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1 Introduction

We construct and study here structures imitating Cexp = (C,+,×, exp), the
complex numbers equipped with the field operations and the exponentiation.
The idea and the aims of the project were described in [Z1].
The version of the structures, the strongly exponentially-algebraically closed
fields with pseudo-exponentiation, we study here is very close to Cexp, and
one of the main results is the statement that there is exactly one, up to
isomorphism, strongly exponentially-algebraically closed field with pseudo-
exponentiation of a given uncountable cardinality, and we give precise and
simple conditions under which Cexp is the one of cardinality continuum. In
fact the conditions can be interpreted as two conjectures about the complex
exponentiation: the first being the well known Schanuel conjecture, and the
second is the conjecture stating that certain systems of exponential equations
over complex numbers do have solutions in the complex numbers.
The definition of the above mentioned systems of exponential equations is
given in natural, albeit rather technical, terms (normality and freeness) which
roughly speaking amount to saying that the system is not overdetermined.
We prove that these definitions are first-order, in fact that certain properties
of exponential varieties are of finite character, which we hope to use for a
further analysis of the fields with pseudo-exponentiation.
We also prove an elimination-of-quantifiers result in Lω1,ω for the fields with
pseudo-exponentiation and give a, hopefully useful, criterion for elementary
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extensions in the class.
I would like to express my sincere thanks to Dave Marker who carefully read
the paper and suggested many very valuable amendments and corrections.

2 Definitions and notation

We start with a class of structures F = 〈F,L〉 where F is a field of character-
istic 0 in the language L consisting of a binary operation +, unary operations
1
m
· , for every positive integer m, a binary relation E and a collection of n-ary

predicates V (x1, . . . , xn) for each algebraic subvariety V ⊆ F n, defined and
irreducible over Q;
These are interpreted in F as follows:
+ is the usual addition in the field F ;
1
m
· multiplies the argument by the corresponding rational number;

n-ary predicates V (x1, . . . , xn) correspond to algebraic subvarieties V ⊆ F n;
the binary relation E(x, y) is the graph of a function ex : F → F.

Definition We let E to be the class of L-structures F defined by the (first-
order) axioms stating that F is an algebraically closed field of characteristic
zero and E(x, y) the graph of a surjective map

ex : F → F× = F \ {0}

satisfying the homomorphism condition

ex(x1 + x2) = ex(x1) · ex(x2).

Definition Let L− be the language L without predicate E. Let subE be the
class of L-structures A such that for some F ∈ E
(i) A ⊆ F as L−-structures;
(ii) E(A) ⊆ E(F );
(iii) the domain of the partial mapping exA is closed under addition and
multiplication by rationals.

The following lemma provides a description of subE in algebraic terms.

2



Lemma 2.1 Suppose A is a divisible subgroup of the additive group of an
algebraically closed field F, A0 ⊆ A a divisible subgroup and

exA : A0 → F×

a homomorphism into the multiplicative group such that exA(A0) ⊆ A. Let E
be the graph of exA and let, for any L-name V for an algebraic variety over
Q, interpret V on A as induced by the embedding A ⊆ F.
Suppose also that the ranks of the abelian groups satisfy the inequality rkA0 <
rkF.
Then A viewed as an L-structure is in subE .

Proof By definition it is enough to be able to extend exA to a surjective
homomorphism

ex : F → F×.

By standard theory of abelian groups

F ∼= A0 ×B and F× ∼= ex(A0) ×B′,

where B and B′ are divisible groups in, correspondingly, additive and mul-
tiplicative representations. Considering the ranks one gets easily from the
assumption that

rkB = rkB′ ≥ ℵ0.

Since B is torsion free, it follows that there is a surjective homomorphism
from B onto B′, and hence we can extend exA in a surjective way.2

Notation We write X ⊆fin Y to say that X is a finite subset of Y. We also
often write XY instead of X ∪ Y.

Notation For A ∈ subE ,

DA = {x ∈ A : ∃y ∈ A E(x, y)}.
For X ⊆fin A

exA(X) = {y ∈ A : ∃x ∈ X E(x, y)};
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tr.d.(X) is the transcendence degree of X over Q and
lin.d.(X) the dimension of the vector space spanQ(X) generated by X over Q;

Definition The predimension of X ⊆fin A, is

δA(X) = tr.d.(spanQX ∪ exAspanQX) − lin.d.(spanQX).

Remark If X ⊆fin A ⊆ B ∈ subE then obviously

δA(X) ≤ δB(X).

We usually omit the subscript in δA(X) when A is fixed.

Definition For X,X ′ ⊆fin A

δ(X/X ′) = δ(XX ′) − δ(X ′).

For infinite Z ⊆ A and k ∈ Z δ(X/Z) ≥ k by definition means that for any
Y ⊆fin Z there is Y ⊆fin Y

′ ⊆ Z such that δ(X/Y ′) ≥ k, and δ(X/Z) = k
means δ(X/Z) ≥ k and not δ(X/Z) ≥ k + 1.

Remark Letting tr.d.(X/X ′) = tr.d.(XX ′) − tr.d.(X ′) and
lin.d.(X/X ′) = lin.d.(XX ′) − lin.d.(X ′) and assuming X = spanQX and
X ′ = spanQX

′ we have

δ(X/X ′) = tr.d.(X ∪ exX/X ′ ∪ exX ′) − lin.d.(X/X ′).

Notation subE0 is the subclass of subE consisting of all A ∈ subE satisfying
the condition:

δA(X) ≥ 0 for all X ⊆fin DA.

E0 = E ∩ subE0.

Notation For W an algebraic variety, b̄ = 〈b1, . . . , bl〉 let

W (b̄) = {〈xl+1, . . . , xn+l〉 : 〈b1, . . . , bl, xl+1, . . . , xn+l〉 ∈ W}.
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Lemma 2.2 If X = {x1, . . . xn} ⊆ A, x̄ = 〈x1, . . . xn〉, then: tr.d.(X) =
dimV, where V ⊆ F n is the minimal algebraic variety over Q containing x̄;
lin.d.(X) = dimL, where L is the minimal linear subspace of F n containing
x̄ and given by homogeneous linear equations over Q;

Proof Immediate from definitions.2

Lemma 2.3 Let A ∈ subE . Then for and X ⊆fin A, Z ⊆ A there is an
Y ⊆fin Z, such that: if Y ⊆ Y ′ ⊆ Z, then δ(X/Y ′) = δ(X/Z).

Proof Choose Y ⊆fin Z, such that
tr.d.(X ∪ exX/Y ∪ exY ) = tr.d.(X ∪ exX/Z ∪ exZ) and lin.d.(X/Y ) =
lin.d.(X/Z). This choice is possible, since tr.d.(X/Y ), and lin.d.(X/Y ) are
non-increasing functions of Y. 2

Remark The condition lin.d.(X/Z) = lin.d.(X/Y ) for Y ⊆ Z is satisfied iff
spanQ(X) ∩ Z ⊆ Y. Correspondingly with the transcendence degree.

Definition For A,B ∈ subE , we say that A is strongly embedded in B,
writing A ≤ B, if A ⊆ B as L-structures and the following two conditions
hold:
(S1) δA(Y/Z) ≤ δB(Y/Z) for any Y, Z ⊆fin DA, and
(S2) δB(X/DA) ≥ 0, for all X ⊆fin DB.

Lemma 2.4 Condition (S1) is satisfied if the following condition holds:
(S1A) any algebraically independent subset of exB(A) \ A is algebraically
independent over A.

Proof The inequality in (S1) is equivalent by definitions to

tr.d.(Y ∪ exAY/Z ∪ exAZ) ≤ tr.d.(Y ∪ exBY/Z ∪ exBZ).

W.l.o.g. Z ⊆ Y. We can equivalently replace on the right exBY by
exBY

′ ∪ exAY such that exBY
′ ⊆ exBY \ A, exBY

′ is a transcendence basis
of exBY \ A and exB(Y ′ ∩ Z) is a basis of exBZ \ A. Then

tr.d.(Y ∪exBY/Z∪exBZ) = tr.d.(Y ∪exBY
′∪exAY/Z∪exB(Y ′∩Z)∪exAZ) =
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= tr.d.(Y ∪ exAY/Z ∪ exAZ) + |exB(Y ′ \ Z)|.
2

We also use a relativized notion of a strong embedding

Definition For subsets U ⊆ V ⊆ C and C ∈ subE , we say that U is strongly
embedded into V relative to C writing

U ≤C V

meaning that δC(X/U ∩ DC) ≥ 0 for any X ⊆ V ∩ DC .

Notice, that this definition agrees with the absolute strong embedding when
U = A, V = B and A,B ⊆ C with the property that DA = A ∩ DC .

Lemma 2.5 For any structure A of the class subE and X,Y, Z ⊆fin A :
(i) If spanQ(X ′) = spanQ(X) then δ(X ′) = δ(X).
(ii) If spanQ(X ′Y ) = spanQ(XY ) then δ(X/Y ) = δ(X ′/Y ).
(iii) If spanQ(Y ) = spanQ(Y ′) then δ(X/Y ) = δ(X/Y ′).
(iv) δ(XY/Z) = δ(X/Y Z) + δ(Y/Z).

Proof Immediate from definitions.¤

Lemma 2.6 (i) For A,B,C ∈ subE ,
if A ≤ B and B ≤ C, then A ≤ C.
(ii) For C ∈ subE and its subsets A ⊆ B ⊆ C,
if A ≤C B and B ≤C C, then A ≤C C.

