direct factor R. Let a+ V correspond to 1€ R. Then p™a is
divisible by p* mod V iff k divides m. Therefore (Ra, 0)=(Ra, VN Ra)=(R, 0) is
pure in (U, V) and (U, V)=(R, 0).

Case 4: U/V has a direct factor K. Let a+ V correspond to 1€ K. For every n
there is ve V s.t. a+v is divisible by p". By compactness there is a ve V s.t.
b=a+v is divisible by all p™. Then (Kb, 0)=(Kb, VN Kb)=(K, 0) is pure in
(U, V) and (U, V)=(K, 0).

Case 5: UJV has a direct factor K/R. Let a+ V correspond to 1+ R. As in
Case 4 one can assume that a is divisible by all p™. then (Ka, VN Ka)=(K, R) is
pure in (U, V) and (U, V) =(K, R).

Remark. A theorem similar to 5.7 is true for Priiferrings.

Now we turn to injective modules. Let

(X1, .., X)) =3V Y /\k HaY1+hayat - =8Xy 0+ 8.,
i<

be a pp-formula. If M is injective and a< M, then ¢(a) holds in M iff ¢(a) holds
in some extension of M. But the existence of an extension in which ¢(a) is true is
for all modules M equivalent to the condition

Z (s aq -+ sj,nan) =0,

]
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whenever
Z L= Z tri.=-=0  (§€R).
] I
Thus, if we define (in the case n=1) the left ideal
A, = {Z 61 Z == Z blim = 0}:
1 1 1

we have for injective M

MEg(a) iff A,a=0.

Since every left ideal U is the annihilator of some element of a suitable injective
module (of 1+%2 in the injective hull of R/) we have

A, ={re R |for all injective M, MF@(x) — rx=0}.

This helps to see that the following lemma is true.

Lemma 5.8 (see [5]). (1) For every pp-formula ¢(x) there is an unique left ideal
A, s.t. MEo(a) iff A,a=0 in all injective M. The left ideals U, are just the
pp-definable subgroups of the right R-module Rg.

) Ay =AU, +U, A, =A, N,

(3) The pp-complete types realized in injective modules are in 1-1 correspon-
dence with the left ideals of R via

p(x) > “Ann(x)”={re R | =0¢ep}
and

A {o | A, = WU{x | Ay, & A} = por.

Corollary 5.9 (Garavaglia). If R is left noetherian, every injective R-module is
totally transcendental.

In the next theorem, which is essentially due to Matlis [13] (see also [32]), we
determine all injective indecomposable modules. We refer the reader to [18].

Notation. We write H(?) for H(py), where py is the pp-complete type which
corresponds to the left ideal .

Theorem 5.10. (1) H(Y) is indecomposable iff A is irreducible, i.e. A+ R and
A< B, A € implies ASBNE for all left ideals B, €.

(2) Let A, B be irreducible. Then HA)=H(B) iff A and B have a common
quotient, i.e. (A :r)=(B:s) for some r¢AU, s¢B.

Proof. (1) Let %A be irreducible. If 4, ¢, are pp-formulas not in p, we
have A, #A.  Since A (A+A)NA+YA, ), there are reA st
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(Rry+A, )N (R +A ) # AL Set o(x)=rix=0Ar,x=0. Then
eepy and (Y1Ne)+(PNe) ¢ py.

By 4.4, py is indecomposable.

Let now py be indecomposable. Clearly % # R. Assume A< By, A< B,. Pick
r,eB\U, and set Y (x)=rx=0. Since py is indecomposable there is a pp-
formula ¢ € py s.t.

WnNe)+(WNe)épy, ie. A +Rr)NQA,+Rr) ¢ A

Therefore A & B, NB,, which shows that A is irreducible.

(2) Note. If M is injective, N is a pure compact submodule of M iff N is a
direct factor of M iff N is an injective submodule of M.

This shows that the hull (in M) of a submodule N of M is the injective hull of
N. Therefore a submodule L of M is small over N iff every non-zero submodule
of L has non-zero intersection with N. (See e.g. [18]).

To prove 5.10.2, let a € H(Y), Ann(a) =" and b € H(B), Ann(b) =B. Assume
that ¥ and B have the common quotient (A :r)=(B:s). Since r¢A, we have
ra#0 and therefore H(A)= H(ra) = H(Ann(ra))=H® :r). Since also H(B)=
H(®B:s), we conclude H(Y) = H(B).

For the converse assume U=H()=H(B). Since U is small over Ra,
RbNRa#0. Let ra=sb#0. Then (A:r)=Ann(ra)=(B:s).

Remark. M is called absolutely pure if it is pure in every extension. This is the
same as to say that, for all ppf ¢, MF ¢(a) iff a satisfy the set of equations given
before 5.8. It is easy to see that M is absolutely pure iff the pure hull of M is
injective. A pure submodule of an absolutely pure module is again absolute pure.
If R is left coherent (e.g. left noetherian) absolute purity is elementarily expressi-
ble [5].

Example. Let R be a boolean ring. Since all Ryy are fields, all My; are absolutely
pure. Therefore all R-modules are absolutely pure (see Bourbaki [2]).

If R is atomless (= no principal prime ideals), the injective hull (= the pure hull)
of R has no indecomposable factors. For: if a € R\0, we have ra € R\0 for some
reR. And if H(a) were an indecomposable factor of R, ra would realize an
indecomposable type in R. But this is impossible.

Corollary 5.11 [13]. Let R be a noetherian commutative ring.

(1) The injective indecomposable R-modules are in 1-1 correspondence with
the prime ideals B via R+> H(R).

(2) If A is irreducible, {a |Ab¢Aab A} ="B is the unique prime ideal B s.t.
H®) = H(B).

Proof. Clearly prime ideals are irreducible. Since (B:r)=T (r¢B), we have
H(B) = H(L) 2 V=4 for prime ideals R and Q.
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Let A be irreducible. If r, s¢ A, choose te (A + Rr)N (A + Rs)\A. Then
AN+ A:s)= QA1)

This shows that there is a largest quotient (% :¢) (R is noetherian), which must
be {r | 3s¢ A rs e A}. This description gives immediately the primeness off (2 : 1).

Note. It is well known, that a maximal quotient (A : r), r¢ ¥, is prime. Irreducible
ideals are primary. We constructed the associated prime ideal.

6. The Krull-Remak-Schmidt theorem

We are going to prove:

Theorem 6.1. Every compact module M has a unique (up to isomorphism of the
factors) decomposition

M=® UDE

iel
where the U, are indecomposable and E has no indecomposable direct factors.

The theorem is essentially due to Fisher (unpublished). Our uniqueness proof
covers aiso the case of the Krull-Remak-Schmidt-Azumaya theorem which states
the uniqueness of the representation of a module as a direct sum of modules with
local endomorphism ring.

The existence is easy to prove: Let (U,),c; be a family of indecomposable
submodules of M, s.t. the sum },.; U; is direct and pure in M, and maximal with
this property. Then

H(Zu)=®T

iel iel

is a direct summand in

M= H<Z u) DE.
iel
Because of the maximality of (U;), E has no indecomposable factor.

For the uniqueness proof we develop dimension theory in modules. Let us drop
the assumption that M is compact.

We define a dependence relation on the set of direct factors of M as follows: K
depends on [F (F a set of direct factors) if there is a finite subset F, of F s.t. no
decomposition M=K P K’, | JF,= K’ exists.

The following axioms are satisfied:

(Dg) K depends on {K} (if K#0).

(D;) K depends on F iff K depends on a finite subset of [.

(D,) If K depends on FU{L} but not on F, then L depends on FU{K}.
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Proof of (D,). Suppose that K does not depend on F, L not on FU{K} and let
F, be a finite subset of F. Then there are decompositions M=K@®K' =L ®L’

whare | |E K and TV In: r—” Cince KT/ we have M= KB1r e

WIICIC () U A aiGa Ly g e SUILT Oy Y oA nave M i N\

(K'NL"). This shows that K does not depend on [FU{L}.
The next lemma show that, if we restrict ourself to factors with local en-
domorphism ring, also a weak transitivity axiom holds.

Lemma 6.2. Let U, U, L, F be direct factors of M, End(U;) local. Assume that (a)
{L}YU{U}; 1 is independent, (b) every U; which is isomorphic to a direct factor of U
depends on {L}UF, (c) U depends on {L}YU{U,}.,.

Then U depends on {L}UF. (F is independent if no U<cF depends on F\{U}.)

Proof. We can assume that I ={1, ..., n} and [ is finite. If U does not depend on
{L}YUF, we write M=U®DK, {LYU\JF<K. Let g:M— U and f: M — K be the
corresponding projections.

We will use the following general fact: M = U’ @ K iff g induces an isomorph-
ism from U’ to U. Since {L, U, ..., U,} is independent, we have (cf. the proof of

(D,) above)
M=LOBU & - -®U, EM'.

Let 7: M — U, be the second projection. Since End(U,) is local and w(f+g)!
U, =id| U, there are two cases:

Case 1: mg{ U, is an automorphism of U,. Then 7 induces an isomorphism
from g(U;) to U;. Whence

a & /1\ /T r NINTT ‘1’,

T Fany
V=L ®g(U)DU,D---DM'.

Set B=LOU,® ---®M'. Then U=g(U)PUNB and g induces an

isomorphism from U; @UNB to U. Therefore M=U, QUNBEK

We have: U, is isomorphic to a direct factor of U, U; does not depend on
{L}UF. Thus Case 1 cannot occur.
Case 2: =f | U, is an automorphism of U;. As above we conclude that

M=L®fU)BU, D - - M

and f| U,: U, — f(U,) is an isomorphism. Proceeding in this manner, we finally
arrive at

M=L®f(U)Df(U,)D--- &M’
and isomorphisms f | U, : U; — f(U;). We have
K=f{U)® - -Df(U,)DLBM)NK
and f induces an isomorphism from

U e -- U, e(LDdM)NK
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to K. Therefore
M=USDU,D--- U, B(LOM)NK.

This contradicts the assumption that U depends on {L}U{U;}..,.

If we restrict our dependence relation to direct factors of M with local
endomorphism ring we have by 6.2 (take L =0):

(Ds) If {U;};; is independent, all U; depend on F, U depends on {U;};.,, then
U depends on F.

The axioms Dy—Dj; are enough to conclude that a basis exists (that is a maximal
independent set) and that all basis’ have the same cardinality: the dimension of
the dependence structure.

Let U be a module with local endomorphism ring (e.g. an indecomposable). We
define U-dim{(M) to be the dimension of the dependence structure whose
underlying set is the set of all direct factors of M isomorphic to U.

‘We are now in a position to prove the classical K-R-S-A theorem. It is enough
to show that, if the End(U;), End(U) are local,

U—dim(@ U,) =W{iel|U =U}.
iel
Thus, let U be a direct factor of €, ; U. Since U depends on {U},, if
Yier, UuNU#0 (I, finite), U depends on {U,};.;. By 6.2, U depends on {U; | U, =
U} =F. Therefore F is an U-basis of B,_, U..

To prove 6.1 we will prove that for indecomposable U

U-dimM)=Kiel|U,=U}.

where M is compact and decomposed as in 6.1.

Here the above argument does not work, because a non-zero direct factor of M
has not to intersect non-trivially with €B;.; U,. But for compact M we can develop
our dimension theory a little further:

Definition. Let A, B two subsets of the compact module M. A and B are
independent if the following equivalent conditions are satisfied:

(a) There is a decomposition K=K &L, A<K, B<L.

(b) For all pp-formulas ¢(x,y), ac A, be B MEg(a, b)=> MF@(0,b) (and
therefore also MEg(a, 0)).

(¢) There is a partial homomorphism f from M to N st. f} A=0, f|B
partially isomorphic.

By (a, b) our two notions of dependence agree for direct factors of M:

Corollary 6.3. Let U, [F be direct factors of M. Then U depends on F iff U and Y F
are dependent (in the sense of the last definition).
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Proof (equivalence of (a), (b), (c)). (a) = (b) Let : M — L be the second projec-
tion. If MEg(a, b), we have MEg(m(a), w(b)).

(b) = (¢) If (b) holds, idg U0, is a partial homomorphism.

(¢c) — (a) follows from the next lemma.
Lemma 6.4. Lei A, B independeni {in the sense of {(c)), B’ sn

(1) A and B’ are independent.

(2) If H(A), H(B) are hulls of A, B in M, then M=H(A)® HB)® M'.

