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a b s t r a c t

It is folklore particularly in numerical and computer sciences that, instead of solving some
general problem f : X ∋ x → f (x) ∈ Y , additional structural information about the input
x ∈ X (e.g. any kind of promise that x belongs to a certain subset X ′

⊆ X , or does not) should
be taken advantage of. In several examples from real number computation, such advice
even makes the difference between computability and uncomputability. We turn this into
a both topological and combinatorial complexity theory of information, investigating for
several practical problems how much advice is necessary and sufficient to render them
computable.

Specifically, finding a nontrivial solution to a homogeneous linear equation A · x⃗ = 0 for
a given singular real n×n-matrix A is possible when knowing rank(A) ∈ {0, 1, . . . , n−1};
and we show this to be best possible. Similarly, diagonalizing (i.e. finding a basis of
eigenvectors to) a given real symmetric n × n-matrix A is possible when knowing the
number of distinct eigenvalues: an integer between 1 and n (the latter corresponding
to the nondegenerate case). And again we show that n-fold (i.e. roughly log n bits of)
additional information is indeed necessary in order to render this problem (continuous
and) computable; whereas for finding some single eigenvector of A, providing the truncated
binary logarithm of the dimension of the least-dimensional eigenspace of A—i.e. ⌊1 +

log2 n⌋-fold advice—is sufficient and optimal.
Our proofs employ, in addition to topological considerations common in Recursive

Analysis, also combinatorial arguments.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Recursive Analysis, that is Turing’s theory of rational approximations with prescribable error bounds [49,50], is generally
considered a very realistic model of real number computation [4]. Much effort has been spent in ‘effectivizing’ classical
mathematical theorems, that is replacing mere existence claims

(i) ‘‘For all x, there exists some y such that . . . ’’
with

(ii) ‘‘For all computable x, there exists some computable y such that . . . ’’
or even uniformly:

(iii) ‘‘Given x, one can compute y such that . . . ’’
Cf. e.g. the Intermediate Value Theorem in classical analysis [52, Theorem 6.3.8.1] or the Krein–Milman Theorem from convex
geometry [16]. Note that Claim (ii) is nonuniform: it asserts y to be computable whenever x is; yet, there may be no way
of converting (as in Claim (iii)) a Turing machine M computing x into a machine N computing y [52, Section 9.6]. In fact,
computing a function f : x → y is significantly limited by the sometimes so-calledMain Theorem, requiring that any such f
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be necessarily continuous: because finite approximations to the argument x do not allow to determine the value f (x) up to
absolute error smaller than the ‘gap’ lim supt→x f (t)−lim inft→x f (t) in case x is a point of discontinuity of f . In particular any
non-constant discrete-valued function on the reals is uncomputable—for information-theoretic (as opposed to recursion-
theoretic) reasons. Thus, Recursive Analysis is sometimes criticized for rendering uncomputable even functions as simple
as Gauß’ staircase [30].

1.1. Motivating examples

On the other handmany applications do provide, in addition to approximations to the continuous argument x, also certain
discrete hints or ‘advice’; e.g. a bit indicating whether x is integral or not. And such additional information can render many
otherwise uncomputable problems computable:

Example 1. The Gauß staircase is discontinuous, hence uncomputable. Restricted to integers, however, it is simply the
identity, thus computable. And restricted to non-integers, it is computable as well; cf. [52, Exercise 4.3.2]. Thus, one bit
of additional advice (‘‘integer or not ’’) suffices to make ⌊ · ⌋ : R → Z computable.

It is long known [50] that a sequence of rational approximations to some x ∈ R with error bounds cannot continuously be
converted into a binary expansion of x. In fact it is discontinuous on the subset D :=


(2r + 1)/2k

: r, k ∈ Z

of dyadic

rationals: basically because these admit two distinct binary expansions like, e.g. (0.1000 . . .)2 =
1
2 = (0.01111 . . .)2. For

non-dyadic reals, on the other hand, such a conversion is computably possible [52, Theorem 4.1.13.1]. Now consider the
problem of computing only the first n bits of the binary expansion of x. While 2n-fold advice (namely the n bits) is trivially
sufficient, one can do much better:

Example 2. Adic(n)2 : [0, 1) ⇒ {0, 1}n is (ρ, ν)-computable with 2-fold advice; namely when providing, in addition to a
ρ-name of x, also the n-th bit of (some of) its binary expansion.

Note however that, implicitly, n is given here.

Proof. Suppose that [0, 1) ∋ x =


∞

i=1 bi2
−i with bi ∈ {0, 1} and bn = 0. (The other case bn = 1 proceeds analogously.)

Then, corresponding to the 2n−1 possible choices of (b1, . . . , bn−1, bn)with bn = 0, it holds x ∈

0, 2−n


∪

2 ·2−n, 3 ·2−n


∪

· · · ∪

(2n

− 2) · 2−n, (2n
− 1) · 2−n


:

x ∈


2k −

1
2


· 2−n,


2k +

3
2


· 2−n


(1)

for some (unique) k ∈ {0, 1, . . . , 2n−1}. Conversely, Eq. (1) implies (since bn = 0) x ∈

(2k) · 2−n, (2k + 1) · 2−n


and

(b1, . . . , bn−1) = bin(k). Since strict real inequalities are semi-decidable (formally: ρ-r.e. open in the sense of [52, Definition
3.1.3.2]), dovetailing can search for k to satisfy Eq. (1). �

Many problems in analysis involving compact (hence bounded) sets are discontinuous unless provided with some integer
bound; compare e.g. [52, Section 5.2] or the next

Example 3. Differentiation of smooth functions, that is the mapping

∂ : C∞
[0, 1] → C∞

[0, 1], f → f ′

is discontinuous w.r.t. the uniform norm ∥ ·∥. However when given, in addition to uniform approximations to f , some upper
bound on ∥f ′′

∥, ∂ does become computable.

Proof. Cf. [52, Exercise 6.4.9] and the proof of [52, Corollary 6.4.8.2]. �

For a more involved illustration from computational linear algebra, we report from [57, Section 3.5] the following

Example 4. Given a real symmetric d×dmatrix A (in form of approximations An ∈ Qd×d with |A−An| ≤ 2−n), it is generally
impossible, for lack of continuity and even in the multivalued sense, to compute (approximations to) any eigenvector of A.
Howeverwhen providing, in addition toA itself, the number Card σ(A) of distinct eigenvalues (i.e. not countingmultiplicities
in the spectrum σ(A)) of A, finding the entire spectral resolution (i.e. an orthogonal basis of eigenvectors) becomes
computable.

Another case study on the benefit of additional discrete advice turning nonuniform into uniform computability is taken from
[43, Lemma 2.8]:

Example 5. A closed subset A ⊆ Rd is called ψd
>-computable if one can, given x⃗ ∈ Rd, approximate the distance

dA(x⃗) = min

∥x⃗ − a⃗∥2 : a⃗ ∈ A


(2)
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Fig. 1. The convex hull of some points in 2D. Infinitesimal perturbation can heavily affect the (number and) subset of extreme points.

from below; more formally: upon input of a sequence q⃗n ∈ Qd with ∥x⃗ − q⃗n∥ ≤ 2−n, output a sequence pm ∈ Q with
supm pm = dA(x⃗); compare [52, Section 5.1]. Similarly, ψd

<-computability of Ameans approximation of dA from above.

(a) A finite set A = {v⃗1, . . . , v⃗N} ⊆ Rd is ψd
<-computable iff it is ψd

>-computable iff each element v⃗i is computable.
(b) Neither of the three nonuniform equivalences in (a) holds uniformly.
(c) However if the cardinality of A is given as additional information, ψd

<-computability becomes uniformly equivalent to
computability of A’s members.

(d) Whereas ψd
>-computability still remains uniformly strictly weaker than the other two.

Our next example treats a standard problem from computational geometry [3, Section 1.1]:

Example 6. For a set S ⊆ Rd, its convex hull is the least convex set containing S:

chull(S) :=


C : S ⊆ C ⊆ Rd, C convex


.

A polytope is the convex hull of finitely many points, chull({p⃗1, . . . , p⃗N}). For a convex set C , point p⃗ ∈ C is called extreme
(written ‘‘p⃗ ∈ ext(C)’’) if it does not lie on the interior of any line segment contained in C:

p⃗ = λ · x⃗ + (1 − λ) · y⃗ ∧ x⃗, y⃗ ∈ C ∧ 0 < λ < 1 ⇒ x⃗ = y⃗.

For a set X , let
X
k


:=

{x1, . . . , xk} : xi ∈ X pairwise distinct


. The problem

extchullN :


Rd

N


∋ {x⃗1, . . . , x⃗N} →


y⃗ extreme point of chull(x⃗1, . . . , x⃗N)


(3)

of identifying the extreme points of the polytope C spanned by given pairwise distinct x⃗1, . . . , x⃗N , is discontinuous (and
hence uncomputable) already in dimension d = 2 and for N = 3 with respect to output encoding ψ>, cf. Fig. 1:
Let x⃗1 := (0, 0), x⃗2 := (1, 0), and x⃗3 := ( 12 , ϵ): For ϵ = 0, these points get mapped to {(0, 0), (1, 0)}; whereas for ϵ ≠ 0,
the set of extreme points is {(0, 0), (1, 0), ( 12 , ϵ)}.

Trivially, extchullN does become computable when giving, in addition to approximations to the points x⃗1, . . . , x⃗N , one bit
bi ∈ {0, 1} for each i = 1, . . . ,N (that is, totally and in binary an integer between 0 and 2N

− 1) indicating whether
x⃗i ∈ ext chull(x⃗1, . . . , x⃗N). However in Proposition 24 below we shall show that, in order to compute extchullN , it suffices to
know merely the number M ∈ {2, . . . ,N} of extreme points of chull(x⃗1, . . . , x⃗N)—and that (N − 1)-fold discrete advice is
in fact necessary.

Instead of providing discrete advice, the convex hull problem can of course also be made computable by redefining the
problem [15].

We finally demonstrate how a little discrete advice can, even for an already (continuous and) computable real function,
have a tremendous impact on its computational complexity:

Example 7. Let A ⊆ N be arbitrary. Fix some ‘canonical pulse’ ϕ : R → [0, 1] similar to [42, p.52], that is an infinitely often
differentiable (i.e. C∞) polynomial-time computable function with ϕ(1/2) = 1 and ϕ(k)(x) = 0 = ϕ(k)(x) for every k ∈ N
and every x ∉ [

1
4 ,

3
4 ].

(a) Deciding A is (up to polynomial overhead) as hard as evaluating the C∞-function

hA : [0, 1] → [0, 1], x →


n∈A

2−n2
· ϕ(x · 2n

− 1)

in the sense of [29, Section 2.4].
In particular for A decidable but not in P/PSPACE/EXP, hA is computable but not within polynomial time/polynomial
space/exponential time.
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(b) When providing, in addition to some x ∈ [2−n, 2−n+1
], also the two-fold advice of whether n ∈ A holds or not, this

renders hA polynomial-time computable.

Proof. Note that hA is composed from disjoint pulses. In particular, according to the chain rule of differentiation, its k-th
derivative h(k)A (x) equals 2

nk
· 2−n2ϕ(k)(x · 2n

− 1) for x ∈ [2−n, 2−n+1
]; which is bounded independently of n, thus showing

that hA is C∞.
Next, hA(2−n

· 3/2) = 2−n2 if n ∈ A and hA(2−n
· 3/2) = 0 otherwise: Evaluating hA up to error 2−n2 reveals whether

n ∈ A holds or not.
Conversely, given x ∈ (2−n, 2−n+1), evaluating hA(x) amounts to calculating ϕ(x · 2n

− 1) in polynomial time in case
n ∈ A; and hA(x) = 0 in case n ∉ A. Also, hA(x) = 0 for x ∈ ( 74 · 2−n, 10

4 · 2−n). So in order to approximate hA(x) up to error
2−m2

, it suffices to detect whether x belongs to one of the intervals ( 74 · 2−n, 10
4 · 2−n) or (2−n, 2−n+1), n ≤ m; and, in the

latter case, to know whether n ∈ A holds. Since the above intervals overlap by at least 1
4 · 2−m, the former can be achieved

in time polynomial inm. �

It seems conceivable that other (and perhaps more natural) examples from analysis, too, exhibit trade-offs between their
computational complexity and the amount of advice provided. This perspective may also be helpful in devising upper
bounds: starting off with a non-uniform algorithm and trying to gradually reduce the discrete advice employed, hopefully
eventually arriving at a uniform one.

1.2. Complexity measure of nonuniform computability

We are primarily interested in problems over real Euclidean spaces Rd, d ∈ N = {1, 2, . . .}. Yet for reasons of general
applicability to arbitrary spaces U of continuum cardinality, let us recall from Weihrauch’s TTE framework [52, Section 3]
the concept of a so-called representation α :⊆ Σω

→ U , that is an encoding of all elements u ∈ U as infinite binary strings.
For a countable space U , on the other hand, a notation α :⊆ Σ∗

→ U encodes all elements u ∈ U as finite binary strings.
Now a (α, β)-realizer of a function f : U → V maps all α-encodings of u ∈ U to β-encodings of f (u) ∈ V ; and f is called
(α, β)-computable if some Turing machine with one-way (i.e. non-rewritable) output tape can compute an (α, β)-realizer
of f .
Providing discrete advice to f amounts to presenting to the Turing machine, in addition to an infinite binary string encoding
u ∈ U , some integer (or ‘color’) i; and doing so for each u, means to colorize U . Now it is natural to wonder about the least
advice (i.e. the minimum number of colors) needed:

Definition 8. (a) For a function f :⊆ A → B between topological spaces A and B and covering∆ of dom(f ) =


D∈∆ D, f is
∆-continuous if f |D is continuous for each D ∈ ∆.
Call1 Ct(f ) := min{Card(∆) : f is∆-continuous} the cardinal of discontinuity of f .

(b) A function f :⊆ A → B between represented spaces (A, α) and (B, β) is k-wise (α, β)-continuous if there exists a
partition∆ of dom(f ) of Card(∆) = k such that f |D is (α, β)-continuous on each D ∈ ∆.

(c) Call f nonuniformly (α, β)-computable if, for every α-computable a ∈ dom(f ), f (a) is β-computable.
(d) We say that f is (α, β)-computable with k-fold advice (or simply k-computablewhenever α, β are clear from the context)

if there exists a partition∆ of Card(∆) = k and a notation δ of∆ such that the mapping f∆ : (a,D) → f (a) is (α, δ, β)-
computable on dom(f∆) := {(a,D) : a ∈ D ∈ ∆}.

Call Cc(f ) = Cc(f , α, β) := min{k : f is (α, β)-computable with k-fold advise} the complexity of nonuniform (α, β)-
computability of f .

A function computable with finite advice is obviously nonuniformly computable, because a δ-name of D ∈ ∆with a ∈ D is
finite and can thus be incorporated into a machine computing f (a). This justifies complexity of nonuniform computability as
a notion and quantitative refinement of nonuniform computability.

Note that in (a) one can always proceed from a covering to a partition of dom(f ) by breaking ties arbitrarily. Now
continuous functions are exactly the 1-continuous ones; and computability is equivalent to computabilitywith 1-fold advice.
We record, as an extension of the Main Theorem of Recursive Analysis, the following immediate

Observation 9. If α, β are admissible representations in the sense of [52, Definition 3.2.7], then every k-wise (α, β)-computable
function is k-continuous (but not vice versa); that is Ct(f ) ≤ Cc(f ) holds.
More precisely, every k-wise (α, β)-computable function f :⊆ A → B has a k-continuous (α, β)-realizer in the sense of
[52, Definition 3.1.3.4], hence is k-wise (α, β)-continuous.

1 Although the Continuum Hypothesis is not needed in order to make this minimum well-defined, in view of Item (d) we shall only be concerned with
countable (and usually even finite) advice anyway.
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The above examples illustrate some interesting discontinuous functions to be computable with k-fold advice for certain
k ∈ N. Specifically Example 4 shows that diagonalizing real symmetric d × d-matrices is d-computable; and Theorem 47
below will reveal this value d to be optimal. In fact the present work determines for some natural computational problems
in linear algebra explicitly both their cardinal of continuity and their complexity of nonuniform computability.

Remark 10. We advertise Computability with Finite Advice as a generalization of classical Recursive Analysis:

(a) It captures the concept of a hybrid approach to discrete&continuous computation.
(b) It complements Type-2 oracle computation:

In the discrete realm, every function f : N → N becomes computablewhen employing an appropriate oracle;whereas in
the Type-2 case, exactly the continuous functions f : R → R are computable relative to some oracle [58, Corollary 6]. On
the other hand, 2-fold advice can make a continuous function computable which, without advice, may have arbitrarily
high degree of uncomputability; see Proposition 11(d).

(c) Discrete advice avoids a common major point of criticism against Recursive Analysis, namely that it denounces even
simplest discontinuous functions as uncomputable;

(d) and such kind of advice is very practical: In applications additional discrete information about the input is often actually
available and should be used. For instance a given real matrix may be known to be non-degenerate (as is often exploited
in numerics) or, slightly more generally, to have k eigenvalues coincide for some known k ∈ N.

Interestingly, this idea has also been expressed in the review [33] of a book on aspects of discrete recursion theory.

1.3. Related work, in particular Kolmogorov complexity

Definition 8 goes back to [51, Definition 3.3]; see also [41, Definition 5.8] where our quantity Ct(f ) it is called ‘‘basesize’’.
Providing discrete advice can also be considered as yet another instance of enrichment in mathematics [31, p.238/239].

Various other approaches have been pursued in the literature in order to make discontinuous functions accessible to
nontrivial computability investigations.

Exact Geometric Computation considers the arguments x⃗ as exact rational numbers [35].
Special encodings of discontinuous functions motivated by spaces in Functional Analysis, are treated e.g. in [62]; however

these do not admit function evaluation.
Weakened notions of computability may refer to stronger models of computation [12]; provide more information on

(e.g. the binary encoding of, rather than rational approximations with error bounds to) the argument x [38,40];
or expect less information on (e.g. no error bounds for approximations to) the value f (x) [55].

A taxonomy of discontinuous functions, namely their degrees of Borel measurability, is investigated in [10,59,60]:
Specifically, a function f :⊆ A → B is continuous (=Σ1-measurable) iff, for every closed T ⊆ B, its preimage f −1

[T ]

is closed in dom(f ) ⊆ A; and f is computable iff this mapping T → f −1
[T ] on closed sets is (ψd

>, ψ
d
>)-computable.

A degree relaxation, f is calledΣ2-measurable iff, for every closed T ⊆ B, f −1
[T ] is an Fδ-set.