Proof (i) Let X ⊆fin DC and let Z ⊆fin DA be large enough so that
δC(X/Z) = δC(X/DA).We need to prove that δC(X/Z) ≥ 0. Choose Y ⊆fin DB

so that spanQ(Y Z) = DB∩spanQ(XZ). Then lin.d.(X/Y Z) = lin.d.(X/DB).
From the definition of δC it follows that δC(X/Y Z) ≥ δC(X/DB) ≥ 0. Also
δC(Y/Z) ≥ δB(Y/Z) ≥ 0 by (S1) and (S2). Hence
δC(XY/Z) = δC(X/Y Z) + δC(Y/Z) ≥ 0. Now notice that δC(X/Z) =
δC(XY/Z) by definitions.
(ii) We may assume that A = spanQA and B = spanQB and then apply the
same arguments as in (i). 2
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Definition Let A ∈ subE0 and X ⊆fin DA. The dimension of X in A
is

∂A(X) = min{δA(X ′) : X ⊆ X ′ ⊆fin X ∪ DA}.

Lemma 2.7 Let A ∈ subE0.
(i) If X ⊆ X ′ ⊆fin DA are such that δA(X ′) = ∂A(X), then X ′ ≤A A.
(ii) Given X ⊆fin DA there exists X ′ ⊆fin DA satisfying (i).

Proof Immediately from definitions.2

Lemma 2.8 Let A,B ∈ subE , A ≤ B and X ⊆fin A. Then

∂A(X) = ∂B(X).

Proof Let Y ⊆fin DB be such that

δB(XY ) = ∂B(X).

Let Y0 be a Q-linear basis of Y over A and X1 ⊆fin A a superset of X such
that

spanQ(X1) = spanQ(XY ) ∩ A.
Then lin.d.(Y0/A) = lin.d.(Y0/X1). On the other hand it is obvious that
tr.d.(Y0 ∪ exBY0/A ∪ exBA) ≤ tr.d.(Y0 ∪ exBY0/X1 ∪ exBX1). It follows

δB(Y0/X1) ≥ δB(Y0/A) ≥ 0.

Also
spanQ(XY ) = spanQ(X1Y0).

Hence
δB(XY ) = δB(X1Y0) = δB(X1) + δB(Y0/X1).

By the above proved δB(XY ) ≥ δB(X1). By definitions δB(X1) ≥ δA(X1)
and δA(X1) ≥ ∂A(X). Thus ∂B(X) ≥ ∂A(X), and the converse is obvious.2
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Lemma 2.9 Suppose A ∈ subE0, B ∈ subE ,
A ⊆ B as L-structures, DB = DA + spanQ(X),
the condition (S1A) of Lemma 2.4 is satisfied and
δB(X ′/DA) ≥ 0 for all X ′ ⊆fin spanQX.
Then B ∈ subE0 and A ≤ B.

Proof We may assume that X is Q-linearly independent over DA. Let Z ⊆
DB, Z = {z1, . . . zn}, and zi = xi + yi for some xi ∈ spanQ(X), yi ∈ DA.
Let {x1, . . . xk} be a Q-linear basis of {x1, . . . xn}. Then, using Lemma 2.5,
for δ = δB we have
δ(Z) = δ(x1 + y1, . . . , xk + yk, y

′
k+1, . . . , y

′
n), for y′k+1, . . . , y

′
n appropriate Q-

linear combinations of y1, . . . yn.
Rewrite

δ(Z) = δ({x1 + y1, . . . , xk + yk}/{y′k+1, . . . , y
′
n}) + δ(y′k+1, . . . , y

′
n).

By assumptions δ(y′k+1, . . . , y
′
n) ≥ 0. On the other hand

δ({x1 + y1, . . . xk + yk}/{y′k+1, . . . , y
′
n}) ≥ δ({x1, . . . xk}/DA) ≥ 0

since

tr.d.(x1+y1, . . . xk+yk, ex(x1+y1), . . . ex(xk+yk)/y
′
k+1, . . . , y

′
n, ex(y′k+1), . . . , ex(y′n)) ≥

≥ tr.d.({x1 + y1, . . . xk + yk, ex(x1 + y1), . . . ex(xk + yk)}/DA ∪ exAA) ≥
≥ tr.d.({x1, . . . xk, ex(x1), . . . , ex(xk)}/DA ∪ exAA)

and

lin.d.({x1 + y1, . . . xk + yk}/{y′k+1, . . . , y
′
n}) = k = lin.d.({x1, . . . xk}/DA).

Thus
δ(Z) ≥ 0.

The same argument shows that

δ(Z/DA) ≥ 0.

This proves (S2) of the definition of strong embedding. Lemma 2.4 completes
the proof. 2
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Definition Let A ∈ subE . Denote

ker|A = {a ∈ A : ex(a) = 1}.

A is said to be with standard kernel if

ker|A = ω · Z

for some transcendental ω ∈ A.

A is said to be with full kernel if for ker = ker|A = {a ∈ A : ex(a) = 1} the
group A/ ker is isomorphic to a multiplicative subgroup of an algebraically
closed field containing all torsion points of the field.

Proposition 2.10 There is an A ∈ subE0 with standard full kernel.

Proof Let F be an algebraically closed field and ω ∈ F a transcendental
element. Consider the subgroup A0 = ω · Q of the additive group F and
define H = A0/ ker for ker the standard kernel with generator ω. Then H
considered as a multiplicative group is characterised by the property that
it is a torsion group such that any equations of the form xn = h, for any
h, has exactly n solutions in the group. In other words H is isomorphic to
the torsion subgroup of the algebraically closed field F. Define exA as the
canonical homomorphism A0 → H ⊆ F× corresponding to this isomorphism
and A = A0 + spanQH. Now we can view A as an L-structure from subE , by
Lemma 2.1.
Since ω is transcendental, A0 ∩ spanQH = ∅, DA = A0 and δ(X) = 0 for any
X ⊆fin A0. It follows A ∈ subE0. 2

Lemma 2.11 Suppose A ∈ subE0 and A is with full kernel. Then there is
F ∈ E0 and an embedding of A into F such that A ≤ F and ker|F = ker|A .
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Proof Choose an algebraically closed field F of characteristic zero such that
A ⊆ F and tr.d.(F/A) ≥ cardA + ℵ0. We want to define ex : F → F×

extending exA so that F ∈ E0.
Fix a well-ordering of F. Let

D0 = DA, ex0 = exA : D0 → A and A0 = A.

Proceed by induction defining Dα, Aα and a homomorphism

exα : Dα → F× with DAα
= Dα and exα(Dα) ⊆ Aα

as follows:

If α is even choose the first element a ∈ F \ Dα and define exα+1(a) to be
any element in F× \ acl(Aα). Put Dα+1 = Dα + Q · a and extend exα+1 to
Dα+1 as a group homomorphism.
If α is odd choose the first element b ∈ F× \ exα(Dα) and an a ∈ F \acl(Aα),
put exα+1(a) = b, Dα+1 = Dα + Q · a and again extend exα+1 to Dα+1 as a
group homomorphism.
Define in both cases

Aα+1 = spanQ(Aα ∪Dα+1 ∪ exα+1(Dα+1))

with E on the set defined by exα+1.
On any step it follows from Lemma 2.9 that Aα+1 ∈ subE0 and Aα ≤ Aα+1.
Also Dα+1 is divisible and, since A is with full kernel, in ex(Aα+1) any equa-
tion of the form xn = b has exactly n solutions.
Finally

ker|Aα+1
= ker|Aα

since if ex(qa+a′) = 1 for a generating Dα+1 over Dα as above, some rational
q = m

n
and a′ ∈ Dα, then bm = gn for b = ex(a), g = ex(−a′). Since all the

roots of degree m of gn are in ex(Dα) it would contradict b /∈ ex(Dα) unless
q = 0.2

Notation Let subE0
st be the subclass of subE0 consisting of the structures

with standard full kernel.
Let

E0
st = subE0

st ∩ E .
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3 Normality and freeness

In this section we consider the class of structures with standard kernel ωZ,
which we denote just ker . We extend the language L by naming ω.

Definition We say that an algebraic variety V ⊆ F 2n is ex-defined over
some C ⊆ F, if V can be defined with parameters in the field Q(C + ker +exC).
We let C̃ = Q(C + ker +exC).
We say that the variety V ex-definable over C is ex-irreducible over C, if
the ideal of the polynomials in x1, . . . , xn, y1, . . . , yn over C̃ vanishing on V
is prime.

Definition For an algebraic variety V ⊆ F 2n, written in variables x1, . . . , xn,
y1, . . . , yn, define prxV to be the Zariski closure of the projection of V onto
the first n coordinates. Correspondingly pryV is the Zariski closure of the
projection onto the last n coordinates.

Remark If the variety V is ex-definable and ex-irreducible over some C ⊆ F ,
then so are the projections.

Definition For V ⊆ F 2n ex-definable over C, we say that prxV is free of
additive dependencies over C if no ā ∈ prxV generic over C̃ satisfies
m1 · a1 + . . .+mn · an = c for a c ∈ spanQ(C + ker) and a non-zero tuple of
integers m1, . . . ,mn.
prxV is said to be absolutely free of additive dependencies over C if
prxV is free of additive dependencies over acl(C̃).

We say that pryV is free of multiplicative dependencies over C if no b̄ ∈
pryV generic over C̃ satisfies bm1

1 · . . . · bmn
n = r for an r ∈ ex(spanQ(C+ker)).

pryV is said to be absolutely free of multiplicative dependencies over

C if no b̄ ∈ pryV generic over C̃ satisfies bm1

1 · . . . · bmn
n = r for an r ∈ acl(C̃).

V is said to be free if both prxV is free of additive dependencies and pryV
is free of multiplicative dependencies over C.

Notation Gn(F ) = F n×(F×)n is an algebraic group, the product of n copies

11



of the additive group F and n copies of the multiplicative group F×.
Given m ∈ Z denote [m] : Gn(F ) → Gn(F ) the homomorphism mapping
given by x 7→ mx, on the first n coordinates, and y 7→ ym, on the last n ones.
More generally, given an integer (k × n)-matrix

M = {mi,j}1≤i≤k; 1≤j≤n,

we denote
[M ] : Gn(F ) → Gk(F )

the homomorphism mapping given by 〈x1, . . . , xn〉 7→ 〈x′1, . . . , x′k〉, with x′i =
mi,1x1+. . .+mi,nxn on the first n coordinates, and 〈y1, . . . , yn〉 7→ 〈y′1, . . . , y′k〉
with y′i = y

mi,1

1 · . . . · ymi,n
n , on the last n ones.

