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Abstract
Reconstructability analysis (RA) decomposes wholes, namely data in the form either of set-
theoretic relations or multivariate probability distributions, into parts, namely relations or
distributions involving subsets of variables.  Data is modeled and compressed by variable-
based decomposition, by more general state-based decomposition, or by the use of latent
variables.  Models, which specify the interdependencies among the variables, are selected
to minimize error and complexity.
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I. Reconstructability Analysis
In general systems methodology, the decomposition of wholes into parts and the
composition of parts into wholes is called reconstructability analysis (Klir, 1985).  RA
derives from the early work of Ashby (1964), and was developed by Broekstra, Cavallo,
Conant, Jones, Klir, Krippendorff, and other researchers (see the citation in the reference
list below of an RA bibliography in the International Journal of General Systems).  Here, a
whole is a relation which is a constraint  among a set of variables.  The parts, which define
the structure of the whole, are relations among subsets of the variables, subsets which may
be either disjoint or overlapping.  For a fully decomposable whole, the parts are simply the
variables.  For example, for variables, A, B, and C, the whole is the triadic relation ABC.
The parts might be the dyadic relations, AB and BC, in which case the system has structure
AB:BC.  (A colon is used to separate the parts.  The whole, when maximally decomposed,
yields A:B:C.)  Data defines a whole and RA reveals its parts.  The parts taken together are
specified by fewer numbers (parameters) than the whole, i.e., decomposition accomplishes
“compression.”  An RA-generated structure is a model of the data.

The variables in RA are nominal (categorical, qualitative).  Thus RA might be used, for
example, in studying the interactions between biological characters or genes, and their
relations to environmental conditions, since characters, genes, and conditions may be
represented as nominal variables.  RA has considerable value also for analyzing quantitative
variables linked by unknown nonlinear relations.  (For linear relations, standard methods
are superior.)  Quantitative variables are accommodated by “binning” their values into
discrete states which are unordered, and binning can be done within the framework of
fuzzy set theory (Zadeh, 1965) or by clustering techniques.  RA can analyze not only static
relations, but also dynamic relations: in ABC, variables might be state(t-2), state(t-1), and
state(t).  Relations can be deterministic or stochastic.
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There are two main formalisms used in RA to define a relation (Conant, 1981; Klir, 1985;
Krippendorff, 1986).  These are here called the set-theoretic and the information-theoretic.
Set-theoretically, a relation is a subset of a cartesian product: the combinations of possible
variable values which are actually observed.  Information-theoretically, a relation is a
multivariate probability distribution.  More precise labels for these formalisms are “crisp
possibilistic” and “probabilistic,” but the set- and information-theoretic labels are used here
because they are more familiar and because this nomenclature correctly suggests
parallelisms in the formalisms.  The set- and information-theoretic perspectives are central
to the general systems literature and can now also be viewed as components of a
generalized information theory currently being developed (Klir & Wierman, 1998).

The information-theoretic aspect of RA overlaps with log-linear modeling (Bishop et al,
1978; Knoke & Burke, 1980) which is widely used for analyzing nominal data in the social
sciences.  Log-linear modeling was  developed in the same period as RA , but the general
systems methodology literature is broader.  Log-linear modeling is statistical, while
reconstructability analysis also includes well-developed non-statistical aspects, e.g., in its
set-theoretic formalism, lattice explorations, advanced computational algorithms, and
analysis of fuzzy distributions.  It also differs from log-linear modeling in its extensive use
of uncertainty measures, in its innovation of “state-based” modeling, and in its acceptance
of the challenge of modeling data on many variables.  On the other hand, the log-linear
literature is very advanced statistically, while statistical considerations are sometimes
absent in the systems literature where their presence would be desirable.  Latent variable
techniques, which are the nominal data analog of factor analysis, are well developed on the
log-linear side, while on the systems side they are available mainly set-theoretically.  Where
information-theoretic and log-linear methods overlap, they are equivalent; compare, e.g.,
Knoke & Burke (1980) and Krippendorff (1986).

In Section II, RA is illustrated with simple examples of both set- and information-theoretic
analyses, so the reader can easily grasp what is fed into RA and what it yields in return.  To
explain RA strictly in these input-output terms requires only a minimal mathematical
description.  The theory is then presented in Sections III and IV, which explain what
relations and structures are.  The practice of RA is described in Section V, i.e., the “black
box” is opened and the analytical methods used to obtain the results of Section II are
described. Section VI closes the paper with remarks on the current state of RA
methodology.