Weihrauch degrees compare functions f , g by considering f ‘at most as discontinuous/uncomputable’ as g if there
exist continuous/computable functions φ,ψ such that f = φ ◦ (id, g ◦ ψ) [5]; cmp. also [52, Section 8.2].
[41, Theorem 5.9] shows that Weihrauch degrees are a (considerable) refinement of least discrete advice; cmp.
Lemmas 15 and 39.

Levels of discontinuity are studied in [20,22,23]:
Take the set LEV′(f , 1) ⊆ dom(f ) =: LEV′(f , 0) of points of discontinuity of f = f |LEV′(f ,0); then the set
LEV′(f , 2) ⊆ LEV′(f , 1) of points of discontinuity of f |LEV′(f ,1) and so on: the least index k for which LEV′(f , k) = ∅

holds is f ’s level of discontinuity Lev′(f ).
A variant, Lev(f ), considers LEV(f , 1) the closure of LEV′(f , 1) in dom(f ), then LEV(f , 2) the closure of points of
discontinuity of f |LEV(f ,1) and so on until LEV(f , k) = ∅.

Our approach superficially resembles the fourth and last ones above. Aminor difference, they correspond to ordinalmeasures
whereas the size of the partition considered in Definition 8 is a cardinal. As a major difference we now establish these
measures as logically largely independent.

Proposition 11. (a) There exists a 2-computable function f : [0, 1] → {0, 1} which is not measurable nor on any level of
discontinuity.

(b) There exists a∆2-measurable function f : [0, 1] → [0, 1] which is not k-continuous for any finite k.
(c) If f is on the k-th level of discontinuity, it is k-continuous; in formula: Ct(f ) ≤ Lev′(f ) ≤ Lev(f ).
(d) To any oracle O ⊆ Σ∗ there exists a continuous, 2-computable function f :⊆ [0, 1] → [0, 1] which is not computable even

relative to O.
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(e) There are nonuniformly computable functions not k-computable for any k ∈ N.
(f) There even exists a nonuniformly computable f : R → R with Ct(f ) = c, the cardinality of the continuum.

Any real function is trivially c-continuous by partitioning its domain into singletons. Item (f) is due toAndrej Bauer, personal
communication. Item (c) appears also in [41, Theorem 5.10]. The last paragraph of [41, Section 5.1] includes our Item (e) and
partly extends Item (a) by exhibiting, to any ordinal λ and cardinal β ≤ λ, a function f :⊆ Nλ → β with Ct(f ) = β and
Lev(f ) = λ. Complementing Item (e), conditions where nonuniform computability does imply (even) 1-computability have
been devised in [8].

Proof of Proposition 11. (a) Consider a non Borel-measurable subset S ⊆ [0, 1]; e.g. exceeding the Borel hierarchy
[24,39] by being complete for∆1

1. (Using the Axiom of Choice, S can even be chosen as non Lebesgue-measurable.) Then
its characteristic function 1S is not measurable and totally discontinuous, hence [0, 1] = LEV′(1S, 1) = LEV′(1S, 2) =

. . .; whereas (S, [0, 1] \ S) gives a 2-decomposition of dom(1S)with 1S |S ≡ 1 and 1S |[0,1]\S ≡ 0.
(b) See Example 23(b).
(c) By definition, f is continuous on LEV′(f , 0)\LEV′(f , 1), on LEV′(f , 1)\LEV′(f , 2), and so on—until LEV′(f , k−1) onwhich f

is continuous because LEV′(f , k) = ∅. Therefore∆ =

LEV′(f , 0)\LEV′(f , 1), LEV′(f , 1)\LEV′(f , 2), . . . , LEV′(f , k−1)


constitutes a partition with the desired properties.

(d) Fix any uncomputable t ∈ [0, 1] and consider

f :⊆ [0, 1] → [0, 1], f (x) := 0 for x < t, f (x) := 1 for x > t, f (t) := ⊥

which is obviously continuous (because the ‘jump’ x = t is not part of dom(f )) and 2-computable (namely on [0, t) and
(t, 1]). Since t is uncomputable, t ∉ Q. So if f were computable, we could evaluate it at any x ∈ Q to conclude whether
x < t or x > t; and apply bisection to compute t itself: contradiction. In fact we may choose t uncomputable relative to
any prescribed oracle [56,1].

(e) Let f

D be computable on each D ∈ ∆. Then f (x) is computable for each computable x ∈ D; hence also for each

computable x ∈ dom(f ) =

∆.

Example 23(b) has range {0} ∪ {1/k : k ∈ N} consisting of computable (even rational) numbers only.
(f) Consider a Sierpiński–Zygmund Function [26, Theorem 5.2] f : R → R, i.e. such that f |D is discontinuous for any

D ⊆ dom(f ) of Card(D) = c. Observe that this property is not affected by arbitrary modifications of f on any subset
X ⊆ dom(f ) of Card(X) < c: If the restriction f |dom(f )\X is continuous on D \ X for some D ⊆ dom(f ) of Card(D) = c,
then so is f on D \ X—contradicting Card(D \ X) = c.
We may therefore modify the original function to be, say, identically 0 on the countable subset X := Rc of recursive
reals, thus rendering it nonuniformly computable. Now suppose ∆ is any partition of R of Card(∆) < c. Then, e.g. by
Cori and Lascar [13, Exercise 7.13],

c = Card(R) =


D∈∆

Card(D) = max

Card(∆), supD∈∆ Card(D)


requires Card(D) = c for some D ∈ ∆; but f |D is discontinuous, hence Ct(f ) ≥ c. �

Further related research includes

Computational Complexity of real functions; see e.g. [29] and [52, Section 7]. Note, however, that Definition 8 refers to a
purely information-theoretic notion of complexity of a function and is therefore more in the spirit of

Information-based Complexity in the sense of [48]. There, on the other hand, inputs are considered as real number entities
given exactly; whereas we consider approximations to real inputs enhanced with discrete advice.

Finite Continuity is being studied for Darboux Functions in [36,37]. It amounts to d-continuity for some d ∈ N according to
Definition 8.

Promise Problems in discrete complexity theory consider relaxations of classical decision problems (i.e. languages L ⊆ N)
where input instances do not range over entire N, say, but are ‘promised’ to belong to some fixed subset D ⊆ N.
This can be regarded as a kind of advice, cmp. [17, Section 7.1]; and, conversely, k-fold advice corresponds to k
promises D1, . . . ,Dk ⊆ N that render the problem total in covering the entire input space:


j Dj = N.

Kolmogorov Complexity has been investigated for finite strings and, asymptotically, for infinite ones; cf. e.g. [32, Section
2.5] and [47]. Also a kind of advice is part of that theory in form of conditional complexity [32, Definition 2.1.2].

We quote from [32, Exercise 2.3.4ace] the following

Fact 12. An infinite string σ̄ = (σn)n∈ω ∈ Σω is computable (e.g. printed onto a one-way output tape by some so-called Type-2
or monotone machine; cf. [52,44])

(a) iff its initial segments σ̄1:n := (σ1, . . . σn) have Kolmogorov complexity ≤ O(1) conditionally to n, i.e., iff C

σ̄1:n|n


is

bounded by some c = c(σ̄ ) ∈ N independent of n.
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(b) Equivalently: the uniform complexity Cu(σ̄1:n) := C(σ̄1:n; n) in the sense of [32, Exercise 2.3.3] is bounded by some c for
infinitely many n.

Recall that C(σ̄1:n; n) is defined as the least size of a program computing any (not necessarily proper) extension of the function
{1, . . . , n} ∋ i → σi [32, Exercise 2.1.12]; i.e. in contrast to C(σ̄1:n|n), only lower bounds i to n are provided.

Proof (Claim b). If σ̄ is computable by some machine M , then obviously a minor (and constant size) modification M ′ of it
will, given n ∈ N, print σ̄1:n. Hence Cu


σ̄1:n


≤ |⟨M ′

⟩|.
Concerning the converse implication, observe that there are only O(1)c machines of size ≤ c. And for each of the infinitely
many n, at least one of them prints all initial segments of length up to n. Hence by pigeonhole principle, a single one of them
does so for infinitely many n. Which implies it does so even for all n. �

Definition 13. (a) For σ̄ ∈ Σω , write C(σ̄ ) := supn C

σ̄1:n|n


and C(σ̄ |τ̄ ) := supn C


σ̄1:n|n, τ̄


, where the Kolmogorov

complexity conditional to an infinite string is defined literally as for a finite one [32, Definition 2.1.1].
(b) Similarly, let Cu(σ̄1:n|τ̄ ) denote the uniform complexity relative to the infinite string τ̄ and abbreviate Cu(σ̄ |τ̄ ) :=

supn Cu

σ̄1:n|τ̄


.

(c) For a represented space (A, α) and a ∈ A, write Cα(a) := inf{C(σ̄ ) : α(σ̄ ) = a}; similarly for Cαu .

Note that we purposely do not consider some normalized form of Kolmogorov Complexity for infinite strings like C(σ̄1:n|n)/n/n/n
in order to establish the following

Proposition 14. A function F :⊆ Σω
→ Σω is computable with finite advice iff the Kolmogorov complexity Cu


F(σ̄ )|σ̄


is

bounded by some c independent of σ̄ ∈ dom(F).

It seems that (at least the proof in [34] of) Fact 12(a) is ‘too nonuniform’ for Proposition 14 to hold with Cu replaced by C,
even for compact dom(F).

Proof. Suppose σ̄ → F(σ̄ ) is computable for σ̄ ∈ Di by Turing machineMi. Then obviously Cu

F(σ̄ )|σ̄


≤ |⟨Mi⟩| + | bin(i)|

is bounded independent of i ≤ d.
Conversely consider, as in the proof of Fact 12(b), the d ≤ O(1)c machines Mi of size ≤ c; and remember that, for each
σ̄ ∈ dom(F) and given σ̄ , some Mi outputs the entire (as opposed to just some initial segments of the) infinite string F(σ̄ ).
Let Di ⊆ dom(F) denote the set of those σ̄ for which Mi does so. Then Mi computes F


Di

and dom(F) =
d

i=1 Di: F is
computable with d-fold advice. �

1.4. Overview

Section 2 introduces and explores witnesses of k-discontinuity as a tool for proving lower bounds on the complexity
of nonuniform computability. Section 3 extends this concept from (single-valued) functions to multivalued functions aka
relations. Section 4 then applies it to determine the complexity of nonuniform computability for four typical tasks in high-
school and scientific mathematics. We close in Section 5 with two generalizations.

2. Properties of the complexity of nonuniform computability

Lemma 15. (a) Let f : A → B be d-continuous (computable) and A′
⊆ A. Then the restriction f |A′ is again d-continuous

(computable).
(b) Let f : A → B be d-continuous (computable) and g : B → C be k-continuous (computable). Then g ◦ f : A → C is

d · k-continuous (computable).
(c) If f : A → B is (α, β)-computable with d-fold advice and α′

≼ α and β ≼ β ′, then f is also (α′, β ′)-computable with d-fold
advice.

(d) Let I denote some finite set with discrete topology and corresponding notation. Then f : I × A → B is d-continuous
(computable) iff each f (i, ·) : A → B is d-continuous (computable).

Proof. (a) Obviously, any partition∆ of A induces one∆′
:= {D ∩ A′

: D ∈ ∆} of A′ of at most the same cardinality.
(b) If f is continuous (computable) on Ai ⊆ A and g is continuous (computable) on Bj ⊆ B, then g ◦ f is continuous

(computable) on Ai ∩ f −1
[Bj]: f is on any subset of Ai; and so is g on any subset of Bj, particularly on the image of

Ai ∩ f −1
[Bj] ⊆ Bj under f .

(c) obvious.
(d) If f is d-continuous (computable), so is by (a) each restriction f (i, ·).

Conversely, let ∆i = (Di,j)j=1,...,D be partitions of A such that f (i, ·)|Di,j is continuous (computable) for each i ∈ I
and each j = 1, . . . , d. Since I bears the discrete topology (and is finite), f is continuous (computable) on each
Dj :=


i∈I{i} × Di,j ⊆ I × A (j = 1, . . . , d). Now∆ := (Dj)j=1,...,d constitutes a d-element partition of I × A. �



M. Ziegler / Annals of Pure and Applied Logic 163 (2012) 1108–1139 1115

Fig. 2. Sketch of the function from Example 18(d).

A minimum size partition ∆ of dom(f ) to make f computable on each D ∈ ∆ need not be unique: Alternative to
Example 1, we

Remark 16. Given a ρ-name of x ∈ R and indicating whether ⌊x⌋ ∈ Z is even or odd suffices to compute ⌊x⌋:
Suppose ⌊x⌋ = 2k ∈ 2Z (the odd case proceeds analogously). Then x ∈ [2k, 2k + 1). Conversely, x ∈ [2k − 1, 2k + 2),
together with the promise ⌊x⌋ ∈ 2Z, implies ⌊x⌋ = 2k. Hence, given (qn) ∈ Q with |x − qn| ≤ 2−n, k := 2 ·


q1/2 +

1
4


(calculated in exact rational arithmetic) will yield the answer. �

2.1. Witness of k-discontinuity

Recall that the partition∆ inDefinition 8 need not satisfy any (e.g. topological regularity) conditions. The following notion
turns out as useful in lower bounding the cardinality of such a partition:

Definition 17. (a) A d-flagF in a topological space X is a (d+1)-tuple F0, F1, . . . , Fd of subsets of X such that Fi is contained
in the closure Fi+1 of Fi+1 for each i = 0, . . . , d − 1.

(b) Let F = (F0, . . . , Fd) and G = (G0, . . . ,Gd) be d-flags with Gi ⊆ Fi for i = 0, . . . , d. Then G is called a subflag of F . F
is trivial if F0 = ∅.

(c) For a partition ∆ of X , a flag F in X is ∆-monochromatic if, to every i = 0, . . . , d, there exists some D ∈ ∆ with
Fi ⊆ D.

(d) For X, Y metric spaces and f :⊆ X → Y , a witness of d-discontinuity of f is a nontrivial d-flag F in dom(f ) such that,
for each 0 ≤ k < ℓ ≤ d and each x ∈ Fk and each sequence (xn) ⊆ Fℓ with x = limn xn, f (xn) does not converge
to f (x).

Example 18. Let X, Y be metric spaces.

(a) A function f : X → Y is discontinuous iff it admits a witness of 1-discontinuity:
Indeed, suppose F is a witness of 1-discontinuity. Then there exists x ∈ F0; and, since F0 ⊆ F1, x = limn xn for some

(xn) ⊆ F1. Now f (xn) ↛ f (x) shows that f is discontinuous at x. Conversely if f is discontinuous, then f (xn) ↛ f (x) for
some x, xn ∈ dom(f )with xn → x. Thus, F0 := {x} and F1 := {xn : n ∈ N} constitutes a witness of 1-discontinuity.

(b) Let

x, (xn)n , (xn,m)n,m , (xn,m,ℓ)n,m,ℓ , . . . , (xn1,...,nd)n1,...,nd

denote a family of (multi)sequences in X such that, for each 0 ≤ k < d and each n̄ ∈ Nk, it holds limm xn̄,m = xn̄. Then
(F0, F1, . . . , Fd)with F0 := {x}, F1 := {xn : n ∈ N}, Fk := {xn̄ : n̄ ∈ Nk

} constitutes a nontrivial d-flag in X .
(c) Let F = (F0, . . . , Fd) be a nontrivial d-flag in X and f : X → Z a function mapping to some discrete space Z with

f [Fk] ∩ f [Fℓ] = ∅ for each 0 ≤ k < ℓ ≤ d. Then F is a witness of d-discontinuity.
(d) Consider the function f :⊆ R3

→ {−∞, 1, 2, 3} with dom(f ) = [0,∞)3 defined by f : (x1, x2, x3) → max{i : xi > 0};
cmp. Fig. 2. Then


{(0, 0, 0)}, {(x, 0, 0) : x > 0}, {(x, y, 0) : y > 0}, {(x, y, z) : z > 0}


is a witness of 3-discontinuity

of f .

Lemma 19. (a) Let X, Y be metric spaces and f : X → Y a function. A nontrivial subflag of a witness of d-discontinuity of f is
again a witness of d-discontinuity of f .

(b) Let∆ be a finite partition of X and F a nontrivial d-flag. Then there exists a nontrivial∆-monochromatic subflag G of F .
(c) If F is a∆-monochromatic witness of d-discontinuity of∆-continuous f : X → Y , then Card(∆) > d.
(d) If f admits a witness of d-discontinuity, then f is not d-wise continuous.

Item (d) gives only a sufficient condition for d-wise discontinuity: Observation 31 shows that its converse in general fails
for d ≥ 2.
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Proof. (a) obvious.
(b) In case d = 0, ∅ ≠ F0 = F0 ∩


∆ =


D∈∆(F0 ∩ D) implies G0 := F0 ∩ D ≠ ∅ for some D ∈ ∆. Now proceed

inductively from d to d+1, supposing that (F0, . . . , Fd) already ismonochromatic. ForD ∈ ∆ considerGd+1,D := Fd+1∩D
and Gk,D := Fk ∩ Gk+1,D, k = 0, . . . , d. Then, for each D ∈ ∆, GD := (G0,D,G1,D, . . . ,Gd,D,Gd+1,D) constitutes a
monochromatic subflag of F . It remains to find GD nontrivial for some D ∈ ∆. To this end observe


D∈∆ Gd+1,D = Fd+1

by distributivity and, inductively,
D∈∆

Gk,D = Fk ∩


D∈∆

Gk+1,D = Fk ∩


D∈∆

Gk+1,D = Fk ∩ Fk+1 = Fk

because topological closure commutes with finite unions. So F0 ≠ ∅ implies G0,D ≠ ∅ for some D ∈ ∆.
(c) Since F is ∆-monochromatic, there exists a mapping δ : {0, 1, . . . , d} → ∆ with Fk ⊆ δ(k) for each k = 0, . . . , d.

We now show that δ must be injective. F is nontrivial, thus ∅ ≠ F0, Fk for each k. Therefore there exists, to each
0 ≤ k < ℓ ≤ d, some x ∈ Fk ⊆ δ(k) and (xn) ⊆ Fℓ ⊆ δ(ℓ) with xn → x and f (xn) ↛ f (x). Since f |δ(ℓ) is continuous by
hypothesis, this discontinuity of f at x ∈ δ(k) requires δ(k) ≠ δ(ℓ).