Proof. (1) If flA=0 and f!B is partially 1somorph1c extend f to a

rnhicm o defined on M. Then ¢ is partial icaomarnhis an R/

ha
l\ulx\uu\,uylllolll & UvLniAa Uil ive. ineén y 15 pai I.xall_y lDUlllUlylll\, vl 1 .

(2) If flA=0, fI'B is partially isomorphic, then we extend f ' f(B) to a
homomorphism g from N to M. Then id, UOQg is a partial homomorphism from
M to M, since it is extended by 1— gf. This shows that we can apply 1 twice to
conclude that H(A) and H(B) are independent. And furthermore that then
idpeay U Oi(gy is partially homomorphic. Let h: M — H(A) extend this partial

SYHAY Y VYHB) g Wt SENS Ry TARRERIRS RIS ke

homomorphism. Then M= H(A)@ker h. But H(B) is a direct factor of ker h.

Corollary 6.5. (1) LE&K=L ®K (recall that — denotes the pure hull.)
(2) B' is small over its subset B iff A, B independent => A, B’ independent for all
AcM

Proof. (1) Let M=L D K. Then M=H(L)D H(K)® M'. Since M is small over
L®K, M'=0.

(2) Let the condition of (2) be satisfied. Write M = A @ H(B). Since A, B’ are
independent, we have M = A @ B”, B’ B”. The canonical isomorphism H(B)=

MJA =B" fixes B. Whence B” is small over B as H(B) is.

A aqg in &1 and TIJ

Wa vatitvn to tha neanf Af A1 Tat A4 L ecompose
L L% COCULLIPUDALUE dad 1l V. L Al ~

AAA N A VIgEL v 19§ \w) y'UU] UJ V.l LA
indecomposable. We want to show that F ={U, | U, = U} is a U-basis of M. This
implies then that |{i e I | U, = U}| equals U-dim(M) and is therefore independent
of the particular decomposition of M. Thus “the U, are uniquely determined.”

That F is independent is clear.

Let U be a direct factor of M. U and ,_; U, + E are dependent. Whence, by
6.3, U depends on {E}U{U,};.;. Suppose that {U}U{U,};; is independent. Then,
by 6.2, it is impossible that E depends on {U}U{U;};c;. Whence U depends on
{U.}icr and therefore —by 6.2—on F. Thus F is a U-basis.

Finally we show that E is uniquely determined up to isomorphism. Assume

M= U DE"
iel
By 6.2, E cannot depend on {U?},.;. By 6.3 and 6.4,
M=DPUPEDK
iel

We conclude E'=E @ K and similarly E=E'© L. E=E’ by the next lemma.
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Lemma 6.6 (Fisher). Let E be compact and E=E®K®L. Then E=E®K.

Proof. Let E=E,® M,, where E,=FE and M,=K ® L. We can proceed: E, =
E, ®M,,,, where E,.;=F and M, .,=K®IL, i=0,1,2,.... Since all M,®P
M,®B--- @M, are direct factors in E, D,;_, M, is pure in E. Therefore E =
&... M, &M'. But

D M=KBL,

therefore by 6.5(1)
DOMIEK=DP M.

icw lew

This implies E=E®K.

Remark 6.7. If M, = @ielk UODE, (k=1,2) are decompositions as in 6.1. Then
also
M1®M2: @ u@(E1®E2)

icl,ol,
is a decomposition as in 6.1, i.e. E;®E, has no indecomposable factors.
Proof. Set M =E, D E, and let U be an indecomposable factor of M. By 6.2, E;

does not depend on U and again, by 6.2, E, does not depend on {E,, U} (for E,
does not depend on E,). Whence {E,, E,, U} is independent. This is impossible.

In general one cannot expect a compact module to be the pure hull of a direct
sum of indecomposables. But up to elementary equivalence this is true:

Definition. M is weakly saturated if every M-consistent type p(xy,...,x,) is
realized in M.
Theorem 6.8. Let M be weakly saturated and compact. If

M=@ U ®E

iel
is a decomposition as in 6.1, then M and mare elementarily equivalent.
Proof. For p a cardinal and p an indecomposable type we define
Pu(x) =iL<Jup(xi)U{<p(xil, C %)
- 0(0,x,,...,% )] eppf, ir,...,i,<w all different.}
By 6.4, p,(x) is realized in the compact module N iff
U-dim(N)=y, where U=H(p).

Thus U-dim(M)=n iff p.(x) is M-consistent, and we can conclude that for
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compact N
N=M = U-dim(N)<= U-dim(M) mod oo,

6.8 follows from 1.5 and

(+) OIP(E)>1 > cp/w(%—i):oo.

To prove (*) assume that ¢/Y(E)>1. By 4.8, ¢/ is contained in an E-consistent

indecomnosable f\th Thus there is a comnact N=F and an indecomnosable [J

NUCLOILPOUSALIC YypPo. 111UsS uilic 1S (P 1NLCLOINPUSQUIC

s.t. o/Y(U)>1 and U-dim(N)>0. Now D,_, U, HN=M and therefore

U- dlm\ )+ U-dim(N) < U-dim(M) = U- dlm DU U~ mod .

iel iel

This implies
U-dim(ﬁ) =» and ¢/ lb(_®—[f_,) =

iel icl

Corollary 6.9. Every module is elementarily equivalent to a direct sum of indecom-
posables.

Corollary 6.10. Two weakly saturated and compact modules M, N are elementarily
equivalent iff U-dim(M) = U-dim(N) mod o for all indecomposable U.

If we define I;(M) to be the largest ne{0,1,..., %} s.t. p,(x) is M-consistent
(U = H(p) indecomposable), we have by 6.10 for any M, N

M=N iff I,;(M)=I,;(N) for all indecomposable U.

The elementary invariants I (- - -) contain less redundancy than the invariants
@/Y(- - ) (see next page). In the case of abelian groups the I, are just the
Szmielew-invariants (see 9.6).

We give now an alternative description of the Iy (- - -):

TrT

Definition. For every module M and every indecomposable U define
Iy(M) = min{*"*log(e/$(M)) | ¥ < ¢ ppf}.
(By convention 'log(- - ) = "log(e) = and *log(1)="log(B) =0 (a>1, B <x).)

Theorem 6.11. (1) M =N iff I;(M) = I;(N) for all indecomposable U.

SRS RSER s AU SUN Rihing g

(2) If M is weakly saturated and compact, U-dim(M) = I;(M).
Proof. (1) foliows from (2Z) and 6.8.

(2) follows from the following two claims. We assume M to be weakly
saturated and compact.

Claim 1. U-dim(M) < I;(M).
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Proof. For all ppfs y<¢ we have o/P(M)=(o/Pp(U)V ™™ and therefore
v Dlog(e/y(M)) = U-dim(M).

Claim 2. n<Iy(M) > n<U-dim(M).

D- ~F {"l-. + I7 ) & 7% Tlr\avo are twWo cases
LTO0f. il t. U 1 LIICTC al® vwuU Lades

oose p s. =H{p

Case 1: UDU=U. 0< (M) implies that (p/(p(M)>1 for all ¢/ p. By 4.5,
p is M-consistent. Thus U-dim(M) >0 and therefore M=M @ U™ for all m. We
have U-dim(M) = .

Case 2: U® U U. We can assume that p contains a pair &/ s.t. §/y(U) <.
We prove Claim 2 by induction on n. Assume n < I;(M). By induction we have
M=U"@N. Let ¢/} cp be arbitrary. We show that ¢/¢(N)>1. By 4.5, we can
assume that /Y <g@/¥. Then @/Y(U)=m is finite. Now mo® <e/y(M)=
m" - o/Y(N). This implies ¢/(N)>1. Thus p,., is M consistent and we have
n+1=<U-dim(M).

Corollary 6.12. Let {(¢/Y)| ¢/ F} be a basis for the neighbourhoods of U (cf.
4.9). Then

I, (M) = min{**Ylog(g/ (M) | ¢/ € &F}.

Proof. This follows from the above proof of 6.11 and 4.11. All that we have to
know is, that

(*) UBU#U > ¢/Y(U) finite for some @/c .

Proof of (*). Let @o/do(U) be finite and >1. There is ¢/YeF s.t. (o/Y) is
conttained in (¢o/¢). We claim that ¢/¢(U) is finite. If not, there is an elementary
extension N=U @ M of U s.t. the index of (N) in @(N) is—say ~ larger than
|U|. It follows that ¢/¢s(M)>1. But then ¢@q/yis(M)>1 by 4.11 (proof). This

cantradicte the finitanace of oo Jude (T = o~ il (N

LU aUIvidy UIT HIIICIIUSS UL \yo/ Yorv ) = Por Worly /.
Note that for (*) we used only that & is a basis for the neighbourhoods of U in
UU.

Corollary 6.13. If {(¢/¥)| ¢/ye F} is a basis of UX, M and N are elementarily
equivalent iff o/Y(M) = @/Y(N) for all ¢/ .

Proof. By 6.11.1 and 6.12.

Remark. Look at the topological space U® defined in 4.9. First we note that the
closed subsets Uy, (see 4.10) can be described as {U | I;(M) > 0}.

Now let (m.;):;_. = be a family of numbers 0, 1 , e, Define UJ | to be the set

WL MU /Ueuy® V€ @ 1aliily O NUilIolis YV, 4, ... i i [EO IR0 o § 81

of all U s.t. my>0. Then there is a module M st IL,(M)=my (UcUR) iff
my =, whenever U is in the closure of U,,\{U} or when UD U=Uc¢el,,.
(Proof. Note that I,,(U) =, it U@ U= U, and =1 otherwise. Take ,_; U for
M)
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We conclude this section by an explicit description of saturated modules.

Theorem 6.14. Let (U));.; be a family of indecomposables s.t.

. w57\ if Ip(M) = n is finite,
U'd‘m<® Ui) B {)\, if Tpy(M) =oo.

iel

If |R|+Ro<cf k, k <A, then [, U, is A-saturated and elementarily equivalent to
M.

Proof. M =[], U, follows from 1.8, 6.8, 6.11. Let p be a type with parameters
from A <[;.; U, |A|<A, which is realized in an elementary extension N of
[I.: U, say by b. Choose I, <1, s.t.

AcJlU=K=M and U-dim<€B Ui)<)\.

iel, iel,

By 3.4, K is compact. We write N=K®L and b=a+c, ackK, ceL. Let
—wetp (c). By 4.7 there is an L-consistent indecomposable g containing tp*(c)U
{—w}. Since Iy (L)>0, Iy (M) =o. Thus for A-many i€ I\1,, U, = H(q). This
shows that we can choose a sequence d €[[i.;\;, U s.t. for every - e tp (c) there
is an i e I\ I s.t. d; satisfies ¢ and all d; realize tp*(c). Whence tp™(d) = tp™(c).
It follows that tp*(b/A)=tp™(a+d/A). a+d realizes p inside [, U..

Corollary 6.15. If A\'R*®e= ), then every infinite module is elementarily equivalent
to a saturated module of power A, which is of the form

(R|+R )+
U, U, indecomposable.

iel

Remarks. (1) A special case of 6.1 is: Every injective module has a unique
decomposition into a direct sum of a module without indecomposable direct
factors and of the injective hull of a direct sum of indecomposable injectives.
(2) Let M be as in 6.1 and J< I. Then the following are equivalent:
(a) If M= ®i61 V.®F, V,=U, F=E, then ®,; V=D, U.
(b) If j € J and there is a non-zero homomorphism from U; to U,, then i J.

7. Modules of bounded width

In this section we give a sufficient condition on a compact module to be the
pure hull of a direct sum of indecomposables. For countable R this condition
is—in a sense — also necessary.

Definition. Let M be a module. We define wy (/) — the width —for every pair
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¢y < ¢ of pp-formulas by recursion on the ordinal a.

wule/) =0 iff $(M)=o(M),

wule/P)=a it wyle/y)La and for all y=x; <o (i=1,2)
wa(x1/x1 N x2) <a or wy(xa/x1Nx2)<a (a>0),

wal(@/) = Iff wy(e/Y) #a for all ordinals a.

M is of bounded width if wy(x=x/x =0)<co.

Note that wy(¢/¢p) <1 iff the set of all pp-definable subgroups of M between
Je( AN and o(M) is linearly ordered bv inclusion (Arlflorl in nvnnf M. Prest has a

Yivi ) Yava ) 15 aadicaray Uinaviatu Uy )0 2 LGER T ivi. £ iTS

nicer definition of width.)
We will prove

Theorem 7.1. (1) If M has bounded width, then every compact module elementar-
ily equivalent to M is the pure hull of direct sum of indecomposables.

