
Separably closed �elds with Hasse derivationsMartin ZieglerSeptember 11, 2002AbstractIn [6] Messmer and Wood proved quanti�er elimination for separablyclosed �elds of �nite Ershov invariant e equipped with a (certain) Hassederivation. We propose a variant of their theory, using a sequence of ecommuting Hasse derivations. In contrast to [6] our Hasse derivations areiterative.1 IntroductionDe�nition. Let R be a commutative ring. A Hasse derivation is a familyD = (D0; D1; : : :) of additive maps Dn : R! R such that1D0(x) = x (1.1)Dn(xy) = Xa+b=nDa(x)Db(y) (1.2)DaDb = �a+ ba �Da+b : (1.3)Two Hasse derivations D and E commute if DmEn = EnDm for all m;n.We �x for the rest of the paper a natural number e and a prime p.The following notion was introduced by Okugawa in [7]: A D��eld is a pair(K;D), whereK is a �eld of characteristic p andD = (D1; : : : ;De) is a sequenceof commuting Hasse derivations on K. The �eld of constants2 C consists ofthose elements of K on which all derivations Di;1 (i = 1; : : : ; e) vanish. ClearlyC contains Kp. (K;D) is a strict D��eld if C = Kp.De�nition. Let Le be the natural language for D��elds, which contains sym-bols f0; 1;+;�; �g for the �eld operations and unary function symbols Di;n (i 21Equation (1.3) means that we consider only iterative Hasse derivations.2The de�nition used here di�ers from the de�nition given in [7], where the constants arekilled by all Di;j (j > 0) 1



f1; : : : ; eg; n 2 N). We denote by SCHp;e the Le�theory of all separably closed,strict D��elds which have degree of imperfection e.3The aim of this article is to prove the following theorem:Theorem 1.1.1. SCHp;e is complete and has quanti�er elimination.2. Every D��eld can be extended to a model of SCHp;e.3. Every separably closed �eld of degree of imperfection e can be expanded toa model of SCHp;e.Our theory is a variant of the theory given by M. Messmer and C. Wood in[6], where a single, non�iterative Hasse derivation was used. For e = 1 our twoapproaches coincide and Theorem 1.1 was proved (slightly di�erently) in [6].4We will prove the theorem in Section 3. The main algebraic ingredient isthe amalgamation property of the class of D��elds, which we prove in Section2, Proposition 2.6. In Section 4 we give an alternative proof for quanti�erelimination.I thank Anand Pillay for various helpful discussions.2 AmalgamationWe will prove in this section that the class of D��elds has the amalgamationproperty : Any two extensions of a D��eld K can be jointly embedded in a thirdextension of K.Lemma 2.1. For any D��eld K the index of its �eld C of constants is boundedby pe. Let K 0 be an extension of K with constant �eld C 0. Then C 0 and K arelinearly disjoint over C.Proof. We write di for the derivation Di;1 and Ci for its �eld of constants in K.By reordering D we may assume that C is the irredundant intersection of the�rst f of the Ci. So the Bi = C1 \ � � �\Ci form a properly descending sequenceK = B0 � B1 � � � � � Bf = C:The formula (1.3) implies that d pi = 0 for all i. Since the di commute, each dimaps Bi�1 into itself. By Theorem 27.3 of [3] we �nd elements xi 2 Bi�1 withdi(xi) = 1 and for any such choice 1; xi; : : : ; xp�1i is a basis of Bi�1 over Bi.3I.e. [K : Kp] = pe4M. Messmer and C. Wood have asked me to point out, that, for e > 1, there is a gapin the proof of the main theorem [6], as well as a false claim about the product rule in thenon-iterative case. 2