(d) Suppose that f is ∆-continuous for some Card(∆) ≤ k. By a + b), one can proceed to a ∆-monochromatic witness of
d-discontinuity of f . Now (c) raises a contradiction. �

2.2. More examples

Webeginwith a real variant of (the d-fold iteration of) the limited principle of omniscience from constructivemathematics,
already shown d-wise discontinuous in [51, Theorem 3.5]:

Example 20. The mapping

LPOd : Rd
∋ (x1, . . . , xd) → Card{i : 1 ≤ i ≤ d, xi ≠ 0} ∈ {0, 1, 2, . . . , d}

is (d + 1)-continuous: namely even constant on each Dk :=

(x1, . . . , xd) : Card{i : xi ≠ 0} = k


, k = 0, . . . , d. It is not d-

continuous, because Example 18(c) (and then Lemma 19(d)) applies to the following d-flag: F0 := {0d
}, F1 := {(1/n, 0d−1) :

n ∈ N}, F2 := {(1/n, 1/n+1/m, 0d−2) : n,m ∈ N}, Fk := {(1/n1, 1/n1+1/n2, . . . , 1/n1+· · ·+1/nk, 0d−k) : n1, . . . , nk ∈ N}.

Example 21. The flag (F0, . . . , Fd−1) above also shows that the mapping

Cardd : Rd
∋ (x1, . . . , xd) → Card{x1, . . . , xd} ∈ {1, 2, . . . , d} =: [d]

is not (d − 1)-continuous (but trivially d-continuous).

In particular, Example 5(c) is best possible in the following sense: For d ∈ N and given X = {x1, . . . , xd} ⊆ R,
knowing k := Card(X) ∈ {1, . . . , d} (i.e. d-fold advice according to Example 21) is obviously necessary to even state the
ρk-computability of some k-tuple (xi1 , . . . , xik) with k = Card{xi1 , . . . , xik}, that is for enumerating X ’s members without
repetition; whereas X ’s members with repetition can be enumerated without any advice according to [52, Lemma 5.1.10].

Example 22. The mapping

Class1+d : R1+d
∋ (x, y1, . . . , yd) → {1 ≤ i ≤ d : yi = x} ∈ 2[d]

is (with respect to representation ρ1+d on its domain and the discrete topology on its co-domain) (d + 1)-computable, but
not d-continuous.

Proof. Suppose Classd+1 is d-continuous. Then LPOd(x1, . . . , xd) = [d] \ Classd+1(0, x1, . . . , xd) would imply d-continuity
of LPOd by Lemma 15(b): contradicting Example 20.
Conversely, observe Class1+d(x, y1, . . . , yd) = [d] \ LPOd(x − y1, . . . , x − yd); hence (d + 1)-computability of LPOd yields
the same for Class1+d. �

Example 23. Fix some bijection N × N → N, (x, y) → ⟨x, y⟩; e.g. ⟨x, y⟩ := 2x−1
· (2y − 1).

(a) For n̄ ∈ N∗, let ⟨⟨n̄⟩⟩ :=


i 2
−⟨i,ni⟩; and map the empty tuple to 0. This mapping ⟨⟨ · ⟩⟩ : N∗

→ [0, 1] ∩ D is well-defined
and injective. For each k, the range ⟨⟨Nk

⟩⟩ belongs to Borel class∆2.
(b) Consider f : [0, 1] → [0, 1] well-defined by f (x) := 1/(k + 1) for x = ⟨⟨n̄⟩⟩ with n̄ ∈ Nk; f (x) := 0 for x ∉ ⟨⟨N∗

⟩⟩. Then f
is∆2-measurable but not d-continuous for any d ∈ N.

Proof of Example 23. (a) Let ⟨⟨n⟩⟩i := 2−⟨i,n⟩ and, for 1 ≤ i1 < · · · < ik, ⟨⟨n1, . . . , nk⟩⟩{i1,...,ik} :=
k

ℓ=1⟨⟨nℓ⟩⟩iℓ . Hence
⟨⟨n1, . . . , nk⟩⟩ = ⟨⟨n̄⟩⟩{1,2,...,k}. Now observe that forming the topological closure of ⟨⟨N1

⟩⟩i means including {0} = ⟨⟨N0
⟩⟩.
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Similarly, for i1 ≠ i2,

⟨⟨N2⟩⟩{i1,i2} = ⟨⟨N2
⟩⟩{i1,i2} ⊎ ⟨⟨N1

⟩⟩i1 ⊎ ⟨⟨N1
⟩⟩i2 ⊎ ⟨⟨N0

⟩⟩ = ⟨⟨N2
⟩⟩{i1,i2} ⊎


⟨⟨N1⟩⟩i1 ∪ ⟨⟨N1⟩⟩i2


where ‘‘⊎’’ denotes disjoint union. More generally, for ı̄ := {i1, . . . , ik}, it holds

⟨⟨Nk⟩⟩ı̄
(∗)
=


ȷ̄⊆ı̄

⟨⟨NCard ȷ̄
⟩⟩ȷ̄

(∗∗)
= ⟨⟨Nk

⟩⟩ı̄ ⊎


ȷ̄(ı̄

⟨⟨NCard ȷ̄⟩⟩ȷ̄

where ‘‘̄ȷ ⊆ ı̄’’ means index running over all (finitely many) subsets ȷ̄ of ı̄. In particular, ⟨⟨Nk
⟩⟩ı̄ is the difference of the two

closed sets ⟨⟨Nk⟩⟩ı̄ and


ȷ̄(ı̄ ⟨⟨NCard ȷ̄⟩⟩ȷ̄, hence in∆2.
(b) Well-definition of f follows froma).Moreover, f −1


1/(k+1)


= ⟨⟨Nk

⟩⟩ is in∆2. Since range(f ) = {1/(k+1) : k ∈ N}∪{0},
the preimage f −1

[V ] of any open set V ∌ 0 is a union of finitely many f −1

1/(k+ 1)


and therefore in∆2, too; whereas

the preimage of open V ∋ 0misses finitely many f −1

1/(k + 1)


and thus also belongs to∆2.

Let F0 := {0}, F1 := {2−⟨1,n⟩
: n ∈ N}, F2 := {2−⟨1,n⟩

+2−⟨2,m⟩
: n,m ∈ N}, . . . , Fd := {

d
i=1 2

−⟨i,ni⟩ : n1, . . . , nd ∈ N}. This
constitutes a nontrivial d-flag; and f |Fk ≡ 1/(k + 1) shows the restriction f : F0 ∪ F1 ∪ · · · ∪ Fd → {1, . . . , 1/(d + 1)}
to be d-discontinuous. �

Finally recall Example 6 of computing (or rather identifying) from a given N-tuple (x⃗1, . . . , x⃗N) of distinct points in Rd those
extremal to (i.e. minimal and spanning) the convex hull chull(x⃗1, . . . , x⃗N). In the 1D case, this problem (x1, . . . , xN) →

extchullN(x1, . . . , xN) is computable: simply return the two (distinct!) numbers min{x1, . . . , xN} and max{x1, . . . , xN}. We
have already seen that in 2D it generally lacks ψ2

>-computability because of discontinuity.

Proposition 24. Let x⃗1, . . . , x⃗N ∈ Rd be pairwise distinct and C := chull(x⃗1, . . . , x⃗N).

(a) Let y⃗ ∈ ext(C). Then there exists a closed halfspace

H+

u⃗,t =

z⃗ ∈ Rd

:


i
ziui ≥ t


⊆ Rd

with rational normal (although not necessarily unit) vector u⃗ ∈ Qd
\ {0} and real R ∋ t > 0 such that H+

u⃗,t ∩ {x⃗1, . . . , x⃗N} =

{y⃗} = {x⃗j} for some 1 ≤ j ≤ N.
(b) Conversely H+

u⃗,t ∩ {x⃗1, . . . , x⃗N} = {x⃗j} with u⃗ ≠ 0 implies x⃗j ∈ ext(C).
(c) Given x⃗1, . . . , x⃗N ∈ Rd as above and for 1 ≤ j ≤ N, ‘‘x⃗j ∈ ext(C)’’ is semi-decidable.

More formally, the following set is (ρd×N , ν)-r.e. open:
(x⃗1, . . . , x⃗N , j) : x⃗1, . . . , x⃗N ∈ Rd,N ∋ j ≤ N, x⃗j ∈ extchullN(x⃗1, . . . , x⃗N)


.

(d) The mapping extchullN from Eq. (3) is (ρd×N , ψd
<)-computable.

(e) For N ≥ 2 and given the number M := Card ext(C) ∈ {2, . . . ,N} of extreme points, the set of their indices, i.e.

{i1, . . . , iM} ⊆ {1, . . . ,N} s.t. ext(C) = {x⃗i1 , . . . , x⃗iM }

becomes (ρd×N , ν)-computable.
In particular, extchullN is (ρd×N , ψd

>)-computable with (N − 1)-fold advice.
(f) It is however (N − 2)-wise (ρd×N , ψd

>)-discontinuous in dimension d = 2.

Proof. (a) and (b): It is well-known [19] that extreme points y⃗ of a polytope C (although not necessarily of a general convex
body) are precisely its exposed points, i.e. satisfy {y⃗} = C ∩ H+

u⃗,t for some t > 0 and u⃗ ∈ R \ {0}. Equivalently:
⟨u⃗, x⃗j⟩ > ⟨u⃗, x⃗i⟩ for all i ≠ j—obviously a condition open in u⃗, which therefore may be chosen from the dense subset
Qd

⊆ Rd.
(c) Follows from (a + b) by dovetailed search for some u⃗ ∈ Qd

\ {0} with ⟨u⃗, x⃗j⟩ =: t > ⟨u⃗, x⃗i⟩ for all i ≠ j, where
⟨u⃗, x⃗⟩ := u1x1 + · · · + udxd.

(d) Follows from (c) by trying all j = 1, . . . ,N . Indeed, aψd
<-name (but not aψd

>-name) permits to ‘increase’ at any time the
set to be output.

(e) similarly to (d), now trying all M-tuples (i1 < i2 < · · · < iM) in {1, . . . ,N}. Note that indeed Card ext(C) ≥ 2 because
the x⃗i are pairwise distinct.

(f) We might construct a witness of (N − 2)-discontinuity, but take the more elegant approach of a reduction by virtue
of Lemma 15(b). To this end observe that semi-decidability of inequality makes Cardn : Rn

∋ (x1, . . . , xn) →

Card{x1, . . . , xn} (ρn, ρ<)-computable, i.e. upper semi-continuous; hence by Example 21, Cardn must be (n − 1)-wise
lower semi-discontinuous.
Now let x1, . . . , xn ∈ R be given. According to [52, Exercise 4.3.15] suppose w.l.o.g. x1 ≥ x2 ≥ · · · ≥ xn−1 ≥ xn = 0.
Then proceed to the following collection X of N := n+ 1 points in 2D: (0, 0), (1, x1), (2, x1 + x2), . . . , (n, x1 + · · · + xn);
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Fig. 3. Knowing in 2D which points are/not extreme to their convex hull can be used to conclude which real numbers are in-/equal.

Fig. 4. (a) The cardinal of discontinuity cannot be lower bounded by the number of limit points. b) A 2-continuous function which, after identifying
arguments x = 0 and x = 1, exhibits mere 3-continuity yet admits no witness of 2-discontinuity; see Observation 31. (c) A function where a greedy
meta-algorithm may fail to produce a smallest decomposition into continuous restrictions.

cf. Fig. 3. Let fn : Rn
→ R2(n+1) denote this computable mapping (x1, . . . , xn) → X . Observe that the sequence of slopes

from points #i to #i+1 is non-increasing because xi ≥ xi+1; and two successive slopes (#i−1 → #i) and (#i → #i+1)
coincide iff xi = xi+1; which in turn is equivalent to point #i being not extreme to chull(X), 1 ≤ i < n. In fact from a
ψ2
>-name of extchull(X) one can semi-decide (i, x1 + · · · + xi) ∉ extchull(X) by verifying dextchull(X)(i, x1 + · · · + xi) > 0

[52, Lemma 5.1.7]. Subtracting (0, 0) which is always extreme to chull(X), this yields a (ψ2
>, ρ>)-computable mapping

hn : extchulln+1(X) → Card extchulln+1(X) − 1 = Card{x1, . . . , xn} defined on the image of extchulln+1 ◦fn. Now since
hn ◦ extchulln+1 ◦fn = Card : Rn

→ {1, . . . , n} is (n − 1)-wise lower semi-discontinuous by the above considerations,
Lemma 15(b) requires that extchulln+1 be (n − 1)-wise (ρn+1, ψ2

>)-discontinuous where we chose N = n + 1. �

Question 25. Fix N ≥ d ≥ 2. Let x⃗1, . . . , x⃗N ∈ Rd be affinely independent. Restricted to such inputs, what is the least advice
that renders extchull continuous/computable?

2.3. Further remarks

For some time the author had felt that when dom(f ) is sufficiently ‘nice’ and for x ∈ dom(f ), the cardinal of discontinuity
of f could be lower bounded in terms of the number of distinct limits of f at x, that is the cardinality of

Lim(f , x) :=

limn→∞ f (xn) : dom(f ) ∋ xn → x


.

However the following example (cf. also Fig. 4(a) shows that this is not the case:

f : [−1, 1] → [0, 1], 2−n
· 3−m

→ 3−m (n,m ∈ N), f (x) :≡ 0 otherwise.

Here Lim(f , 0) is infinite but f is continuous onD1 := {2−n
·3−m

: n,m ∈ N} (because the latter set contains no accumulation
point) and f ≡ 0 on D2 := [−1, 1] \ D1; hence Ct(f ) = 2.

Finally we remark that in the case of finite advice, the notation δ in Definition 8(d) usually arises straightforwardly and
naturally; although an artificially bad choice is possible even for 2-wise computable functions:

Example 26. The characteristic function χH : N → {0, 1} of the Halting problem H ⊆ N is obviously 2-wise (ν, ν)-
computable by virtue of∆ = {H,N \ H}, namely for δ :⊆ Σ∗

→ ∆with 1 → H and 0 → N \ H .
Whereas with respect to the following notation δ̃, χH is equally obviously not (ν, δ̃, ν)-computable:

δ̃ : Σ∗
→ ∆, x̄ → H for bin(x̄) ∈ H, x̄ → N \ H for bin(x̄) ∉ H.

Definition 8 raises the question of how to determine for an arbitrary given function f (the cardinality of) a least partition
∆ of dom(f ) such that f |D is continuous/computable for each D ∈ ∆. Such a question of course arises generically for any
complexity theory. For the complexity measure of ‘levels of discontinuity’ (recall Section 1.3) such a partition can (at least in
principle) be determined by a straightforward meta-algorithm: Let Di be dom(f ) with all points of discontinuity removed,
then repeat with i + 1 and f restricted to said set of points of discontinuity. Of course this algorithm in general does not
yield a least partition in the (more general) sense of Definition 8(a+d); recall Proposition 11(a).
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Instead the following meta-algorithm may seem promising:

• Take some (w.r.t. set-inclusion) maximal subset Di of dom(f ) such that f |Di is continuous.
• Then repeat with the restriction of f to dom(f ) \ Di
• until arriving at the empty function.

Remark 27. (a) In computer science, algorithms of this type are called greedy.
(b) For our meta-algorithm, each iteration amounts to one invocation of Zorn’s Lemma.
(c) The number of iterations is (like the level) in general an ordinal rather than a cardinal.
(d) Even in the case of finite cardinal (=ordinal) of continuity, a maximal subset D1 as above need not be unique
(e) and an unfavorable choice can lead to a suboptimal partition.

To illustrate the latter, consider the function

f : [0, 1] → R, Q ∩ [0, 1/2] ∋ x → x, (1/2, 1] ∋ x → 0, [0, 1] \ Q ∋ x → 0

depicted in Fig. 4(c). Then f is continuous on both D1 := ([0, 1] \ Q) ∪ (1/2, 1] and D2 := [0, 1/2] ∩ Q; hence they form
a 2-element partition∆ = {D1,D2}. On the other hand, f is also continuous on D′

1 := ([0, 1/2) ∩ Q) ∪ (1/2, 1] but not on
any proper superset of D′

1. But once the above greedy meta-algorithm has chosen this D′

1, the restriction f |[0,1]\D′
1
remains

discontinuous at 1/2 and hence finally results in a 3-element partition∆′ of [0, 1].

2.4. Weak k-fold advice

Recalling Observation 9, k-wise (α, β)-computability of f :⊆ A → B implies k-wise (α, β)-continuity from which in
turn follows weak k-wise (α, β)-continuity in the following sense:

Definition 28. Consider a function f : A → B between represented spaces (A, α) and (B, β).

(a) Call f weakly k-wise (α, β)-continuous if there exists a k-continuous (α, β)-realizer F :⊆ Σω
→ Σω of f in the sense

of [52, Definition 3.1.3].
(b) Call f weakly k-wise (α, β)-computable if it admits a k-computable (α, β)-realizer.

However conversely, and as opposed to the classical [52, Theorem3.2.11] (i.e. the case k = 1),weak 2-wise (α, β)-continuity
in generally does not imply 2-wise (α, β)-continuity. Basically the reason is that a partition of dom(f ) yields a partition of
dom(F); whereas a partition∆ of dom(F) need not be compatible with the representation in that different α names for the
same argument amay belong to different elements of∆:

Example 29. Consider the f : [0, 1] → [−1,+1] depicted in Fig. 4(b):

[0, 1) ∩ Q ∋ x → x =: g(x), R \ Q ∋ x → x − 1 =: h(x), f (1) := 0.

This function is continuous on both Q ∩ [0, 1) and on {1} ∪ R \ Q; hence 2-continuous, and admits a 2-continuous (ρ, ρ)-
realizer.

Now proceed from [0, 1] to S1, i.e. identify x = 0 with x = 1; formally, consider the representation ρ̃ := ı ◦ρ :⊆ Σω
→

S1 where ı : R → [0, 1), x → x mod 1. Since f (0) = 0 = f (1), this induces a well-defined function f̃ : S1
→ [−1,+1];

which admits a 2-continuous (ρ̃, ρ)-realizer: namely the 2-continuous (ρ, ρ)-realizer of f . But f̃ itself is not 2-continuous:
Suppose S1

= D1⊎D2 where f̃ |D1 and f̃ |D2 are both continuous.W.l.o.g. 0 ∈ D1. Observe that f̃ (0) = 0 = g(0) ≠ h(0) = −1.
Hence, as Q is dense and because continuous h is different from continuous g , continuity of f̃ |D1 requires it to coincide with
g: first just locally at x = 0, but then also globally—which implies lim

x↗1
f̃ |D1(x) = g(1) = 1, contradicting f̃ |D1(1) = 0. �

As already mentioned, Example 29 illustrates that the implication from k-wise (α, β)-continuity to weak k-wise (α, β)-
continuity cannot be reversed in general—even for admissible representations. Indeed, ρ̃ can be shown equivalent to the
standard representation δS1 of S1 as an effective topological space [52, Definition 3.2.2].