II. Examples
Table 1 illustrates with two examples: (a) set-theoretic and (b) information-theoretic.  In
both examples, variables A, B, and C are dichotomous (binary).  If variables had three
states (values), e.g., {A0,A1,A2}, the order of the states would be arbitrary because the
variables are nominal.
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The input to RA is shown on the left of the table.  In (a) the data are the combinations
(tuples, binary strings) observed for the variables -- five tuples of the possible eight --
without regard to how frequently they are observed.  In (b) the A, B, and C values are
labeled with 0 and 1 subscripts (instead of being taken as 0 or 1); all combinations are
observed, but with the frequencies given in the contingency table.

Table 1. System as data and model (two examples: (a) & (b))

data: one trivariate relation ABC model: two bivariate relations AB : BC

(a) ABC = {000,010,011,110,111} AB : BC  ={00,01,11}:{00,10,11}

(b) B0 B1

C0 C1 C0 C1 B0 B1 B0 B1

A0 143 253 77 182 A0 396 259 C0 370 123
A1 227 411 46 139 A1 638 185 C1 664 321

The task of RA is to decompose the ABC relation into parts in such a way that the model,
simpler than the data, still adequately agrees with the data.  The information-theoretic
analysis is statistical; the set-theoretic analysis is non-statistical.  Partial RA results are
shown on the right side of Table 1.  Both data (a) and (b) are decomposable into structure
AB:BC.  The set-theoretic model consists of a set of AB tuples and a set of BC tuples.
Taken together, these are equivalent to the ABC data (the 5 tuples) shown on the left of
part (a) of the table.  Model and data agree exactly, i.e., with no error.

The information-theoretic model analogously consists of the two 2-variable contingency
tables, AB and BC, as shown on the right of Table 1(b).  Taken together, these are
equivalent to a 3-variable table which approximates the data on the left.  Data and model,
expressed as probabilities and not frequencies, are shown in Table 2.  The data (the p
distribution) and the model (the q distribution) do not agree exactly, but the error is
statistically acceptable.  Error is loss of constraint or equivalently, loss of information.

Table 2. ABC (data) and ABCAB:BC (model) (data from Table 1(b))

B0 B1 B0 B1

C0 C1 C0 C1 C0 C1 C0 C1

A0 .097 .171 .052 .123 A0 .096 .172 .049 .127
A1 .154 .278 .031 .094 A1 .154 .277 .035 .091

ABC data: p(A,B,C) AB:BC model: qAB:BC(A,B,C)

Detailed explanations of these set- and information-theoretic analyses is given in Sections
IV and V.  A complete RA does not merely yield a single model which adequately fits the
data.  It can determine how well all possible models fit the data; or, if the number of
possible models is too large to evaluate exhaustively, RA searches through a promising
subset of them.  Table 3 summarizes the analysis of all models for the set-theoretic example
of Table 1(a).  There are 9 possible models, descending from the most complex (the triadic
relation, ABC, i.e., the data, also called the “saturated” model) at the top to the simplest
(three “monadic” relations, A:B:C, also called the “independence” model) at the bottom.

RA

RA
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After each model in parenthesis is indicated the number of ABC tuples which the model
specifies.  The top model, ABC, is the data itself which contains 5 ABC tuples.  Models
AB:AC:BC and AB:BC also specify the same 5 tuples.  These two models fit the data
without error, but since AB:BC is less complex, it is preferred.  Other models specify either
6 or 8 tuples, that is, they predict additional combinations which are not observed in the
data and are thus in error.  There is less constraint represented in these models than is in
the data.  Models which predict 8 tuples predict all possible combinations of A, B, and C,
and exhibit no constraint at all.

Table 3. Reconstruction of the set-theoretic data of Table 1(a). in parentheses:
(number of tuples in model)

ABC (5)
AB:AC:BC (5)

AB:AC (6) AB:BC (5) BC:AC (6)
AB:C (6) AC:B (8) BC:A (8)

A:B:C (8)

Table 4 summarizes the analysis of all models for the information-theoretic example of
Table 1(b).  After each model three numbers are given in parentheses:
• Informationnorm, the information (constraint represented) in the model, which ranges

from 0 (no information) to 1 (complete information),
• α , the probability of making an error (called a Type I error) if one rejects the identity

of the model with the data, and
• df, the degrees of freedom (complexity) of the model.
At the top of the list, the “saturated” model ABC has complete information.  The
probability of making an error in rejecting its identity with the data is 1, since it is the data.
Its degrees of freedom, i.e., the number of probabilities needed to specify the 3-variable
table, is 7.  At the bottom of the list, the “independence” model A:B:C has no information.
The probability of making an error in saying it is different from the data is 0.  It needs 3
probability values for its specification.  In between top and bottom models are all less-than-
total decompositions.  A good model is one which has high information content and small
df (complexity).  It is also a model which has high α.  (The desirability of a high α is
atypical of most statistical analyses, but if we compared a model not to the saturated model
at the top but to the independence model at the bottom, the normal preference for low α
values would obtain.)  The best model is AB:BC, but the analysis tells us more than this.  It
tells us how well all possible structures model the data.