Definition V ⊆ Gn(F ) is said to be ex-normal over C if in some exten-
sions of the field there are 〈a1, . . . , an, b1, . . . , bn〉 ∈ V such that for any k ≤ n
independent integer vectors mi = 〈mi,1, . . .mi,n〉, i = 1, . . . , k, and

a′i = mi,1a1 + . . .+mi,nan, b′i = b
mi,1

1 · . . . · bmi,n
n ,

the inequality holds:

tr.d.(〈a′1, . . . , a′k, b′1, . . . , b′k〉/C̃) ≥ k. (1)

Equivalently, the varieties

V ′
1,...,k = locusC(a′1, . . . , a

′
k, b

′
1, . . . , b

′
k),

satisfy the inequality
dimV ′

1,...,k ≥ k. (2)

Notice that the varieties V ′
1,...,k are just the images of V under the correspond-

ing regular homomorphisms [M ] : Gn(F ) → Gk(F ). We denote the image of
the variety under [M ] by V M .
If W = pryV then we write WM for pry(V

M). Obviously, this WM is
equal to the image of W under the above multiplicative homomorphism
(F×)n → (F×)k determined by M.

Definition Given an n-tuple ā ∈ F n and a subset C ⊆ F, we define the ex-
locus of ā over C to be the smallest algebraic variety V ⊆ F 2n ex-defined
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over C and containing the 2n-tuple 〈a1, . . . an, exa1, . . . exan〉.

Remark The ex-locus of a tuple over C is ex-irreducible over C.

Lemma 3.1 Let C̃ ⊆ A, ω ∈ C ≤A A ∈ subE0, and let ā = 〈a1, . . . an〉 be a
linearly independent over C string of elements of A and bi = exai are defined
for all i = 1, . . . , n. Then the ex-locus V of ā over C is ex-normal and free.
If C̃ is an algebraically closed subfiled of F, then V is absolutely free.

Proof The inequalities (1) in the definition of ex-normality under the as-
sumptions of the lemma are equivalent to

δ(a′1, . . . , a
′
k/C) ≥ 0

and the latter follow from the fact that C ≤A A.
An additive dependence for prxV would mean by the definition of V a linear
dependence of ā over C, which does not hold by the assumptions.
A multiplicative dependence for pryV is equivalent to exā being multiplica-
tively dependent over the subgroup generated by exC, which is equivalent
under the assumptions to ā being linearly dependent over C. 2

Theorem 3.2 Let V (x1, . . . , xn, y1, . . . , yn, z1, . . . , zk) ⊆ F 2n+k be an alge-
braic variety over some C. Then the following sets are quantifier-free defin-
able in the language of fields:

{〈a1, . . . , ak〉 ∈ F k : V (x1, . . . , xn, y1, . . . , yn, a1, . . . , ak) is irreducible }; (3)

{〈a1, . . . , ak〉 ∈ F k : pryV (y1, . . . , yn, a1, . . . , ak) is absolutely free
(4)

of multiplicative dependencies };

{〈a1, . . . , ak〉 ∈ F k : V (x1, . . . , xn, y1, . . . , yn, a1, . . . , ak) is ex-normal }. (5)

13



Proof Throughout the proof we let W = pryzV, the variety in the variables
y1, . . . , yn, z1, . . . , zk. We let a = 〈a1, . . . , ak〉 and denote W (a) the variety in
the variables y1, . . . , yn obtained from W by letting z = a.

For (3) the fact is well known and widely used.

To prove the statement for (4) it is enough to prove that, for W = pryV,
there is a finite set µ(W ) of basic tori (algebraic subgroups of (F×)n ) of
codimension 1 such that, given W (a) ⊆ F n which is not free of multiplica-
tive dependencies, there are Q ∈ µ(W ) and an e ∈ (F×)n with W (a) ⊆ Qe,
the shift of Q by e. This statement is a special case of Corollary 3 of [Z2].
For (5) we will need a stronger version of the same Corollary 3 which is ob-
tained by simply combining the former with the ’function field’ version of
Proposition 1 of [Z2]:

Fact.Let P ⊆ (F×)n be a basic torus and W (a) ⊆ P an algebaric variety.
Then there is a finite collection πP (W ) of basic subtori of P (depending on
W but not on a) such that given a torus T ⊆ P, for any connected infinite
atypical component X of W (a) ∩ T, there exists Q ∈ πP (W ) and c ∈ P such
that X ⊆ Q · c and X is typical in W (a) ∩ T with respect to Q · c.

Here a component X of W (a)∩T is said to be atypical (with respect to P )
if

dimX > dimW (a) + dimT − dimP,

and typical if
dimX = dimW (a) + dimT − dimP.

The last statement shall be proved through the following sequence of lemmas.

Definition Given a basic torus T ⊆ (F×)n there is a uniquely determined
algebraic (group) variety (F×)n/T and the corresponding regular surjective
homomorphism

(F×)n → (F×)n/T.

We write W (a)/T for the image of W (a) under the homomorphism. Also,
since T is uniquely determined by any of its cosets, we use the notation also
when T is a non-basic torus, i.e. a coset of an algebraic subgroup of (F×)n.
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Let T ⊆ P be tori, W (a) ⊆ P. We say that W (a)/T is an atypical image
with respect to P if

dimW (a)/T < min{dimP/T, dimW (a)}.

Easy dimension calculations show for irreducible W (a) ⊆ P with an atypical
image W (a)/T, that for any generic w ∈ W (a) it holds

dimW (a) ∩ Tw > 0 (6)

and
dimW (a) ∩ Tw > dimW (a) − dimP/T. (7)

Proposition 3.3 1 Given W (a) ⊆ P = (F ∗)n, an irreducible algebraic vari-
ety, for any basic torus T ⊆ P with atypical image W (a)/T with respect to
P, there is Q ∈ πP (W ) such that

dimW (a)/Q = dimW (a)/T − dimQ/(Q ∩ T )

and
dimW (a)/T = dimW (a)/(Q ∩ T ).

Proof Let w ∈ W (a) be generic and X ⊆ W (a) ∩ T · w be a component of
the intersection of maximal dimension. Then by additive formula

dimW (a)/T = dimW (a) − dimX (8)

and dimX = dimW (a) ∩ T · w > 0. We may assume w ∈ X. By the Fact
above there is Q ∈ πP (W ) such that (i) X ⊆ Q · w and (ii) X is a typical
component of the intersection (W (a)∩Qw)∩Tw with respect to Qw. By (i)
and the maximality of dimX, we have dimW (a)/T = dimW (a)/(Q ∩ T ).
And (ii) means that, given a connected component Y ⊇ X of the variety
W (a) ∩Qw, we have

dimX = dimY + dimQ ∩ T − dimQ. (9)

1I am grateful to Kitty Holland for detecting a serious error in the formulation of the
Proposition in the previous version of the paper. The present version is quite similar to
her result in [Ho], the proof of which is based on the same Section 5 of [Z2]
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But Y is a component of a generic fiber of the mapping W (a) → W (a)/Q,
and by the classical theorem on dimension of fibers ([S], Chapter 1, s.6, Thm
7)

dimY = dimW (a) ∩Qw = dimW (a) − dimW (a)/Q. (10)

Combining (8), (9) and (10) we get the required equality on dimW (a)/Q.2

In case P = (F×)n we write π(W ) instead of πP (W ).

Lemma 3.4 If the variety V (a) ⊆ F 2n is not ex-normal then either dimV (a) <
n, or, for W = pryV, there is Q ∈ π(W ) defined by a matrix q on l = codim Q
independent integer n-rows as Q = {y ∈ (F×)n : yq = 1} such that

dimV (a)q < l.

Proof Suppose dimV (a) ≥ n, and V (a) is not ex-normal, which is witnessed
by M, a matrix of k < n independent integer n-rows, as

dimV (a)M < k. (11)

By definitions, on x-coordinates the mapping x → Mx is a linear surjective
mapping F n → F k, and on y-coordinates y → yM is a surjective homomor-
phism (F×)n → (F×)k. Denote the kernel of the second one T, thus the latter
mapping in notations above is P → P/T and W (a)M = W (a)/T. Notice also
that the dimension of the kernel of [M ] on x-coordinates is equal to dimT,
since both are equal to the co-rank of the matrix M.
Claim 1. W (a)/T is an atypical image.
Suppose not. Then, in case dimP/T ≤ dimW (a), we have by defini-
tion that dimW (a)/T = dimP/T and dimP/T = k, a contradiction. In
case dimW (a) < dimP/T we have dimW (a)/T = dimW (a). It follows
that the mapping W (a) → W (a)M is finite, thus the fibres of the map-
ping V (a) → V (a)M are at most of dimension dimT, hence dimV (a)M ≥
dimV (a) − dimT ≥ n − dimT = dimP/T, which contradicts the assump-
tions again. Claim proved.

By Proposition 3.3 there is Q ∈ π(W ) with dimW (a)/Q = dimW (a)/T −
dimQ/(Q ∩ T ) and dimW (a)/(Q ∩ T ) = dimW (a)/T.
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Claim 2. W.l.o.g. we may assume that Q ⊇ T.
Indeed, the basic torus Q ∩ T is given by a system of k′ = codim Q ∩ T ≥ k
independent equations yM ′

= 1.
By definition M ′ defines on x-coordinates a linear surjective mapping
[M ′] : F n → F k′

, with ker[M ′] ⊆ ker[M ], so [M ] can be obtained as the
composition of [M ′] with another linear mapping with fibres of dimension
k′ − k. Thus, for any b ∈W (a), letting

V (baa) = {c ∈ F n : cab ∈ V (a)},

a variety on x-coordinates, we have after applying the mappings [M ′] and
[M ] :

dimV (baa)M ′ ≤ dimV (baa)M + (k′ − k).