Applying Lemma 15 to realizers yields the following counterpart for weak advice:

Remark 30. Fix represented spaces (A, α), (B, β), and (C, γ ).

(a) Let f : A → B be weakly d-wise (α, β)-continuous/computable and A′
⊆ A. Then the restriction f |A′ is again weakly

d-wise (α, β)-continuous/computable.
(b) Let f : A → B be weakly d-wise (α, β)-continuous/computable and g : B → C be weakly k-wise (β, γ )-

continuous/computable. Then g ◦ f : A → C is weakly d · k-wise (α, γ )-continuous/computable.
(c) If f : A → B is weakly d-wise (α, β)-continuous (computable) and α′

≼t α (α′
≼ α) and β ≼t β

′ (β ≼ β ′), then f is
also weakly d-wise (α′, β ′)-continuous (computable).
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Notice that property (b) does not carry over to multi-representations in the sense of [53]; cf. the discussion preceding
Lemma 39 below.

We also observe that Lemma 19 does not admit a converse, even for total functions between compact spaces:

Observation 31. The function f̃ : S1
→ [−1,+1] from Example 29 is not 2-continuous yet has no witness of 2-discontinuity.

Proof. Suppose ({x}, F1, F2) is a witness of 2-discontinuity of f̃ . Consider the

• case x ∈ (0, 1) ∩ Q. Since F1 ∋ xn → x has f̃ (xn) ↛ f̃ (x) = x, w.l.o.g. 0 < xn < 1 and xn ∉ Q: otherwise proceed to an
appropriate subsequence. Now take F2 ∋ xn,m → xn, convergence w.l.o.g. holding uniformly in n; in particular xm,m → x.
Then f̃ (xn,m) ↛ f̃ (xn) = xn − 1 requires, by definition of f̃ , f̃ (xn,m) = xn,m for almost all m and n: contradicting that a
witness of discontinuity is required to satisfy f̃ (xm,m) ↛ f̃ (x).

• Case x ∈ (0, 1) \ Q: similarly.
• Case x = 0 ≡ 1: As F1 ∋ xn → x and since f̃ (xn) ↛ f̃ (x) = 0, we may consider two subcases:
• Subcase xn ∈ (1/2, 1) ∩ Q for almost all n:

Now take F2 ∋ xn,m → xn uniformly. Then f̃ (xn,m) ↛ f̃ (xn) = xn requires, by definition of f̃ , f̃ (xn,m) = xn,m − 1 for
almost allm and n: contradicting limm xm,m = x and f̃ (xm,m) ↛ f̃ (x) = 0.

• Subcase xn ∈ (0, 1/2) \ Q for almost all n: similarly. �

Note that dom(f̃ ) = S1 ∼= {(a, b) : a2 + b2 = 1} ⊆ [−1,+1]2 in Observation 31 is not simply connected. On the other
hand ˜̃f : [−1,+1]2 → [−1, 2], defined by

˜̃f (x⃗) := f̃ (x⃗) ∈ [−1,+1] for x⃗ ∈ S1,
˜̃f (x⃗) := 2 for x⃗ ∉ S1

has convex domain, is not 3-continuous, yet has no witness of 3-discontinuity.

Question 32. Suppose f has simply connected (or even convex) domain and is not 2-continuous. Does it then admit a witness of
2-discontinuity?

3. Multivalued functions, i.e. relations

Many applications involve functions which are ‘non-deterministic’ (or non-extensional) in the sense that, for a given
input argument x, several values y are acceptable as output; recall e.g. Items (i) and (ii) in Section 1. In linear algebra for
instance, given a singular matrix A, we want to find some (say normed) vector v⃗ such that A · v⃗ = 0. This is reflected by
relaxing the mapping f : x → y to be not a function but a relation (also called multivalued function). We write f : X ⇒ Y
and x Z⇒ f (x) instead of f : X → 2Y

\ {∅} and x → f (x) to indicate that, on input x ∈ X , any single y ∈ f (x) is permitted as
output. Many practical problems have been shown computable as multivalued functions but admit no computable single-
valued selection; cf. e.g. [52, Exercise 5.1.13], [57, Lemma 12 or Proposition 17], and the left of Fig. 5 below. On the other
hand, even relations often lack computability merely for reasons of continuity—and appropriate additional discrete advice
renders them computable, recall Example 4 above.

Now Definition 8 of the complexity of nonuniform computability straight-forwardly extends from single-valued to
multivalued functions; and so does Observation 9 for (single-valued) realizers which can then be treated using Lemma 19.
However a direct generalization of Lemma 19 to multivalued mappings turns out to be more convenient. This approach
requires a notion of (dis-)continuity for relations rather than for functions.

3.1. Topological power of multivaluedness

It is well-known that multivaluedness has both practical relevance and theoretically strictly enhances the computing
capabilities over real numbers: Giving a Type-2 Machine a choice renders problems computable (and thus continuous)
which are discontinuous for any fixed single-valued selection: cmp. e.g. the left of Fig. 5 or [52, Section 6.3]. It is thus to
be expected that also the degree of discontinuity increases when proceeding from a multivalued (i.e. ‘nondeterministic’)
mapping to some single-valued (‘deterministic‘) choice. We illustrate this with a natural example exhibiting an exponential
jump in complexity: Recall (Example 22) that the mapping Classn : Rn

∋ (x0; x1, . . . , xn−1) → {1 ≤ j < n : x0 = xj} is
n-computable but not (n − 1)-continuous.

Theorem 33. Let Classn,ℓ(x1, . . . , xn) := Classn+1(xℓ; x1, . . . , xℓ, . . . , xn) =

1 ≤ j ≤ n : xj = xℓ} ⊆ [n]. Consider the

multivalued mapping

SomeClassn : Rn
∋ (x1, . . . , xn) Z⇒


Classn,ℓ(x1, . . . , xn) : ℓ = 1, . . . , n


yielding, for some ℓ, all indices i with xi = xℓ. This map is ⌊1 + log2 n⌋-continuous.
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Fig. 5. (a) (ρ, ρ)-computable relation which is not hemicontinuous nor admits a continuous selection. (b) Quantification over all y ∈ f (x) is generally
necessary to capture discontinuity of a multivalued function. (c) Example of a (nontrivially) discontinuous relation. (d) A continuous relation with no
continuous realizer.

More precisely, given (a ρn-name of x⃗ and)

d := ⌊log2 m⌋ with m := min
1≤ℓ≤n

CardClassn,ℓ(x⃗),

one can compute Classn,ℓ(x⃗) for some ℓ with m = CardClassn,ℓ(x⃗).

Our proof proceeds by applying k := 2d to Item (d) of the following combinatorial

Lemma 34. Let x1, . . . , xn ∈ R and m = min1≤ℓ≤n CardClassn,ℓ(x⃗) as above.

(a) For each k, ℓ, it either holds Classn,ℓ(x⃗) = Classn,k(x⃗) or Classn,ℓ(x⃗) ∩ Classn,k(x⃗) = ∅. Also,

ℓ Classn,ℓ(x⃗) = [n].

(b) Consider I ⊆ [n] with 1 ≤ Card(I) < 2m such that

xi ≠ xj for all i ∈ I and all j ∈ [n] \ I. (4)

Then I = Classn,ℓ(x⃗) for some ℓ.
(c) Suppose k ∈ N is such that k ≤ m < 2k. Then there exists ℓ with k ≤ Card


Classn,ℓ(x⃗)


< 2k satisfying (4). Conversely

every I ⊆ [n] with k ≤ Card(I) < 2k satisfying (4) has I = Classn,ℓ(x⃗) for some ℓ.
(d) Given a ρn-name of (x1, . . . , xn) and given k ∈ N with k ≤ m < 2k, one can computably find some Classn,ℓ(x⃗).

Proof. (a) Obvious.
(b) Take i ∈ I with i ∈ Classn,ℓ(x⃗) for some ℓ. Then I ⊇ Classn,ℓ(x⃗) follows, because j ∈ Classn,ℓ(x⃗) \ I would imply xi = xj:

contradicting Eq. (4).
It remains to show I ⊆ Classn,ℓ(x⃗). Suppose that xi ≠ xi′ for some i′ ∈ I . Then i′ ∈ Classn,ℓ′(x⃗) for some ℓ′

≠ ℓ, i.e.
with Classn,ℓ(x⃗) ∩ Classn,ℓ′(x⃗) = ∅. Thus condition ‘‘xi ≠ xj’’ fails for all j ∈ Classn,ℓ(x⃗); and ‘‘xi′ ≠ xj’’ fails for all
j ∈ Classn,ℓ′(x⃗): i.e. for a total of Card


Classn,ℓ(x⃗)


+ Card


Classn,ℓ′(x⃗)


≥ 2m choices of j ∈ [n], whereas by Eq. (4) it

is supposed to hold for all j ∈ [n] \ I: a total of> n − 2m choices—contradiction.
(c) For the first claim, simply choose ℓwith Card


Classn,ℓ(x⃗)


= m. Concerning the second claim, observe that k ≤ m and

Card(I) < 2k imply Card(I) < 2m; hence Item (b) applies.
(d) Recall that inequality of real numbers is ‘semi-decidable’; formally: {(x, y) : x ≠ y} ⊆ R2 is ρ2-r.e. open in R2 in the

sense of [52, Definition 3.1.3.2]. Hencewemay simultaneously try every I ⊆ [n]with k ≤ Card(I) < 2k and semi-decide
Condition (4): according to Item (c) this will succeed precisely for I = Classn,ℓ(x⃗). �

3.2. Continuity for relations

Like single-valued computable functions (recall theMain Theorem), also computable relations satisfy certain topological
conditions. However for suchmultivaluedmappings, the literature knows a variety of easily confusable notions like [28, §7],
[7], or [45]. Hemicontinuity [14, Definitions 1.1+2.1] for instance is not necessary for real computability; cf. Example 36(a)
below. It may be tempting to regard computing a multivalued mapping f as the task of calculating, given x, the set-
value f (x) [46]. In our example applications, however, one wants to capture that a machine is permitted, given x, to
‘nondeterministically’ choose and output some value y ∈ f (x). Note that this coincides with [52, Definition 3.1.3]. In
particular we do not insist that, upon input x, all y ∈ f (x) occur as output for some nondeterministic choice—as required in
[9, Section 7].

Instead, let us generalize Definition 17 as in Item (c) of the following.

Definition 35. Fix some possibly multivalued mapping f :⊆ X ⇒ Y and write dom(f ) := {x ∈ X : f (x) ≠ ∅}.

(a) Upper hemicontinuity of f at x ∈ dom(f ) means that to every open V ⊇ f (x) there exists a neighborhood U of x such
that f (z) ⊆ V for all z ∈ U (equivalently: for all z ∈ U ∩ dom(f )).

(b) Lower hemicontinuity of f at x ∈ dom(f )means that to every open V with V ∩ f (x) ≠ ∅ there exists a neighborhood U
of x such that f (z) ∩ V ≠ ∅ for all z ∈ U ∩ dom(f ).

(c) Call f continuous at x ∈ dom(f ) if there is some y ∈ f (x) such that for every open neighborhood V of y there exists a
neighborhood U of x such that f (z) ∩ V ≠ ∅ for all z ∈ U ∩ dom(f ).
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(d) Based on (c), extend the notions of d-wise continuity, d-wise (α, β)-continuity, and d-wise (α, β)-computability
(Definition 8(a) literally from functions to relations; similarly forweak d-wise (α, β)-continuity andweak d-wise (α, β)-
computability (Definition 28).

For an ordinary (i.e. single-valued) function f , dom(f ) amounts to the usual notion; and such f is obviously (upper/lower
hemi-)continuous (at x) iff it is continuous (at x) in the original sense. What we call continuous is denoted asweak continuity
in [7]; who require for (strong) continuity our Definition 35(c) to hold for all y ∈ f (x)—which however is not necessary for
computability (consider x = 1/3 at Example 36(a) and thus unsuitable for our purpose of proving lower bounds on the
complexity of nonuniform computability. (Weak) continuity on the other hand is necessary (Lemma 38(b)) but, as opposed
to the single-valued case [52, Theorem 3.2.11], not sufficient for admitting a continuous realizer: consider Example 36(d)
taken from [7, Proposition 2.3(3)].

Example 36. (a) Consider in Fig. 5(a) the multivalued f : [0, 1] ⇒ [0, 1],

1/3 > x Z⇒ {0}, [1/3, 2/3) ∋ x Z⇒ {0, 1}, 2/3 ≤ x Z⇒ {1}.

Then f is neither lower nor upper hemicontinuous—yet (ρ, ρ)-continuous, even computable: Given (qn) ⊆ Q with
|x − qn| ≤ 2−n, test q3: if q3 ≤ 1/2 output 0, otherwise output 1. Indeed, |x − q3| ≤ 1/8 implies x ≤ 5/8 < 2/3 for
q3 ≤ 1/2, hence 0 ∈ f (x); whereas q3 > 1/2 implies x ≥ 3/8 > 1/3, hence 1 ∈ f (x).

(b) Referring to Fig. 5(b), the multivalued function

g : [−1, 1] ⇒ [0, 1], [−1, 0) ∋ x Z⇒ {0}, 0 Z⇒ [0, 1], (0, 1] ∋ x Z⇒ {1}

is not continuous at 0 w.r.t. any y ∈ g(0) = [0, 1] although g(0) itself does intersect g(z) for all z.
(c) Consider the multivalued function

h : [−1,+1] ⇒ [0, 1], 0 ≥ x Z⇒ [0, 1), 0 < x Z⇒ {1}

sketched in Fig. 5(c). It is discontinuous at x := 0: To any y ∈ h(x) = [0, 1), the open neighborhood V := (−1, 1+y
2 ) of

y does not intersect h(z) for all z > 0.
(d) Consider the multivalued function s : R ⇒ R with graph

{(x, 0) : x ≤ 0} ∪ {(x,−1) : x > 0} ∪ {(x, 0) : 0 < x ∈ Q} ∪ {(x, x) : 0 < x ∈ R \ Q}

cf. Fig. 5(d): it is continuous at every x but not computable nor admits a continuous (ρ, ρ)-realizer.

The following multivalued variant of Example 20 had been established in [51, Theorem 5.2.2]:

Example 37. For d ∈ N, let

MLPOd : {(x1, . . . , xd) : xi ∈ R, ∃j : xj = 0} ∋ (x1, . . . , xd) Z⇒ {j : 1 ≤ j ≤ d, xj = 0}.

Then MLPOd is (trivially d-continuous but) not (d − 1)-continuous.

For a proof, refer to Section 3.4.

Lemma 38. (a) Let X, Y be metric spaces, x ∈ X, and f :⊆ X ⇒ Y some relation. Then f is continuous at x in the sense of
Definition 35(c) iff the following holds:

∃y ∈ f (x) ∀ϵ > 0 ∃δ > 0 ∀z ∈ B(x, δ) ∩ dom(f ) : y ∈ B

f (z), ϵ


. (5)

(b) Let (A, α) and (B, β) be effective metric spaces2 with corresponding Cauchy representations and f :⊆ A ⇒ B a possibly
multivalued mapping. If f is d-wise (α, β)-continuous, then it is d-wise continuous.

(c) Let X1, . . . , Xk be closed subsets of Rn, X1 compact, and δ > 0. Then there exists ϵ > 0 such that
k

i=1 B(Xi, ϵ) ⊆

B
k

i=1 Xi, δ

.

Proof. (a) Suppose ∅ ≠ f (z) ∩ B(y, ϵ) for all z ∈ B(x, δ) ∩ dom(f ). That is, to z ∈ B(x, δ) ∩ dom(f ), there exists some
w ∈ f (z) ∩ B(y, ϵ). Then y ∈ B(w, ϵ) ⊆ B


f (z), ϵ).

Conversely suppose y ∈ B

f (z), ϵ), that is, y ∈ B(w, ϵ) for somew ∈ f (z). Thenw ∈ B(y, ϵ) ∩ f (z) ≠ ∅.

(b) If suffices to consider the case d = 1. But this has already been established in [7, Proposition 4.5+2.3].

2 Cf. [52, Section 8.1] for a formal definition and imagine Euclidean spaces Rk as major examples and focus of interest for our purpose.
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(c) By induction, it suffices to consider the case k = 2.Write X := X1 and Y := X2. First consider the disjoint case X∩Y = ∅.
Then the distance function dY from Eq. (2) is positive on X . Moreover dY is continuous and therefore, on compact X ,
bounded from below by some 2ϵ > 0. Hence B(X, ϵ) ∩ B(Y , ϵ) = ∅.
In the general case, Z := X ∩ Y is not necessarily empty but closed. Now consider X ′

:= X \ B(Z, δ/2) and
Y ′

:= Y \ B(Z, δ/2): X ′ is compact and disjoint from closed Y ′; hence B(X ′, ϵ) ∩ B(Y ′, ϵ) = ∅ for some 0 < ϵ ≤ δ/2
according to the first case. Since X ⊆ X ′

∪ B(Z, δ/2),

B(X, ϵ) ∩ B(Y , ϵ) ⊆ B

X ′

∪ B(Z, δ/2), ϵ
  

⊆B(X ′,ϵ)∪B

B(Z,δ/2),ϵ

 ∩


B(Y ′, ϵ) ∪ B


B(Z, δ/2), ϵ

  
=B(Z,δ/2+ϵ)⊆B(Z,δ)



⊆

B(X ′, ϵ) ∩ B(Y ′, ϵ)  

=∅


∪

B(X ′, ϵ) ∩ B(Z, δ)


∪

B(Z, δ) ∩ B(Y ′, ϵ)


∪ B(Z, δ)

is contained in B(Z, δ). �

Lemma 15(a) literally applies also to multivalued mappings f : A ⇒ B. Similarly generalizing Lemma 15(b) is quite
cumbersome: For B =


i Bi, the preimages f −1

[Bi],

• if defined as {a ∈ A : f (a) ⊆ Bi}, need not cover A
• if defined as {a ∈ A : f (a) ∩ Bi ≠ ∅}, need not be mapped to within Bi by f .

On the other hand, already the following partial generalization of Lemma 15(b) turns out as useful:

Lemma 39. (a) Let f : A → B be single-valued and g : B ⇒ C multivalued. If f is d-continuous (computable) and g is
k-continuous (computable), then g ◦ f : A ⇒ C is (d · k)-continuous (computable).

(b) Let f : A ⇒ B and g : B ⇒ C be multivalued. If f is d-continuous (computable) and g is continuous (computable), then
g ◦ f : A ⇒ C is again d-continuous (computable).