Table 4. Reconstruction of the information-theoretic data of Table 1(b). in
parentheses: (Informationnorm , α, df)

ABC (1.,1., 7)
AB:AC:BC (.987, .382, 6)

AB:AC (.827, .005,5) AB:BC (.978. .518, 5) BC:AC (.153, .000, 5)
AB:C (.826, .014, 4) AC:B (.000, .000, 4) BC:A (.152, .000, 4)

A:B:C (0., .000, 3)
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III. Relations

A. Lattice of Relations
For a system of two variables, there are only two possible structures: AB and A:B.  For
three variables, the relations which could exist are arrayed in the “lattice of relations”
shown in Figure 1 (Krippendorff, 1986).  The number of variables in a relation is its
ordinality.  In this framework, relations can have arbitrary ordinality.  By contrast, the
conventional graph-theoretic representation which depicts systems in terms of nodes and
links connecting nodes normally restricts ordinality to two.  A relation obtained from a
higher-ordinality relation by ignoring one or more variables is “embedded in” and “a
projection of” the higher-ordinality relation, e.g., AC is embedded in ABC.  Although a
relation viewed as a constraint usually presumes the existence of at least two variables, it is
useful to include “monadic relations,” A, B, and C, and, for completeness, the “null
relation,” Φ.

Figure 1. Lattice of relations for a 3-variable system.

ABC

AB AC BC

A B C

Φ

Relations are directed if a variable acts on another, or an event causes another, or a
discrimination is made between “generating” or “generated” variables.  “Generating” vs.
“generated” is used instead of the more familiar “independent” (IV) vs. “dependent” (DV)
(variables) to reserve the word “independent” for its connotations of “mutually
independent” or “independent of.”  Relations are neutral if directionality cannot be or is
not indicated.  Directed relation AB is distinguished from directed relation BA.  Neutral
relations are static, but directed relations can be static (e.g., nontemporal input-output
pairs) or explicitly dynamic. Directed relations may be deterministic or stochastic.

B. Definition of Relation
Set-theoretically (Conant, 1981; Klir, 1985), AB ⊆ A ⊗ B: a relation AB is a subset of the
Cartesian product of sets, A ⊗ B, where A and B signify also the sets of states the variables
take on.  The Cartesian product -- call it H (for “heap”) -- is the set of all possible pairs of
values of the two variables.  A relation is a constraint which reduces the possible to the
actual, i.e., AB reduces H to a smaller set of pairs {(Ai,Bj)} which in fact occur.  (If the
pairs are allowed partial membership in set AB, the relation is fuzzy.)  H can be written
also as the independence model A:B, where the colon means mutually independent.  The
number of pairs (in general, “tuples”) in AB is called its cardinality and is written |AB|.

Referring again to Figure 1, projection into lower-ordinality relations ignores the projected
variables.  For example, AB is obtained from ABC by ignoring all Ck in {(Ai,Bj,Ck)}; the
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monadic relation (variable) A is obtained by ignoring both Bj and Ck.  For the ABC
relations shown on the left of Table 1(a), the AB and BC projections are shown on the
right.

Information-theoretically (Klir, 1985; Krippendorff, 1986), a relation is a multivariate
probability distribution, i.e., AB is the set {p(Ai,Bj)}, for convenience sometimes written
simply as p(A,B).   Technically “relation” means set-theoretic relation, but the word is here
used more broadly.  The number of probability values needed to specify the relation is its
“degrees of freedom,” df(AB) = |AB|-1, where one subtracts 1 from the number of (Ai,Bj)
pairs since probabilities must add to 1.  For example, if A and B are dichotomous, 3
probability values define the contingency table for relation AB although the table itself has
4 entries.  Constraint is the deviation of the distribution from a reference distribution,
usually A:B, but occasionally Φ, here the uniform distribution.  The A:B distribution is
qA:B(A,B) = p(A) p(B), where qA:B plays the same role as the Cartesian product H.  “q”
denotes a calculated distribution and “p” denotes data, i.e., an observed distribution and its
projections.  Projection into lower-ordinality relations sums over projected variables, e.g.,
p(A,B) = ∑k p(A,B,Ck).  Again, in Table 1(b), the ABC distribution shown on the left has
AB and BC projections shown on the right.