Whence the x = xe11 � � �xeff ; (ei < p) form a basis of K over Bf = C. For thesame reason these elements form a basis of K 0 over B0f � C 0. Thus the x areindependent over C 0.An alternative proof uses the Wronskian matrix: Let �1; : : : ; �pe be an enu-meration of all operators of the form D1;n1D2;n2 � � �De;ne , (ni < p) (or, equiv-alently, dn11 dn22 � � � dnee ). It can easily be proved by a standard argument that asequence x1; : : : ; xN is linearly independent over C i� the matrix (��(x�)) hasrank N (see [7, Proposition 5.1]). The Lemma follows immediately from this.Corollary 2.2. Let K be a strict D��eld and F a D��eld which extends K.Then F is a separable extension of K. If [K : Kp] = pe , F is strict i� K andF have a common p�basis.(See [1] for the de�nition of p�basis and its basic properties.)Proof. By the Lemma K and the �eld C constants of F are linearly disjointover Kp. This implies that K and F p are linearly disjoint over Kp. Thus F isseparable over K. We have [K : Kp] � [F : C] � pe. So, if [K : Kp] = pe, wehave [F : C] = pe. Therefore C = F p i� [F : F p] = pe, which proves the secondpart.Lemma 2.3. Let (K;D) be a D��eld and F a �eld extension of K. Assumethat K and F have a common p�basis. Then D extends uniquely to a sequence Eof commuting Hasse derivations on F . Furthermore, if (F 0;E0) is an extensionof (K;D) which contains F , the functions in E0 map F into itself, so thatE = E0 � F .In the special case that F is a separably algebraic extension of K the Lemmais due to F.K. Schmidt ([2]) for e = 1 and to Okugawa ([7, Proposition 2.8]) forarbitrary e. We will deduce the general case from a theorem of Matsumara.Proof. For a single Hasse derivation the lemma follows from the fact that �eldextensions with a common p�basis are 0�étale , see [3, 26.7 and 27.2]. So, if Eis a sequence of Hasse derivations of F which extends D, it remains to showthat the Ei commute. Let us prove that E1 and E2 commute, i.e. that E1;i andE2;j commute for all i; j, by induction on i+ j. Fix m and n and assume thatE1;i and E2;j commute for all i + j < m + n. It is easy to check (use (1.2))that then E1;mE2;n�E2;nE1;m is a derivation. Since D1 and D2 commute, thisderivation vanishes on K and therefore also on F .The uniqueness stated in the Lemma follows also from the following recursiveformula, which shows that D can be computed from its values on a basis5 of5Even the values on a p�basis would su�ce.3



F=F p: Let D be any Hasse derivation. Then (2.2) below implies for r < p thatDpn+r(xpb) = Xm�nDm(x)pDp(n�m)+r(b): (2.1)Lemma 2.4. Any D��eld K has a smallest strict extension Kstrict, which is apurely inseparable extension of K.Proof. Consider an arbitrary Hasse derivation D. We note �rst that (1.2) im-plies Dn(xp) = (Dnp (x)p if pjn0 otherwise (2.2)Also, by (1.3), if D1(x) = 0, we haveDm(x) = 0 for all m which are not divisibleby p. It follows that D0 = (D0; Dp; D2p; : : : )is a Hasse derivation on the constant �eld of D1.6Let C be the constant �eld of (K;D). Since the Di commute, all Di;n mapC into itself. By the last remark D0 = (D01; : : : ;D0e) is a sequence of commutingHasse derivations on C. We transportD0 from C to K� = C 1p via the Frobeniusmap: D�i;n(x) = Dpn;i(xp) 1p :D� extends D by (2.2). We repeat this process and get an in�nite sequence ofpurely inseparable extensions. The union of this sequence is Kstrict.Note that Kstrict is separably closed if K is separably closed.Lemma 2.5. Let F and L be D��elds which both extend the D��eld K. Assumethat, in a common �eld extension, F and L are linearly disjoint over K. ThenFL has a unique D�structure which extends the D�structures of F and L.Proof. A D�module over K is a K�vector space V with a family Di;n (i 2f1; : : : ; eg; n 2 N) of commuting additive maps V ! V such that for all D = Di,x 2 K and v 2 V . D0(v) = v (2.3)Dn(xv) = Xa+b=nDa(x)Db(v) (2.4)DaDb(v) = �a+ ba �Da+b(v) : (2.5)A commutative K�algebra R is a D�algebra if it is a D�module and the Di areHasse derivations on R.The following statements are easy to check (cf. [4]):6Note that �ni� � �pnpi� mod p. 4



� If V and W are D�modules over K, the tensor product V 
K W becomesa D�module by the de�nitionDi;n(v 
 w) = Xa+b=nDi;a(v) 
Di;b(w):� If R and S areD�algebras overK, their tensor product is also aD�algebra.If R and S have unit�elements, R and S are subrings of R
K S. It is clear thatthe D�structure of R 
K S is the only common extension of the D�structuresof R and S7.If F and L are linearly disjoint over D, FL is the quotient �eld of F 
K L.By [2] and [7, Proposition 2.3] a sequence of commuting Hasse derivations on adomain extends uniquely to the quotient �eld. This proves the Lemma.Proposition 2.6. The class of D��elds has the amalgamation property.Proof. Let F and L be D��elds which both extend the D��eld K. If we applyLemma 2.3 and Lemma 2.4 to the separable algebraic closures of F and L, wesee that we may assume that F and L are separably closed and strict. Then(Ksep)strict is a D�sub�eld of F and L (again by Lemmas 2.3 and 2.4), so we mayassume that K is separably closed and strict. We may also assume that F and Lare situated in a common extension �eld and are algebraically independent overK. By Corollary 2.2 F is a separable extension of K and therefore a regularextension, since K is separably closed. This implies that F and L are linearlyindependent over K and that we can extend the D�structure of F and L toFL.3 Proof of the Theorem1. Quanti�er elimination and completenessTo prove that SCHp;e has quanti�er elimination, we have to show that thefollowing is true: If F and L are models of SCHp;e with a common substructureR, we can embed F over R in an elementary extension of L. Let K be thequotient �eld of R in F and K 0 the copy of K in L.For all Hasse derivations D we have the recursion formulaDn�rs� = Dn(r) �Pa<nDa( rs )Dn�a(s)sThis shows that K and K 0 are D�sub�elds of F and L and are, over R, isomor-phic as D��elds. So we can assume that R = K.7Note that Dn(1) = 0 for any Hasse derivation D and n > 0.5