(2) If R is countable, then the converse it true: If every compact module
elementarily equivalent to M is the pure hull of a direct sum of indecomposables,
then M is of bounded width.

Problem. Is 7.1(2) true for arbitrary R?
7.1(1) is a generalization of a theorem of Garavaglia:

Definition (Garavaglia). M has elementary Krull dimension (we say Krull dimen-
sion), if there is no dense chain of pp-definable subgroups of M.

By 2.1 superstable modules have Krull dimension. By 5.8 all injective R-

modules have Krull dimension iff R has Krull dimension as a ri

Sirany QUICNsSOnN Fa Aasdaain GRINICTHSE

Lemma 7.2. Every module with Krull dimension is of bounded width.

Proof. If wy(¢/i) =, we find x;, x» between ¢ and ¢ s.t. wy(x;/(x1Nxz)) =
(i=1,2). By 7.4(2) below wy(¢/x1) = walx1/tf) =. If we continue in this way,
we construct a dense chain of definable subgroups between (M) and ¢(M).

Corollary 7.3 (Garavaglia). (1) Every compact module with Krull dimension is the
pure hull of direct sum of indecomposables.
(2) Every totally transcendental module is the direct sum of indecomposables.

7.3(2) follows from 7.3(1), since every totally transcendental module is com-
pact. We give an independent proof of 7.3 at the end of this section. By 5.9 we

have as a corollary a theorem of Matlis [13]: If R is left noetherian, every
injective R-module is the direct sum of indecomposables.
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Examples. (1) If R is an valuation ring, wy(x =x/x =0)=<2 for every M. This
follows from our description of all pp-formulas in Section 5. Thus every compact

maodule aver a valuation ring is the pure hull of a direct sum of indecomnosables.

NOCLIC OVOL a VallallOn iy o L0 P A O A O S O ALY sale

(2) From 5.8(1) and 7.1 follows: If Rg is of bounded width, all injective
modules are the injective hull of a direct sum of indecomposable injectives. If R is
countable, the converse is true. (All injectives are the injective hull of a direct
sum of indecomposables iff every left ideal of R has an irreducible quotient.)

(3) If R is an atomless boolean ring, o R has unbounded width. Indeed, in the

example preceding 5.11 we showed that R has no indecomposable factors.

“

We start our proof of 7.1 with some observations on wy. (The proof of 7.1 w
be completed after 7.7.)

=

Lemma 7.4. (1) M=N implies wp(: - -)=wn(---). We have also wy(-- )=
Wi (- 0.

6o AP N R tho anzean 1 O\ aaemliag w =10\
\&) kp/tp\lp/(p Un trie sense u_y 1.7) HTpUES M\\p/ q;)\ VVM\\W yj.

(3) Suppose that ¢ = o < ¢. Then wy(@/{) < wn (/) + wp(o/ih).
(4) wy (/) depends only on ¢(M), ¢(M) and M.
(5) wa(--)Yswp(- ), if Nis a pure submodule of M.

Proof, (1\ and (A\ follow bv an eagy induction on w..(- - -). Also it is clear that

Proof, follow by an easy induction on w (s 0 ). Also it is clear that
war (/) depends only on the isomorphism type of the lattice of definable
subgroups between (M) and ¢(M). Therefore 2 is true (again by induction).

We prove (3) by induction on a = wy{a/{): the case a =0 is clear. So let 0 <«
and B =wynlo/a). If yox, <o (i=1,2), we have < x;No <o and therefore
e.g.

wr(aNa)/(NxaNo)) =y <a.
By (2) we have
wan((a No+xa N xR/ OaNx2) = .
Now x1/(x1No+x1Nx2)<¢/o implies wy(x1/(x;No+x1Nx2))<p and by in-
duction
wrxi/xNx)<=B+y<B+a.
(A similar proof shows that also wy(@/Y)<sa+B.)

We will not use (5), the proof is left to the reader.

Definition. I et p be a pp-complete type.

(1) A pp-formula  is large in p, if ¢¢ p and for all y=ys¢p there isa ¢€p
st. gy and (Y, Ne)+ (W Ne) €p.

(2) A compiete pp-type q is associated to p via ¢, if ¢ p and ¢ € p iff ¢ €q for
all ppf ¢ which lie above .
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Examples 7.5. (1) p is indecomposable iff every ppf ¢¢ p is large in p.
Proof. If p is indecomposable and ¢ <y,¢p, there is ¢@eep s.t.
(lll @] m,\\ + (llln Ne.)éDp If we set ©=@;t+ we have 1/ o)

¥/ 7 - b

(¢1ﬁ¢)+(njjzﬂ<p)¢p.

(2) If q is indecomposable and associated to p via ¢, then ¢ is large in p.

(3) If p is M-consistent and ¢/¢ € p is an M-minimal pair (i.e. $(M) = x(M) iff
lﬂ(M)CX(M)% @(M)), then i is large in p.

(4) Two M-consistent types containing the same M-minimal pair ¢/ are
associated via .

Proof. If p is M-consistent and contains ¢/y, then x € p iff o(M) < x(M), for all
x above .

=
[=

Theorem 7.6. Let p be a pp-complete type. For every s large in p there is an
indecomposablie type q associated o p via . H{(q) is isomorphic to a direct facior of
H(p) and — up to isomorphy — uniquely determined by . All direct indecomposable

factors of H(p) are obtained in this way.

Proof. Let ¢ be large in p. Choose q* as a set of pp-formulas, closed under
conjunction, with s+ ¢ € p for all ¢ €q™, and maximal with these properties. Set
a=q" " U{¢ | e¢q’}. We will see below that q is consistent. If ¢ € q is above ¥,
then clearly ¢ep. If conversely ¢cp is above i, we have (Y+o)Ne=
v+{(pNe)ep for ali ¢eq. this shows ¢e€q. It remains to show that q is
indecomposable: For this assume ;¢q (i=1,2). Then there is a ¢€q s.t
¥+ (g N) ¢ p. Since ¢ is large in p, there is a ¢ € p s.t. Y < (whence ¢ €q) and

(¢+¢1ﬂ¢)ﬁ¢+(¢+¢zﬁ¢)ﬂ<ﬁ¢p-

Therefore

hNeNeg+pNeNeéq.

Now let q be indecomposable (but we do not assume consistency) and as-
sociated to p via 4. Let p be realized by a € H(p). Since a satisfies s + ¢ for every
(p€q+, q U{U’I(L—u}f is consistent in n\p) Let UEH(y) be a realization of
g U{y(x —a)}. We show that b realizes q. Thus, let ¢ q. Since q is indecompos-
able, there is ¢ € q s.t. (yN@)+ (YN e)¢q. Then also Y+ (YN e)¢q. But now we
can conclude that ¢+ (¢ Ne)¢ p. This implies that b does not satisfy ¢ M. We
have shown that H(q)= H(b), which is a direct factor of H(p).

If g (i=1,2) are indecomposable and associated to p via i, then g; is
associated to .. Therefore H(q;) is isomorphic to a direct factor of H (qz),
whence isomorphic to H(qg,).

Finally we show that every indecomposable direct factor U of H(p) comes from
a type which is associated to p. For this let a realize p in H(p)= U@ C and let &
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be the projection from H(p) onto C. Since 7 is no partial isomorphism, there is a
ppf ¢ s.t. H(p)¥d(a) and H(p)Ey(m(a)).

Thus, if g is the tyne of b=g—n{a), we have

10, 1 {4 L8 4 S i), WO i

associated to p via .

Corollary 7.7. The following two properties of M are equivalent:

(a) Every compact module elementarily equivalent to M is the pure hull of a
direct sum of indecomposables.

(b) Every M-consistent pp-complete type has a large formula.

Theorem 7.1 foilows from the next iemma (@/p=x = x/x=0).

Lemma 7.8. Let M be a module, ¢/y a pair of pp-formulas.

(1) If wy(o/th) <o, then every M-consistent pp-complete containing ¢/¢ has a
large formula.

NN TLf D 217 I 7 G

{2) If R is countable and wy{@/) =, then ¢/ belor
pp-complete type, which has no large formula.

Examples. If R is an atomless .boolean ring, the type of 1 in R has no large
formula. (See 5.8(3)): py has a large formula iff 2 has an irreducible quotient.

Proof. (1) Let p be M-consistent and ¢/ € p. Choose ¢g/iro € p of minimal width
a. Then iy, is large in p. For if o yyép (i=1,2) are given, we have e.g.
w1 N/ (W NP Nep)) <a. By 7.4(2) also wa (¥ N@o+ PN o))/ (2N
@®o)) < . The minimal choice of a implies ¢, N @+ x2 N @ € p.

(N T ot v {nlidN =00 and f. .1 an enitmeratian af all nn_farmulac We canctruct
1) LETU W\ @) = € and iy an Senumeraudn oI au pp-iormuLas. v CONsiruct

a tree T of pairs of pp-formulas such that
(i) T is finitely branched, has length « and no endpoints.
(i1) All pairs in T have width oc.

(i) If a/xe T is above a/xe T, then (a) 6 <o and (b} xNa<x.

We construct the lavers T, of T recursively: T, ={¢/Ys}. Let T, be defined. We
choose for every o/x € T,, one or two immediate successors in T, .:

Case 1: wM((a N )/ (xN,))=x. Then ofx has the successor
(o Nd)I(x N ds,).

Case 2: wy((oNg)/(xN))<w. Then by 7.42) we have also
wa((o N, + x)/x) < and by 7.4(3), wyl(o/(o N, + x)) =o. Whence there are
o N, +x <1, <0 s.t. wayl(T/(t1N1y)) =. We define 7,/(t;N7,) and /(7N 1)
as the two immediate successors of o/x in T, ;.

Now set p* ={c | for some n and all 6/x<T, &(M)<o(M)}.
Claim. p¢p” iff pNo < x for some o/xeT.

Proof. If pNo < x for some af/x € T, we have by property (iit) p N < x for all



Model theory of modules 187

a/x above af/x. Whence &(M) ¢ p(M) for all such 6/x € T, and p cannot belong to
p”.

If conversely p =, ¢ p”, then in the construction of T case 2 must occur for
some o/x € T,. But then r,Np<o N, <1, NTs.

Set p=ptU{—o|oé¢p’}. We show first that p is M-consistent. Since—by
property (iiia) —p* is closed under conjunction, it is enough to show, that
o(M)c ;(M)U- - - U x,.(M) and o € p implies that some x; belongs to p. But by
1.4 one of the groups o N x;(M) is of finite index in o(M). Now the above claim
allows us to conclude that o N y; € p, for wy(o/(a N x;)) must be finite. Note, that
the claim also implies that ¢/ e p.

Finally we show that no ¢, is large in p. Assume W, ¢ p. Let 01/x1, - - - » O/ Xm bE
the elements of T,.,;, which are constructed in case 2. We have m =1, since
Ui p. Set ¢ =i, +0. We show ¢ ¢p and (y;Np)+---+(Y,Np)ep for all
p € p. This implies, as one easily sees, that ¢, is not large in p.

Now let o./x; be constructed as 7,/(t; N 1,) as immediate successor of a/x € T,,.
Then

l[liﬁ‘rz=(l[_/"+71)00‘ﬂ1'2=($nﬂa‘+’rl)ﬂ1‘2=‘rlﬂ'rz.

The above claim yields ;¢ p.

Finally assume that p € p, and that (M) < p(M) for all 6/x € T,. W.l.o.g. k>n.
Look at &/x € Ty, let 6/x lie above o/x € T,. If in our construction case 1 applies
to of/x, then &< ¢,. If in the construction case 2 occurred, G/x lies above some
a./x;, whence & < ¢;. In both cases we have (M) c (¥, Np)+- - -+ (¢, N p)M).
Whence (¢, Np)+- - -+, Np)ep.

This proves 7.7(2) and Theorem 7.1.

We indicate a more direct proof of 7.3(1), which resembles the original proof of
Garavaglia’s:

Lemma 7.9. A pure submodule M of a module N with Krull dimension has also
Krull dimension.

Proof (7.9 follows also from 8.5(2)). Let (¢,),.q define a dense chain in M s.t.
r<s< o, (M)c ¢,(M). Let (r,);.y be an enumeration of Q. Define

= (@ NN, [i<i,r<rD+Y{w, |i<in<n}

Then ¢, (M) =,(M) and r<s = ), < . Whence (¢3,),.q defines a dense chain of
pp-definable subgroups in N.