Relations are characterized by uncertainty, a measure of variety or dispersion.  Uncertainty
is the nominal variable analogue of variance.  Set-theoretic uncertainty is the Hartley
entropy, U = log2 |AB|, i.e., the log of the number of pair values.  Information-theoretic
uncertainty is the Shannon entropy, U = -∑ p(A,B) log2 p(A,B).  (“Uncertainty” is
preferable to “entropy” as “entropy” evokes an association with the Second Law of
Thermodynamics and is best reserved for physical systems.)  Uncertainty measures can be
defined for generalizations of the set- and information-theoretic formalisms.  There is not
just one concept of uncertainty and a complex relationship exists between its uses in
different formalisms (Klir & Wierman, 1998).

A relation is a whole whose parts are projections.  The uncertainty of a whole, U(AB), is
less than or equal to the uncertainty of its parts, U(A:B) = U(A) + U(B).  The strength of
constraint of AB in both formalisms is the uncertainty reduction, U(A:B)-U(AB);
information-theoretically, this is also called “transmission” (“mutual information”), T(A:B).
This is the gain of constraint in AB relative to A:B or equivalently the loss of constraint in
A:B relative to AB.  The uniform distribution, Φ, might serve as an alternative to A:B as a
reference condition.

IV. Structures

A. Lattice of Structures
A two-variable system can have only one (undirected) relation, but with three or more
variables, systems can have multiple relations, i.e., structure.  A structure is an unordered
set of relations none of which is a projection of another.  In representations of systems
where relations are strictly dyadic (involve only two variables), variables are often shown
as nodes (or circles) and relations as lines or arrows connecting nodes.  In the present
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framework, relations may involve an arbitrary number of variables, and to facilitate
focusing on relations rather than variables, structures are represented with relations as
boxes and variables as lines, as shown in Figure 2 (Klir, 1985, Krippendorff, 1986).  One
can add directedness by changing lines into arrows.

Figure 2. Specific structure AB:BC

Relations may overlap in their variables as in AB:BC or may be disjoint, as in AB:C, or
completely disjoint, as in the “heap,” A:B:C.

The lattice of possible (undirected) structures with three variables is shown in Figure 3
(Krippendorff, 1986). Table 3 and Table 4 simply list the possible structures; this figure
shows how they are related to one another by descent.

Figure 3. Lattice of Specific Structures for 3-variable system (undirected relations)

ABC

AB:AC:BC

AB:AC AB:BC BC:AC

AB:C AC:B BC:A

A:B:C

For three variables there are nine specific structures as show in Figure 3 but only five
general structures: (1) XYZ, (2) XY:XZ:YZ, (3) XY:YZ, (4) XY:Z, and (5) X:Y:Z. (NB:
the “general” vs. “specific” nomenclature here differs from Klir’s (1985).)  Specific
structures are obtained from general structures by permuting the assignments of specific
variables, A, B, or C to the generic X, Y, or Z.  For example general structure (4) XY:Z
subsumes AB:C, AC:B, and BC:A.  For three variables, the lattice of general structures is
small (5 general structures), but for four variables (add the variable W), there are 20
general structures (Figure 4) (Klir, 1985, Krippendorff, 1986).  If variables are all
dichotomous (binary), the degrees of freedom of the structures range from 15 at the top to
4 at the bottom and decrease by 1 at every level.  The figure also shows the acyclic
structures, which are indicated with boxes in bold (10 of the 20).  For four variables, there
are 114 specific structures.

For directed systems the lattice is often simpler.  Say W is generated from X, Y, and Z.  It
is assumed for directed systems that we are uninterested in relations among the generating
variables, so structures always include an XYZ component which subsumes all such
relations, and decompositions of this XYZ component are never considered.  (If one wants
to know about relations among the generating variables, the system is treated as neutral.)
All the other relations in a structure necessarily involve the generated variable(s).  For three

AB BC
A B C
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generating variables and one generated variable, only 9 of the 20 structures of Figure 4
apply: the top 6 and the next leftmost 3 (indicated in the figure with the generated variable
-- a line or connected lines uninterrupted by a box -- in bold.)  4 of these 9 directed
structures are also acyclic:(1) XYZ:W, (2) XYZ:XW, (3) XYZ: XYW, and (4) XYZW.
These are the simplest decompositions of W’s dependence on X, Y, and Z; they specify W
as either independent of or dependent on 1, 2, or 3 of the generating variables.  Note that
XYZ:W (indicated on Figure 4 by a *), and not X:Y:Z:W, is the bottom of this lattice of
directed structures.  Also that a structure like XYZ:XW:YW:ZW is different from XYZW,
even though in both cases W depends upon X, Y, and Z (Zwick, 1996).