(c) Let I denote some finite set with discrete topology. Then f : I × A ⇒ B is d-continuous (computable) iff each f (i, ·) : A ⇒ B
is d-continuous (computable).

Proof. (a) Since f is single-valued, the set Ai ∩ f −1
[Bj] is unambiguous and mapped by f to a subset of Bj; that is the proof

of Lemma 15(b) carries over.
(b) If f is continuous (computable) on each Ai, then so is g ◦ f .
(c) Similar to Lemma 15(d). �

3.3. Witness of multivalued discontinuity and hypergraph coloring

Lemma 39 provides a means for proving d-discontinuity of some function by reduction to a function already known
d-discontinuous. In fact, [51, Theorem 3.7] has established that every d-discontinuous (evenmultivalued) function f : R∗

→

N can be proven d-discontinuous by reduction from LPOd. However we are particularly interested in multivalued functions
with continuous codomain; and therefore now generalize Definition 17:

Definition 40. (a) Let T = (V , E) denote a tree with edges directed from the root. Call vertex v ∈ V a direct successor of
u ∈ V (and u a direct ancestor of v) if (u, v) ∈ E. A successor (ancestor) of u is u itself or any direct successor (direct
ancestor) of a successor (ancestor) of u. If u is neither a successor nor ancestor of v, they are unrelated. The degree of
u ∈ V , deg(u), is the number of direct successors of u.

(b) For a tree T , a T -flag F in a topological space X is a family of sets Fv ⊆ X , v ∈ V , satisfying Fu ⊆ Fv for each edge
(u, v) ∈ E.

(c) Another T -flag G is a subflag of F if it holds Gv ⊆ Fv for all v ∈ V .
F is trivial if the root r of T has Fr = ∅.

(d) For a partition∆ of X , a T -flag F in X is∆-monochromatic if, to every v ∈ V , there exists some D ∈ ∆with Fv ⊆ D.
(e) For ℓ ∈ {1, 2, . . .}, call tree Sℓ :=


{0, 1, . . . , ℓ}, {(0, 1), . . . , (0, ℓ)}


an ℓ-star.

Fix metric spaces X, Y and f :⊆ X ⇒ Y . An ℓ-witness of discontinuity of f is a nontrivial Sℓ-flag F = (F0, F1, . . . , Fℓ) in
dom(f ) such that, for every x ∈ F0 and every choice of sequences (xn,j)n ⊆ Fj with limn xn,j = x (j = 1, . . . , ℓ), there
exists some ϵ > 0 such that, for almost all n ∈ N, it holds

f (x) ∩

ℓ

j=1
B

f (xn,j), ϵ


= ∅. (6)

(f) Let T = (V , E) denote a tree. A hyperedge in T is a set {v,w1, . . . , wℓ} ⊆ V with w1, . . . , wℓ ∈ V (ℓ ∈ N) pairwise
unrelated successors of v. A hypergraph on the tree (V , E) is a triple T = (V , E,W)where (V , E) constitutes a tree and
W is a set of hyperedges in (V , E).
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Fig. 6. Left: a linear chain L3 as in Example 41(d). Right: tree of uniform depth 3 as in Lemma 42(a); a canonical sample hyperedge in this tree is indicated
with gray vertices.

(g) A proper c-coloring (c ∈ N) of a set W of hyperedges in (V , E) is a mapping C : V → {1, . . . , c} such that no hyperedge
becomes monochromatic. In other words:
For each {v,w1, . . . , wℓ} ∈ W , there must exist 1 ≤ i, j ≤ ℓwith C(v) ≠ C(wi) or C(wi) ≠ C(wj).

(h) For a hypergraph T = (V , E,W) on a tree (V , E), awitness of T -discontinuity of f is a (V , E)-flagF = (Fu)u∈V in dom(f )
such that, for every hyperedge {v,w1, . . . , wℓ} ∈ W , the flag (Fv, Fw1 , . . . , Fwℓ) is an ℓ-witness of discontinuity of f .

Hypergraph coloring (which also Lemma 34abc can be considered a case of) is of course a standard topic in combinatorics
as well as in theoretical computer science. Proposition 43(e) below connects witnesses of discontinuity to colorings of
hypergraphs on trees. A characterization ofWeihrauch degrees (for relations with discrete range) in terms of colored forests
(i.e. collections of trees, rather than hypergraphs on trees) had been established in [21, Theorem3.8]. Connecting (andmaybe
even simplifying) both concepts is certainly desirable but beyond the purpose of the present work.

Example 41. (a) For a (single-valued) function f : X → Y , ‘‘1-witness of discontinuity’’ in the sense of Definition 40(e)
is synonymous with ‘‘witness of 1-discontinuity’’ in the sense of Definition 17(d): recall Example 18(a) and note that
limn xn = x and f (x) ∈ B


f (xn), ϵ


for every ϵ > 0 and infinitely many n implies f (xnm) → f (x) for some subsequence

(xnm)m of (xn)n .
(b) An ℓ-witness of discontinuity (Definition 40(e)) is a witness of Sℓ-discontinuity (Definition 40h) where we identify the

tree Sℓ with the hypergraph over Sℓ having all vertices of Sℓ as single hyperedge.
(c) Let T = (V , E) denote a tree with root r and some T -flag F = (Fv)v∈V in X . For v ∈ V consider the unique path

(r, v1), (v1, v2), . . . , (vd−1, v) from r to v in T . Then (Fr , Fv1 , . . . , Fvd−1 , Fv) is a d-flag.
(d) Consider vertices Vd := {0, 1, . . . , d}, edges Ed :=


j − 1, j


: j = 1, . . . , d


, and hyperedges Wd :=


{i, j} : i < j


;

cf. Fig. 6. Then
(i) Ld := (Vd, Ed) is a tree
(ii) and ‘‘Ld-flag’’ is synonymous with ‘‘d-flag’’ in the sense of Definition 17.
(iii) For (single-valued) f : X → Y , ‘‘witness of d-wise discontinuity’’ is synonymous with ‘‘witness of (Vd, Ed,Wd)-

discontinuity’’.
(iv) The hypergraph Wd admits a proper (d + 1)-coloring but no proper d-coloring.

(e) A (V , E)-flag may well have Fu ∩ Fv ≠ ∅ for some (u, v) ∈ E. The definition of an ℓ-witness (F0, F1, . . . , Fℓ) of
discontinuity, however, implicitly requires

ℓ
i=0 Fi = ∅.

We now generalize Example 41d iv) and Example 18(c):

Lemma 42. Let T denote a tree and consider the canonical hypergraph T on T , defined to have precisely the sets
{v,w1, w2, . . . , wdeg(v)} as hyperedges, where v ∈ V , u1, . . . , udeg(v) are the direct successors of v, and wi run through all
successors of ui.

(a) Suppose T has uniform depth d ∈ N; that is, all leaves have the same distance d to the root. (Recall that a single vertex has
depth 0, and Sℓ has depth 1.) Then T does not admit a proper d-coloring.

(b) Let f : X ⇒ Y denote a multivalued mapping between metric spaces and F a nontrivial T -flag in X, where T denotes a tree.
Suppose that the following hold:
(i) f is compact in the sense that f (x) ⊆ Y is compact for each x ∈ X.
(ii) f is F -hereditary in the sense that, whenever v is a successor of u in T , it holds


x∈Fu f (x) ⊇


y∈Fv f (y).

(iii) f is F -constant: f (x) = f (y) for all x, y ∈ Fv for each v ∈ T .
(iv) For each v ∈ T and u1, . . . , udeg(v) its direct successors, it holds f [Fv] ∩ f [Fu1 ] ∩ · · · ∩ f [Fudeg(v) ] = ∅.
Then F is a witness of T -discontinuity of f .

Proof. (a) By induction on d, the case d = 1 being obvious. Now T consists of a root v with ℓ := deg(v) direct successors
u1, . . . , uℓ, each ui in turn root of a subtree Ti of uniform depth d. Any proper coloring C of T is also one on Ti; and
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thus requires by induction hypothesis at least d + 1 colors. In particular, each of these d + 1 colors occurs in each Ti,
i = 1, . . . , ℓ. Therefore there exist vertices wi ∈ Ti with C(v) = C(wi). But, wi being a successor of ui, W by definition
contains the hyperedge {v,w1, . . . , wℓ} which just turned out to be monochromatic: contradiction.

(b) Write ℓ := deg(v). Since f [Fv], f [Fui ] are compact, their (finite) intersection being empty means B(f [Fv], ϵ) ∩

B(f [Fu1 ], ϵ) ∩ · · · ∩ B(f [Fuℓ ], ϵ) = ∅ for some sufficiently small ϵ > 0 according to Lemma 38(c). Let wi denote some
successor of ui, i = 1, . . . , ℓ; then heredity implies B(f [Fv], ϵ) ∩ B(f [Fw1 ], ϵ) ∩ · · · ∩ B(f [Fwℓ ], ϵ) = ∅, that is Eq. (6)
holds. �

Proposition 43. Let T = (V , E,W) denote a hypergraph on tree T = (V , E), X, Y metric spaces, f : X ⇒ Y a (possibly
multivalued) function, and∆ a partition of X.

(a) A nontrivial subflag of a witness of T -discontinuity of f is again a witness of T -discontinuity of f .
(b) Let U ⊆ V be a nonempty subset of T ’s vertices such that any two v,w ∈ U have some common ancestor u ∈ U. Then

T [U] := (U, E ′) with E ′
:=

(u, v) : u closest proper ancestor in U of v


is again a tree. If F = (Fv)v∈V is a (nontrivial) T -flag, its restriction F |U := (Fu)u∈U is a (nontrivial) T [U]-flag.

(c) Let∆ be a finite partition of X and F a nontrivial T -flag. Then there exists a nontrivial∆-monochromatic T -subflag G of F .
(d) Suppose that f is ∆-continuous and F a ∆-monochromatic ℓ-witness of discontinuity of f ; Fj ⊆ δ(j) ∈ ∆ for all

j = 0, 1, . . . , ℓ. Then C(j) := δ(j) defines a non-monochromatic coloring of Sℓ. In particular, it holds Card(∆) > 1.
(e) Suppose that f is ∆-continuous and let F be a ∆-monochromatic witness of T -discontinuity of f . Then W admits a proper

Card(∆)-coloring.
(f) Let T denote a tree of uniform depth d and W its canonical hyperedges. Suppose that f admits a witness of (T ,W)-

discontinuity. Then f is not d-wise continuous.

Proof. Note that the definition of a T -flag F = (Fv)v implies Fu ⊆ Fv and Fv ⊆ Fw for edges (u, v), (v,w). In particular
Fu ⊆ Fw wheneverw is a successor of u; and if the root r of T has Fr ≠ ∅ (i.e. if F is nontrivial), then Fv ≠ ∅ for every vertex
v of T .

(a) Let (F ′
v)v be a nontrivial subflag of the witness (Fv)v of T -discontinuity of f . Then the above note shows ∅ ≠ F ′

v for every
hyperedge {v,w1, . . . , wℓ} of T ; i.e. the subflag (F ′

v, F
′
w1
, . . . , F ′

wℓ
) of (Fv, Fw1 , . . . , Fwℓ) is nontrivial. And since Eq. (6)

was required to hold for (Fv, Fw1 , . . . , Fwℓ) for every x0 ∈ Fv and every choice of sequences (xn,j)n in Fwj , it holds a fortiori
for (F ′

v ⊆ Fv, F ′
w1

⊆ Fw1 , . . . , F
′
wℓ

⊆ Fwℓ).
(b) T [U] is weakly connected by hypothesis; and devoid of cycles because T was. Moreover for every (u, v) ∈ E ′, v is an

ancestor of u of T ; hence Fu ⊆ Fv holds by the above note. Thus, F |U is a T [U]-flag; and nontrivial if F was.
(c) Let r denote the root of T and u a leaf of T . The path [r, u] := {v ∈ V : v ancestor of u} satisfies the hypothesis of

Item (b); hence F |[r,u] is a nontrivial [r, u]-flag. In fact a d-flag according to Example 41(d), where d denotes the depth
of u in T . Hence we may apply Lemma 19(b) to obtain a nontrivial∆-monochromatic [r, u]-subflag (F ′

v)v∈[r,u] of F |[r,u].
Next observe that this subflag extends back to a nontrivial T -subflagF ′ ofF via F ′

v := Fv for v ∈ V \[r, u]: the condition
‘‘F ′
v ⊆ F ′

w ’’ for a successor w of v easily follows from ‘‘Fv ⊆ Fw ’’, taking into account that w ∈ [r, u] (hence F ′
w ⊆ Fw)

implies v ∈ [r, u] andw ∉ [r, u] means F ′
w = Fw . By its very construction, the restriction F ′

|[r,u] of this subflag F ′ of F
is∆-monochromatic.
Now consider some enumeration u1, . . . , uN of all leaves of T . By iterating the above argument, we obtain a sequence
F =: F0,F1, . . . ,FN of T -flags such that Fn+1 is a nontrivial subflag of Fn and Fn|[r,un] is ∆-monochromatic. Since
subflags of∆-monochromatic flags are∆-monochromatic, it follows that the restrictionsFN |[r,un] are∆-monochromatic
for every n ≤ N . Now the paths from the root to all leaves cover the entire tree; formally:


n[r, un] = V . This shows

that FN itself must be∆-monochromatic.
(d) Suppose δ(j) = δ(i) =: D for all 0 ≤ i, j ≤ ℓ. By hypothesis there exists x ∈ F0 ⊆ D and xn,j ∈ Fj ⊆ D with x = limn xn,j

satisfying Eq. (6) in Definition 40(e). Now since f |D is continuous at x by presumption, it satisfies Eq. (5) in Lemma 38(a):
contradicting Eq. (6).

(e) Similarly to (d), take δ : F → ∆with Fv ⊆ δ(Fv) for each Fv ∈ F ; and define C(v) := δ(Fv) for each v ∈ T .We claim that
this constitutes a proper coloring ofW . Indeed, according to Definition 40(h), for every hyperedge {v,w1, . . . , wℓ} ∈ W ,
(Fv, Fw1 , . . . , Fwℓ) constitutes a ℓ-witness of discontinuity of f—hence (Item d) is colored non-monochromatically.

(f) Suppose f is∆-continuous for some partition∆ of Card(∆) ≤ d. By (c), wemay proceed to a∆-monochromatic witness
of (T ,W)-discontinuity. By (e), it follows that (T ,W) admits a proper d-coloring: contradicting Lemma 42(a). �

3.4. Example: alternative proof that MLPOd is not (d − 1)-continuous

Fix d ∈ N. Consider the tree Td with vertices Vd consisting of all ordered k-tuples without repetition over [d] :=

{1, 2, . . . , d} for k = 0, 1, . . . , d; where tuple w̄ becomes a successor of v̄ iff v̄ is an initial segment of w̄; cmp. Fig. 7.
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Fig. 7. The tree T4 from Section 3.4. The part in the rectangle is T ′

4 according to Lemma 44.

More formally, define Vd :=


X⊆[d] SX , where SX denotes the set of all bijections from [X] :=

1, 2, . . . , |X |


to X . In

particular X = range(v̄) for v̄ ∈ SX . Now consider w̄ ∈ SY a successor of v̄ ∈ SX iff |X | ≤ |Y | and v̄ = w̄|[X] : [X] → Y (and
in particular X = range(v̄) ⊆ range(w̄) = Y ) holds. Td is a tree of uniform depth d: To v̄ ∈ SX with |X | < d, there exists
i ∈ [d] \ X and extension w̄ (i.e. successor) of v̄,

w̄ ∈ SY , Y := X ⊎ {i}, w̄|[X] := v̄, w̄(|X | + 1) := i.

Lemma 44. Let T ′

d denote the subtree of Td with vertices V ′

d :=


X([d] SX = Vd \ S[d] (i.e. cut off the last row in Fig. 7). Then T ′

d
has uniform depth d − 1. Write T ′

d for the canonical hypergraph over T ′

d according to Lemma 42. For X ( [d] and v̄ ∈ SX , let

Fv̄ :=

d

i=1


(0, 1] : i ∈ X
{0} : i ∉ X


⊆ Rd.

Then F := (Fv̄)v̄∈SX ,X([d] is a witness of T ′

d -discontinuity of MLPOd.

In view of Proposition 43(f), Example 37 thus follows.

Proof. Note that Fv̄ ⊆ dom(MLPOd) depends only on range(v̄) and has MLPOd(x⃗) = [d] \ range(v̄) for all x⃗ ∈ Fv̄: MLPOd is
F -hereditary and F -constant with compact (in fact finite) co-domain. Moreover, since {0} ⊆ (0, 1], range(v̄) ⊆ range(w̄)
implies Fv̄ ⊆ Fw̄ . So F is a nontrivial T ′

d-flag.
Let v̄ ∈ T ′

d with direct successors ū1, . . . , ūℓ ∈ T ′

d, ℓ := deg(v̄). Write X := range(v̄); then ℓ = d − |X |, and
range(ūi) = X ⊎ {ji}, where {j1, . . . , jℓ} = [d] \ X . In particular,

ℓ
i=1 range(ūi) =

ℓ
i=1 X ⊎ {ji} = [d]. According to

Lemma 42(b), F is thus a witness of T ′

d -discontinuity of MLPOd. �

4. Applications

Based on Lemma 19(b), we now determine the complexity of nonuniform computability for several concrete
(multivalued) functions including the examples from Section 1.

Example 45. Consider the space RN×M of rectangular matrices and the mapping rankN,M : RN×M
→ {0, 1, . . . , d},

d := min(N,M). This rank function is trivially (d + 1)-computable; but not d-continuous: in fact its restriction to
diagonal matrices is not d-continuous. To this end observe that the following function fN,M : Rd

→ RN×M is (ρd, ρN×M)-
computable:

Rd
∋ (x1, . . . , xd) →


x1 0 0 · · · 0 0 · · · 0
0 x2 0 · · · 0 0 · · · 0
0 0 x3 0 0 · · · 0
...

...
. . . 0 0 · · · 0

0 0 0 · · · xd 0 · · · 0

 ∈ RN×M

and has rank f (x1, . . . , xd) = LPOd(x1, . . . , xd): now combine Lemma 39 with Example 20. �

4.1. Linear equation solving

Consider the problem of solving a system of linear equations; more precisely of finding a nonzero vector in the kernel of
a given singular matrix:
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Theorem 46. Fix n,m ∈ N, d := min(n,m− 1), and consider the space Rn×m of n×mmatrices, considered as linear mappings
from Rm to Rn. Then the multivalued mapping

LinEqn,m : A Z⇒ kernel(A) \ {0}, dom(LinEq) := {A ∈ Rn×m
: rank(A) ≤ d}

is well-defined and has complexity Ct(LinEqn,m) = Cc(LinEqn,m, ρ
n×m, ρm) = d + 1.