To prove 7.3(1), we assume that M is compact and has Krull dimension. Look
at the decomposition 6.1 of M into a direct sum of the pure hull of a direct sum of
indecomposable and a module E without indecomposable factors. We want to
prove that E =0.



188 M. Ziegler

Now by 7.9, E has Krull dimension. Then, if E+# 0, there is an E-minimal pair
¢/ (Otherwise one constructs easily a dense chain in E.) By 4.8 there is an
E-consistent indecomposable type which contains o/¢. Choose a € o(M)\ y(M).
Then by 7.5(3) and 7.6, H(p) is isomorphic to a direct factor of H(a). Whence E
has an indecomposable direct factor, isomorphic to H(p). Contradiction.

7.5(4) and 7.6 imply, that two M-consistent indecomposable types which contain
the same M-minimal pair determine isomorphic indecomposable modules. The
next result strengthen this observation.

TP 7 & § g

| RN UG

Lemma 7.10. Let D q be two indecomposable ypes, cont ini 18 ¢ pf . iy rl\y) and
H(q) are not isomorphic, then there is a ppf x s.t. Y <x < ¢ and either ¢/x €p,

xveqorelxeq, x/bep.

Proof. We prove first that p(x) U g(y) U{¥(x —y)} is inconsistent. Otherwise there

is a commnact module M. a e M realizine » and b M realizino g st. M [ .I:(n — h\
18 a compact mogwe M, a € M realizing p ang b € M reaitzing g s.t. M

But then H(a) and H(b) are non-isomorphic dependent indecomposables. This is
impossible by 6.2.
By 4.5 there is $/yep s.t.

(*) FEX)AP(x—yIAg(y) > P(x) and YNNG

Case 1: y(x)+(x)eg. Then we set y =g+ . Clearly y<x < ¢ and x/Peq.
We have ¢/x €p since x N¢ = .

Case 2: y(x)+y(x)¢ q. Now set x =@+ . Clearly y=x<¢ and x/gep. It
remains to show that ¢/xeq i.e. xgé g- But otherwise we have

x () A B - ) € qs
This together with (*) implies Ix (Lp(x)/\a,[/(x ) eq(y), i.e. ¢+ eq. Contradic-
tion,

Chapter III: Applications

Q@ Daoanke o
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We use a rank analysis of indecomposable modules to prove that (for countable
R) a module M has Krull dimension iff there are only countably many isomorph-
ism types of indecomposable factors in modules elementary equivalent to M (8.1).

In 8.6 we compare this rank with the dimension of modules with Krull
dimension.

Definition. For a module M we denote by U,, the class of all indecomposable
modules which occur as direct factors in modules elementarily equivalent to M.
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Note. Uy, ={H(p) | p indecomposable and M-consistent}
={U indecomposable | I;(M) >0} (see 6.11).

Theorem 8.1. Let R be a countable ring. An R-module M has Krull dimension iff
Uns contains only countably many isomorphism types.

First we prove

Corollary 8.2. Let R be a commutative noetherian ring, where all localizations Ry
are fields or discrete valuation rings. Then every R-module has Krull dimension.

Proof. If R is countable, we have countably many maximal ideals and the claim
follows from 5.2,

Now let R be uncountable. If the R-module M has no Krull dimension, there is
a countable S, < R s.t. all M, where S is a ring between Sy and R, have no Krull

dimension. If § is an p]pmpnfarv substructure of R, S is aamn noetherian. (Fnr an

ascending sequence A,& A, & - - of finitely generated ideals of S leads to a
sequence R, & R, - - - of ideals of R.) Since in noetherian rings the fact that
all Rgy are valuation rings is expressible by an L, ,-sentence, we find an S with
this property. But now ¢M has Krull dimension.

One half of 8.1 follows from

Lemma 83 let R b

A CIINANEEN Ueuds I CL AN

AM o R_wmanduls If thoes n Adonco ~bhaiy Af
AN-MOGUHIE. 1 in€re IS a4 aense Cnain o)

etween (M) and @(M), there are 2% non-isomorphic

h~al

pp-definable subgroups
UelUy st o/Yp(U)>1.

Proof. Let a dense family be defined by pp-formulas (¢,),cq s.t. r<<s implies

Let {};c., be an enumeration of all pp-formulas. For every real a let
P =l [ r=a}U{ne, | s<al.
Define I, € w inductively (a eR)

iel, iff p,U{y|jel,j<itU{y}is M-consistent.
Set
LUty | g LY
Using 4.7 we can see that the q, are M-consistent indecomposable types.
We will show that 2% of the H(q,) are non-isomorphic. Since g, is realized in
H(qg) iff H(q.)=HI(qg), it is enough to show that in each UelU,, at most
countably many q, are realized.

Assume llldl at the LUl'lll'dry UO =1a | 4o is realized lIl U] lb uncountable. Let do

be realized by a, e U (acQ,). Fix ac U\0. For each a €O, there is a pp-
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formula x,(x, y) s.t.
UFE Xo(a, ao) A—1Xa (0, a,).

Since there are only countably many formulas, there is an uncountable O, < O,
s.t. ¢ =x, for all a€O,. Let ¢, =&(0, x). Since there are only finitely many
T M +la nan e  sanls 0N -~ 2 e m wsridla T M. ¥ . T N7~ lac:n R A
1, 117, NEIE are réals p<« inl U wWiltl [ {1H=igiin=J. W€ nave Mr

X (0, a,) and therefore =, € q,. By construction

and, since UelU,,,

UF(pa Uiy | €T — . (1
UFky;(a,) ni(ag) (jeT) implies UFy;(a, —ag) (j€J). This together with (1) and
UFp.(a,—az) yields UF—wy,(a,—ag). But on the other hand UF
¢(a, a,) A &(a, ag) implies UFy,(a, —ag). Contradiction.

For the proof of the other half of 8.1 we give every Uel,, a rank.
Definition. Let M be an R-module. Let 7k {(U) =rk{U
on rank of U in the topological space Uy, cUR (see 4.9). Le. for all ordinals «
rk(U)=a iff there is a pair y<¢ of pp-formulas st. V=USrk(V)£ta&
¢/$(V)>1 for all Velly. (We say: ¢f¢s isolates U.)

If rk(U) = a for some ordinal a, we say ‘U has a rank’. Otherwise rk(U) = .

TN b el o
v)

The definition of rank depends on M insofar M determines the class Uy, If we
want to deal with all indecomposable R-modules simultaneously our definition
yields this as a special case. For there are M s.t. Uy, =U~,

Lemma 8.4. (1) Up to isomorphism there are at most |R|+Ry many U €U, with a
rank.
(2) If M has Krull dimension, every U U, has a rank.

It is clear that if o occurs as a rank also all smaller ordinals are ranks. If we
define rank(M)=sup{rk(U)| UeU,}, 8.4(1) implies that rank(M)=o or is
<(IR|+R)".

Proof. (1) If ¢/y isolates U, then ¢/¢ isolates no other V elU,,, V# U. Therefore
there are at most as many U with a rank as there are pairs of pp-formulas.

(2) Let {U};.; represent the isomorphism types of all U €Uy, without rank. Let
N be the pure hull of the direct sum of the U, N is a direct factor of a module

elementarlly equivalent to M (since the U, are assumed to be pairwisely non-
isomorphic). Whence by 7.9 N has Krull dimension.

Claim. Uy, ={U,},,. (This is 4.10.)
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Proof. Clearly {U.},.;<Uy Uy If V has a rank and is isolated by ¢/, we have
o/y(U)=1 (ieI) and therefore @/y(N)=1. Whence V¢Uy.

it E ik Fve s teen A el L~ AT _L A [REY.RS. FRP
ﬂbbulllc Iow 1Ul LUlltldUlLtlUll tnat /v 7 U lllCll lllClC lb a IV—lllllllllldl pau q)/(p

By 4.8 there is an U; eUy s.t. @/Y(U;)>1. By 7.10, U, is uniquely determined.
Let B be greater than all ranks. Since rk(U;) 4 B, ¢/ isolates U,. Contradiction.
This completes the proof of Theorem 8.1.

In a module with Krull dimension, we can attach an ordinal to every interval
¢/ which measures the extent to which there is ‘almost a dense chain’ in ¢/
(Garavaglia). We are going to compare this with our rank analysis of indecompos-
ables. (Note that the dimension defined below grows faster than Garavaglias
dimension [11]).

Definition. Let M be a module. We define for pairs ¢y <¢ of pp-formulas
dimp, (/) = a (the ‘dimension’) by induction on «.
dim(e/¢)=—1 iff Y(M)=e(M),
dim(e/¢)=a it (a) dim(e/y¥)La,
(b) there is no infinite sequence Y < @a < @< - @
with dim(¢;4 /@) £ a,
{¢) there is no infinite sequence ¢ 2 @e 2@, D¢
with dim(e;/@;.,1) £ e
afinad £ amea say that /¢ h

U STy I A G, - Qe ~y &
11 Ulll P WJ—u lb UCll nea 10r some «, we Say wial Yy

Otherwise we write dim(e/y) =%. dim(M) = dim(x = x/x = 0).

(83388 w28 310 0

Clearly dim{g/¢)<dim{@/y) if y <@y <@ <. This shows that in the a
definition (b), (c) it is enough to have dim(e;.i/¢;) £ a, dim(e/¢,,) £a for
infinitely many i.

The following lemma is in [11].

Lemma 8.5. (1) dim(¢/y) == iff there is a dense chain of pp-definable subgroups
of M between s and ¢. Whence dim(M) <o iff M has Krull dimension.
(2) If M is pure in N, then

dimp (@/) = max(dima (@/¢), dimn;n (@/ ).
(3) If N=M, then

dimy (@/ ) = dimp (/) = dimy, k (@/ ) (k>0).
(4) If /W =<¢[¥ (in the sense of 1.9), then

dim(e/y) < dim(&/¢).
(5} If b=x <o, then

dim(¢/¢) = max(dim(e/x), dim(x/¥)).
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Proof. (1) One shows immediately by induction on «: If there is a dense chain
between ¢ and ¢, dim(¢/y) # a. On the other hand, if dim(¢/¢) ==, there is e.g.
a sequence Y@< - st dim(etYe)=o. Thus dim(¢/e,)=
dim(e,/¢r) = ». Proceeding in this manner one constructs a dense chain in ¢/

(3) This is immediate, since @(M)— @(N) > @(M*) yields an isomorphism of
the lattices of pp-definable subgroups of M, N and M*.

(4) Noethers isomorphism theorem implies: the lattice of pp-definable sub-
groups between ¢ and + ¢ is isomorphic to the lattice of Yy N¢ and ¢. Whence
dim(y + ¢/ ) = dim(e/y N @).

(2) Suppose N=M®®L (by (3) we can do this). We show by induction on «
that

dimpy(e/Y)>a  iff  dimy(@/¢Y) > a or dimy (¢/) > a.

a=—-1 is clear. dimy(e/P)>a iff (e.g.) there are Y@@, S - <@ s.t.
dimy (@, ,1/¢;) = a for infinitely many i iff (by induction) there are ¢ < @< ¢, <
<o st dimy(@iiq/e)=a for infinitely many i or dimg(¢;../¢;)=a for
infinitely many i iff dimy(¢/Y)=a or dim; (¢/Y)=a.

(5) Clearly dim(¢/ys) =max(- - -). We show by induction on o that dim(¢/¢) >«
implies dim(g/x)>a or dim(x/¢)>a; If dim(e/y)>a, there is (e.g.) a chain
YT @< - <@ s.t. dim(g;,1/¢;) = a. Our two chains (the other is Yy < x < @)
have refinements

Y@= 0= ca <" C o,

YSTCT T CXC PP T T
S.t.

gle; <7/t and @ /o <p../p:-

(Look at any proof of the Jordan—Holder-Schreier theorem). By induction
dim(¢;,,/0;)=a for infinitely many i or dim(oy/¢;)=a for infinitely many i.
Whence by (4), dim(p;,.,/p;,)=a for infinitely many i or dim(z,,/7n)=a for
infinitely many i. That means dim{e/x)>a or dim(x/¢s) > a.

If dim(@/¥) = a, it is easy to see that there is a sequence Y= xS x1 S S xp =
¢ s.t. the pairs x;,,/x; are a-minimal, i.e. dim{x;.,/x;}) =« and for all x; © o < x;41
either dim{x;../0) <« or dim(o/x;) <a.