Combinatorial possibilities rapidly expand for five or more variables (Table 5).  Although
exhaustive consideration of all structures becomes prohibitive at around 6 variables,
intelligent heuristics can accommodate many more variables (Klir, 1985, Krippendorff,
1986, Conant, 1988).  The lattice can be pruned as a search procedure descends or ascends
so that consideration is restricted only to promising candidates.  Or, the search done first
roughly between groups of structures and then finely within these groups (Klir, 1985).

Table 5. Numbers of structures. Only the bottom line is for directed structures.

# variables 3 4 5 6
# general structures 5 20 180 16,143
# specific structures 9 114 6,894 7,785,062
with 1 generated var 5 19 167 7,580

B. Cycles, Paths, Latent Variables, State Models
The possibility of (non-trivial) cyclicity emerges with 3 or more variables, as in
AB:BC:CA.  If the relations are directed, the structure’s cyclicity is directed, showing
feedback.  Methodologically cyclicity is a source of complications (Krippendorff, 1986).
Mediation can occur by overlapping relations, and if relations are dyadic and directed (a
digraph), the structure has paths.  In AB:BC, for example, B mediates between A and C; if
AB:BC is directed, B transmits the indirect effect of A on C via the path A → B → C.
(This is different from the effect of B on AC within an undecomposed triadic relation
ABC.)  In directed structure AB:BC:AC, there is also an A → C path which transmits the
direct effect of A on C.  This is the nominal analog of path analysis (Davis, 1985).

Consider directed structure BA:BC.  B might be a higher-level latent variable (or
“construct”) which “chunks” together (Simon, 1981) A and C.  In factor analysis B would
be called a “common factor.”  Latent class analysis does a similar analysis for nominal
variables.  For example, a relation AC might be explained by a latent variable B and a
posited relation ABC, which subsumes AC and is decomposable into BA:BC.  The latent
class procedure does not actually distinguish between the factor analytic and path analytic
situations.  An AC relation with latent B and inferred ABC describes also directed
structures where B is prior to A and C, i.e., A ← B → C, or where B is intermediate
between them, i.e., A → B → C.
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Figure 4. Lattice of General Structures (4-variable system).  A box is a relation; a
line, with branches, uninterrupted by a box, is a variable.  Arrows indicate decomposition.
The top structure is XYZW; the fourth down is XW:XYZ:WYZ; the bottom is X:Y:Z:W.
Generated variable W is shown in bold for the 9 structures of directed 4-variable systems.
The 10 acyclic structures have all relations shown in bold.
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The information-theoretic framework and its log-linear equivalent (Hagenaars, 1993) thus
generalizes to nominal data the more restricted methods of path analysis, factor analysis,
and covariance structure modeling (Long, 1983) which apply only to linear relations.
Latent variable methods apply also to set-theoretic relations (Grygiel at al, 1999).

Normally, a structure requires the complete specification of its component relations.  For
example, AB:BC is defined information-theoretically by two distributions consisting of
probabilities or frequencies for all (Ai,Bj) and (Bj,Ck), i.e., the full two tables shown in
Table 1 (right).  It is possible, alternatively, to define a model in terms of any set of states
and their probabilities drawn from the top relation ABC and all of its projections (Jones,
1985).  A small set of states might have probabilities unexpectedly high or low.  These
states represent salient “events” or “facts,” and they, rather than complete projections,
might be considered the “parts” of relation ABC.  This approach is explained later in
Section V. Analysis.  This state-based approach is more powerful than the conventional
variable-based framework, which it encompasses as a special case.  The cost, however, of
the state-based approach is a sizable increase in the size of the lattice of possible structures.
As presented by Jones, the reference distribution for state-based modeling is the uniform
distribution, but other reference distributions can also be chosen.

C. Complexity; Constraint
Structures differ in complexity, where this word can be given different meanings.  In this
article, the complexity of a relation or a distribution is the number of tuples or probability
values.  Decomposition reduces this complexity, i.e., is compression.  This notion of
complexity has the sense of randomness and is different from Wolfram’s (1986) or
Langton’s (1992) “edge of chaos” complexity.

The complexity of a structure, information-theoretically, is its degrees of freedom which is
the sum of the degrees of freedom of its relations, corrected for overlap (Krippendorff,
1986).  For example, df(AB:BC) = df(AB) + df(BC) - df(B).  (Defining a set-theoretic
analog, however, is not straightforward.)  df depends only on the variable cardinalities and
not on the actual relations.  For |A| = |B| = |C| = 2, df(ABC)=7 because a 2x2x2 table needs
only 7 values to be specified (since probabilities sum to 1, and frequencies to the sample
size).  df(A:B:C) = 3 since only one probability value needs to be specified for each
variable.  df decreases by 1 at every level in Figure 3.  Normalizing the df measure to a 0-1
scale gives

Complexitynorm = [ df(AB:BC) - df(A:B:C) ] / [ df(ABC) - df(A:B:C) ].