It is for mere notational convenience that we formulate for the case of real matrices: complex ones work just as well. Our
argument proceeds (as had been suggested by Arno Pauly during CCA2009) by reduction from Example 37:

Proof of Theorem 46. Observe that {0} ( kernel(A) ⊆ Rm holds iff rank(A) ≤ m−1. Also rank(A) ≤ n is a tautology. Hence
LinEqn,m is totally defined. [57, Theorem11] has shown that knowing rank(A) ∈ {0, 1, . . . , d} suffices for computably finding
a non-zero vector in (and even an orthonormal basis of) kernel(A); hence Ct(LinEqn,m) ≤ Cc(LinEqn,m, ρ

n×m, ρm) ≤ d + 1.
For the converse inequality, first consider the case d = m − 1 < n and the mapping gn,m : dom(MLPOd+1) →

dom(LinEqn,m) ⊆ Rm×n with

(x1, . . . , xd, xd+1) →



x1
x2

. . .

xd
xd+1
xd+1
...

xd+1


.

Since at least one of x1, . . . , xd, xd+1 is zero, it holds rank

g(x1, . . . , xd, xd+1)


≤ d; hence gn,m is well-defined, and obviously

continuous.
Moreover, for every (v1, . . . , vd, vd+1) ∈ LinEqn,m


gn,m(x1, . . . , xd, xd+1)


, vi ≠ 0 (1 ≤ i ≤ d + 1) implies xi = 0. And such

i exists by definition of LinEqn,m and can be found computably (hence continuously). This yields a continuous multivalued
map hd : Rm

→ {1, . . . , d + 1} such that MLPOd+1 = hd ◦ LinEqn,m ◦gn,m. Hence d-continuity of LinEqn,m would imply the
same for MLPOd+1 by Lemma 39, contradicting Example 37.

Now consider the case d = 1 = n = m − 1 and the mapping

g1,2 : dom(MLPO2) ∋ (x, y) → (−x, y) ∈ R1×2.

Let (x, y) ∈ dom(MLPO2) and (u, v) ∈ LinEq1,2(−x, y). Since at least one of x, y is zero, the definition of LinEq1,2 implies
x · u = y · v = 0. Hence if u ≠ 0, then necessarily x = 0; similarly v ≠ 0 implies y = 0. One can thus simultaneously
scan for the two cases ‘‘u ≠ 0’’ and ‘‘v ≠ 0’’; and, being certain that at least one of them holds, then deduce ‘‘x = 0’’ or
‘‘y = 0’’ accordingly. This yields a reduction in the sense of Lemma 39 from MLPO2 to LinEq1,2 showing that the latter is
discontinuous. While this could have been observed directly, this reduction extends to the case 1 < d = n = m − 1 as
follows:

gd,m : dom(MLPOd+1) → dom(LinEqn,m),

(x1, .., xd, xd+1) →


−x1 +x2

−x2 +x3
. . .

. . .

−xd−1 +xd
−xd xd+1

 .
Again, gd,m iswell-defined; and (v1, . . . , vd, vd+1) ∈ LinEqn,m


gd,m(x1, . . . , xd, xd+1)


has vixi = vi+1xi+1 for all i = 1, . . . , d;

hence = 0 since xi = 0 for some 1 ≤ i ≤ d + 1 by definition of dom(MLPOd+1) ∋ (x1, . . . , xd+1). So vi ≠ 0 implies xi = 0.
Finally in the case d = n < m − 1, let

gn,m : (x1, . . . , xd, xd+1) →


−x1 +x2

−x2 +x3
. . .

. . .

−xd−1 +xd
−xd xd+1 · · · xd+1

 .
Then (v1, . . . , vd, vd+1, . . . , vm) ∈ LinEqn,m


gn,m(x1, . . . , xd, xd+1)


is equivalent to (v1, . . . , vd, vd+1 + · · · + vm) ∈

LinEqn,d+1

gn,d+1(x1, . . . , xd, xd+1)


, that is the case d = n = m − 1 already treated above. �
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Fig. 8. Breaking 2-fold degeneracy (left) of an eigenspace to A =
0 0
0 0


in two ways A0 =


ϵ 0
0 0


and A1 =


ϵ ϵ

ϵ ϵ


(middle and right) admitting no common

eigenvectors: EVecBase′

2(A0) = {
1 0
0 1


,
0 1
1 0


}, EVecBase′

2(A1) = {
1 1
1 −1


/
√
2,
 1 1
−1 1


/
√
2}, and EVecBase′

2(A) = O(R2), the orthogonal group.

Fig. 9. Construction similar to Fig. 8, now iterated in 3D. The last row right lists eigenvectors of each Aij .

4.2. Symmetric matrix diagonalization

According to Example 4, the number Card σ(A) ∈ {1, . . . , d} is sufficient advice to computably find a basis of eigenvectors
for a given symmetric A ∈ Rd×d. This happens to be optimal:

Theorem 47. Fix d ∈ N and consider the space R(
d
2) of real symmetric d × d matrices. Then the multivalued mapping

EVecBased : R(
d
2) ∋ A Z⇒


(w⃗1, . . . , w⃗d) basis of Rd of eigenvectors to A


has complexity Ct(EVecBased) = Cc


EVecBased, ρ(

d
2), ρd×d


= d.

The lack of continuity of themapping EVecBase is closely related to inputswith degenerate eigenvalues [57, Example 18].
In fact our below proof yields a witness of (d−1)-discontinuity by constructing an iterated sequence of symmetry breakings
in the sense of Mathematical Physics; cf. Fig. 9. On the other hand even in the non-degenerate case, EVecBase is inherently
multivalued since, e.g., any permutation of a basis constitutes again a basis.

Remember that a non-zero linear combination of eigenvectors to the same eigenvalue is again an eigenvector; whereas
eigenvectors to different eigenvalues are orthogonal andw.l.o.g. normalized. In viewof Lemma39, it suffices to prove (d−1)-
discontinuity for the mapping EVecBase′

d := GramSchmidtd ◦ EVecBased : R(
d
2) → O(Rd)where

GramSchmidtd : {(x⃗1, . . . , x⃗d) linearly independent} ⊆ Rd×d
→ O(Rd)

denotes (some single-valued choice of) Gram--Schmidt Orthonormalization which is well-known computable and yields an
orthogonal matrix as value. Note that the co-domain of EVecBase′

d is compact but not finite nor almost-discrete as required
in [21]. We also remark that EVecBase′

d(A) is a closed set for each A ∈ R(
d
2): O(Rd) ∋ Un → U implies UĎ

n → UĎ and
A = Un · diag(x1, . . . , xd) · UĎ

n → U · diag(x1, . . . , xd) · UĎ. Theorem 47 thus follows from Proposition 43(f) in conjunction
with Item (d) of

Lemma 48. Let O(Ad) denote the space of orthogonal d × d-matrices with algebraic reals as entries.

(a) Let O2 :=
1 1
1 −1


/
√
2 ∈ O(A2) and, for x, y ∈ R, A := diag(x, y) =

x 0
0 y


. Then A and A′

:= O2 · A · OĎ
2 have no eigenvectors

in common in case x ≠ y, whereas in case x = y it holds A = A′.
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(b) For d ≥ 2, consider the direct matrix sum O(Ad) ∋ Od := O2 ⊕ idd−2 : R2
× Rd−2

∋ (x⃗, y⃗) → (O2 · x⃗, y⃗). Moreover let
A0 = diag(x1, x2, . . . , xd) ∈ R(

d
2) where x1, . . . , xd ∈ R. Then A0 and A1 := Od · A0 · OĎ

d
(i) have no eigenvector to eigenvalue x1 in common in case x1 ∉ {x2, . . . , xd}
(ii) whereas in case x1 = x2 = · · · = xd, it holds A0 = A1.

(c) There exist a family

Ui1,...,ik


0≤k<d, ij∈{0,1} in O(Ad) satisfying Ui1,...,ik,0 = Ui1,...,ik and U = U0 = id such that, for

x1, . . . , xd ∈ R and

Aı̄ := Uı̄ · A · UĎ
ı̄ ∈ R(

d
2) with A := diag(x1, . . . , xd),

the following dichotomy holds for k ≥ 1:
(i) In case x1, . . . , xk are pairwise distinct and ∉ {xk+1, . . . , xd}, Ai1,...,ik−1,0 and Ai1,...,ik−1,1 have no eigenvectors to

eigenvalue xk in common.
(ii) In case xk = xk+1 = · · · = xd, it holds Ai1,...,ik−1,0 = Ai1,...,ik−1,1.

(d) Consider the complete binary tree T of depth d − 1 on vertex set

V := {(i1, . . . , ik) : k ∈ {0, 1, . . . , d − 1}, ij ∈ {0, 1}


where ı̄ = (i1, . . . , ik) is considered a successor of ȷ̄ = (j1, . . . , jℓ) iff k ≥ ℓ and (j1, . . . , jℓ) = (i1, . . . , iℓ). Next define
Fk ⊆ Rd for 0 ≤ k < d as

(x1, . . . , xk, xk+1, . . . , xd) : x1, . . . , xk+1 ∈ R pairwise distinct, xk+1 = · · · = xd


and Fi1,...,ik :=

Uı̄ ·diag(x⃗) ·U

Ď
ı̄ : x⃗ ∈ Fk


. Then F := (Fı̄)ı̄∈V is a witness of T -discontinuity of EVecBase′

d, where T denotes
the canonical hypergraph over T according to Lemma 42.

Note that in Item (c) Uı̄ (ı̄ ∈ {0, 1}k) is defined also for k = 0 (namely as U = id) although Claims (i+ii) refer only to k ≥ 1.
F in Item (d), however, is (and has to be) defined also for the case k = 0.

Proof. (a) straight forward.
(b) Note that the eigenspace to x1 is one-dimensional in case (i).
(c) by induction on k, the starting case k = 1 already covered by (b). For the induction step k → k + 1, take Ui1,...,ik

according to the induction hypothesis and consider Od−k ∈ O(Ad−k) according to (b). That is, A′

0 := diag(xk+1, . . . , xd)
has no eigenvector to eigenvalue xk+1 in common with A′

1 := Od−k · A′

0 · OĎ
d−k in case xk+1 ∉ {xk+2, . . . , xd}; whereas in

case xk+1 = xk+2 = · · · = xd, A′

0 = A′

1 holds. Now let Ui1,...,ik,0 := Ui1,...,ik and Ui1,...,ik,1 := Ui1,...,ik · (idk ⊕Od−k) ∈ O(Ad).
In case x1, . . . , xk, xk+1 are pairwise distinct and different from all xk+2, . . . , xd, it holds in particular xk+1 ∉

{xk+2, . . . , xd}; from which we have already concluded that A′

0 has no eigenvector to eigenvalue xk+1 in common with
A′

1 = Od−k ·A′

0 ·OĎ
d−k; hence neither do A and (idk ⊕Od−k) ·A · (idk ⊕Od−k)

Ď; and this property is furthermoremaintained
under the joint orthogonal transformUi1,...,ik : Ai1,...,ik,j = Ui1,...,ik,j ·A·UĎ

i1,...,ik,j
(j = 0, 1) have no eigenvector to eigenvalue

xk+1 in common.
In case xk+1 = xk+2 = · · · = xd, on the other hand, A′

1 = Od−k · A′

0 · OĎ
d−k implies A = (idk ⊕Od−k) · A · (idk ⊕Od−k)

Ď and
Ai1,...,ik,1 = Ai1,...,ik = Ai1,...,ik,0.

(d) Note that, obviously, Fk ⊆ Fk+1; hence (F0, . . . , Fd−1) is a nontrivial d-flag; and F ′
:= (F|ı̄|)ı̄∈V a T -flag. From continuity

of orthogonal mappings

limn x⃗n = x⃗ ⇒ limn

Uı̄ · diag(x⃗n) · UĎ

ı̄


= Uı̄ · diag(x⃗) · UĎ

ı̄

it follows with c (ii) that F is a T -flag as well. Moreover, each Bı̄ ∈ Fı̄ has the form Bi1,...,ik = Ai1,...,ik(x1, . . . , xd) as in (c)
with x1, . . . , xk, xk+1 pairwise distinct and xk+1 = · · · = xd.
Note that Ai1,...,ik(x1, . . . , xd) has as eigenvectors to (non-degenerate) eigenvalues x1, . . . , xk precisely the first k columns
ofUi1,...,ik ; and to (d−k)-fold degenerate eigenvalue xk+1 as eigenvectors any linear combination of the last d−k columns
of Ui1,...,ik . In particular, EVecBase′

d


Ai1,...,ik(x⃗)


depends only on (i1, . . . , ik) but not on x⃗ ∈ Fk; that is, EVecBase′

d is
constant on Fi1,...,ik with values closed in compact O(Rd).
According to c (i), Bi1,...,ik−1,0 and Bi1,...,ik−1,1 have no eigenvector to eigenvalue xk in common. Now recall that any
element of EVecBased(Bi1,...,ik−1,j) is by definition a basis of Rd of eigenvectors to Bi1,...,ik−1,j and must in particular
include some eigenvector to eigenvalue xk. Therefore EVecBased(Bi1,...,ik−1,0) is disjoint from EVecBased(Bi1,...,ik−1,1):
EVecBase′

d(Bi1,...,ik−1,0) ∩ EVecBase′

d(Bi1,...,ik−1,0) = ∅.
We finally show that EVecBase′

d is F -hereditary in the sense of Lemma 42(b): indeed, recall that the first k columns
of Ui1,...,ik−1,j are unique eigenvectors of Ai1,...,ik−1,j(x1, . . . , xk, xk+1, . . . , xk+1) = Bi1,...,ik−1,j; and, since Uı̄ in (c) does not
depend on x⃗, its columns remain eigenvectors (although not necessarily unique) of Ai1,...,ik−1,j(x⃗) also for x⃗ ∈ Fk−1, that
is, for Bi1,...,ik−1 . Whereas eigenvectors of Bi1,...,ik−1,j to eigenvalue xk+1 are linear combinations of the last d − k columns
of Ui1,...,ik−1,j—again independent of x⃗ and in particular also for x⃗ ∈ Fk−1.

Now the claim follows from Lemma 42(b). �
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Fig. 10. Variant of Fig. 9 showing that finding some eigenvector in 4D is 2-discontinuous.

4.3. Finding some eigenvector

Instead of computing an entire basis of eigenvectors, we now turn to the problem of determining just one arbitrary
eigenvector to a given real symmetric matrix. This turns out to be considerably less ‘complex’:

Theorem 49. (a) For a real symmetric n × n-matrix A, consider the multiplicity m(A) of some least-degenerate eigenvalue,

m(A) := min

dim kernel(A − λ id) : λ ∈ σ(A)


∈ {1, . . . , n}.

Given d := ⌊log2 m⌋ and a ρ(
n
2)-name of A, one can ρn-compute (i.e. effectively find) some eigenvector of A.

(b) The multivalued mapping

SomeEVecn : R(
n
2) ∋ A Z⇒ {w⃗ eigenvector of A} ⊆ Rn

\ {0}

is

ρ(

n
2), ρn


-computable with ⌊1 + log2 n⌋-fold advice

(c) but not ⌊log2 n⌋-continuous.

Proof. (a) Compute some (ρn-name of an) n-tuple of eigenvalues (λ1, . . . , λn) of A, repeated according to their
multiplicities; cmp. e.g. [57, Proposition 17]. Now according to [57, Theorem 11], (an entire basis of, and in particular
some eigenvector in) the eigenspace kernel(A − λi id) can be computably found when knowing di := rank(A − λi id)
(recall Theorem 46), that is when knowing the multiplicity of λi in the multi-set (λ1, . . . , λn). But the multiplicity and
index of some least-degenerate eigenvalue is computable from advice d by virtue of Theorem 33.

(b) follows from (a).
(c) The normalization function norm : Rn

\ {0} → {x⃗ ∈ Rn
: ∥x⃗∥2 = 1} = Sn−1, x⃗ → x⃗/


i |xi|

2 is computable. In
view of Lemma 39 it thus suffices to prove ⌊log2 n⌋-discontinuity of SomeEVec′

n := norm ◦SomeEVecn : R(
n
2) → Sn−1.

Moreover, the complexity of SomeEVec′

n+1 is obviously at least as large as that of SomeEVec′
n; hence without loss of

generality we shall restrict to the case of n = 2d being a power of two. This case follows from Proposition 43(f) by
constructing a witness of d-discontinuity in Lemma 50(c) below. �

Note that, although A00 and A01 in Fig. 9 admit no simultaneous diagonalization, they do have (1, 0, 0) as eigenvector in
common; and A0, A1 share the eigenvector (0, 0, 1). So in order to get SomeEVec′(Ai1,...,ik,0) ∩ SomeEVec′(Ai1,...,ik,1) = ∅,
we establish the following variant of Lemma 48; cmp. also Fig. 10:

Lemma 50. (a) Let F denote a field and A, B ∈ Fn×n matrices.
(i) If A, B have no eigenvalues in common, then

A 0
0 B


∈ F2n×2n and

A+B A−B
A−B A+B


/2 have no eigenvector in common.

(ii) If A = B, then
A 0
0 B


=
A+B A−B
A−B A+B


/2.

(b) There exist a family

Ui1,...,ik


0≤k≤d, ij∈{0,1} in O


A2d


satisfying Ui1,...,ik,0 = Ui1,...,ik and U = U0 = id such that, for

x1, . . . , x2d ∈ R and

Aı̄ := Uı̄ · A · UĎ
ı̄ ∈ R(

2d
2 ) with A := diag


x1, . . . , x2d


,
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the following dichotomy holds for k ≥ 1:
(i) In case

(x1, . . . , x2d) =

y1, . . . , y2k  

1st

, y1, . . . , y2k  
2nd

, . . . . . . , y1, . . . , y2k  
2d−k-th


with y1, . . . , y2k pairwise distinct, Ai1,...,ik−1,0 and Ai1,...,ik−1,1 have no eigenvector in common.

(ii) In case (x1, . . . , x2d) =

y1, . . . , y2k−1 , y1, . . . , y2k−1 , y1, . . . , y2k−1 ,

y1, . . . , y2k−1 , . . . . . . , y1, . . . , y2k−1 , y1, . . . , y2k−1


(2d−k+1-times), it holds Ai1,...,ik−1,0 = Ai1,...,ik−1,1.
(c) Consider the complete binary tree T of depth d on vertex set

V := {(i1, . . . , ik) : k ∈ {0, 1, . . . , d}, ij ∈ {0, 1}

.