We call n—which is uniquely determined (Jordan—-HoOlder argument)—the
multiplicity w(¢/{). The 0-minimal pairs are just the minimal pairs of M.

One sees immediately that o/ <&/ and dim(@/y) = dim(¢/¢) imply w(e/P)<
w(@/).

Definition. Let M be a fixed module. We call a pair ¢/¢ of pp-formulas small, if
every M-consistent pp-complete type which contains ¢/ has a large formula (see
7.5).

Remarks. (1) ¢/¢ is small, iff ¢/Y(E)=1 for every compact E which has no
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indecomposable factor and is a direct factor of a module elementarily equivalent
to M.

Tha nroanf of 4 11 chawe that
1l Pivil U1 .11 i L

(@/4) NUps.
(2) dimp,(@/th) <> wy(@lw) <o ¢/ is small (7.8(1)).
(3) If R is countable, then ¢/y small & wy, (/) <o (7.8(2)).

The following is our main theorem on ranks:

Theorem 8.6. Let M be an R-module. (Dimension, rank and smallness are defined
w.r.t. M. The U range over U,,. max § = —1.) If R is countable or ¢/ is small, then

dim(¢/4) = max{rk(U) | ¢/¢(U)>1}.

Problem. Do the two equation hold without the assumption “R countable. . .?”
E.g. is it true that M has Krull dimension if all U have ranks?

Corollary 8.7. If R is countable or U has a small neighbourhood, and if & is a base

ot haricdansda £ TT 3 ni thh nea
U] nctguuuulnuuuo O] U il W)y, trien

rk(U) = min{dim(¢/) | o/ € F}.

Proof. “<> follows immediately from 8.6. If rtk(U)=a (<), we find ¢/pc
which isolates U. The above remark shows that we can assume—if R is
uncountable — that ¢/ is small. 8.6 yields dim(¢/¢r) = a.

Corollary 8.8. (1) If R is countable or M of bounded width, then
dim(M) = max{rk(U) | U eU,}.

(2) M has Krull dimension iff every UeUy; has a rank and every compact
module elementarily equivalent to M is the pure hull of a direct sum of indecompos-

~L1 o
[Z2 LI AN

We begin the proof of 8.6 with two lemmas (8.10 and 8.11) which are special
cases of 8.6. the following 8.9 is used in their proofs.

Definition. Let < ¢ be a pair of pp-formulas, M a module. By {{, o], we
denote the interval of all pp-definable subgroups of M between (M) and ¢(M).
If a e M and an interval is given, we denote by F(a) the filter of all groups in the
interval, which contain a.

Lemma 8.9 (‘Goursat’s theorem’, cf. [29, p. 171]). Let a, b€ M be dependent i.e.
there is a pp-formula 3(x,y) s.t. MF3(a, b) and MF9(a, 0). Then the two
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structures
[9(x,0),3y 3(x, Y)ap <. F(a)) and (90, y),Ax 3(x, y) I, <, F(b))

are isomorphic.

Proof. We define the isomorphism and its inverse by (M) ¢™*(M) and

P (M) (M), where ¥ (y)=3x (S(x, y) A¢(x)) and gr(x)=
Ay (3x, y) Ag(y)). We have to prove:

(1) ¢*(M) €[50, y),Ax 8(x, y)]m.

(2) ¢*(M)e[I(x,0),3y F(x, y)]m-

(3) ¢(M)< (M) implies Yy*(M) < ¢*(M) and ¢ (M)< o™ (M).
(4 ae¢(M) implies b € y*(M).

(5) bey(M) implies g €y (M),

\AVE ) RIIIPDIICS

(6) If P(M)e[I(x,0),3y 3(x, y)lns, then Y(M)= ™" (M).
(7) It y(M) €[50, y), 3x 3(x, y)]ns» then Y(M) = ¢+ (M).

Only (6) and (7) require a proof. We prove (6): If cey(M), then, since
Y(M) =3y 3(x, y)(M), there is deM s.t. MF3(c,d). Clearly de*(M) and
therefore ¢ e ¢**(M).

If cey™* (M), there is d € ¢+ (M) s.t. MEI(c, d) and e € (M) s.t. MEI(e, d).
We obtain MEd(c—e, 0) and -since $(M, 0) < y(M) - c—e e s(M). This gives
cep(M).

Lemma 8.10. ouppOS H(p)E \q\c U If p contains a pair fpp—]t‘)n u
dimension <a, then also q contains such a pair.

<

Proof. We can assume that p and q are realized in M by dependent elements a, b
(cf. 8.5(3), 8.9 gives ¢/ycp and alxeq st (¢ ¢lu <, F(a)) and

(Ix, 1w =, F(b)) are isomorphic. Suppose p/r€p and dim{p/t)=<a. By 4.6 there

is g/Pep st. y<y<=@ =@ and &P =<p/r. We have dim(§/$)<a by 8.5(4). Let
$(M) and a(M)e[x, o]y correspond to (M) and &(M). We can assume that
¥ <. Then ¥/¢€q and dim(d/@) = dim(P@)<a.

Note. Since every interval of dimension 0 decomposes into finitely many M-
minimal pairs, we have: If p contains an M-minimal pair, then q too.

Lemma 8.11. Suppose R is countable or ¢/ is small. If (@/¥) contains — up to
isomorphy — exactly one U €Uy, then there is an M-minimal pair between ¢ and ¢.

Proof. If there is no M-minimal pair between ¢ and ¢, one can construct a dense
chain of pp-definable subgroups between ¢ and ¢. If R is countable, 8.3 gives the
contradiction.

Now suppose that ¢/¢ is small. The proof of 7.9 yields a family (x,),cq Of
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pp-formulas s.t. y<x, <x, <@, x,(M)# x; (M) for all r<s. We construct two
M-consistent indecomposable types p and g s.t. ¢/¢ € p, q and H(p)# H(q). For p
we choose the type constructed in 4.8. ¢ is maximal in p, i.e. y¢p and for all
Y¢p above ¢ there is o ep s.t. ¢No<y. (In fact for all ¢¢p there is such a
oep.)

On the other hand let r* be a set of pp-formulas, maximal with the properties:
(a) r* is closed under conjunction, (b) (x, Vo) M) # (xs No)(M) for all t<s and
oer'. Set r=r"U{—c |oé¢r’}. Clearly ¢/er.

Claim. r is M-consistent.

Proof. If not, there are cer and o;¢rs.t. co(M)co(M)U- - -Uo,(M). By 1.4
we have that e.g. a/o No (M) is finite. If per is —o we have for all t<s

O NP NoyNp)M) - (x; Na N p)/(x, Vo N p)(M)
= (x N p)/(x. N p)(M).

The right hand side is infinite, the first factor on the left side is finite, whence
(xs No Np)/(x. No; N p(M) is infinite. This shows that o; € r. Contradiction.

Since @/ is small, we have ¢/¢(E) =1 for every factor E of H(r) which has no
indecomposable factor. Whence by 6.1, there is an indecomposable factor H(q) of
H(r) s.t. ¢/ € q. We prove that H(p) # H(q): Otherwise let a and b realize r and
p in H(r)=N. Then 8.9 gives p/xer and p/xep s.t. ((x,pln <, F(a)) and
(x, pln, <, F(b)) are isomorphic. Choose mep s.t. x N7 <. One checks easily
that (¢ Na+x)Np is maximal in p. Choose § between x and p s.t. $(M)
corresponds to (i N+ x) N p in the above isomorphism. Clearly ¢ is maximal in
r. Since ¢ r, there is Ger and t<s s.t.

(x. NG NHM) = (x, NG N (M.
Choose t<u<s and set y=x, NG+ Then g<gér, for (XSOO'ﬂl/I)(M)_
(xu NG N P)(M). Since ¢ is maximal in r there is ¢ €rs.t. ¢y No < . But then
(6 NENYNa)M) = (x, NG NP No)M).
Since x, NG <,
(xNoNx, Na)M)=(x, NaNx, Na)M).
This yields
(x. NaNa} M) =(x, NeNao)M)

contradicting ¢ No <q.

Proof of 8.6. The theorem follows from the first two of the following three
claims:

Claim 1. Ue(¢/¢), rk(U)> a > dim(¢/¢) > a.

Claim 2. If R is countable or ¢/ is small, then dim(¢/¢)=a =0 there is
Ue(e/y) s.t. rk(U)=a.
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Claim 3. If R is countable, or U has a small neighbourhood, then rk(U) = a=>
there is a pair s.t. Ue(¢/¢) and dim(p/¥) = . (@ an ordinal or=—1).

Pronf nf Claim 1: Induction on o« Supnose rl.r(’f\\n, Then whenever
1 rO0] Laaim 10 anauclion on a. SUpposc k() -~ 108N, waenever

&lp(U) > 1, there is a V# U, tk(V)=a, @/¢(V)>1. We define a sequence
Y=o S S S S @o=¢ st @/ (U)>1. _

If ¢,/4; is defined, choose V; s.t. V£ U, tk(V))=a, ¢/¢;(V;)>1. By 7.10, there
is p=x<@ st x(U)>1, ofx(V)>1 (set @i/t =x/) or x/g,(V)>1,
o/ x(U)>1 (if the first case does not apply, set ¢; /i1 = @:/x.)

By induction we have for all i

dim(e/@; ) =a  or dim(s../d)=a.
Thus dim(p/¢) > a.
We prove Claims 2 and 3 by simultaneous induction on a.
Ad Claim 2. Suppose that R is countable or ¢/ is small, Let dim(¢/¢)=a =

0. Look at pp-formulas x; = ¢ s.t. dim(x,/¢) <a. Since x;+ x2/x1 =< x2/¢, we have
dim(x, + x2/x1) <a and therefore dim(y,+ x,/i) <a. The above shows that

e AL

a ={e}U{x | dim(x/¢) < a}U{x=0}

1s M-consisient and satisfies the condition of 4.7.

Let p be the M-consistent indecomposable type we constructed from q in
Lemma 4.7. Let U= H(p). We have ¢/¢(U)>1 and show rk(U)=a. Assume
rk(U) = B < a. By induction hypothesis there is @/ s.t. U e (g/¢) and dim(@/) =
B (Claim 3). By 8.10 and Claim 1 we can assume that &/¢ep. Now the

cangtriictian f

o 7 ijrmnlieg that thora i t —vca gt Ir‘\,—r—-.,n-f—.‘-. Rt
LAJIIOWL UL LIUVLL U i

4 llllPll\/D LilaL Liiviw ID U C p by I/‘ Cq Del. ql [V A h(‘/ uut
then dim(y + ¢ Na/y) < . Since — as one computes easily — ¢ + o/ + ¢y N o < /.
We have

dim((¢+ o)/ (y+ ¥ Na))<B.

This together with dim((+dNo)/P)<a vields dim(y+of/y)<a. This is
impossible.

Ad Claim 3. Suppose R is countable or U has a small neighbourhood, and
rk(U) = a. Choose a neighbourhood (&/¢s) of U which isolates U. We can assume
that @/ is small. Uy, is the closure of {U} in Uy, (cf. 4.10). Whence (@/¢) NUy
contains only U. Since (/) is also small w.r.t. U, we can apply 8.11 (to U
instead of M) to obtain an U-minimal pair ¢/¢ between ¢ and ¢. By Claim 1,
dim(¢/¢) = a. We show that ¢/¢ is a-minimal: If not, there is xy between ¢ and ¢

gt dimle/v) dimiv/idd =~ By Claim 2 thare are ‘/ s.t. V el v YV (3D Qn(‘
S.LGIMNQ/ X, GHMIY)Y ) = Q. BY Lialin £ Inere are v V1EPIX) V28X ¥ al

rk(V,)=a. But ¢/ isolates U, thus U=V, and ljf(U)%x(U)#(p(U). This con-
tradicts the U-minimality of ¢/¢.

Corollary 8.12. If dim(¢/Y) =<, (¢/W) contains at most w(@/Y)-many non-
isomorphic U of rank a. (Conventions as in 8.6.)

Proof. If ¢/ is a~-minimal, 7.10 and 8.6 (we need only Claim 1) show that there
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is only one U or rank a in (¢/y). Generally (¢/¢) is the union of w(e/¢)
a-minimal neighbourhoods (on Uy,).

Remark. The above proof shows that 8.6 remains true, if we replace ‘small’ by
the following weaker notion: Call ¢/¢ small, iff for every UelU,, every U-
consistent pp-complete type which contains @/¢ has a large formula.