Complexity-reduction is achievable not only by decomposition of relations into simpler
structures, i.e., by descending the Lattice of Structures, but also by the use of latent
variables, which will be explained now, or by state-based modeling, which will be explained
in the next section.

Complexity reduction can be accomplished by adding additional variables.  A latent
variable model typically simplifies the relation it explains.  One cannot simplify in this way
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the relations of Table 1, so this approach will be illustrated with a different example.
Consider an AC relation, latent variable B, and posited relation ABC having the structure
BA:BC.  If |A|=|C|= 4 and |B|=2, then df(AC) = 15 while df(BA:BC) = 13, so BA:BC is
less complex than AC.

When considering some actual system, the lattice of structures indicates the possible
decompositions of the top relation.  Decomposition can be exact, i.e., with no constraint
loss relative to ABC, or approximate, i.e., involving only small constraint loss.  Where
systems are highly decomposed, one can easily reduce the system to simple parts.  There
are systems, however, where the slightest decomposition results in total loss of constraint.
This is illustrated by the set-theoretic relation ABC = {000, 011, 101, 110}, whose three
dyadic projections, AB, AC, and BC are all heaps, i.e., {00, 01, 10, 11} which have no
constraint at all.  This can be visually represented by Figure 5.

Figure 5. Borromean rings (Removing one ring allows the other two to separate.)

Constraint loss increases monotonically as one descends the lattice (Figure 3).  As
indicated in Figure 6, the constraint lost in AB:BC is T(AB:BC) = U(AB:BC) - U(ABC)
and the constraint retained is T(A:B:C) - T(AB:BC) (Figure 6) (Krippendorff, 1986).
Constraint might alternatively be measured from a distribution other than A:B:C.  For
example, for directed systems where C is generated from A and B, the independence model
is not A:B:C but AB:C.

Figure 6. Constraint lost and retained in structures.

                  ---------- ABC

                  T(AB:BC) = constraint lost in AB:BC

 ------ AB:BC
     T(A:B:C)

                  T(A:B:C)-T(AB:BC) = constraint retained  in AB:BC

                   ---------- A:B:C (or some other reference structure)

Retained constraint is information in the structure.  Normalizing to a 0-1 scale gives
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Informationnorm = [T(A:B:C)-T(AB:BC)] / T(A:B:C) = 1-T(AB:BC)/T(A:B:C)

The transmission measure allows a precise formulation of Simon’s (1962) observation that
most systems are “partially decomposable.”  Consider a system ABCD having two parts,
AB and CD, and consider also the identity,

T(A:B:C:D) = T(AB:CD) + [ T(A:B) + T(C:D) ].

Partial decomposability means that T(AB:CD), the between-parts constraint, is small
compared to T(A:B) + T(C:D), the within-parts constraint.  This is analogous to a
between-within decomposition in the Analysis of Variance.

V. Analysis

A. Decomposition Losses
Structures encompass multiple relations, but every structure has an equivalent single
(decomposable) relation linking all of the variables.  This will be written as ABCmodel while
the data itself will be written simply as ABC.  For example, ABCAB:BC is the calculated
ABC distribution for model AB:BC.  The equivalent relation for any model can then be
compared to the data.  Difference between the two is the error in the model (the constraint
loss or information loss).

The single relation equivalent to a structure is essentially the same in both set- and
information-theoretic formalisms: it is the relation with maximum uncertainty, given the
constraints imposed by the model.  For example, ABCAB:BC is the relation (distribution)
which maximizes the uncertainty, U, subject to the constraints of AB and BC.  These
constraints appear on the right of Table 1 as the two lists of tuples or the two 2-variable
frequency tables.