On the other hand, by the addition formula

dimV (a)M ′

= dimW (a)M ′

+ min
b∈W (a)

dimV (baa)M ′

.

Since dimW (a)M ′

= dimW (a)/(Q ∩ T ) = dimW (a)/T = dimW (a)M , we
have

dimV (a)M ′ ≤ dimW (a)M+ min
b∈W (a)

dimV (baa)M+(k′−k) = dimV (a)M+k′−k < k′.

In other words, we can replace T by Q∩T, and so M by M ′, and still witness
the failure of ex-normality. Claim proved.

Let now the above basic torus Q ⊇ T be given by l = codim Q ≤ k equations
of the form yq = 1, and the matrix q induce the surjective mapping

[q] : F n × (F ∗)n → F l × (F ∗)l.

Since Q ⊇ T we have

dimV (baa)q ≤ dimV (baa)M ,

while for y-coordinates we have

dimW (a)q = dimW (a)M − (k − l),
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by the definition of Q.
Again, the addition formula with the two last formulas yield

dimV (a)q = dimW (a)q + min
b∈W (a)

dimV (baa)q ≤ dimV (a)M + l − k.

It follows by (11)
dimV (a)q < l.

2

End of the proof of the Theorem. The statement for (5) follows imme-
diately from the lemma, as the condition

dimV (a) ≥ n &
∧

Q∈π(W )

dimV (a)q ≥ codim Q

is quantifier-free definable in L. 2

Remark Theorem 3.2 will not be used in the proof of the main result of
this paper since the further constructions and proofs are carried out in Lω1,ω-
terms. Still we hope that with some extra work the theorem can provide a
finer description of the fields with pseudo-exponentiation.

4 Exponentially-algebraically closed structures

Definition Let V ⊆ Gn(F ) be an algebraic subvariety ex-defined and ex-
irreducible over some C ⊆ F. With any such V we associate a sequence
{V 1

l : l ∈ N} of algebraic varieties which are ex-definable and ex-irreducible
over C and satisfy the following:
V 1 = V, and for any l,m ∈ N the mapping [m] maps V

1

lm onto V
1

l .
Such a sequence is said to be a sequence associated with V over C.
Also with any 〈a1, . . . an, b1, . . . bn〉 ∈ V as above we associate a sequence

{〈a1, . . . , an, b1, . . . bn〉
1

l : l ∈ N}
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such that for any l,m ∈ N the mapping [m] maps 〈a1, . . . , an, b1, . . . bn〉
1

lm

onto 〈a1, . . . , an, b1, . . . bn〉
1

l .

Let V ′ ⊆ V ⊆ Gn(F ) be varieties over C, V irreducible over C, {V 1

l : l ∈ N}
a sequence associated with V. Then the pair

τ = (V \ V ′, {V 1

l : l ∈ N})

is said to be an [almost finite] n-type over C. A finite n-type over C is
given by an algebraic set of the form V \ V ′, with V, V ′ ⊆ F 2n ex-definable
algebraic varieties.
A tuple ā = 〈a1, . . . an〉 ∈ F n is said to realize the type V \ V ′ if

〈a1, . . . an, ex(a1), . . . , ex(an)〉 ∈ V \ V ′.

The tuple ā is said to realize the type τ above if ā realizes V \ V ′ and

〈1
l
a1, . . . ,

1

l
an, ex(

1

l
a1), . . . , ex(

1

l
an)〉 ∈ V

1

l

for all l ∈ N.
We say that ā realizes τ generically over C if V is the ex-locus of ā over
C.

The complete ex-locus of ā over C is the type (V, {V 1

l : l ∈ N}, where

V
1

l are the ex-loci of 〈 1
l
a1, . . . ,

1
l
an〉 over C.

We say that C ⊆ F is finitary if there are n ≥ 0, substructures E1, . . . , En ⊆
F, such that exE1, . . . , exEn are algebraically closed subfields of F, and a finite
set A, such that

C = spanQ(A) ∪ E1 ∪ . . . ∪ En.

Below we use notation F for an L-structure on the field F.

A crucial tool for the study of types and their realizations in this section will
be the following reformulation of the main result of [Z3]
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Theorem 4.1 Let F ∈ E0, C ⊆ F, V an algebraic variety in 2n variables
x1, . . . , xn, y1, . . . , yn, ex-defined, ex-irreducible over C and free, and {V 1

n :
n ∈ N} a sequence associated with V over C. Suppose also C is finitary.

Then there exists a positive integer m such that for any l ∈ N V
1

lm is the
unique variety which is irreducible over C̃ and satisfies

(V
1

lm )l = V
1

m (xi 7→ l · xi and yi 7→ yl
i ).

Proof This is based on Theorem 1 of [Z3].
We may assume that V is ex-defined over finite A ⊆ C, ω ∈ A as in the
definition of finitary C. Obviously, for any m, the field of definition of V

1

m

is a subfield of acl(A ∪ exA), which is of finite transcendence degree. Hence,
the statement of the theorem holds for C if and only if it holds for C0 instead
of C, where

C0 = C ∩ ln(acl(A ∪ exA)) = spanQ(A) ∪ E0
1 ∪ . . . ∪ E0

n

and E0
i are substructures such that ex(E0

i ) = Li are algebraically closed
subfields of F.
Let 〈a1, . . . , an〉 be a generic over C̃ point in prxV and {a1, . . . , ar} = A ∪
{a1, . . . , an} ∪ ex(A ∪ {a1, . . . , an}).
Let P̂ = Q(a1, . . . , ar,

√
1, L1, . . . , Ln), the field generated by elements a1, . . . , ar,

all the roots of unity and subfields L1, . . . , Ln. (The roots of unity can be
omitted if n > 0.)

Choose 〈b
1

m

1 , . . . , b
1

m
n 〉 to be generic in pryV

1

m over P̂ and (b
1

mk

i )k = b
1

m

i . It
follows from the freeness assumptions that b1, . . . , bn are multiplicatively in-
dependent over the group gp(a1, . . . , ar) generated by the ai’s. The statement
of the theorem follows with these notation directly from Theorem 1 of [Z3].
2

Definition A structure F in E0
st is said to be exponentially-algebraically

closed (e.a.c.) if for any F′ ∈ E0
st, such that F ≤ F′, any finite quantifier-free

type over F which is realized in F′ has a realization in F.
The class of exponentially-algebraically closed structures is denoted EC st.

Remark It follows from Lemma 2.11 that in the definition of ECst we can
equivalently assume F′ ranges in subE0

st.
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Lemma 4.2 Suppose F ∈ ECst, C ⊆ F is finitary and

τ = (V \ V ′, {V 1

l : l ∈ N})

is a type ex-definable over C. Assume also that V is ex-normal over C and ab-
solutely free. Then there is an a in F realizing τ. Moreover in some extension
F′ ≥ F a can be chosen to realize τ generically over C.

Proof Under the assumptions of the lemma, by Theorem 4.1, after the trans-
formation xi 7→ 1

m
xi of variables, we may assume that τ is just V \ V ′. Take

aab in an algebraically closed extension F ′ of the field F, generic in V over

F. Choose in F ′ a sequence {(aab)
1

l : l ∈ N} associated with aab. This gives

us uniquely determined values of 1
l
ai and b

1

l

i for coordinates ai of a and bi of
b.
Let A = F + spanQ{(aab)

1

l : l ∈ N} and define exA with domain DA = D =
F + spanQ(a1, . . . an) as:

exA(f +
∑

i

mi

l
ai) = ex(f) ·

∏

i

(bi
1

l )mi ,

for any integers mi, l 6= 0 and element f ∈ F. The definition is consistent
since prxV is free of additive dependencies over F. Evidently the formula
defines a homomorphism, thus A ∈ subE .
The kernel of the homomorphism exA coincides with that of ex on F, since
pryV has no multiplicative dependencies over F. Thus A has a standard
full kernel. Notice that, by ex-normality, δ(m1a, . . . ,mka/F ) ≥ 0 for any
independent integer vectors mi = 〈mi,1, . . .mi,n〉, i = 1, . . . , k.
Thus F ⊆ A satisfy the assumptions of Lemma 2.9 (with exA(F ) \ F = ∅)
and hence A ∈ subE0

st, F ≤ A. By the choice of a the tuple realizes τ. Since
F ∈ ECst there is a realization of the type in F. 2

Proposition 4.3 A structure F ∈ E0
st is in ECst iff for any irreducible ex-

normal free V over F there is a realization of the finite type given by V in
F.

First we prove
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Lemma 4.4 Given an irreducible free ex-normal V ⊆ F 2n and non-empty
V ′ ⊆ V there is a free ex-normal V ∗ ⊆ F 2n+2m such that 〈a1, . . . , an, b1, . . . , bn〉 ∈
F 2n realizes V \ V ′ iff there is 〈an+1, . . . , an+m, bn+1, . . . , bn+m〉 ∈ F 2m such
that
〈a1, . . . , an, an+1, . . . , an+m, b1, . . . , bn, bn+1, . . . , bn+m〉 realizes V ∗.

Proof Let g(x1, . . . , xn, y1, . . . , yn) be a polynomial in the annihilator of V ′,
but not zero on V. We may assume that for no positive integer k and a
non-zero integer tuple 〈m1, . . . ,mn〉

g(x1, . . . , xn, y1, . . . , yn)k · ym1

1 · . . . · ymn

n

is constant on V, since otherwise g does not vanish on V ′. Add new variables
xn+1, yn+1 together with the new identity

g(x1, . . . , xn, y1, . . . , yn) · yn+1 = 1.

Denote the resulting variety in F 2n+2 by V g. By construction V g is irreducible
and its projection onto the first 2n coordinates is equal to

V \ {〈x1, . . . , xn, y1, . . . , yn〉 : g(x1, . . . , xn, y1, . . . , yn) = 0}.