Example. If R is a boolean ring, every pair is small is this sense.

9. Applications

We give two applications of our methods.

First we describe the class of all compact modules which are elementarily
equivalent to a fixed module with Krull dimension (9.1). It turns out that there is
a smallest compact module elementarily equivalent to a fixed module with Krull
dimension.

Then we show how to decide a theory of modules if one has an effective control
over the indecomposables —a phenomenon one can expect in the case of Krull
dimension (9.4).

We conclude the section with two examples: We study the notion of rank for
modules over a Dedekind ring and for pairs of torsion free modules over a
Dedekind ring. As a byproduct we reprove the decidability of pairs of torsion free
modules.

Theorem 9.1. If M has Krull dimension, there are four sets

{Uh}heHa {Ui}ieb {[]j}je.h {Uk}keK

of pairwisely non-isomorphic indecomposable modules, and natural numbers #0
(M hen S.t. the compact modules which are elementarily equivalent to M are just
the modules of the form

S UrBdDBUEBdD UL D Up, =N, w=1

heH iel jeJ keK

Corollary 9.2. If M has Krull dimension, there is a smallest compact module M,
elementarily equivalent to M: M, is direct factor of every compact module which is
elementarily equivalent to M.

Eklof & Sabbagh proved 9.1 in the case of injective modules over commutative
rings [5]. M. Prest proved 9.1 independently [20] for totally transcendental M.
The following result of Garavaglia is a special case of 9.2: If U=V are
indecomposable modules with Krull dimension, U= V.
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Proof. (rky, =tk is defined before 8.4, I;(M) before 6.11.) Set
{Udhen={UeUp} | In(M) <o} and my, = I, (M).

There must be a pair ¢/¢ s.t. U, € (¢/y) and ¢/y(M) <o, Then dimy(¢/th) =0
and rk(U,)=0 by 8.6.

{l]i}iEI:{UEUM ’ rk(U) :0’ IU(U) = 1) IU(M) = OO},
{[]j}jeJ:{UeuJM l I‘k(U) = 0, I(_](U) :OO}’
{Ucex ={U €Uy | rk(U) >0}.

Clearly
Uy ={U, | ge HUTUJUK}.
femimA Amraeesr i iaese o~ AI,\..‘A..A- Sy P ~ s~ AA ‘.. P _‘,\ L I | Ry
OUILC cvely LUllldel lllUUulC CICTIICH ly cquwa € l O ivl b C lJ I€ nuu Or a
direct sum of elements of U,, (7.3(1)), we have to show that a module
N=©D Up- DD U+DD U@ D Uy )
heH iel jeJ keK
is elementarily equivalent to M iff
M = My, i ZNO) ] =1. (2)

Now choose for every ge HUIUJ a pair ¢/¢ which isolates U,. by 6.12 (or
rather a version where U® is replaced by U_JM) we have

™ /TrT

Iy, (N) = *"*log(@/y)(IN) = “* log((@/P(U))*) = pyg - Iy, (Uy).-
First suppose that N=M. Then Iy (M)=pu, Iy (U,). This yields (2) im-

o B
meaia lCl y

If on the other hand (2) holds, we have I;(N) = I;(M) for all U eU,, of rank 0.
If the rank of U eU,, is non-zero, U is an accumulation point of elements U, U,
U,. Therefore also I;(N) = I;(M) = . For all U¢U,, we have I,;(N) = I;(M) =0.
Thus 6.11 implies M=N.

Remark 9.3. Let M be a module and U eU,,.

(1) rkp(U)=0 iff U occurs in every direct sum of indecomposables which is
elementarily equivalent to M.

(2) There is an M-minimal pair ¢/ s.t. U € (@/¢) iff U is a direct factor of every
compact module elementarily equivalent to M.

Proof. (1) Let ¢/ isolate U and D{V*|VeUyl=M. Then ¢/¥(M)=
{o/p(U))*v. Whence ug >0.

Now suppose that rk(1J) > 0. We find a decomposition M = U¥% @ N, where N is
a direct sum of elements of Uy \{U}. rk(U¥>0 implies UclUy and we can
conclude that U2 @ N=N. But now M=N and U is not a direct factor of N.

(2) Let U e(¢/¥), @/ M-minimal. We find a pp-complete p s.t. U= H(p) and
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e/Yep. If N is compact and elementarily equivalent to M, we choose ace
o(M)\¢y(M). Then p and tp®(a) are associated via . By 7.6, H(p) is a direct
factor of H(a).

1aCid I

For the converse, suppose that U is a direct factor in every compact module
elementarily equivalent to M. Part (1) implies that rk(U)=0. Choose a pair ¢/¢
which isolates U.

Claim. @/¢ is small (‘small’ is defined after 8.5).

Proof. Let N D E be compact, weakly saturated, elementarily equivalent to M,
N a pure hull of a direct sum of indecomposables and E without indecomposable
direct factors. Write N = U¥ © K where K has not direct factors isomorphic to U.
6.8 implies

IW(E®K)=I,(K)=I,(M) for all V£U,

But U is not a direct factor of E @ K, whence by our assumption M#E @ K and
by 6.11(1), I, {(E® K)<IL;(M). By the first part of the proof, there are no

E-minimal nairs. Therefore all indices m/:l:(p\ are =1 or =0, Since I.; (Pm K) ig

Iiiariiadads pPaurns. LiTiUIC ar aalOS i) aiv SV S FAC SAN v L Ny |

finite, ¢/Y(E) is finite and therefore =1. This means that ¢/¢ is small.
Now we can apply 8.7 to obtain a neighbourhood (¢'/¢") of U s.t. dim(¢’'/¢) =
0. But then U has also an M-minimal neighbourhood.

Example (cf. the remark following 5.1). Let K be a maximal valued field with
densely ordered non-trivial valuation group. Let R be the valuation ring. The
pp-definable subgroups of the R-module R are the principal ideals of R.

Ups consists —up to isomorphy —of the non-zero ideais of R. All Vel,, are
elementarily equivalent. Two ideals A, B are isomorphic iff A =xB (xe K\0).
Thus we have at least to non-isomorphic indecomposables in U,, ~which are
elementarily equivalent.

anmazee O A T , D L. P T ) ad T s

Theorem 9.4. Let R be a recursive nhg and T an axiomatizable thEOi“y‘ Of
R-modules s.t. M@ NET iff MET and NET. Suppose that (o/¢.), ieN, is an
effective list of a base of the topological space {U,}; o of all (isomorphism types of)
indecomposable models of T. Then T is decidable if ¢,/4;(U;) depends recursively on
i, J.

Proof. Note that {U,};.y is a closed subspace of U®. By a suitable adaptation of
6.13 two models M, N of T are elementarily equivalent iff ¢,/ (M) = ¢,/ys, (N} for
all i. Thus the complete theory of U, is axiomatized by

T, = TU{@/;(- - ) = o/ (U) | jeN}

It follows that the T; are—uniformly in i-decidable. The Feferman—Vaught
theorem yields an effective enumeration of the — decidable — complete theories of
all finite direct sums of the U.. Since every sentence which is satisfiable in a model
of T is satisfied in some finite direct sum of the U, we get an effective
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enumeration of all sentences consistent with T. Since also the set of all consequ-
ences of T is effectively enumerable we obtain the decidability of T.

Remark. One can prove that T is decidable ift T is axiomatizable and there is
effective list ¢;/y; of a base of Uy s.t.

“QU eUr e /d(U) eng, my]a- - Ag/dp (U ey, m]”

is an r.e. relation (ny, ..., meN;mq, ..., m.eNU{x}).

Example 9.5. Modules over a Dedekind ring R. We use the following notation:
K= quuuei‘lt field of R. We denote maximal ideals b Dy »p ae »p "M can be
expressed by a pp-formula MER" | a, since B is finitely generated. Also B "x=0 -
ie. ax=0 (aePB")-is a pp-formula.

By 8.2 every R-module has Krull dimension. We will show that the dimension
is =<2, (There is a similar result in [11] for R=7.)

52 gave the indecomnosable R-modules as

LOC GNLCLVIINPUSaUIC ARTHIVUUICS as

R/®" (n=1), K/Rg, Ry K
The modules R/%3" are isolated by the pairs
AR =Bx=0AB" | x)/(Bx=0AR" | x).

Thus the R/B" have rank 0. (We compute the rank w.r.t. UR) K/Rg is
isolated by every pair BR=(Rx=0AL"|x)/(x=0). Since the (B§)=
{K/Rg} U{R/R" | n>m} are quasicompact, every infinite sequence of R/P"’s
converges to K/Rg. Therefore K/Rgyp has rank 1 and the (B§) form a basis of
neighbourhoods of K/Rg.

The same reasoning shows that Rg has rank 1 and that the
(C) = {Re} U{R/B" [ n>m}

form a basis of the neighbourhoods of Rg. Cg is the pair (B™ 7| x)/(PB™ | x).

Since UR is quasicompact, the last indecomposable K must be of rank 2. The
proof of 5.1 (case 2) shows that the +-type of any non-zero element of K is
axiomatized by the pairs (r|x)(r|x Arx=0) (re R\0). Thus—by the proof of
4.9 - these pairs constitute a base for the neighbourhoods of K. Every such
neighbourhood contains all K/Rg, Ry, and almost all R/". Whence also the
pairs D" = (x=x)/(rx=0) defines a basis of neighbourhoods of K.

Corollary 9.6. Let kg =|R/R|. Then the elementary type of an R-module M is
determined by the invariants I;(M), where

I, (M) = loghs(A%(M)) (U=R/B", n=1)
= min{log“*(B%(M)) | n >0} (U =K/Ry)
= min{log"*(C%(M)) | n >0} (U= Rgy)

=min{log®(D’(M)) | re R\ 0} (U=K).
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Proof. See 6.12.

Corollary 9.7. Let R be a recursive Dedekind ring with an effective 1-1 list
B, = Ra, + Rb; of all maximal ideals. Suppose that the cardinality of kg, can be
computed from i. Then the theory of all R-modules is decidable.

Proof. See 9.4

Note that in the case of 9.7, Theorems 9.4 and 9.5 yield also the decidability of
the theory of torsion free or the theory of divisible R-modules.

Example 9.8. Pairs of torsion free modules over a Dedekind ring R. We deter-
mined the indecomposable torsion free pairs in 5.7 as

(Rg, Ry - B™), n=1, (Rg,0), (Kg Rg), (Rg Ry), (K 0), (K K).

By 8.2 (also true in this case) every torsion free pair has Krull dimension (we will
show =2). Thus every compact torsion-free pair is the pure hull of a direct sum of
the indicated indecomposables.

Notation. Let ¢{(x) be a pp-formula without the new predicate symbol P.
“e mod P is satisfied by a € (M, N) if a+ N satisfies ¢(x) in M/N.

We compute the rank in the topological space U of all torsion free indecompos-
ables. Here (¢/4) is restricted to U. Since Ry/(RpB") = R/P", Kp/Ryp = K/Ry; the
pairs “Ag mod P isolate the (R;B, 11,323“), which have therefore rank 0. Since

(B mod P) = {(Ky, Ry)} U{(Rgs, ReB"™) [ n>m},

these sets form a base for the neighbourhoods of (I@B, ng). (Km, R;B) has rank 1.
(Use quasicompactness.) The (Rg, 0) have rank 1 and a neighbourhood base

(C2 mod P) = {(Rg, 0} U{(Rg, RgB") [n>m}  (m=0).
The (Rg, Ry) have rank 1 and a neighbourhood base
(P)/P(x)AB™ | x) = {(Rp, Rp)} U{(Rg, RgB™) [ n=m}  (m=0).

We want to show that the

(D" mod P) = {(K, 0)} U{(Kg, Ry), (Rg, 0) | B maximal}
U{(Rg, Re®B") [ B maximal, r¢R"}

form a base for the neighbourhoods of (K, 0). It is already clear that rk((K, 0)) =2
(by quasicompactness). For this it is enough to show that the (12;3, qus), (RB, 0) lie
in every neighbourhood of (K,0). Thus let (M, N) be weakly saturated and
compact and elementarily equivalent to (IZ;,B, éq;) or (R, 0). Then M/N is weakly
saturated, compact and elementarily equivalent to K/Rg or Ry. Now one of the
indecomposable direct factors of M/N must be K. Since all indecomposable
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factors of M/N are of the form UJV, where (U, V) is an indecomposable factor of
(M, N), (K, 0) is an indecomposable factor of (M, N).
A similar reasoning —use N instead of M/N —shows that
(P(x)/xﬁ 0) = {(K7 K)} U{(R‘By ﬁ%%n)’ (ié589 R%)a (qus R‘B) | % maXimala n= 1}

is the smallest neighbourhood of (K, K). We have rk((K, K)) =2.