Set-theoretically, the equivalent relation is the intersection of all relations in the structure,
each relation being first “expanded” by Cartesian products with variables missing in it; here
ABCAB:BC = (AB ⊗ C) ∩ (BC ⊗ A).  For example, the equivalent triadic relation for the
AB:BC model in the set-theoretic example of Table 1(a) is

ABCAB:BC = [{00.,        01.,         11.} ⊗ {..0,..1}] ∩ [{ .00,         .10,         .11} ⊗ {0..,1..}]
    =   {000,001, 010,011, 110,111}           ∩   {000,100, 010,110, 011,111}
    =   {000,        010,011, 110,111}

Here, as noted above, ABCAB:BC is the same as the original ABC, so model AB:BC has no
error or constraint loss.  Neither AB nor BC can be dropped because this would yield an
equivalent ABC relation having 6 tuples, while |ABC| = 5.  (Note also that AC is a heap
and adds no constraint.)  The set-theoretic analysis for all models is summarized above in
Table 3.
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Information-theoretically, the equivalent single relation is the distribution qAB:BC(A,B,C)
satisfying the conditions which maximizes

U(AB:BC) = -∑qAB:BC(A,B,C) log qAB:BC(A,B,C)

subject to the linear constraints:  qAB:BC(A,B) = p(A,B) and  qAB:BC(B,C) = p(B,C)  Recall
that p and q mean observed and calculated).  Because model AB:BC is acyclic, the solution
for this constrained maximization can be written directly; it is

qAB:BC(A,B,C) = p(A,B) p(B,C) / p(B).

For the information theoretic example of Table 1(b), Table 2 above gives the calculated
distribution, qAB:BC(A,B,C) as well as the original observed probabilities, p(A,B,C).

For any structure the constraint of ABCstructure is less than or equal to the constraint of
ABC.  Constraint loss is the “transmission” of the structure, also called cross-entropy or
mutual information (there is an analogous set-theoretic expression).  For the set-theoretic
example above, the loss is 0, that is, the equivalent relation, ABCAB:BC, is identical to ABC.
For the information-theoretic example, the equivalent relation is not identical to the ABC,
as can be seen by comparing the p and q distributions of Table 2.  The loss is

T(AB:BC) =  - ∑ p(A,B,C) log [ p(A,B,C)/qAB:BC(A,B,C) ].

T can be computed directly from p (without first obtaining q) by T(AB:BC) = U(AB:BC) -
U(ABC), where U(AB:BC) = U(AB)+U(BC)-U(B) and where the U’s are computed from
projections of the data.  However, cyclic structures do not have algebraic expressions for
U, and require the iterative generation of q and the calculation of T by the p log p/q
expression.  From T, normalized information is calculated.  As shown above in Table 4,
Informationnorm(AB:BC)= 0.98.  Very little constraint is lost in decomposing ABC to
AB:BC.  This, coupled with the greater simplicity of AB:BC compared to AB:BC:AC, is
the basis for saying that AB:BC is the best model for the data of Table 1(a).

State-based information-theoretic structures are treated similarly.  Calculated distributions,
q(A,B,C), have maximum U, constrained not by entire projections of p(A,B,C) but by a set
of selected individual probability values.  The essence of how state-based decomposition
can produce lower constraint loss is illustrated in Table 6.

Table 6. State-based decomposition

B0 B1

A0 .1 .1 .2 .04 .16 .2 .1 .1
A1 .1 .7 .8 .16 .64 .8 .1 .7

.2 .8 .2 .8

structure AB A:B [A1,B1]
df 3 2 1

constraint loss, T - .087 0



Wholes and Parts (Zwick) 12/9/99 14

A:B, having probabilities p(A)*p(B), is not identical to AB and thus exhibits constraint
loss.  The AB model has df=3, and to show this 3 cells (arbitrarily chosen) are shaded.  The
A:B model has df=2, i.e., it needs only two specified probability values, one (arbitrarily
chosen and shown shaded) from each margin.  A state-based model specifying the single
probability value, p(A1,B1)=.7 (not arbitrary, shown shaded) forces the remaining (A0,B0),
(A0,B1), and (A1,B0) probabilities, by the maximum uncertainty principle, to be .1.  These
are in fact correct and this state-based model thus has zero constraint loss even though it is
simpler (has smaller df) than A:B.  These data were of course “cooked” to produce this
result, i.e., to show how a one-parameter state-based model could be superior to a two-
parameter variable-based model.  In the present example the state-based model has only
one probability value, but in general such models can specify any (linearly independent) set
of probabilities from an original table, its margins, its margins of margins, and so on.  In the
present example, [p(A0,B0)=.1, p(B1)=.8] would be a legitimate df=2 state-based model.

State-based analysis (not shown here) of the earlier distribution of Table 1(b) reveals that a
four-parameter state-based model, consisting of p(A1,B0), p(A0,B1), p(B0,C1), and p(B1,C0)
would capture virtually the same amount of information as the five-parameter AB:BC
model.  (Note that the four states come from the AB and BC relations.)  So, state-based
analysis would improve upon the RA results summarized in Table 4.