By our assumptions V g is free of multiplicative dependencies and obviously
free of additive dependencies. It is also ex-normal since we do not impose
any condition on xn+1.
Repeating the construction with all the polynomials in the basis of the an-
nihilator of V ′ we come to V ∗ as required.2

Proof of the Proposition. The left-to-right implication follows from Lemma 4.2.
Indeed, since the field F is algebraically closed, V is absolutely free. On the
other hand we obviously can choose C ⊆ F finite such that V is ex-definable
over C.
To get the inverse assume a is a tuple in some F′ ≥ F and we need to realize
an almost finite type (V \ V ′, {V 1

l : l ∈ N}), where τ = (V, {V 1

l : l ∈ N})
is the ex-locus of a over F. It is enough to solve the problem for a Q-linear
basis a0 of a over F, so we may assume a is Q-linearly independent over F.
Thus V is free ex-normal, by Lemma 3.1, and ex-irreducible, because F is
algebraically closed. So we may assume τ is a finite type. By Lemma 4.4 we
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reduce the type V \ V ′ to a type of the form V and V is ex-normal and free.
By the assumptions of the Proposition the type is realized in F. 2

Corollary 4.5 The structure Cexp on complex numbers is in ECst iff it sat-
isfies the Schanuel conjecture and for any ex-normal free algebraic variety
V ⊆ C2n there is a ∈ Cn such that aa exp(a) ∈ V.

Proof By definitions Cexp ∈ E0
st iff the Schanuel conjecture holds. The rest

is Proposition 4.3

Corollary 4.6 There is a collection EC of first-order formulas, such that
for any F ∈ E0

st

F |= EC iff F ∈ ECst.

Proof For each algebraic variety V ⊆ F 2n+k over Q in variables x1, . . . , xn,
y1, . . . , yn, z1, . . . , zk by Theorem 3.2 there exists a first order quantifier-
free formula ΨV (z1, . . . , zk), in the language of fields, such that for any
a1, . . . , ak ∈ F

F |= ΨV (a1, . . . , ak) iff V (a1, . . . , ak) is irreducible, ex-normal and free.

It follows that the statement
for any a1, . . . , ak, if V (a1, . . . , ak) is irreducible, ex-normal and free, then
there is 〈x1, . . . , xn, y1, . . . , yn〉 ∈ V (a1, . . . , ak), such that ex(x1) = y1, . . . ,
ex(xn) = yn

is first-order (in fact, an ∀∃-sentence).
Since any variety over F has the form V (a1, . . . , ak) for some V and a1, . . . , ak

as above, we can write down the condition given in Proposition 4.3 by an
infinite collection of first-order formulas.2

We are going to weaken the assumptions in Lemma 4.2. We assume below
that F ∈ ECst.

Lemma 4.7 Let C be a finitary subset in F, ā a finite string in some F′ ≥ F,
{V 1

l : l ∈ N}) be the complete ex-locus of ā over C and τ the type
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(V \V ′, {V 1

l : l ∈ N}) for V ′ some proper subvariety of V, ex-defined over C.
Then there is an m ∈ N such that τ is equivalent to a finite type
(V \ V ′, {V 1

l : l ≤ m}) and there is a realization of τ in F.

Proof Passing to a linear basis of ā over C ∪ {ω} we may assume that ā is
linearly independent over C ∪ {ω}. Hence V is free. By Theorem 4.1 the in-

finite part of τ, the system of equations saying that 1
l
x̄aex(1

l
x̄) ∈ V

1

l , l ∈ N,
is equivalent to a finite subsystem. Thus τ is equivalent to a finite type. By
the assumption for F the finite type is realized in F.2

Proposition 4.8 Let C ≤F F be finitary and V in coordinates x1, . . . , xn, y1, . . . , yn

is ex-definable irreducible over C and ex-normal. Then for any sequence
{V 1

l : l ∈ N} and V ′ $ V over C there is in F a realization ā of the type

τ = (V \ V ′, {V 1

l : l ∈ N})

Moreover, in some extension F′ ≥ F there is a generic realization of τ.

Proof If V is absolutely free, then we can apply Lemma 4.2 and get the
statement. So we assume V is not absolutely free and prove the statement
by induction on n.
For n = 1, from the fact that V is not absolutely free we get that dim prxV =
0 or dim pryV = 0. Suppose that the first takes place. Then by ex-normality,

if a ∈ prxV and b /∈ acl(C̃ ∪{a}) then 〈a, b〉 ∈ V. Choose any a in prxV (F ) ⊆
acl(C̃). Then, since δ(a/C) ≥ 0 and a is additively independent of C, we
have that ex(a) is algebraically independent of C̃, thus 〈a, ex(a)〉 ∈ V. By the

same reason 〈1
l
a, ex(1

l
a)〉 satisfies V

1

l and 〈a, ex(a)〉 /∈ V ′.
The case pryV = 0 can be dealt with symmetrically.

Consider now the general n assuming the statement holds for smaller values
of n and that prxV is not absolutely free of additive dependencies.
Let F ≤ F′ with F ′ of infinite transcendence degree over F. Applying a
transformation [M ] : Gn(F ′) → Gn(F ′) induced by an appropriate rational
matrix to V we may assume that for any ā = 〈a1, . . . , an〉 ∈ prxV in F ′,
generic over C̃ the elements a1, . . . , ak are linearly independent over acl(C̃)
and ak+1, . . . , an ∈ acl(C̃). Choose such a tuple ā in F′. By genericity ā /∈ V ′.
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Denote W = pryV and Wk+1,...,n the variety induced by W on {k+1, . . . , n}-
coordinates. It follows from ex-normality and the fact that tr.d.(ak+1, . . . , an/C̃) =
0, that dimWk+1,...,n = n− k.
Since δ(ak+1, . . . , an/C) ≥ 0, we have

tr.d.(ex(ak+1), . . . , ex(an)/C̃) ≥ lin.d.(ak+1, . . . , an/C) = n− k,

which implies that 〈ak+1, . . . , an, ex(ak+1), . . . , ex(an)〉 is generic in Vk+1,...,n

over C̃. By the same reason

〈1
l
ak+1, . . . ,

1

l
an, ex(

1

l
ak+1), . . . , ex(

1

l
an)〉 ∈ V

1

l

k+1,...,n.

Finally notice that the type τ(ak+1, . . . , an) over C ∪ {ak+1, . . . , an}, corre-
sponding to the first k coordinates in τ when the rest ones are substituted
by the highlighted elements, satisfies the assumptions of Lemma 4.2. Thus
it has a realization 〈a1, . . . , ak〉 in F. This completes the construction of a
realization 〈a1, . . . , an〉 of τ.
The case when pryV is not absolutely free of multiplicative dependencies can
be treated symmetrically. 2

Now we study the rank notion ∂F for F e.a.c..

Lemma 4.9 For F ∈ ECst, given A ⊆fin F and F′ ∈ E0
st such that F ≤ F ′,

∂F (A) = ∂F ′(A).

Proof This is just a special case of Lemma 2.8.2

Lemma 4.10 Given F ∈ ECst, for any A ⊆fin F and any a, b ∈ F
(i) ∂(A) ≤ ∂(aA) ≤ ∂(A) + 1;
(ii) ∂(abA) = ∂(aA) = ∂(A) implies ∂(bA) = ∂(A);
(iii) ∂(abA) = ∂(aA)&∂(A) < ∂(bA) implies ∂(abA) = ∂(bA);
(iv) ∂(aA) = ∂(A) = ∂(bA) implies ∂(abA) = ∂(A);
(v) ∂(aA) = ∂(A) implies ∂(bA) = ∂(abA).
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Proof (i) follows immediately from the definitions of δ and ∂. (ii) and (iii)
are immediate from (i).
(iv) Let B′ ⊇ aA, B′′ ⊇ bA be such that δ(B ′) = ∂(aA) and δ(B ′′) = ∂(bA).
Let B = spanQ(B′) ∩ spanQ(B′′).
Notice that δ(B ′ ∪B′′) ≤ δ(B′′). Indeed by Lemma 2.5(iii)
δ(B′ ∪B′′) = δ(B′/B′′) + δ(B′′) =
= [tr.d.(B ′ ∪ ex(B′)/B′′ ∪ ex(B′′)) − lin.d.(B ′/B′′)] + δ(B′′).
By the modularity of linear dimension lin.d.(B ′/B′′) = lin.d.(B ′/B). Also,
by properties of algebraic dependence
tr.d.(B′ ∪ ex(B′)/B′′ ∪ ex(B′′)) ≤ tr.d.(B ′ ∪ ex(B′)/B ∪ ex(B)). Hence
δ(B′/B′′) ≤ δ(B′/B). The latter is less or equal to zero by the choice of A,
B′ and B.
Now, since abA ⊆ B ′∪B′′ and δ(B′∪B′′) ≤ δ(B′′) = ∂(A), we have ∂(abA) =
∂(A).
(v) is immediate from (iv).2

Notation For finite A ⊆ F

clF(A) = {b ∈ F : ∂(Ab) = ∂(A)}.

For infinite A
clF(A) =

⋃

X⊆finA

clF(X).

clF(A) will be called the ∂-closure of A in F.
We usually omit the subscript F when no ambiguity can arise.

Proposition 4.11 The operator A 7→ cl(A) in F ∈ ECst is a closure opera-
tor, satisfying for any A ⊆ F :
(i)

cl(A) =
⋃

X⊆A, X finite

cl(X);

(ii)
if A ⊆ A′ ⊆ F, then cl(A) ⊆ cl(A′);

(iii)
cl(cl(A)) = cl(A);
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(iv)
a ∈ cl(Ab) \ cl(A) ⇒ b ∈ cl(Ab);

(v)
cl(A) ≤ F ;

(vi) cl(A) is an existentially-algebraically closed substructure of F.

