Year:

  1.  15
    Husserl and Gödel's Incompleteness Theorems.Mirja Hartimo - 2017 - Review of Symbolic Logic 2017.
    The paper examines Husserl’s interactions with logicians in the 1930s in order to assess Husserl’s awareness of Gödel’s incompleteness theorems. While there is no mention about the results in Husserl’s known exchanges with Hilbert, Weyl, or Zermelo, the most likely source about them for Husserl is Felix Kaufmann (1895–1949). Husserl’s interactions with Kaufmann show that Husserl may have learned about the results from him, but not necessarily so. Ultimately Husserl’s reading marks on Friedrich Waismann’s Einführung in das mathematische Denken: die (...)
    Direct download  
     
    Export citation  
     
    My bibliography  
  2.  10
    The Prehistory of the Subsystems of Second-Order Arithmetic.Walter Dean & Sean Walsh - 2017 - Review of Symbolic Logic 10 (2):357-396.
    This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincar\'e to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak K\"onig's (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  3.  19
    Logics for Propositional Contingentism.Peter Fritz - 2017 - Review of Symbolic Logic 10 (2):203-236.
    Robert Stalnaker has recently advocated propositional contingentism, the claim that it is contingent what propositions there are. He has proposed a philosophical theory of contingency in what propositions there are and sketched a possible worlds model theory for it. In this paper, such models are used to interpret two propositional modal languages: one containing an existential propositional quantifier, and one containing an existential propositional operator. It is shown that the resulting logic containing an existential quantifier is not recursively axiomatizable, as (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  4. Point-Free Geometry, Ovals, and Half-Planes.Giangiacomo Gerla & Rafał Gruszczyński - 2017 - Review of Symbolic Logic 10 (2):237-258.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  5.  3
    Analytic Cut and Interpolation for Bi-Intuitionistic Logic.Tomasz Kowalski & Hiroakira Ono - 2017 - Review of Symbolic Logic 10 (2):259-283.
    We prove that certain natural sequent systems for bi-intuitionistic logic have the analytic cut property. In the process we show that the (global) subformula property implies the (local) analytic cut property, thereby demonstrating their equivalence. Applying a version of Maehara technique modified in several ways, we prove that bi-intuitionistic logic enjoys the classical Craig interpolation property and Maximova variable separation property; its Halldén completeness follows.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  6.  11
    Equivalences for Truth Predicates.Carlo Nicolai - 2017 - Review of Symbolic Logic 10 (2):322-356.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  7.  5
    Nonconglomerability for Countably Additive Measures That Are Not Κ-Additive.Teddy Seidenfeld, Mark J. Schervish & Joseph B. Kadane - 2017 - Review of Symbolic Logic 10 (2):284-300.
    Let κ be an uncountable cardinal. Using the theory of conditional probability associated with de Finetti and Dubins, subject to several structural assumptions for creating sufficiently many measurable sets, and assuming that κ is not a weakly inaccessible cardinal, we show that each probability that is not κ-­additive has conditional probabilities that fail to be conglomerable in a partition of cardinality no greater than κ. This generalizes our result, where we established that each finite but not countably additive probability has (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  8.  15
    Categorical Harmony and Path Induction.Patrick Walsh - 2017 - Review of Symbolic Logic 10 (2):301-321.
    This paper responds to recent work in the philosophy of Homotopy Type Theory by James Ladyman and Stuart Presnell. They consider one of the rules for identity, path induction, and justify it along ‘pre-mathematical’ lines. I give an alternate justification based on the philosophical framework of inferentialism. Accordingly, I construct a notion of harmony that allows the inferentialist to say when a connective or concept is meaning-bearing and this conception unifies most of the prominent conceptions of harmony through category theory. (...)
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  9.  15
    ‘Chasing’ The Diagram - The Use of Visualizations in Algebraic Reasoning.Silvia De Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Direct download  
     
    Export citation  
     
    My bibliography  
  10.  99
    Logic in the Tractatus.Max Weiss - 2017 - Review of Symbolic Logic 10 (1):1-50.
    I present a reconstruction of the logical system of the Tractatus, which differs from classical logic in two ways. It includes an account of Wittgenstein’s “form-series” device, which suffices to express some effectively generated countably infinite disjunctions. And its attendant notion of structure is relativized to the fixed underlying universe of what is named. -/- There follow three results. First, the class of concepts definable in the system is closed under finitary induction. Second, if the universe of objects is countably (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  11.  25
    Proving Unprovability.Bruno Whittle - 2017 - Review of Symbolic Logic 10 (1):92–115.
    This paper addresses the question: given some theory T that we accept, is there some natural, generally applicable way of extending T to a theory S that can prove a range of things about what it itself (i.e. S) can prove, including a range of things about what it cannot prove, such as claims to the effect that it cannot prove certain particular sentences (e.g. 0 = 1), or the claim that it is consistent? Typical characterizations of Gödel’s second incompleteness (...)
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography  
  12.  20
    Strongly Millian Second-Order Modal Logics.Bruno Jacinto - 2017 - Review of Symbolic Logic:1-58.
    The most common first- and second-order modal logics either have as theorems every instance of the Barcan and Converse Barcan formulae and of their second-order analogues, or else fail to capture the actual truth of every theorem of classical first- and second-order logic. In this paper we characterise and motivate sound and complete first- and second-order modal logics that successfully capture the actual truth of every theorem of classical first- and second-order logic and yet do not possess controversial instances of (...)
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography  
 Previous issues
  
Next issues