By amalgamation we �nd a D��eld F 0 which extends F and L. We mayassume that F 0 is strict. By Corollary 2.2 F 0 is a separable extension of L. SinceL is separably closed, we can embed F 0 over L in an elementary extension L0 ofL (see [1, Claim 2.2]). Let F 00 be the copy of F 0 in L0.L0F 0 F 00F LKR
-HHHHH@@ ��It remains to show, that F 00 is a D�sub�eld of L0 which, over L, is isomorphicto F 0. But this follows immediately from Lemma 2.3, since F 0 and L have acommon p�basis by Corollary 2.2. Note that the assumption that F is a modelof SCHp;e was not used.SCHp;e is complete since it is consistent by part 3 below and since all modelscontain the trivial D��eld Fp .2. Every D��eld is contained in a modelLet F be a D��eld and L be any model of SCHp;e. (We will see below thatSCHp;e is consistent.). By the proof of quanti�er elimination we can embed F(over Fp ) in an elementary extension of L.3. Every separably closed �eld with degree of imperfection e can beexpanded to modelLet F be a separably closed �eld of imperfection degree e. Let b1; : : : ; be bea p�basis of F . Then the bi are algebraically independent over Fp and form a p�basis of K = Fp (b1; : : : ; be). De�ne a sequence of commuting Hasse derivationson K by f(b1; : : : ; bi + t; : : : ; be) = 1Xn=0Di;n(f(b1; : : : ; be)) tn: (3.1)or, equivalently, by Di;n(bk11 � � � bkee ) = �kin�bk11 � � � bki�ni � � � bkee (3.2)It is easy to check, and well�known, that this de�nition turns K into a strictD��eld (see [7, Section I.1]). By Lemma 2.3 we can extend D to F . F is strictsince [F : F p] = pe (Corollary 2.2). So (F;D) is a model of SCHp;e.6



4 RemarksStability and elimination of imaginariesUsing the methods of [1] and [6] it is easy to prove that SCHp;e is stable andhas elimination of imaginaries. The stability of SCHp;e can also be deriveddirectly from the stability of separably closed �elds ([8]) as follows: Let F bea separably closed �eld with p�basis b1; : : : ; be and D a Hasse derivation ofF . The formula (2.1) shows that all Dn are de�nable in the �eld F using theparameters Dn(bk11 � � � bkee ).8 This implies that F together with any sequence ofHasse derivations is stable.Let me also indicate why SCHp;e has elimination of imaginaries, following[5]. One notes �rst, that, working in �elds, it su�ces to show that SCHp;e hasweak elimination of imaginaries (see [5, Fact 5.5]). By a theorem of Evans,Pillay and Poizat (see [5, Proposition 5.8]) it is enough to show that every typeq(x1; : : : ; xm) over a model (F;D) has a canonical base. Let �1; �2; : : : be anenumeration of all operators of the form D1;n1D2;n2 � � �De;ne , (ni = 0; 1; : : : )and let Iq be the ideal of all polynomials f 2 F [X�;j ]�=1;2;::: ; j=1;:::;m suchthat the formula f(��(xj)) := 0 belongs to q. By quanti�er elimination q isdetermined by Iq . Thus the �eld of de�nition of Iq serves as a canonical base ofq.Canonical p-basesLet (F;D) be a D��eld with degree of imperfection e. A p�basis b1; : : : ; be iscanonical if for all n > 0Di;n(bj) = (1 if n = 1 and i = j0 otherwise : (4.1)Lemma 4.1. Let F be a �eld with with degree of imperfection e. Every p�basisof F is a canonical p�basis of a uniquely determined sequence of commutingHasse derivations.Proof. A canonical p�basis b1; : : : ; be determines D uniquely: Di;n(bk11 � � � bkee ) isgiven by (3.2). To compute Di;n(x) for arbitrary x, writex = X0�k1;:::;ke<pmxpmk1:::kebk11 � � � bkeefor some m with n < pm. ThenDi;n(x) = X0�k1;:::;ke<pmxpmk1:::keDi;n(bk11 � � � bkee ): (4.2)Now let b1; : : : ; be be any p�basis. The construction at the end of the last sectionshows that (3.2) and (4.2) de�ne a sequence D of commuting Hasse derivationswith canonical p�basis b1; : : : ; be.8Actually the parameters bi and Dpm(bi) su�ce.7