Proof (i) is immediate from definitions.
(ii) and (iii) follow from Lemma 4.10.
(iv) follows from Lemma 4.10(iii).
(v). Assume first that A is finite. Then there is a finite A′ ⊇ A, A′ ⊆ F,
such that ∂(A) = δ(A′) and so A′ ≤F F. Since for every a ∈ A′ by definition
∂(Aa) = ∂(A), we have A′ ⊆ cl(A). The same argument shows in the general
case that for any B ⊆fin cl(A) there is a finite B ′, B ⊆ B′ ⊆ cl(A), such that
B′ ≤F F. Notice also that cl(A) is closed under ex. It follows that cl(A) ≤ F.
(vi) follows from Proposition 4.3. Indeed, we need to check that given a free
ex-normal V in 2n variables ex-definable over cl(A) there is a realization of
V in cl(A). Notice that cl(A) ∩ F is algebraically closed in the field F.
We prove the existence of the realization by induction on n = lin.d.(ā/cl(A)).
Let ā be a realization of V in F with minimal δ(ā/cl(A)). This number is
non-negative since cl(A) ≤ F. If δ(ā/cl(A)) = 0, then ā is a tuple from
cl(A) by definitions and we are done. Suppose towards a contradiction that
δ(ā/cl(A)) > 0. If we apply a transformation induced by an integer matrix
M of rank k < n, then still δ(Mā/cl(A)) > 0, since otherwise we see that
Mā is in cl(A) and the linear dimension of ā over Mā, and so over cl(A),
is not bigger than n− k. We can also assume that ā is linearly independent
over cl(A) and V is the ex-locus of ā over cl(A). Then V is ex-normal and
absolutely free.
Let C ≤F cl(A) be finitary and such that V is ex-defined over C. It follows
from δ(ā/C) > 0 that dim prxV > 0, so we may also assume that an /∈ acl(C̃).
Then there exists a cn ∈ acl(C̃) such that every component V ′ of the sub-
variety V ∩ {xn = cn} is non-empty and has dimension equal to dimV − 1.
Consider such an ex-definable irreducible variety V ′ over the finitary set
spanQ(Ccn). This is ex-normal. Indeed, consider a generic over C̃cn tuple
〈c1, . . . , cn, b1, . . . , bn〉 ∈ V ′ and

a′i = mi,1c1 + . . .+mi,ncn, and b′i = b
mi,1

1 · . . . · bmi,n
n i = 1, . . . k
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for some k × n integer matrix

M = {mi,l : 1 ≤ i ≤ k, 1 ≤ l ≤ n}

of rank k ≤ n. We can also write down in vector form

ā′ = Mā and b̄′ = b̄M .

We need to see that
tr.d.(ā′ab̄′/C̃cn) ≥ k.

It follows from the fact that the tuple was chosen to be generic, that the
required inequality is equivalent to

dim(V ′)M ≥ k.

But dimV ′ = dimV − 1, thus dim(V ′)M ≥ dimV M − 1, so

dim(V ′)M − k ≥ dimV M − k − 1 = tr.d.(Māaex(ā)M/C̃) − k − 1,

and the latter is non negative because δ(Mā/cl(A)) > 0. The ex-normality
follows.
Now we use Proposition 4.8 to find a realization ā′ for V ′ in F, which by
definitions is of linear dimension at most n− 1 over cl(A), contradicting the
minimality.2

5 Strongly exponentially-algebraically closed

fields

Definition A structure F in E0
st is said to be strongly exponentially-

algebraically closed (s.e.a.c.) if F ∈ ECst, and, for any ex-irreducible free
ex-normal V in 2n variables ex-defined over a finite C ⊆ F, with dimV = n,
there is a generic over C realization of V in F.
The class of strongly exponentially-algebraically closed structures is denoted
EC∗

st.
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Remark The definition assumes a ’slight saturatedness’ of the exponentially-
algebraically closed structure.

Remark Corollary 4.5 can be obviously amended to a criterion for Cexp to
be s.a.e.c..

Definition We say that a structure F ∈ E has the countable closure
property (or c.c.p. for short) if, given a C ⊆ F and an algebraic variety
V ⊆ F 2n of dimension n which is ex-definable, ex-irreducible, ex-normal and
free over C, the set of generic realization of V over C is at most countable.

We prove below (Lemma 5.12) that Cexp satisfies the c.c.p.

Our main goal in this final section of the paper is to prove that the class
of exponentially-algebraically closed structures with the countable closure
property has unique model in every uncountable cardinality. We show first
that the class is definable by an Lω1,ω-sentence and the c.c.p. property (which
can be written as an Lω1,ω(Q)-sentence in this case). Author’s paper [Z4]
lays out sufficient conditions under which such a class is categorical in all
uncountable cardinals. The main theorem of [Z4] is a contribution to the
theory of excellency developed by Shelah and adapted here for algebraic
applications. We present the result below with some simplifications sufficient
for the purposes of the present paper.
A class C of L-structures is said to be quasi-minimal excellent if the fol-
lowing three assumptions hold:

Assumption I [pregeometry]
There is an Lω1,ω-definable operator X → cl(X) acting on subsets of an
F ∈ C and satisfying:

(i) cl(X) ∈ C as a substructure of F;

(ii) cl(Y ) =
⋃{cl(X) : X ⊆ Y, X finite};

(iii) X → cl(X) is a monotone idempotent operator.

Definition Let F,F′ ∈ C and G ⊆ F, G ⊆ F′. Then a (partial) mapping,
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identical on G, ϕ : F → F′ is called a G-monomorphism if it preserves
quantifier-free formulas over G.

Assumption II [ω-homogeneity over a submodel] Let G ⊆ F, G ⊆ F′,
G ∈ C or G = ∅. Then
(i) if X and X ′ are cl-independent subsets over G in some F,F′ ∈ C, corre-
spondingly, then any bijection ϕ : X → X ′ is a G-monomorphism;
(ii) if a partial ϕ : F → F′ is a G-monomorphism, Dom ϕ = X, with X finite,
then for any y ∈ F there is an extension ϕ′ of ϕ with Dom ϕ′ = X ∪ {y}.
(iii) if ϕ : X ∪ {y} → X ′ ∪ {y′} is a monomorphism, then

y ∈ cl(X) iff y′ ∈ cl(X ′).

Definition Given X,C ⊆ F we say that the type of X over C is de-
fined over C0 if any ϕ : X → F′ which is a C0-monomorphism is also a
C-monomorphism.

Definition A subset C ⊆ F will be called special if there is a cl-independent
A ⊆ F and A1, . . . Ak ⊆ A such that

C =
⋃

i

cl(Ai).

Assumption III Suppose C ⊆ F is special and X is a finite subset of cl(C).
Then the type of X over C is defined over a finite subset C0 ⊆ C.

Main Theorem of [Z4]. Let C be quasi-minimal excellent and C# be its sub-
class consisting of structures satisfying the countable closure property. Sup-
pose also that some F ∈ C# contains an infinite cl-independent subset A.
Then for any uncountable κ there is a unique, up to isomorphism, Fκ ∈ C#

of cardinality κ. Moreover, Fκ is prime over any maximal cl-independent
subset (basis).

Now we proceed to check the Assumptions for C = EC∗
st. It is obvious that

Proposition 4.11 implies Assumption I. It remains to prove the other two.

Lemma 5.1 There is an Lω1,ω-sentence EC∗
st such that given F ∈ E0

F |= EC∗
st iff F ∈ EC∗

st.
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Proof Follow the proof of Corollary 4.6 and observe that for every V (ā) we
can say by an Lω1,ω-formula that x̄aȳ is generic in V (ā) over ā.2

It follows from Lemma 4.2

Proposition 5.2 For any F ∈ E0
st there is an F] ∈ EC∗

st such that F ≤ F].

Lemma 5.3 If F ∈ EC∗
st and A ⊆ F, then cl(A) ≤ F and cl(A) ∈ EC∗

st.

Proof By Proposition 4.11(v) cl(A) ≤ F. By Proposition 4.11(vi) we have
cl(A) ∈ ECst. Now given a free ex-normal V over a finite C ≤F cl(A) in 2n
variables with dimV = n by definition there is a generic over C realization
ā of V in F. But then

δ(ā/C) = dimV − n = 0

and thus ā is in cl(A). So cl(A) ∈ EC∗
st.2

Definition Given F ∈ EC∗
st and subsets B,C ⊆ F, we say that B is cl-

independent over C if cl(B ′C) 6= cl(BC) for any proper subset B ′ ⊂ B.
We say that B is a cl-basis of F over C if B is cl-independent over C and
cl(BC) = F. If C = ∅ then B is called just a cl-basis.
By the properties of cl any two bases of F are of the same cardinality. This
cardinality is called the cl-dimension of F.

Lemma 5.4 Suppose A ≤ F and B ⊆fin F is cl-independent over A. Then
AB ≤ F.

Proof We have by assumptions ∂(B/A) = δ(B/A) and hence δ(BD/A) ≥
δ(B/A) for any finite D ⊆ F.2

Lemma 5.5 If F ∈ EC∗
st, then for every finite C ⊆ F for any F′ ≥ F and

finite A ⊆ clF′(C) there is an A′ ⊆ clF(C) such that the quantifier-free types
of A and A′ over C coincide.

31



Proof Extend C to a finite C ′ ≤F F. We may replace A by its linear basis
over C ′, thus we assume w.l.o.g. that A is linearly independent over C ′. Since
A ⊆ cl(C ′), there is a finite extension B ⊇ A in F′, of size n say, such that
δ(B/C ′) = 0 and B is linearly independent over C ′. Then the ex-locus V of
B over C ′ is free, ex-normal and dimV = n. By Lemma 4.7 the complete
ex-locus is equivalent to its finite part and we may assume this is just V. By
definition it has a generic realization B ′ in F, and the genericity implies that
the quantifier-free type of B ′ over C ′ coincides with that of B, δ(B ′/C ′) = 0
and thus B′ ⊆ clF(C). 2

Notation We now extend the language L to a language L∗ for structures
in EC∗

st. Let V be a variety in 2(n + l) variables over Q. Given an (ordered)
subset X of size l of a field with pseudo-exponentiation, let VX be the variety
obtained by replacing 2l of the variables by X ∪ ex(X). Thus VX is an ex-
definable over X variety in 2n variables. For any such V we introduce the
predicate EV (X) in variables X saying that
“VX is ex-irreducible, free over X and there exists a generic over X realiza-
tion of VX in cl(X)”.