Corollary 9.9. The elementary type of a torsion free pair (M, N) is determined by
the elementary type of MIN, by the fact that N=0 (or #0) and by
min{(N:L"MNN) |m eN}.

Proof. By 6.11 and 6.12. (Actually for 9.9 the whole picture of 9.8 is not
needed.)

Corollary 9.10. Let R be a recursive Dedekind ring as in 9.7. Then the theory of
torsion free pairs of R-modules is decidable.

Proof. By 9.4 and the analysis in 9.8.

In the case R=7, 9.10 is due to Koslov & Kokorin [21, 22]. Our proof was
inspired by [23].

10. The spectrum

We fix throughout this section a countable ring R.
Let M be an infinite R-module. We are interested in the spectrum function I,
which is defined for infinite cardinals x as

Ly()=K{N/=|N=M,|N|=«}],

the number of non-isomorphic modules elementarily equivalent to M of cardinal-
ity k.

We will get a complete description of the possible I, with the exception of
k =¥,. For I,,(%,) we have only partial information.

Theorem 10.1. Restricted to uncountable arguments k =¥,, Ly is one of the
following functions:

Iy et =la* (A=A,
5] la + |,

() Qmin(e2%0)

(1) 27t al,

(I°) 22D 4 oMo,

(I°) 2%
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M is totally transcendental iff 1,4 is one of the functions I', I*. M is superstable iff
L, is not I°.
In the case of R =17 all functions occur.

Notation. |a +1|* —|a|* is not well-defined for infinite arguments. It should be the
number of all functions from A to a+ 1 with sup{f(i)| i <A} = . Thus we set

1 for A=1,

+1P - *={ .
e 41" = o la+1]* forA>1, a=w or A =R,

Proof. For modules M with Krull dimension, 9.1 gives us four sets {U,}, {U.},
{U;}, {U,} of indecomposables and natural numbers 0 <<m, < s.t. the compact
N =M are just the modules

N=D U~ U+dD U+ D U, w=R, =1 (1)
heH iel jet keK
and we know (8.4) that HUTUJUK is countable and that A ={ITUJUK] lies
between 1 and ¥,. For there are arbitrarily large N.
Let Jy(x) be the number of all functions (ug)ecruruk S-t-

u'iBNO’ [szl, Sup{uglgEIUKUJ}ZK (2)

Let now M be totally transcendental. Then M has Krull dimension and all N=M
are compact (3.5(1)). Furthermore all U, are countable (4.2(3)). Whence the
modules N=M, |N| =« >N,, are just the modules N in (1), where the (u,) satisfy
(2). Therefore I,(x) =Jy (k).

But Jy(---) is easily computed (for uncountable «): If A=1 or A =N, or
KUJ=@, thisis I}. If 1 <A <N, and KUJ#@, this is I2. This proves 10.1 in the
case that M is totally transcendental.

If M is not superstable, we have I, = I° for uncountable k by a general theorem
of Shelah [17, VIII 0.3].

Now let M be superstable and not totally transcendental. Then M has Krull
dimension. We prove that for uncountable «

Ly (1) =220 4 Iy (). (3)
This yields

Ly=1I° A=1),

IM=T*  (1<A<Ny),

IL,=I (A =8).

By a theorem of Shelah [17, VIII 1.7, 1.8] on non-totally transcendental theories
we have 2™"<*9 < [ (k) for uncountable k. This proves (3) for R, <k <2,

If k =2% all the modules N in (1) - but without pure hulls - are of power « if
(2) holds. (Note that |U,|<2% (4.2(2))). Therefore

2min(n<v2"b) + JM(K) = IM(K)
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To prove the inverse inequality for « > 2%, we need the following lemma (here
R is arbitrary).

Lemma 10.2. Every superstable R-module N is of the form A @ L, where |A|<
2R and L is totally transcendental.

We finish the proof of 10.1 and prove 10.2 later.
Let N=M, |N|=«>2%. Write N=A®L, |A|<2%, L totally transcendental.
Then |L| =« and since L is compact, it is a direct factor of N=M. We have

Iy(x) <(number of possible A)+ (number of possible L).

But the number of possible A is at most 22, N has the form (1), therefore L is of
the form

a)) {U¥=
where
pr<m, and sup{p,|gelUJUK}=«k. (4

ge HUIUJUK]},

The number of the (p,) satisfying (4) — and therefore the number of possible L — is
not greater than 2%+ Jy,(x). This proves (3).

Finally we give examples of abelian groups which have the several spectrum
functions. We give the groups in the form (1). Thus displaying all compact
elementarily equivalent groups.

(I}l) Z(pl)&l b--- ®Z(pn)&" (Mi on),
(I%,) Dz~ dQr (1 Z=R0),
(I?») Z(2): dQr (1 =Ny),
a» z,eq

I Z,DZ(2™)E +Q2 (1 =R),
(I Z,9D Zp e +Q2 (i =Ny),
(I% zZ®Q (. =Ro).

Proof of 10.2. Let N be a superstable R-module (R arbitrary). Choose an
elementary submodule K of N of cardinality at most |R[+¥,. By 2.3, N/K is
totally transcendental. Whence (3.5, 7.3)
N K=& Vv, V, indecomposable, |V <|R|+N,.
iel

Let m:N— €D, V. be the canonical projection. Set M, =a (V,). We have
IMi|<|R|+R,.

Since there are at most o isomorphism types of extensions of K of power
<|R|+R,, there is a set J< I, |J|<2'R"™% gt for all i e I'\J, there is j €J and an

2]Rl+N
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K-isomorphism
fi: M, :(—> M;.

We set A =Y,.; M, Since A =7n"4D,; V;), 7 induces a homomorphism
#:N — €@ V, with kernel A.

iel\J

We define a cross section h: @iel\, V.— N, by
h(a)=x—f(x) for a;=m(x)eV.
h is well-defined:

m(x)=7(y) > x,— K> x-y=f(x-y)
=2 x—fi(x) =y — fily)-

h is a cross section: Because of 7(x; —f.(x)) = 7(x;) = w(x;), we have 7h =id.
If we set L =h(D;.;\; V), we have N=A®L.

The next theorem contains our knowledge about the number of countable
models. It is still open, if Vaught’s conjecture can be verified in our case, i.e. if
always I,;(Ro) <N, or I,,(X,) =2%. For totally transcendental modules Vaught’s
conjecture was settled by Garavaglia [9]. 10.3(3) is due to G. Cherlin and,
independently, to M. Prest.

Theorem 10.3. (1) If M is totally transcendental, then I,(8;) = 1, =X, or Iy, (8R,) =
2o,

(2) If R is a Dedekind ring, and M not totally transcendental, then L, (R,) = 2%.

(3) There is an R-module M — for suitable R — which is not superstable, but
LX) =No.

@) If L;(8,)<2%, M has finite Krull dimension.

(5) If L) is finite, the Krull dimension of M is zero (cf. 10.5).

Proof. (1) Look at (1) in the proof of 10.1. In our case the modules U, are
countable, and all N=M are compact. Whence the countable N =M, are just the
modules of the form (1), where p; =8, 1 =, <R, and p, <X,. This yields

1, ifJUK=,
IM(N()) - No, if ¢ %JUK is ﬁnite,
2%, if JUK is infinite.

(2) We need the following lemma, due to G. Cherlin.

Lemma 10.4. If there is a sequence r,e R s.t. M 2rM2rsM2- -, there is a
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subsequence s\ M 2s;M2s;M 2 - - s.t.

Vn3daeMVi<n sqa¢s. M

Proof. Choose (s;) as a subsequence of (r) s.t. |sMs., M|=2. Set H;,=
{aeM]|saes;,;M}). Then |M/H|=2". An easy computation shows
H,UH,U---UH, & M. Choose ac M\(H,U---UH,).

Proof of 10.3(2) (contd.). Case 1: There is an infinite sequence nM2r,M2
-+ +. Let (s;) be the subsequence in 10.4. We can assume that M is weakly
saturated. Then we find ae M, with sa¢s; ;M for all i. The proof of 2.1(2)
constructed 2% contradictory pp-types with parameters s;a. Now we need only the
parameter a. This yields 2% contradictory types with 2 variables without parame-
ters. Thus L,(R,) = 2.

Case 2: There is no sequence as above. Then there is re R\O s.t. rM is
divisible. rM is injective and, by 5.9, totally transcendental. rM is pure in M.

N = M/rM is bounded: rN =0. Then rN is a finite sum of multiples of modules
R/B". Therefore totally transcendental. Now M is totally transcendental by
2.2(1).

Proof of 10.3 (contd.). (3) Let k be a finite field. R is the ring obtained from the
polynomial ring k[Xj, X,,...] by factoring through the ideal generated by all
X.X;. Whence R is a commutative k-algebra, with k-basis 1, Ty, T5, ... which
satisfies T;T; =0.

Now look at the following R-modules M:

M=M[T,|>M[T,]>M[T;]>---,

dimy (M[T, /M T, ]) =,
the T;M are contained in all M[T;] and k-linearly independent.

It is easy to see that all such modules are elementarily equivalent and that there
are exactly ¥, many countable M. (A countable M is determined up to isomorph-
ism by dim (N {M[T;1| i € }/DP;.., T.M).) Clearly M is not superstable (2.1(3)).

(4) Case 1: M does not have Krull dimension. By 6.8, M is elementarily
equivalent to a direct sum €D, U, of indecomposables, where all UeU,,
occur—up to isomorphism-among the U, A Loeweheim-Skolem argument
shows, that there is a countable J<I with M=€D,_; U. Choose an infinite
countable subset H<I\J s.t. the U, are pairwisely non-isomorphic and not
isomorphic to any U, (This is possible by 8.1.) Now let V; be a countable
elementary submodule of U, Then for every subset KcH, M=
@ {V,|ieJUK]}, is countable and elementarily equivalent to M (see 1.6, 1.7).
Furthermore all the Mg are non-isomorphic. (Note that My =pure hull of
@D {U, |ie JUK}.) Whence I,,(8,) =2%.

Case 2: o =dim(M) <. Look at Theorem 9.1: Since there are infinitely many
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isomorphism types of indecomposables with rank>0, (for every a=dim(M),
there is at least one U with rk(U)=«), K is infinite. Let V, a countable
elementary submodule of U,. For every subset L = K define
M =B VidD VDD V,&D{V, |keL}.
heH iel jeJ
The M; are countable, elementarily equivalent to M, and pairwise non-
isomorphic. Thus L,(,) = 2%,

(5) By 10.3(4), M has finite Krull dimension. Whence 9.1 applies. If K# @, the
argument above ((4), case 2) gives infinitely many non-isomorphic countable
models =M: Choose Ve K and set

M= VOB VD V,BV" (neN).
heH iel jert

Therefore K = w But then all U have rank 0 and dlm(M) =0 by 8.8.
Corollary 10.5 (A. Pillay [24]). LRy} <¥e > LX) =1.

Proof. By 10.3(5), dim(M) =0 if )<{N,. But then M is totally transcenden-

(N
s ommezile £11 e Lon {
IIC TCSUIL TOHOWD 11010 LN

I (¥
enl a3 L 1N 241\
idl dlia 1U.0 1),
We conclude this section with a description of Xy- and ¥,-categorical modules.

(An infinite module is «-categorical iff the complete theory of it is k-categorical.)

Theorem 10.6. Let M be an infinite module.
(1) (Baur [27]). M is R,-categorical iff

M=Vr® - - BV DOWsdD- - D Ws,

where the V,,, W, are finite indecomposables, the my, are finite and the «; are infinite
cardinals.

In this case the modules N which are elementarily equivalent to M are the
modules of the form

AT Tm. My, .M Yym N A D, DI IS S YA
1 'O TV, "W vwa'wv < v \A; =88

(2) M is Ry-categorical and WRi-categorical iff M is of the form as in (1) above,
L

(3) M is R~ (and not Ry-) categorical iff one of the following cases occurs:
(a) M=V @- .- D V"D W, where the V,, are finite indecomposables, the
my, finite, W is an infinite indecomposable, « =1 and dim W =0,
In this case the N which are elementarily equivalent to ns are the modules of
the form

N=VmM® - - ®dV~dW* (A=1).

l, @/ G(M) is finite for all s of ppf with

18 p l’
is exactly one indecomposable W e Uy, with M-rank >0.