The D constructed in in the last part of the proof is strict. So we conclude, thatonly a strict sequence D can have a canonical p�basis. The converse is true if(F;D) is !-saturated:Remark. Every !�saturated strict D��eld has a canonical p�basis.I will give the proof only in the following special case, which will be usedlater.Corollary 4.2. Every !�saturated model of SCHp;e has a canonical p�basis.Proof. To have a canonical p�basis means that a certain countable set�(x1; : : : ; xe) of formulas is realized. Since SCHp;e is complete, it is enoughto show that some model of SCHp;e has a canonical p�basis. For this take aseparably closed �eld F of imperfection degree e and �x a p�basis �b. Let D bethe unique sequence which has �b as a canonical p�basis. (F;D) is a model ofSCHp;e.Lemma 4.1 and the last remark allow us to determine all strict sequences ofcommuting Hasse derivations of an !�saturated �eld F . We note �rst that, ifb1; : : : ; be is a canonical p�basis for D, then b01; : : : ; b0e is a canonical p�basis forD i� the di�erences bi � b0i belong toF p1 = 1\k=1F pk = �a 2 F j Di;n(x) = 0 (i = 1; : : : ; e ; n = 1; 2; : : :)	:This givesRemark. Let F be an !�saturated �eld with degree of imperfection e. There is anatural 1�1�correspondence between the set of all strict sequences of commutingHasse derivations and the set of all p�bases modulo F p1.Lambda functionsLet b1; : : : ; be be a p�basis of F . The functions �mk1:::ke are de�ned byx = X0�k1;:::;ke<pm�mk1:::ke(x)pm bk11 � � � bkeeFix a natural number m. For a multi-index � = (k1; : : : ; ke) 2 f0; : : : ; pm � 1geand a sequence D of Hasse derivations let us use the notationsb� = bk11 � � � bkee and D� = D1;k1D2;k2 � � �De;ke :If we apply D� to the equationx =X� �m� (x)pmb�;8



we obtain D�(x) =X� �m� (x)pmD�(b�):If D is strict, the Wronski matrix �D�(b�)� is always regular. If b1; : : : ; be iscanonical for D, its entries are, up to factors from Fp , monomials in the bi. Itis also easy to see that the determinant is 1. This yieldsLemma 4.3. Let (F;D) be a D��eld with canonical p�basis b1; : : : ; be. Thenthe functions (�m� (x))pm are polynomials in b1; : : : ; be and the D�(x).Quanti�er eliminationLet Tp;e denote the theory of separably closed �elds F of characteristic p witha named p�basis b1; : : : ; be. It is shown in [1] that Tp;e is complete and hasquanti�er elimination if one adds function symbols for the �m� to the language.9This fact can be used to give an alternative proof for the quanti�er elimi-nation of SCHp;e: Let �(�x) be an Le�formula and (F;D) a saturated model ofSCHp;e. By Corollary 4.2 we can �nd a canonical p�basis b1; : : : ; be. Since wecan de�ne the Di;n in (F; b1; : : : ; be), �(�x) is equivalent to a Boolean combina-tion of polynomial equations between b1; : : : ; be and terms of the form �m� (xi),for su�ciently large m. By taking pm-th powers we can replace the �m� (xi) by�m� (xi)pm . By the last lemma we obtain an equivalent Boolean combination ofequations of the form X� q�(�x) b� := 0 (4.3)where the q�(�x) are terms in theD�(xi). The equivalence holds for any choice ofthe canonical p�basis b1; : : : ; be. Since F p1 is in�nite, we can �nd the b1; : : : ; bealgebraically independent over any given tuple �x. This shows that we can replaceeach equation (4.3) by V� q�(�x) := 0. We observe �nally that the resultingquanti�er free Le�formula does not depend on the choice of F .References[1] Françoise Delon. Separably closed �elds. In Bouscaren, editor, Model the-ory and algebraic geometry: An Introduction to E. Hrushovski's proof of thegeometric Mordell-Lang conjecture, volume 1696 of Lecture Notes in Math-ematics, pages 143�176. Springer, Berlin, 1998.[2] Helmut Hasse and F.K. Schmidt. Noch eine Begründung der Theorie derhöheren Di�erentialquotienten in einem algebraischen Funktionenkörper miteiner Unbestimmten. J. Reine Angew. Math., 177:215�237, 1937.9Only the �1� are needed for quanti�er elimination. As Françoise Delon has explained tome, also the constants for the p�basis can be disposed of.9
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