Define Fk ⊆ R2d for 0 ≤ k ≤ d as
(y1, . . . , y2k , y1, . . . , y2k , . . . , y1, . . . , y2k) : y1, . . . , y2k ∈ R pairwise distinct


and Fı̄ :=


Uı̄ · diag(x⃗) · UĎ

ı̄ : x⃗ ∈ Fk

. Then F := (Fı̄)ı̄∈V is a witness of T -discontinuity of SomeEVec′

2d
, where T denotes

the canonical hypergraph over T according to Lemma 42.

Proof. a (i)Suppose
u⃗
v⃗


∈ F2d is an eigenvector of

A 0
0 B


to eigenvalue λ. Then A · u⃗ = λu⃗ and B · v⃗ = λv⃗ require u⃗ = 0

or v⃗ = 0: otherwise λ would be a common eigenvalue. Now
A+B A−B
A−B A+B


/2 ·

u⃗
0


= λ

u⃗
0


implies B · u⃗ = A · u⃗ = λu⃗:

contradiction.
(b) Notice that the case d > k can be obtained as a 2d−k-fold direct sum of the case d = k: if A0, A1 ∈ Rn×n have no common

eigenvector, neither do A0 ⊕ A0, A1 ⊕ A1 ∈ R2n×2n; whereas A0 = A1 implies A0 ⊕ A0 = A1 ⊕ A1. Hence it suffices to
proceed by induction on k = d.
The starting case k = 1 = d is Lemma 48(a). In case k = d > 1, take Ui1,...,id−1 ∈ O(A2d−1

) according to the induction
hypothesis; then define Ui1,...,ik−1,0 := Ui1,...,ik−1 ⊕ Ui1,...,ik−1 ∈ O(A2d) and

Ui1,...,ik−1,1 := 2−k/2


+ id2d−1 + id2d−1

+ id2d−1 − id2d−1


· Ui1,...,ik−1,0 ∈ O(A2d).

The claimed dichotomy then holds according to (a).
(c) Fk−1 ⊆ Fk is clear. Similarly to Lemma 48(d), conclude that (Fi1,...,ik) is a T -flag; SomeEVec′(x⃗) depends only on i1, . . . , ik

and not on the choice of x⃗ ∈ Fi1,...,ik ; SomeEVec′(x⃗) is a closed subset of compact S2d−1; SomeEVec′(x⃗) ⊆ SomeEVec′(y⃗)
for x⃗ ∈ Fi1,...,ik and y⃗ ∈ Fi1,...,ik−1 ; and SomeEVec′(x⃗) ∩ SomeEVec′(y⃗) = ∅ for x⃗ ∈ Fi1,...,ik−1,0 and y⃗ ∈ Fi1,...,ik−1,1: thus
Lemma 42(b) applies. �

4.4. Root finding

We now address the effective Intermediate Value Theorem [52, Theorem 6.3.8.1]. Closely related is the problem of
selecting from a given closed non-empty interval some point, recall Example 5(d). Both are treated quantitatively within
our complexity-theoretic framework.

Specifically concerning Example 5(d), observe that any non-degenerate interval [a, b] contains a rational (and thus
computable) point x; and providing an integer numerator and denominator of xmakes the problem of computably selecting
some x from given [a, b] trivial. On the other hand, rational numbers may require arbitrarily large descriptions; even more,
there are intervals containing rationals only of such large Kolmogorov Complexity; cf. Claim (e) of the following

Remark 51. For q ∈ Q, let CQ(q) := min{C(r, s) : r, s ∈ Z, q = r/s}.

(a) There exists c ∈ N such that, for all r, s ∈ Z coprime, it holds C(r, s) ≤ CQ(r/s)+ c and, in the sense of Definition 13(c),
Cρu(r/s) ≤ CQ(r/s)+ c .

(b) For a, b ∈ Q, CQ(a + b), CQ(a − b), CQ(a · b), CQ(a/b) ≤ CQ(a) + CQ(b) + O(1).
And for a, b ∈ R, Cρu(a + b), Cρu(a − b), Cρu(a · b), Cρu(a/b) ≤ Cρu(a) + Cρu(b) + O(1).

(c) There exists an unbounded function ϕ : N → N such that the Kolmogorov Complexity C(m) of any integer m ≥ n is at
least ϕ(n).

(d) Let x ∈ R be algebraic of degree 2 (e.g. x =
√
p + q for some prime number p ∈ P and q ∈ Q). Then there exists ε > 0

such that for all r, s ∈ Z with s > 0, |x − r/s| > ε/s2.
(e) Given N ∈ N, there exist a, b ∈ Q ∩ [0, 1] such that all q ∈ Q ∩ [a, b] have CQ(q) ≥ N .

Item (a) says that the minimum in the definition of CQ(r/s) is ‘almost’ attained by (unique) coprime r, s .
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Fig. 11. Witness of T2-discontinuity for the effective Intermediate Value Theorem.

Proof. (a) A constant-size program can easily convert (r ′, s′) attaining theminimum to coprime r/s = r ′/s′. Similarly, there
is a fixed program converting (r, s) into the constant rational sequence (r/s, r/s, . . .)which is a ρ-name of r/s.

(b) It is easy, and uses only constant size overhead, to combine Turing machines computing a and b into ones computing
a + b, a − b, a × b, and a/b, respectively.

(c) is from [32, Theorem 2.3.1(i)].
(d) is Liouville’s Theorem on Diophantine approximation.
(e) Take x ∈ (1/3, 2/3) algebraic of degree 2, ε > 0 according to (d). Choose 0 < δ < 1/3 such that ϕ(⌈

√
ε/δ⌉) > N . Then

Q ∋ r/s ∈ [x − δ, x + δ] with r, s coprime requires ε/s2 < δ, hence s >
√
ε/δ and CQ(r, s) ≥ C(s) ≥ N . Finally apply

(a). �

Note that Remark 51(e) applies only to rational numbers; that is [a, b]might still contain, say, algebraic reals xwith ρ-names
of low Kolmogorov complexity. We now extend the claim to computable elements: referring to Proposition 14, Corollary 53
below shows that, even with the help of negative information about (i.e. a ψ>-name of) a given interval [a, b], unbounded
discrete advice is in general necessary to find (a ρ-name of) some x ∈ [a, b].

Theorem 52. Finding a zero of a given continuous function f : [0, 1] → [−1,+1] with f (0) = −1 and f (1) = +1, that is the
multivalued mapping Intermed :⊆ C[0, 1] ⇒ [0, 1], f Z⇒ f −1

[0] on

dom(Intermed) :=

f : [0, 1] → [−1,+1] continuous, f (1) = 1 = −f (0)


,

has Cc(Intermed, [ρ→ρ], ρ) = Ct(Intermed) = ω.

Discontinuity of Intermed is well-known due to, and to occur for, arguments f which ‘hover’ [52, Theorem 6.3.2]. We iterate
this property to obtain a witness of d-discontinuity for arbitrary d ∈ N in the following

Proof of Theorem 52. We first argue that countable advice suffices: as has been frequently exploited before [52,
Section 6.3], f ∈ dom(Intermed) has an entire interval of zeros or has some isolated root or both. In the former case, that
interval contains a rational one—which can be provided explicitly by its numerator and denominator as (unbounded but)
countable discrete advice. Otherwise, [52, Theorem 6.3.7] applies and permits to find a root.

In order to show that bounded discrete advice does not suffice, we consider the complete binary tree Td on Vd =

{(i1, . . . , ik) : 0 ≤ k ≤ d, ij = 0, 1} of uniform depth d and construct a nontrivial Td-flag Fi1,...,ik :=

f (i1,...,ik)n1,...,nk : n1, . . . , nk ∈

N

in dom(Intermed) andprove it to be awitness ofTd-discontinuity of Intermed, whereTd denotes the canonical hypergraph

over Td: recall Lemma 42, noting that C[0, 1] is metric with respect to the norm ∥f ∥ = sup0≤x≤1 |f (x)| (written ulimnfn = f
for ∥f − fn∥ → 0) and the co-domain of Intermed is compact. Moreover Intermed will turn out as (iii) constant on each
Fi1,...,ik , Intermed


f (i1,...,ik)n1,...,nk


= I(i1,...,ik) a (i) compact interval in [0, 1] satisfying (ii) heredity I(i1,...,ik) ⊆ I(i1,...,ik,j) and (iv)

I(i1,...,ik,0) ∩ I(i1,...,ik,1) = ∅.
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First consider the piecewise linear, continuous function f () := f : [0, 1] → [−1,+1],

f (x) := 3x − 1 for x ∈ [0, 1/3], f :≡ 0 on [1/3, 2/3], f (x) := 3x − 2 for x ∈ [2/3, 1].

Then I(0) := [1/3, 4/9] and I(1) := [5/9, 2/3] are closed, disjoint, and lie in f −1
[0] = [1/3, 2/3] = I . Moreover to n > 0

there are piecewise linear continuous functions f (0)n , f (1)n ∈ dom(Intermed) with

f (0)n
−1

[0] = I(0) and

f (1)n
−1

[0] = I(1)

and ∥f − f (0)n ∥, ∥f − f (1)n ∥ < 1/n; cf. Fig. 11. This settles the case d = 1.
Iterating the above construction as sketched in Fig. 11 we obtain, to every d ∈ N and (i1, . . . , id) ∈ {0, 1}d, closed intervals
I(i1,...,id)

• of length 3−d−1

• with I(i1,...,id−1,id) ⊆ I(i1,...,id−1)

• and I(i1,...,id−1,0) ∩ I(i1,...,id−1,1) = ∅

and multi-sequences of functions f (i1,...,id)n1,...,nd ∈ dom(Intermed)with

• f (i1,...,id)n1,...,nd = ulimm f (i1,...,id,j)n1,...,nd,m

• and

f (i1,...,id)n1,...,nd

−1
[0] = Intermed


f (i1,...,id)n1,...,nd


= I(i1,...,id). �

Corollary 53. The problem

Select : [a, b] Z⇒ [a, b], dom(Select) := {[a, b] : 0 ≤ a < b ≤ 1},

of selecting some point from a given closed nondegenerate interval has Cc(Select, ψ>, ρ) = ω.

Proof. [6, Section 6] has shown that the Weihrauch degrees of Select and Intermed coincide. Now apply [41,
Theorem 5.9]. �

5. Conclusion, extensions, and perspectives

We argue that a major source of criticism against Recursive Analysis misses the point: although computable functions f
are necessarily continuous when given approximations to the argument x only, many practical f ’s do become computable
when providing in addition some discrete information about x. Such ‘advice’ often consists of some very natural and
mathematically explicit integer value from a bounded range (e.g. the rank of the matrix under consideration) and may be
readily available in practical applications.

We have then turned this observation into a complexity theory, investigating the minimum size (=cardinal) of the range
this discrete information comes from. We have devised tools for proving lower bounds on this quantity. And we have
determined it explicitly for several common computational problems from linear algebra: calculating the rank of a given
matrix, solving a system of linear equalities, diagonalizing a symmetric matrix, and finding some eigenvector to a given
symmetric matrix. The latter three are inherently multivalued. And they exhibit a considerable variety in complexity: for
input matrices A of format n × n, usually discrete advice of order Θ(n) is necessary and sufficient; whereas some single
eigenvector can be found using onlyΘ(log n)-fold advice: specifically, the quantity


log2 min


dim kernel(A − λ id) : λ ∈

σ(A)


. The algorithmexploits this data based on some combinatorial considerations—which nicely complement the heavily
analytical and topological arguments usually dominant in Recursive Analysis.

Our lower bound proofs assert d-discontinuity of the function under consideration. They can be extended (yet become
even more tedious when trying to do so formally) to weak d-discontinuity. Also the major tool for such proofs, namely that
of witnesses of d-discontinuity, would deserve generalizing from effective metric to computable topological spaces.

Question 54. (a) In view of Example 2: Does bounded advice suffice for converting a (ρ-name of) given x ∈ D to some entire
binary expansion of x?

(b) In view of Example 3: Is differentiation ∂ : C1
[0, 1] → C[0, 1] computable/continuous with countable advice?

5.1. Non-integral advice

Theorem 46 shows that d-fold advice does not suffice for effectively finding a nontrivial solution x⃗ to a homogeneous
equation A · x⃗ = 0; whereas (d + 1)-fold advice, namely providing rank(A) ∈ {0, . . . , d}, does suffice.

• Since the rank can be effectively approximated from below (i.e. is ρ<-computable) [57, Theorem 7], it in fact suffices to
provide complementing upper approximations (i.e. a ρ>-name) to rank(A). Onemay say that this constitutes strictly less
than (d + 1)-fold information.
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• Similarly concerning diagonalization of a real symmetric n × n-matrix A, since the number Card σ(A) of distinct
eigenvalues can be effectively approximated from below, it suffices to provide only complementing upper
approximations—cmp. [57, Theorem 19]—which may be regarded as strictly less than n-fold advice.

• Similarly, with respect to the problem of finding some eigenvector of A, again strictly less than ⌊1 + log2 n⌋-fold advice
suffices: namely lower approximations to ⌊log2 m(A)⌋ (withm(A) from Theorem 49) based on the following

Observation 55. The mapping R(
n
2) ∋ A → ⌊log2 m(A)⌋ is (ρn·(n−1)/2, ρ>)-computable.

Proof. Given λ, dim kernel(A−λ id) = n− rank(A−λ id) is ρ>-computable by [57, Theorem 7(i)]; hence so is its minimum
m(A) over all λ ∈ σ(A), cmp. [57, Proposition 17] and [52, Exercise 4.2.11]. Moreover, log2 : (0,∞) ∋ x → ln(x)/ ln(2) ∈ R
is (ρ, ρ)-computable; and by monotonicity also (ρ>, ρ>)-computable. Finally, x → ⌊x⌋ is (ρ>, ρ>)-computable on R
(although we need that only on N). �

The above examples suggest refining k-fold advice to non-integral values of k:

Definition 56. Let f : X → Y be a function and Z a topological T0 space.

(a) Call f continuous with Z-advice if there exists a function g : X → Z such that the function f |g , defined as follows, is
continuous:

dom(f |g) := {(x, z) : x ∈ X, g(x) = z} ⊆ X × Z, (x, z) → f (x). (7)

(b) Let Z be finite and fix some injective notation νZ :⊆ Σ∗
→ τ of the (finitely many) open subsets of Z . Then the

representation δZ = δZ,νZ :⊆ Σω
→ Z is defined as follows:

σ̄ ∈ Σω is a δZ,ν-name of z iff it is a ν-enumeration (with arbitrary repetition) of all open sets containing Z .
(c) For effective metric spaces (X, α) and (Y , β), call f (α, β)-computable with Z-advice if there exists some g : X → Z such

that the function f |g :⊆ X × Z → Y from (a) is (α × δZ , β)-computable.
(d) For finite T0 spaces Z,W , write ‘‘Z ≼ W ’’ if, for every choice of effective metric spaces (X, α) and (Y , β), each function

f : X → Y (α, β)-computable with Z-advice is also (α, β)-computable withW -advice.

The domain of f |g is an instance of a fibered product or pullback.
Restricting Z to discrete spaces, one recovers Definition 8(a):

Lemma 57. For d ∈ N let Zd denote the set {0, 1, . . . , d − 1} equipped with the discrete topology.

(a) A function f : X → Y is d-continuous iff it is continuous with Zd-advice.
(b) The representation δZd of Zd is computably equivalent to νZd : δZd ≡ νZd . Whereas in general, νZ is only computably reducible

to (but not from) δZ : νZ δZ .
(c) A function f : X → Y is (α, β)-computable with d-wise advice iff it is (α, β)-computable with Zd advice.
(d) (Z, δZ ) is admissible. In particular if (X, α) and (Y , β) are admissible and if function f : X → Y is (α, β)-computable with

Z-advice, then f is continuous with Z-advice.
(e) Let h :⊆ W → Z be surjective and continuous ((δW , δZ )-computable). Then it holds Z ≼ W.

Proof. (a) Let ∆ = {D0,D1, . . . ,Dd−1} denote an d-element partition of X such that f |Dz is continuous for each z =

0, 1, . . . , d − 1. Define g : X ∋ x →the unique z ∈ Zd with x ∈ Dz . Then, for open V ⊆ Y ,

(f |g)−1
[V ] =


z∈Z


f −1

[V ] ∩ g−1
[{z}]  

=Dz


× {z} =


z∈Z

(f |Dz )
−1

[V ]  
open in Dz

×{z} (8)

is relatively open in


z∈Z Dz × {z} = dom(f |g), i.e. f |g continuous.
Conversely let f |g be continuous for g : X → Zd. Define∆ := {D0,D1, . . . ,Dd−1} where Dz := g−1

[{z}] for z ∈ Zd. Then
Eq. (8) requires that


z


f −1

[V ] ∩ Dz

× {z} be open in


z Dz × {z}. Now Dz × {z} is open by definition of the product

topology andbecause z ∈ Zd is discrete, this implies that also the intersection (f |g)−1
[V ]∩(Dz×{z}) = (f −1

[V ]∩Dz)×{z}
be open in Dz × {z}, i.e. that f |−1

Dz
[V ] is open in Dz ; hence f |Dz is continuous for each z ∈ Zk.

(b) Since Z is finite and νZ :⊆ Σ∗
→ Z is injective, everything is bounded a priori. For instance, given a νZ -name of z ∈ Z ,

one can easily produce a pre-stored list of all (finitely many) open sets containing this z: thus showing νZ ≼ δZ .
For the converse, exploit that Zd bears the discrete topology and therefore is effectively T1[54]: Given an enumeration
of all (finite) open sets Ui containing z ∈ Zd, their intersection


i Ui becomes a singleton after finite time, thereby

identifying z.
In the Sierpiński space S from Example 58(a) below, (some δS-names of) 1 = ⊥ cannot continuously be distinguished
from (a δS-name of) 0 = ⊤.
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(c) Suppose that f |Dz be (α, β)-computable for each z ∈ Zd. Since Zd is finite, it follows that f |g : (x, z) → f |Dz (x) is
(α × νZd , β)-computable and hence (α × δZd , β)-computable by (b).
Conversely let f |g be (α × δZd , β)-computable. Then, similarly to (a) and since each z ∈ Zd is δZd-computable, it follows
that also the all restrictions f |Dz be (α, β)-computable for z ∈ Zd where Dz = g−1

[{z}].
(d) Observe that δZ coincides with the standard representation of the (finite, hence effective) T0-space Z; compare [52,

Section 3.2]. Concerning the second claim, [52, Corollary 3.2.12] reveals that f |g is continuous.
(e) Let f : X → Y be continuous (computable) with Z-advice g : X → Z and let h̃ : Z → W denote any left-inverse to h,

i.e. s.t. h̃ ◦ h = idZ . We show that f is also computable with W -advice h̃ ◦ g : X → W : Given x and w := h̃ ◦ g(x), one
can by prerequisite compute h(w) =: z which hasw = g(x); similarly for continuity. �

In this sense, Example 1 turns out to suffice with even strictly less than 2-fold advice:

Example 58. (a) Consider as Z the Sierpiński space S, i.e. the set {0, 1} equipped with the topology

∅, {0}, {0, 1}


as open

sets. Then the characteristic function of the complement of the Halting problem 1N\H : N → S is (ν, δS)-computable,
but 1H itself is not.