B. Reconstruction and Identification
RA includes reconstruction and identification. The two examples of Table 1 illustrate
reconstruction. In reconstruction, one starts from a whole, and decomposes it into
provisional parts (relations) and then re-composes these parts to see if they account for the
whole.  In identification the parts are given, and one does only composition; this is done by
the calculation of the equivalent single relation for the model, as discussed in the previous
section.

In reconstruction the objective is to find simple but low-error (high information) structures
to model the data.  There are different ways to balance the dual objectives of minimizing
error and complexity.  While conceptually one descends the Lattice of Structures and
assesses the different decompositions, operationally one might actually either descend or
ascend the lattice.  If accuracy is the primary concern, or if systems are neutral, a modeling
procedure might descend the lattice of structures until the error becomes too great.  If
simplicity is the primary concern, or if systems are directed, the procedure might ascend the
lattice until further complexification is not forced or justified by the data.  In information-
theoretic/log linear modeling, which is Chi-square-based, the statistical significance of
error, i.e., the probabilities of Type I and Type II errors, integrates error magnitude and
complexity, but this does not resolve the issue: there are tradeoffs between these two kinds
of errors (Knoke & Burke, 1980; Krippendorff, 1986).

Disallowing statistically significant error may prevent any simplification, so one might
choose the simplest model whose error is acceptable.  AB:AC:BC may be the simplest
structure whose error is statistically not significant while the simpler AB:BC may have an
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error which is statistically significant but only slightly bigger.  Statistical significance is not
pragmatic significance, and AB:BC might be preferred for its simplicity.

As already noted, picking a best particular structure does not constitute a complete
analysis.  A system is fully described by the constraint losses (or conversely, the
information captured) for all possible decompositions.  Table 4 above shows the complete
reconstruction analysis of the data given in Table 1(b).  Another illustration of a complete
reconstruction analysis is provided by Figure 7 which plots Informationnorm against
Complexitynorm for data on medical and sociological characteristics of a sampled population
(Zwick & Pope, 1999).  The figure displays the entire lattice of possible decompositions
for this data, treated as a neutral system.  Models at the upper envelope of the cluster are
plausible candidates for acceptance.  That is, for any complexity, C, one wants a model
with the maximum information, I.

Figure 7. Decomposition Loss Spectrum: (Complexitynorm, Informationnorm).  114
four-variable structures; data from Kaiser Permanente Center for Health Research

CHR data
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A few words on identification.  Structures can arise not from decomposition but from the
composition of separate relations which may not be the projections of a single higher-
ordinality relation.  When wholes are thus composed of preexisting parts, there is no issue
of constraint loss.  If the relations overlap, e.g., AB and BC, they may be either consistent
or inconsistent in their overlapping subrelation distributions, i.e., B.  For example suppose
one were given the AB distribution shown on the right side of Table 1(b), whose B margin
is [1034, 444], but also an altered BC table whose B margin was, say, [1024, 454]..  Such
inconsistency could arise from sampling (or other) errors.  When overlapping subrelations
are identical, composition is straightforward, but if they are even slightly different -- and
inconsistency is to be expected -- resolution of the inconsistency is first required  (Klir,
1985; Anderson, 1996).  Composition can also first utilize and then exclude extraneous
variables in what might be called “reverse” latent class analysis.  Suppose one is interested
in the relation between A and C, but has inconsistent data only on AB and BC.  After the
inconsistency is resolved, the dyadic relations can be composed into a triadic ABC and then
projected onto the desired AC relation (Anderson, 1996).
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VI. Remarks
This article presents the essentials of Reconstructability Analysis, a particular set of
procedures within general systems methodology (Klir, 1985).  The framework presented
here offers a very general approach to the multivariate modeling of nominal and
quantitative data.  This approach could be of significant use for analyzing the
independencies among biological characters and genes and relevant attributes of the
environment.

For further discussion on Reconstructability Analysis, see the special 1996 issue of the
International Journal of General Systems on GSPS (General Systems Problem Solver).
This framework is undergoing continued research and development, but tools which
integrate what is already known are unfortunately not yet available.  Ideally one wants a
software implementation which can:
• do both set- and information-theoretic analyses and their fuzzy extensions
• using both variable- and state-based approaches
• in both confirmatory and exploratory (data mining) modes
• with efficient lattice search techniques for many variables
• on both nominal, ordinal, and quantitative data (and thus include effective binning)
• for static and dynamic (e.g., time series) applications
• with or without latent (supplementary) variables
• for both reconstruction and identification (including inconsistency resolution).

I am unaware of any software implementation which approximates these specifications, but
the separate components exist.  A software package aimed at this goal is being developed
at PSU based on earlier PSU efforts and with external collaboration.
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