\U} M is &

dimy (/) =0, there

>3
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In this case dim M =1 and there are countably many indecomposables U,,, finite
my, (he H) s.t. the N elementarily equivalent to M are the modules of the form
N=& umdw* (=0).

heH

Proof. (1) Let M be of the given form. Since dim(V},) = dim(W,) =0, dim(M) =0
by 8.5. Therefore all N=M are compact (3.5(1)), and are therefore given by
9.1 ~where the pure hulls are superfluous. We adopt the notation of 9.1.

The U, are the elements of U, with rank>0 (cf. the proof of 9.1). Thus by
8.6, K=49. Since the Uj; are infinite, J = @. We conclude that

{Vla LR ] Vr} :{Uh}heH and {WO’ sty Ws}z{lji}iel'

By 9.1 the N=M are as desired. And this shows that M is ¥,-categorical.
(Alternatively Ryll-Nardzewski is easily applied: there only finitely many pp-
formulas ¢(x,, ..., x,)—up to M-equivalence.)

Suppose that M is Rg-categorical. By 10.3(5), dimM =0 (or use Ryll-
Nardzewski). Therefore the N=M are given by 9.1 (no pure hulls). In 9.1 we
have K =J =§ (by ¥,-categoricity). By 8.8 (or Ryll-Nardzewski) HU T is finite.

It remains to show that the U,, U, are finite:

(+) If U is indecomposable, dim U=0 and U® U= U, U is finite.

Proof. Let 0= ¢o(U)c @o(U)c -+ -<¢,(U)=U be a decomposition of U into
U-minimal pairs. Since a U-minimal pair constitutes a base of neighbourhoods of
U (in Uy), we have that all ¢;.,/¢;(U) are finite (namely by (¥) in the proof of
6.12). Thus U is finite.

(2) follows from (1).

(3) Let M be as in (a). By (1)-and unique decomposition (6.1)~ M is not
No-categorical. Since dim M =0, the N=M are given by 9.1 (no pure hulls).
Furthermore K =@. Since W is infinite, [J|=1 and W is the only U; (use (+)
above). Thus I must be empty and {V;, ..., V,} ={U, ey Now the N=M are as
claimed and therefore M is ¥,-categorical.

Now let M be as in (b). M is not R,-categorical, since dim M >0. Since M is
totally transcendental all N=M are given by 9.1. There is only one U, : W, which
must be of rank 1. Whence dim M = 1. Since ¢/¢(M) is finite for all pairs ¢/¢ of
dimension 0, I and J are empty. This shows that the N=M are as we wanted,
which implies that M is X,-categorical.

Let conversely M be ®&,-categorical. Then M is totally transcendental and, if
9.1 gives all N=M, we have |[IUJUK]|=1.

Case (a): dim M =0 and M is not R,-categorical. dim M =0 means K =¢. By
8.8, H is finite and all U, are finite by (+). Since M is not R,-categorical, I =9.
Thus |J| = 1. Taken now the U, for the V, and the single U; for W. Then M has
the form as in (a).
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Case (b): dim M>0. Then I=J =0 and |K|=1. Whence dim M =1 and the
only We Uy, of rank>0 is U,. Let dim,,(¢/)=0. Since ¢/ decomposes into
finitely many M-minimal pairs, it is enough to show that ¢/¢(M) is finite if ¢/¢ is
M-minimal. But then (¢/#) is the smallest neighbourhood of some U, in U, By
(*) (in the proof of 6.12) ¢/y(U,) is finite. Since ¢/ isolates U, also ¢/ (M) is
finite.

11. Forking

We investigate the meaning of some notions of stability theory in the case of
modules: forking, regular types and orthogonality. We refer the reader to Shelah
[17] and Lascar & Poizat [15]. Note that modules are stable.

We fix a ‘large’ saturated module M. All ‘light face’ subsets A of M we deal
with are supposed to be of ‘small’ cardinality. (We need 2'A1 R < |M]).

If AcM, let us denote by S(A) the set of all complete 1-types which are
M-consistent and have parameters in A.

Let pe S(A), A < B, q € S(B) an extension of p. The notion “q is a non-forking
extension of p” or “q does not fork over A” has the following properties (see
[15]). The first two facts can be used as a definition of forking. Let q< S(M) be an
extension of p.

Fact 1. q is a non-forking extension of p iff q has at most 28" many conjugates
over A. (If m is an automorphism of M which leaves the elements of A fixed, then
w(q) is a conjugate of q over A.)

Fact 2. q is a nonforking extension of p iff q has an extension qe& S(M) which does
not fork over A.

Fact 3. All non-forking extensions qe S(M) of p are conjugate over A.

Definition. Let pe S(A). G(p) is the set of all pp-definable subgroups ¢ (M, 0),
where ¢(x, a)e p for some ac A.

Theorem 11.1. g is a non-forking extension of p iff every G € G(q) is of finite index
in some He G(p). (11.1 was independently proved in [25].)

Proof. Claim 1. There is an extension q of p s.t. every Ge G(@) is of finite index
in some He G(p).

Proof. Let H be the set of all pp-definable subgroups of M which are of finite
index in some He G(p). We show that the set

p U{—w(x, m) | meM, (M, 0) ¢ H}

is M-consistent. (Then take for § any complete extension of this set.)
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If the above set is inconsistent, there are ¢(x, @) € p, “x:(x, @) €p, Y;(x, m) s.t.
$:(M, 0) £ H and

ME¢(x, @) > (x1(x, @) v+ - vV xu (X, @ Vi (x, m) v - - v i, (x, m)).

(o, x:, ¥ are pp-formulas). Since

MFEo(x,a) = (ax, @) v - -V xa.(x, a),

some ¢(M, 0) N yY;(M, 0) is of finite index in @(M, 0), (see the proof of 1.1). But
then (M, 0) is of finite index in (M, 0)+¢;(M, 0). This is a contradiction,
because ¢(M, 0) + ¢ (M, 0) € G(p).

Claim 2: If q has the property of Claim 1, then also every conjugate over A of
q has this property.

Proof. G(m(q))=G(q).

Claim 3. There are at most 2R many qe S(M) with the property of Claim 1.

Proof. (M, 0)+—> o (M, a) (¢(x, m) cq) defines a partial map, which assigns to
every pp-definable subgroup G of M at most one coset of G. q is completely
determined by this map.

But if the property of Claim 1 holds, there are always only finitely many cosets
possible. Whence

numb er Of q’S < 2number of pp-definable subgroups .

Conclusion: § is a non-forking extension of p.

To prove 11.1, let q be a non-forking extension of p. Then there is an extension
q of g which does not fork over A. Since § and q are conjugate over A, every
G e G(q) is of finite index in some He G(p). But G(q) = G(q@.

For the converse assume that q has the property of 11.1. By Claim 1 we find an
extension q of q s.t. every Ge G(q) is of finite index in some He G(q). But since
H is of finite index in some K& G(p), we can conclude that every Ge G(g) is of
finite index in some K& G(p). Thus q does not fork over A.

For the rest of this section we assume that there are no finite indices

o/PM) # 1, ie.
(%) M SM=M.
Corollary 11.2 (*). (1) (Makkai). q is a non-forking extension of p iff G(p) = G(q).

There is only one non-forking extension q € S(B) of p.
(2) (Garavaglia). tp(a/A) does not fork over 0 iff a and A are independent.

Proof of (2). G(tp(a/0)) = G(tp(a/A)) just expresses independence of a and A in
the sense of (b) of the definition before 6.3. (Forking in injective modules was also

studied in [33].)

A type peS(A) is regular iff for all B> A, a,beM, tp(a/B) non-forking
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extension of p, tp(b/B) forking extension of p = tp(a/B U{b}) does not fork over
A.
We assume a regular type to be non-algebraic.

Remark 11.3. Let pe S(A), q the (!) non-forking extension of p to H(A). One
knows that p is regular iff q is regular. q can be decomposed: If a realizes q and is
written as a; + a, according to a decomposition H(A) @A, =M, tp(a,) is uniquely
determined by p, and is regular iff p is. Therefore we will restrict ourself in the
sequel to complete types over 0. We identify these types with pp-complete types.

Theorem 11.4 (x). Let p =tp(a). Then the following are equivalent:
(a) p is regular.
(b) p* is a maximal pp-type which is satisfied by a non-zero element of H(a).
(¢) An endomorphism of H(a) is an automorphism iff it does not map a to 0.
(This was independently proved in [26].)

Proof. (a) — (b). Let b, H(a)\0, p*<tp*(b,). Write M= H(a) BN. By (*) we
find b, eN s.t. p=tp(b,). b = b, + b, realizes p. tp(a/N) does not fork over 0. But,
since a depends on N U{b}, tp(a, N U{b}) forks over 0. By regularity tp(b/N) does
not fork over 0. Thus b does not depend on N. If M=K®N, beK, the
projection onto H(a) induces an isomorphism from K onto H(a). This isomorph-
ism maps b into by, thus p* =tp™(b) =tp*(by).

(b) > (a). Let tp(a/B) be a non-forking extension of p and suppose that
tp(a/B U{b}) forks over 0 and tp(b) = p. Write M = H(a) ®N, B <N and accord-
ingly b=b;+b,. Since a depends on BU{b}, we have b; #0. We have p*c
tp*(b,), whence by assumption p =tp(b,) =tp(b).

Let be B and ¢ a pp-formula. Then MFo(b, b), i.e. MEe(b, by +b,) implies
ME (0, b, +0) and thus M F¢(0, b). This proves that tp(b/B) does not fork over
0.

(b) = (c). If feEnd(H(a)) maps a into b#0. Then tp(b)=tp(a) and f | a is
partially isomorphic. Thus f is an automorphism. (See the proof of 4.3.)

(00— (). If be H(a)\O0, tp"(b)>p*, a+>b is a partial endomorphism which
can be extended to an endomorphism of H(a). This endomorphism by assumption
is an automorphism. Thus p = tp(b).

Corollary 11.5 (*). (1) Regular types (over 0) are indecomposable.
(2) (Makkai). Let pe S(0), N be a pure submodule of M. If p* is maximal
among those pp-types for which p*U{—x=0} is N-consistent, then p is regular.

11.5(1) follows from 11.4: End(H(p)) is local.

Examples. If R is a Dedekind ring, the indecomposable modules which belong to
regular types are R/", R/Rg, K.
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If the indecomposable module U is totally transcendental, U= H(p) for a
regular type. (p=tp(a), ac(U)\0, where ¢(U) is a minimal pp-definable
suberoun )
subgroup.)

Injective modules (see 5.10, 5.11): If R is commutative, the regular types
(which determine injective indecomposables) are in 1-1 correspondence with the
prime ideals of R. (For %8 is prime iff maximal among the irreducible ideals % with
H(R)=H®). See the proof of 5.11.) For noetherian commutative rings this
result is due to Kucera [12].

p, q € S(A) are orthogonal iff for all B> A, a, beM, tp(a/B), resp. tp(b/B) is a
non-forking extension of p, resp. q= tp(a/B U{b}) does not fork over A.

Theorem 11.6 (%). Assume that M has bounded width. Then p, e S(0) are
orthogonal, iff H(p) and H(q) have no isomorphic indecomposable factor in
common.

Proof. Let a, resp. b realize p, resp. q. If H(a) and H(b) have a common factor,
H(a) N H(b) # 0. Whence a and b are not independent and p, q not orthogonal.
(Take B =0 in the definition above.)

Assume now, that H(p) and H(q) have no non-trivial common factor. Let B, aq,
ac l the dafinitinn of arthaocanality Qince H(h) hac hannded width Hi(h) =

ad i1 U GCILNUUIL Ul CTulUgUliaiity . SHIVC 43I \U) aas vvunaca Wi, 42w

@,G , U, indecomposable. tp(b/B) does not fork over 0, the family H(B),
lJi(IGI) is therefore independent. Suppose that H(a) depends on {H(B)}U
{U;};cr- Since no U; is isomorphic to a direct factor of H(a), 6.2 shows that H(a)
depends on H(B) alone. But this contradicts our assumption that tp(a/B) does
not fork over 0. Thus H(a) does not depend on H(B)U{U,}, i.e. a and B U{b}
are independent.

[ ]

Mike Prest proved in [26] that p and q are orthogonali iff H(p) and H(q) have
no non-zero direct factor in common. () and width are not needed.
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