(b) The Gauß Staircase function f := ⌊ · ⌋ : R → Z is (ρ, ρ)-computable with S-advice.
(c) Generalizing S =: S1, denote by Sd the set {0, 1, . . . , d} equipped with the following topology: {∅, {0}, {0, 1}, {0, 1, 2},

. . . , {0, 1, 2, . . . , d}}. Then rank : Rd×d
→ {0, 1, . . . , d} is (ρd×d, ρ)-computable with Sd-advice.

(d) It holds Sd−1 ≼ Sd ≼ Zd+1 ≼ Zd+2.
(e) On the other hand, the Dirichlet Function 1Q : [0, 1] ⊆ R → {0, 1} is computable with Z2-advice but not continuous

with Sd-advice for any d ∈ N: Sd ⋠ Z2.

In view of [57, Theorem 11], Example 58(c) shows that Sd-advice renders also LinEqn,m computable for d := min(n,m− 1).

Proof of Example 58. (a) Simulate the given Turing machine M , and for each step append ‘‘{0, 1}’’ to the δS-name of
1 = 1N\H(⟨M⟩) to output in case that M does not terminate; whereas if and when M does turn out to terminate, start
appending ‘‘{0}’’ to the output, thus indeed producing a δS-name of 0.
Since any δS-name of 0 must include the set {0} in its enumeration, one can distinguish it in finite time from a δS-name
of 1. δS-computing 1H(⟨M⟩) = 0 would thus amount to detecting the non-termination ofM , contradicting that H is not
co-r.e.

(b) Intuitively, ‘‘x ∉ Z’’ is semi-decidable; hence suffices to provide only half-sided advice for the case ‘‘x ∈ Z’’. Formally,
define g : R → S as the characteristic function of R \ Z, i.e., g : Z ∋ x → 0 and g : R \ Z ∋ x → 1. Observe
dom(f |g) =


Z × {0}


⊎

R \ Z × {1}


. Hence, for y ∈ N, it is


f |g
−1

[{y}] =

(y, y + 1) × {1}


⊎

{y} × {0}


with

(y, y + 1)× {1} =

(y, y + 1)× S


∩ dom(f |g) and {y} × {0} =


R × {0}


∩ dom(f |g) both open in dom(f |g).

(c) Let g := rank : Rk×k
→ Sk. Then it holds rank |

rank(A, i) = rank(A) = i on dom(rank |
rank) = {(A, i) : A ∈ Rk×k, i ∈

N, rank(A) = i}. In particular

rank |

rank
−1

[{j}] =


A : rank(A) ≥ j} × {0, 1, . . . , j}

∩ dom(rank |

rank) is relatively
open in dom(rank |

rank), because {A : rank(A) ≥ j} ⊆ Rk×k is open by [57, Theorem 7] and {0, 1, . . . , j} ⊆ Sk is open by
definition.

(d) The identity mapping id : Zk+1{0, 1, . . . , k} → {0, 1, . . . , k} = Sk is surjective and, in view of the discrete topology
on Zk+1, trivially continuous/computable: hence Sk ≼ Zk+1 by Lemma 57(e). Similarly, Zk+1 ≼ Zk+2 follows from the
surjection Zk+2 = {0, 1, . . . , k + 1} ∋ i → max{i, k} ∈ Zk+1. And Sk−1 ≼ Sk is established by the surjection hk : Sk →

Sk−1 defined as 0 < i → i − 1 and 0 → 0, whose continuity can be seen from h−1
k [{0, 1, . . . , i}] = {0, 1, . . . , i, i + 1}

for 0 ≤ i < k.
(e) Suppose 1Q|

g
:⊆ R × Sd → {0, 1} is continuous for g : R → Sd. Then the restriction 1Q|Dz is continuous (i.e. constant)

on each Dz := g−1
[{z}]; that is, for each z = 0, 1, . . . , d, it either holds Dz ⊆ Q or Dz ⊆ R \ Q. First observe that there

exist k, ℓ and two sequences xn ∈ Dk of rationals and yn ∈ Dℓ of irrationals with |xn − yn| → 0. Indeed, yn := y arbitrary
irrational belongs to Dℓ for ℓ := g(y); and, since Q is dense, there exists (xn) ⊆ Q with xn → y; where, by pigeon-hole,
xn ∈ Dk for some k and infinitely many (by proceeding to a subsequence w.l.o.g. all) n. We treat the case k < ℓ; k > ℓ
works similarly. By construction, it holds 1Q(yn) = 0 and g(yn) = ℓ; hence (yn, ℓ) ∈ (1Q|

g)−1
[(− 1

2 ,+
1
2 )] =: V for all

n. Since V is open in dom(1Q|
g) ⊆ R × Sd, it follows (xn, k) ∈ V for all sufficiently large n; recall that the topology on Sd

has k ∈ U for open U ⊆ Sd and k < ℓ ∈ U . But 1Q(xn) = 1 contradicts (xn, k) ∈ V . �

Since S-advice is strictly less than 2-fold advice (Example 58d+e) strictly richer than 1-fold (i.e. no) advice (Example 58(b), it
is consistent to quantify S-advice as (1+

1
2 )-fold. In fact, Z2 and S are (up to homeomorphism) the only 2-element T0 spaces;

but according to Example 58(e), Sd-advice is not more (nor less, for d ≥ 2) than Z2-advice and hence cannot justly be called
(d +

1
2 )-fold.

In fact the Definition 8 of integral and cardinal k-continuity has an important structural advantage: the complexities of
two functions are always comparable—either Ct(f ) < Ct(g), or Ct(f ) > Ct(g), or Ct(f ) = Ct(g); Whereas when refining
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beyond integral advice, non-comparability emerges. As a matter of fact Definition 56 may be related to Weihrauch Degrees
with their complicated structure [51,41,5]. In this way, these degrees resembles classical structural Turing-complexity in
terms of (say, polynomial-time) reducibility; whereas the cardinal of discontinuity corresponds to resource-bounded Turing
complexity classes like DTIME


f (n)


.

Question 59. By assigning weights to the advice values z ∈ Z and to the measurable subsets of dom(X), can one obtain a notion
of average advice in the spirit of Shannon’s entropy?

5.2. Topologically-restricted advice

Definition 8 asks for the number of color classes needed to make f continuous/computable on each such class—
unconditional to the topological complexity of the classes themselves: in principle, they may be arbitrarily high on the
Borel Hierarchy or even non-measurable (subject to the axiom of choice).

From our point of view, determining the discrete advice to (i.e. the color c of) some input x to f is a non-computational
process preceding the evaluation of f . For instance in the Finite Element Method approach to solving a partial differential
equation on some surface S, its discretization via triangulation gives rise to a matrix A known a-priori to have 3-band form:
its band-width need not be ‘computed’, nor does one have to explicitly represent the subset of all 3-bandmatriceswithin the
collection of all matrices. In fact, since the optimal color classes themselves (rather than the number of colors) are usually
far from unique, this freedommay be exploited to choose them not too wild.

On the other hand, Definition 8 can easily be adapted to take into account topological restrictions:

Definition 60. Let f : A → B denote a function between topological spaces A, B (represented spaces (A, α) and (B, β)); and
let A ⊆ 2A denote a class of subsets of A = dom(f ).

(a) Ct(f ; A) := min

Card(∆) : ∆ ⊆ A partition of A, f |D is continuous ∀D ∈ ∆


(b) Cc(f , α, β; A) := min


Card(∆) : ∆ ⊆ A partition of A, f |D is (α, β)-computable ∀D ∈ ∆


Hence for A := 2dom(f ) the powerset of dom(f ) one recovers the previous, unrestricted Definition 8: Ct(f ; 2dom(f )) = Ct(f )
and Cc(f , α, β, 2dom(f )) = Cc(f , α, β); whereas restricting the topology of the color classes may increase, but not decrease,
the number of colors needed: Ct(f ; A) ≤ Ct(f ,B) for B ⊆ A; similarly for Cc. Also notice that, unless A is closed under
finite unions and intersections, it may now well matter whether∆ is a partition or a covering of dom(f ).

Concerning the applications considered in Section 4, Corollary 62 below shows that the optimal advice (namely the
matrix rank and the number of distinct eigenvalues) gives rise to topologically very tame color classes. In order to formalize
this claim, recall that for a metrizable space X , each level of the Borel Hierarchy Σt(X),Πt(X) ⊆ Σt(X) ∪ Πt(X) ⊆

Σt+1(X) ∩ Πt+1(X) of open/closed (t = 1) set, Fσ /Gδ (t = 2) sets and so on, is strictly refined by the Hausdorff difference
hierarchy; whose second level 2–Σt(X) = 2–Πt(X) consists of all sets of the form U \ V with U, V ∈ Σt(X) (equivalently:
of the form A \ Bwith A, B ∈ Πt(X)); cf. e.g. [25, Section 22.E]. We can now strengthen Proposition 11a+c):

Lemma 61. Extend Hertling’s notions

LEV′(f , i + 1) = {x ∈ LEV′(f , i) : f |LEV′(f ,i) discontinuous at x}

LEV(f , i + 1) = {x ∈ LEV(f , i) : f |LEV(f ,i) discontinuous at x}

literally from functions to relations in the sense of Definition 35(c).

(a) Let X be ametric space and f : X ⇒ Y . Then, in addition to the inequalities Ct(f ; 2–Σ2) ≤ Ct(f ; 2–Σ1) and Lev′(f ) ≤ Lev(f ),
it also holds Ct(f ; 2–Σ1) ≤ Lev(f ).
Moreover in case f is single-valued, it holds Ct(f ; 2–Σ2) ≤ Lev′(f ).

(b) The Dirichlet Function, i.e. the characteristic function 1Q : [0, 1] ⊆ R → {0, 1}, has Cc(1Q, ρ, ρ; 2–Σ2) = Ct(1Q; 2–Σ2) =

2 but Lev′(1Q) = Lev(1Q) = ∞.
(c) Let f : X ⇒ Y be such that f |U is continuous on open U ⊆ X. Then it holds LEV(f , 1) ⊆ X \ U; and the prerequisite that U be

open is essential.
(d) More generally, if Ui ⊆ X \ (U1 ∪ · · · ∪ Ui−1) is relatively open and f |Ui continuous thereon for all i ≤ k, then

LEV(f , k) ⊆ X \ (U1 ∪ · · · ∪ Uk).

Proof. We record that [23, Lemma 2.5] remains valid for relations instead of functions.

(a) By definition, f is continuous on LEV(f , i) \ LEV(f , i + 1): the difference of two closed sets and thus in 2–Π1. Ranging
i = 0, . . . , Lev(f )− 1 thus yields a Lev(f )-element partition of dom(f ) as required.
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For the case of Lev′(f ), recall that the set LEV′(f , i + 1) of discontinuities of (single-valued!) f |LEV′(f ,i) is always Fσ , i.e.
in Σ2


LEV′(f , i)


; and by induction in Σ2


dom(f )


since Fσ sets are closed under finite intersection. Now proceed as

above.
(b) Observe that, since Q ∈ Fσ , both Q ∩ [0, 1] and [0, 1] \ Q belong to 2–Σ2, thus showing Cc(1Q; 2–Σ2) = 2.

However the subset LEV′(f , 1) of discontinuities of 1Q coincides with [0, 1] = LEV′(f , 0); therefore it holds [0, 1] =

LEV′(f , k) = LEV(f , k) ≠ ∅ for all (even transfinite) k.
(c) From [23, Lemma 2.5.3], it follows that U is disjoint from LEV′(f , 1), i.e. LEV′(f , 1) ⊆ X \ U a closed set; therefore

LEV(f , 1) = LEV′(f , 1), the least closed set containing LEV′(f , 1), is a subset of X \ U .
Recall from (b) the example of 1Q : [0, 1] → {0, 1} continuous on Q, yet Q is certainly not disjoint from LEV(1Q, 1) =

LEV′(1Q, 1) = [0, 1].
(d) proceeds by induction on k, the case k = 1 been handled in (c). First observe that LEV(f , k + 1) = LEV(f |LEV(f ,k), 1)

since the topological closure implicit on the left hand side coincides with the closure relative to (closed) LEV(f , k) on
the right hand side. Moreover, the induction hypothesis LEV(f , k) ⊆ X \ (U1 ∪ · · · ∪ Uk) implies LEV(f |LEV(f ,k), 1) ⊆

LEV(fX\(U1∪···∪Uk), 1) by [23, Lemma 2.5.4], which is in turn contained in

X \ (U1 ∪ · · · ∪Uk)


\Uk+1 according to (c). �

Lemma 61(a + b) indicates that the greedy meta-algorithm underlying the definitions of Lev(f ) and Lev′(f ) yields
topologically mild color classes on the one hand, but on the other hand not necessarily the least number of such classes.
For the problems in linear algebra considered above, however, greedy is optimal:

Corollary 62. (a) Fix n,m ∈ N and recall from Theorem 46 the problem LinEqn,m of finding to a given A ∈ Rn×m of
rank(A) ≤ d := min(n,m − 1) some non-zero x⃗ ∈ Rm such that A · x⃗ ≠ 0. It holds

Lev′(LinEqn,m) = Lev(LinEqn,m) = Ct(LinEqn,m) = Cc(LinEqn,m, ρ
n×m, ρm

; 2–Σ1) = d + 1.

(b) Fix d ∈ N and recall from Theorem 47 the problem EVecBased of finding to a given real symmetric d × d-matrix A a basis of
eigenvectors. It holds

Lev′(EVecBased) = Lev(EVecBased) = Ct(EVecBased) = Cc(EVecBased, ρ(
d
2), ρd×d

; 2–Σ1) = d.

(c) Fix n ∈ N and recall from Theorem 49 the problem SomeEVecn of finding, to a given real symmetric d × d-matrix A, some
eigenvector. It holds

Lev′(SomeEVecn) = Lev(SomeEVecn) = Ct(SomeEVecn) = Cc(SomeEVecn, ρ(
n
2), ρn

; 2–Σ1) = ⌊1 + log2 n⌋.

More precisely, the class 2–Σ1 of pairwise differences of open sets above may be replaced by the class 2–Σ1 of pairwise differences
of r.e. open sets, i.e. by the second Hausdorff level on the ground levelΣ1 of the effective Borel Hierarchy.

Proof. (a) Theorem 46 refers to arbitrary color classes and shows that, there, d-fold advice is insufficient to continuity:
Ct(LinEqn,m) > d. In view of Lemma 61(a) it thus suffices to show Lev(LinEqn,m) ≤ d + 1. Indeed, the set rank−1(≥ k)
of matrices of rank at least k is effectively open a subset of X := Rn×m because A → rank(A) is lower-computable
[57, Theorem 7(i)]. In particular, Ud−k+1 := Vk := rank−1(k) = rank−1(≥ k) ∩ rank−1(≤ k) is effectively open
in rank−1(≤ k) = dom(LinEqn,m) \ (Vd ∪ · · · ∪ Vk+1); and LinEqn,m is computable and continuous thereon by [57,
Theorem 11]. Now apply Lemma 61(d) to conclude

LEV(LinEqn,m, d + 1) ⊆ dom(LinEqn,m) \ (Vd ∪ · · · ∪ V0) = ∅.
(b) Similarly to (a) and in view of Theorem 47 it suffices to show Lev(EVecBased) ≤ d. Now, again, the set Vk := {A :

Card σ(A) = k} = {A : Card σ(A) ≥ k} ∩ {A : Card σ(A) ≤ k} of symmetric real d × d-matrices Awith exactly k distinct
eigenvalues is effectively open in {A : Card σ(A) ≤ k} = dom(EVecBased) \ (Vd ∪ · · · ∪ Vk+1): because A → Card σ(A)
is lower-computable and lower-continuous [57, Proposition 17]. And EVecBased is computable and continuous on Vk by
[57, Theorem 19], so Lemma 61(d) yields the claim.

(c) Again, in order to show Lev(SomeEVecn) ≤ ⌊1 + log2 n⌋, consider the sets Uk :=

A ∈ Rn·(n−1)/2

: ⌊log2 m(A)⌋ = k

,

k = 0, . . . , ⌊log2 n⌋, on which SomeEVecn is computable by Theorem 49. This time {A : ⌊log2 m(A)⌋ ≤ k} (rather
than ‘‘≥ k’’) are, according Observation 55, effectively open subsets of dom(SomeEVecn). Hence Uk is relatively open in
{A : ⌊log2 m(A)⌋ ≥ k} = Rn·(n−1)/2

\ (U0 ∪ · · · ∪ Uk−1): now apply Lemma 61(d). �

In the discrete realm, the Church–Turing Hypothesis is generally accepted and bridges the gap between computational
practice and formal recursion theory:

every function which would naturally be regarded as computable is computable under his definition, i.e. by one of his
(i.e. Turing’s)machines [27, p.376]

In the real number setting, the Type-2 Machine has not attained such universal acceptance—mostly due to its inability to
compute any discontinuous function. Hence we propose as a real counterpart to the discrete Church–Turing Hypothesis
something along the following lines:

The class of real functions f which would naturally be regarded as computable coincides with those functions computable
by a Type-2 Machinewith finite discrete advice of color classes in 2–Σ1(dom f ).
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Question 63. (a) In view of Lemma 61(a): What is the Borel complexity of the set of points of discontinuity (which is Fσ for
single-valued functions) in the multivalued case?

(b) Is the rank the (up to permutation) unique least advice rendering LinEq computable/continuous?
(c) Is the number of distinct eigenvalues the (up to permutation) unique least advice renderingEVecBase computable/continuous?
(d) More generally, what are sufficient conditions for the sets LEV(f , i) (i = 1, . . . , Lev(f )) to be the unique least-size partition

of dom(f ) into subsets where f is continuous?

Recall that in the proof of Corollary 62, we have repeatedly employed Lemma 61(d) giving a sufficient condition for the sets
LEV(f , i) to constitute a least-size partition of dom(f ) into subsets where f is continuous.
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