Obviously, this is an Lω1,ω-definable expansion of the language, thus the no-
tions of L∗- and L-isomorphisms coincide, which is not necessarily true for
monomorphisms, the bijections between subsets preserving the basic rela-
tions.

Lemma 5.6 Given C in F with ∂(C) ≤ m this fact is witnessed by the
L∗-quantifier-free type of C in the following sence:
If C ′ in F′ satisfies the same L∗-quantifier-free type, then ∂(C ′) ≤ m.

Proof W.l.o.g. we may assume that C is linearly independent. Suppose
∂(C) = m0 ≤ m. We have by definition that, for some finite and linearly
independent over C finite set D ⊆ cl(C) of size, say l,

tr.d.(CDex(CD)) − (n+ l) ≤ m0, for n = |C|.
In other words, there is a an algebraic variety V in F 2n+2l irreducible over
Q, dimV ≤ m+ n+ l and CDex(CD) is its generic point. Then

F |= EV (C) and F′ |= EV (C ′)
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and the fact on the right implies

tr.d.(C ′D′ex(C ′D′)) − (n+ l) ≤ m0,

for some D′ linearly independent over C ′ (by genericity). Hence ∂(C ′) ≤ m.
2

It follows, in particular, that the fact that some B ⊆ cl(C) is witnessed by
L∗-quantifier-free formulas as well.

Lemma 5.7 Suppose F ∈ EC∗
st, C ⊆ F and Cā ≤F F. Then the L-quantifier-

free type of ā over C determines the L∗-quantifier-free type of ā over C, that
is any realization b̄ of the L-quantifier-free type of ā, with Cb̄ ≤F F, has the
same L∗-quantifier free type over C.

Proof We show that if for some V F |= EV (Cā) then F |= EV (Cb̄). Indeed,
assuming the first holds, let ū be a generic realization of VCā in cl(Cā). Since
Cā ≤F F we can extend ū to a ū′ such that δ(ū′/Cā) = 0. Without loss of
generality we consider the ex-locus of ū′ over Cā instead of VCā and we as-
sume that ū = ū′. It follows from the assumptions that VCā is ex-irreducible,
free, ex-normal, and also dimVCā = n. The same is true for VCb̄, as the
parameters of the variety are of the same algebraic type. Then VCb̄ has a
generic realization too. 2

Lemma 5.8 Suppose F,F′ ∈ EC∗
st. Then

F ≤ F′ ⇔ F ⊆L∗ F′

Proof ⇒ . Suppose F ≤ F′ and let C ⊆ F be finite. If F′
² EV (C) let ā

be a generic realization of VC in clF′(C). By Lemma 5.5 there is ā′ in clF(C)
realizing VC generically. Thus F |= EV (C). If F ² EV (C) then F′

² EV (C)
follows by definition.
⇐ . Suppose F ⊆ F′ in L∗. Consider A = clF′(F ). By Lemma 5.3 A ≤ F ′.
We want to show that F ≤ A, which by transitivity would imply F ≤ F′.
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So suppose towards a contradiction that there is a finite ā in A such that
δ(ā/F ) < 0. We may assume that ā is linearly independent over F, and let
n be the length of the tuple. Then, letting VX be the ex-locus of ā over F,
some finite X ≤F F, we have that V is free and ex-irreducible over F and

dimVX − n = δ(ā/F ) < 0.

Then F′ |= EV (X) and thus F |= EV (X). But the latter implies that there is
a generic realization ā′ of VX in F. By definition δ(ā′/X) = dimV − n < 0.
This contradicts the fact that X ≤F F. 2

Proposition 5.9 Let F1,F2,G ∈ EC∗
st, G ≤ F1, G ≤ F2 and G a finite-

cl-dimensional countable or G = ∅. Suppose also C1 ⊆ F1, C2 ⊆ F2 are finite
subsets and ϕ : C1 → C2 is an L∗-monomorphism over G.
Then

(i) For any b1 ∈ cl(C1) there is an L∗-G-monomorphism ϕ′ extending ϕ, with
Dom ϕ′ ⊇ C1 ∪ {b1}.

(ii) If ϕ′ : C1 ∪ {b1} → C2 ∪ {b2} is an L∗-monomorphism extending ϕ, then

b1 ∈ cl(C1) iff b2 ∈ cl(C2).

(iii) Suppose some B1 ⊆ F1, B2 ⊆ F2 are cl-independent over GC1 and GC2,
correspondingly. Then, given a bijection ψ0 : B1 → B2, the mapping ϕ ∪ ψ0

is an L∗-G-monomorphism.

Proof Let C ′
1 be a cl-basis of C1 over G in F1, i.e. a cl-independent subset

such that C ′
1 ⊆ C1 ⊆ cl(GC ′

1). We have then GC ′
1 ≤ F, by Lemma 5.4.

The image C ′
2 = ϕ(C ′

1) is a basis of C2 in F2, since cl-dependence is witnessed
by basic formulas of L∗ (see Lemma 5.6).
Let C1b1 ⊆ C ′′

1 ≤F1
cl(GC ′

1), C
′′
1 finite. Then

0 ≤ δ(C ′′
1/GC

′
1) ≤ δ(C ′

1/GC
′
1) = 0,

that is δ(C ′′
1/GC

′
1) = 0 and this property of C ′′

1 is witnessed by V (C1), the
ex-locus of C ′′

1 over GC1.
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The L∗-quantifier-free formula stating the existence of a generic realization
of type V (C1) guarantees that the corresponding type V (C2) over GC2 has
a generic realization C ′′

2 in F2. It follows that δ(C ′′
2/GC

′
2) = 0 and then

again δ(C ′′
2D/GC

′
2) ≥ δ(C ′′

2/GC
′
2), for every D, since we know already that

GC ′
2 ≤ F2. Thus GC ′′

2 ≤F2
F2.

This allows us to extend ϕ by letting ϕ′(C ′′
1 ) = C ′′

2 . We have

C1 ⊆ GC ′′
1 ≤F1

cl(GC1) ≤F1
F1, C2 ⊆ GC ′′

2 ≤F2
cl(GC2) ≤F2

F2,

and ϕ′ preserves all the basic L-formulas. By Lemma 5.7 ϕ′ is an L∗-
monomorphism over G.

(ii) Immediate by Lemma 5.6.

(iii) By (i) we may assume that C1 ≤F1
F1, C2 ≤F2

F2 and ϕ is an L-
monomorphism between C1 and C2.
Let

C0
1 = spanQ(B1 ∪ C1 ∪ ker) and C0

2 = spanQ(B2 ∪ C2 ∪ ker).

With a slight abuse of notation we call ψ0 the mapping which is the extension
of the initial ψ0 ∪ ϕ onto the domain C0

1 by linearity. Any L-quantifier-free
formula which holds for a finite subset of C0

l (l = 1, 2) is a conjunction of
polynomial equalities and inequalities in Bl ∪ ex(Bl) with coefficients in C̃l.
By independence only the inequalities are possible for the both values of l.
Thus

ψ0 : C0
1 → C0

2

is an L-monomorphism.
It is also obvious that C0

l ≤Fl
Fl, l = 1, 2, thus ψ0 is an L∗-monomorphism.2

Corollary 5.10 Let F be a s.e.a.c. structure and C a finite subset in F.
Then there are only countably many complete Lω1,ω-n-types over C realized
in F.

Proof Extend first C to a finite C̄ ≤F F.
We claim that the number of complete n-types over C̄ realized in F is ℵ0,
which obviously implies the statement of the corollary.
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Let b̄ be a finite n-tuple in F such that C̄b̄ ≤F F. By Proposition 5.9 and
Lemma 5.7 the automorphism type of b̄ over C̄ is determined by its L-
quantifier-free type. On the other hand by definition there is an L-monomorphism
between two such tuples if and only if the complete ex-loci of the tuples over
C̄ coincide. By Theorem 4.1 the complete ex-loci are principal types over C̄,
thus there are only countably many n-types over C̄. 2

Now we discuss the countable closure property in the class of s.e.a.c. struc-
tures.

Lemma 5.11 For F exponentially-algebraically closed, F has the countable
closure property iff clF(C) is countable for any finite C ⊆ F.

Proof The right-to-left statement is obvious. We prove the statement on the
right assuming the countable closure property holds.
By Proposition 4.11(v) we may assume that C ≤F F. Then a ∈ cl(C) iff
∂(a/C) = 0 iff there is a tuple ā extending a, such that δ(ā/C) = 0. We may
assume that ā is linearly independent over C. Then the ex-locus V of ā over
C is of dimension equal to the length of ā, ex-definable, ex-irreducible, ex-
normal and free over C. Thus by the assumption of the lemma there is at most
countably many choices for such an ā. It follows that cl(C) is countable.2

Remark With the use of the quantifier Qx expressing the fact that ’there are
uncountably many x such that ...’ one can write down the obvious Lω1,ω(Q)-
sentence, call it EC∗

st,ccp, such that

F ² EC∗
st,ccp iff F ∈ EC∗

st and has the c.c.p.

Lemma 5.12 Cexp has the countable closure property.

Proof 2 We need to show that for any finite B ⊆ C and an algebraic variety
V ⊆ F 2n of dimension n, which is ex-definable, ex-irreducible, ex-normal
and free over B, the set of the generic realization of V over B is at most
countable.

2Corrected in February 2006
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Consider the analytic set

S = {x̄ ∈ Cn : x̄a exp(x̄) ∈ V }.

Claim. Any irreducible component of S is either a point or is a subset of

Sm,b = {x̄ ∈ Cn : m1x1 + . . .+mnxn = b}

for some m = 〈m1, . . . ,mn〉 ∈ Zn \ {0}, b ∈ acl(B).
Suppose not. Consider the component S0 of a positive dimension p and not
contained in any of Sm,b.
Subclaim. There is a non-constant C∞-mapping from the real unit interval

x : t ∈ [0, 1] 7→ S0 \ S0
singular \

⋃
{Sm,b : m ∈ Zn \ {0}, b ∈ aclB}.

Indeed, there exists U ⊆ S0 which is biholomorphic with the unit disc in
Cn. All its points are nonsingular in S0 by definition. By our assumptions
dimC(U ∩ Sm,b) < p, equivalently, in terms of the real space R2p,

dimR(U ∩ Sm,b) ≤ 2p− 2 = dimR U.

Consider the projection prU of U on the 2p − 1 subspace of R2p along one
of the axis. The images of U ∩ Sm,b are of dimension at most 2p − 2,while
dim pr(U) = 2p − 1, so we have a point a ∈ U such that pr(a) projects
outside the image of any of U ∩ Sm,b. Now the interval `a ⊆ U of the line
going through a along the axis of the projection is the smooth real curve
nonintersecting with any of Sm,b. Subclaim proved.
We denote the mapping xi(t) coordinate-wise. Let yi(t) = exp(xi(t)). Then
the xi(t) and yi(t) can be considered as elements of a differential field of germs
of functions differentiable near 0, with the differentiation operator Df = df

dt
.

By definitions
Dyi = yiDxi, all i. (12)

Also, x̄(t)aȳ(t) ∈ V, and by the assumptions on V and ā,

tr.d.(x̄(t)aȳ(t)/B) = n. (13)

Consider additive dependencies between the differentials dx1(t), . . . , dxn(t).
If there are some then by a suitable Q-linear transformation of variables we
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may assume that dx1(t) ≡ 0, . . . , dxk(t) ≡ 0 and dxk+1(t), . . . , dxn(t) are
additively independent (in case there are no dependencies, k = 0). It follows
that x1(t) ≡ a1, . . . , xk(t) ≡ ak and y1(t) ≡ exp(a1), . . . , yk(t) ≡ exp(ak), for
some a1, . . . , ak ∈ C. By the ex-normality of V and the fact that āa exp(ā) is
generic in V,

tr.d.({a1, . . . , ak, exp(a1), . . . , exp(ak)}/B) ≥ k.

Hence, in the field of functions,

tr.d.({xk+1(t), . . . , xn(t), yk+1(t), . . . , yn(t)}/C) ≤

≤ tr.d.(x̄(t)aȳ(t)/B ∪ {a1, . . . , ak, exp(a1), . . . , exp(ak)}) =

tr.d.(x̄(t)aȳ(t)/B) − tr.d.({a1, . . . , ak, exp(a1), . . . , exp(ak)}/B) ≤ n− k.
(14)

By the theorem of J.Ax ([Ax]) under (16) and (18) Dxk+1(t), . . . ,Dxn(t) must
be additively dependent. The contradiction which proves the claim. Lemma
follows since any generic point belongs to S \ ⋃

Sm,b. 2

Remark Any generic point is isolated in S since locally there are finitely
many components in any analytic set.

Remark The set S \ ⋃
Sm,b is exactly the set of all generic points, if we

assume Schanuel’s conjecture.

Theorem 5.13 Let F1 and F2 be s.e.a.c. structures of infinite cl-dimensions.
Then the two structures are Lω1,ω-equivalent, moreover,

F1 ⊆L∗ F2 iff F1 ≤ F2 iff F1 4Lω1,ω
F2,

and any Lω1,ω-definable subset of F1 is quantifier-free definable in L∗
ω1,ω.

Proof The first ’iff’ is Lemma 5.8. It follows that, given a finite C ⊆ F1,
the identity embedding C ⊆ F2 is an L∗-monomorphism. Suppose now C ⊆
C1 ⊆ F1, C ⊆ C2 ⊆ F2 finite, ϕ : C1 → C2 is an L∗-monomorphism fixing
C, and bi ∈ Fi for i = 1 or i = 2. By the symmetry of what follows we may
assume w.l.o.g. that i = 1.
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If b1 ∈ cl(C1), then by Proposition 5.9 we can extend the ϕ to C1 ∪ {b1}. If
b1 /∈ cl(C1) then, using the fact that F2 is infinite dimensional, choose b2 ∈
F2 \ cl(C2). By Proposition 5.9(iii) we can put ϕ(b1) = b2 and again extend ϕ
to C1∪{b1}. Thus by Ehrenfeucht-Fraisse criterion we obtain that F1 and F2

are Lω1,ω-equivalent over C, for any finite C ⊆ F1. This by definition means

F1 4Lω1,ω
F2.

On the other hand the same argument shows that once there is an L∗-
monomorphism between C1 ⊆ F1 and C2 ⊆ F1, we can play the Ehrenfeucht-
Fraisse game extending the monomorphism any finite number of steps, which
implies that

C1 ≡Lω1,ω
C2.

The latter means that the type of an n-tuple is equivalent to a quantifier-
free type (formula) in L∗

ω1,ω. But there are only countably many complete
Lω1,ω-n-formulas realized in F1, by the Lemma 5.10.
Since an Lω1,ω-definable set in F1 is the union of the subsets definable by
complete Lω1,ω-formulas, there is a quantifier-free L∗

ω1,ω-formula defining the
set. 2

Lemma 5.14 Suppose A is a cl-independent subset of F, A1, . . . Ak ⊆ A and

C =
⋃

1≤i≤k

cl(Ai). (15)

Then C ≤F F.

Proof Notice first that A ≤F F, by definitions. We may assume that A is
finite and A =

⋃
iAi.

Now, let c1 ∈ C, that is c1 ∈ cl(Ai), for some i. By definition there is a
finite X1 such that δ(X1c1/Ai) = 0. It follows that δ(X1c1/A) = 0 and
X1 ⊆ cl(Ai) ⊆ C.
Applying this observation we get for any finite {c1, . . . , cm} ⊆ C finite
X1, . . . , Xm ⊆ C such that δ(Xici/A) = 0 for each i ∈ {1, . . . ,m} and hence
δ(X1 ∪ . . . ∪Xm ∪ {c1, . . . , cm}/A) = 0.
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It follows that

A ∪X1 ∪ . . . ∪Xm ∪ {c1, . . . , cm} ≤F F,

thus for any finite subset C ′ ⊆ C there is a C ′′ ≤F F, such that C ′ ⊆ C ′′ ⊆ C.
This immediately implies that C ≤F F. 2

Proposition 5.15 Given F ∈ EC∗
st, ker ≤F C ≤F F, C finitary and a finite

A ⊆ cl(C), there is a finite subset C0 ⊆ C, such that the complete Lω1,ω-type
tp(A/C) is isolated by the type tp(A/C0).
In other words any ϕ : A → F′ ∈ EC∗

st, which is an L∗-monomorphism over
C0, is also a monomorphism over C.

In particular the statement holds for C satisfying (15) above.

Proof Replacing if needed A by its linear basis over C we assume that A
is linearly independent over C. Since A ⊆ cl(C) there is a finite B, linearly
independent over CA, such that δ(AB/C) = 0.
Choose C0 ≤F C finite with the property δ(AB/C0) = 0 and containing a
generator of the cyclic group ker, the kernel of ex. We also may assume, by
Lemma 4.7, that the ex-locus of AB over C is determined uniquely by an
irreducible variety V0 which is ex-defined over a finite C0 and contains the
tuple ABexAexB as a generic element.
We claim that this C0 satisfies the requirements.
Indeed, let ϕ : A→ F′ be an L∗-monomorphism over C0.
The Lω1,ω-formula over C0 stating that “A′ = ϕ(A) can be extended by a B ′

so that A′B′exA′exB′ satisfies V0 generically over C0” holds in F′, by Theo-
rem 5.13. This implies δ(A′B′/C0) = 0 = δ(A′B′/C), and thus CA′B′ ≤F F′.
It follows also that any ex-definable V ′ over C satisfied by A′B′exA′exB′ must
contain V0, because otherwise δ(A′B′/C) < 0. In other words we have proved
that AB and A′B′ have the same L-quantifier-free types over C.
Suppose now EV (c̄) is a predicate in the language L∗ over c̄ ∈ CA satisfied
by Y, for some Y ⊆ clF(CA) = clF(CAB). We can without loss of generality
assume that Y is linearly independent over CAB. By extending Y we can
also assume that δ(Y/CAB) = 0. Let V ∗ be the ex-locus of Y over CAB

40



and suppose V ∗ is ex-defined over C1AB for some finite C1 ⊆ C such that
C1AB ≤F F.
By Lemma 3.1 V ∗ is free and ex-normal.
Let V ′ be the variety over C1A

′B′ obtained from V ∗ by replacing AB by
A′B′. Since the property of being free and ex-normal is L-quantifier-free
definable, by the above proved V ′ is free and ex-normal, and by the same
reason dimV ′ − n = 0, for n equal to the number of x-variables in V ′,
equivalently, the number of elements in Y.
By Lemma 4.8 and the fact that F′ ∈ EC∗

st, there is a generic realization
Y ′ of V ′ in F′. By construction Y ′ witnesses the validity of EV (ϕ(c̄)) in F′.
This finally proves that ϕ preserves quantifier-free L∗-formulas and thus, by
Theorem 5.13, all Lω1,ω-formulas.2

The combined meaning of Propositions 4.11, 5.9 and 5.15 is that EC∗
st is

quasi-minimal excellent. By Proposition 5.2 there is an infinite-dimensional
member of this class of cardinality ℵ0, hence with the countable closure
property. Thus, we get

Theorem 5.16 (Categoricity Theorem) For any uncountable cardinal κ
there is a unique, up to isomorphism, structure F ∈ EC∗

st,ccp of cardinality κ.
Moreover, F is prime over any basis.
In other words the Lω1,ω(Q)-sentence EC∗

st,ccp is categorical in all uncountable
cardinalities.
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