Archive for Mathematical Logic 36 (6):385-397 (1997)

This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education, Science and Culture of Japan Mathematics Subject Classification: 03E05 -->. Following Carr's study on diagonal operations and normal filters on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal P}_{\kappa}\lambda$\end{document} in [2], several weakenings of normality have been investigated. One of them is to consider normal filters without \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\kappa$\end{document}-completeness, for example, see DiPrisco-Uzcategui [3]. The other is weakening normality itself while keeping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\kappa$\end{document}-completeness such as in Mignone [10] and Shioya [11]. We take the second one so that all filters are assumed to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\kappa$\end{document}-complete. In Sect. 1 a hierarchy of filters on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal P}_{\kappa}\lambda$\end{document} is presented which corresponds to the length of diagonal intersections under which the filters are closed. It turns out that many ranks exist between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $FSF_{\kappa\lambda}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $CF_{\kappa\lambda}$\end{document}. We consider seminormal ideals in Sect. 2 and determine the minimal seminormal ideal extending Johnson's result in [6]. Its precise descripti on changes according to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $cf$\end{document} although we can write it in a single form as well. We also prove that a nonnormal seminormal ideal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $I\supset NS_{\kappa\lambda}$\end{document} exists if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\lambda$\end{document} is regular.
Keywords Legacy
Categories (categorize this paper)
DOI 10.1007/s001530050071
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 63,133
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Add more references

Citations of this work BETA

Partition Relations for Κ-Normal Ideals on Pκ.Pierre Matet - 2003 - Annals of Pure and Applied Logic 121 (1):89-111.
Partition Relations for< I> Κ-Normal Ideals on< I> P_< Sub> Κ(< I> Λ).Pierre Matet - 2003 - Annals of Pure and Applied Logic 121 (1):89-111.
The Nonstationary Ideal on P_kappa for Lambda Singular.Pierre Matet & Saharon Shelah - 2017 - Archive for Mathematical Logic 56 (7-8):911-934.

Add more citations

Similar books and articles

Weak Square Bracket Relations for P Κ (Λ).Pierre Matet - 2008 - Journal of Symbolic Logic 73 (3):729-751.
A Gitik Iteration with Nearly Easton Factoring.William J. Mitchell - 2003 - Journal of Symbolic Logic 68 (2):481-502.
On Some Small Cardinals for Boolean Algebras.Ralph Mckenzie & J. Donald Monk - 2004 - Journal of Symbolic Logic 69 (3):674-682.
Depth of Boolean Algebras.Shimon Garti & Saharon Shelah - 2011 - Notre Dame Journal of Formal Logic 52 (3):307-314.
Fat Sets and Saturated Ideals.John Krueger - 2003 - Journal of Symbolic Logic 68 (3):837-845.
Infinitary Combinatorics and Modal Logic.Andreas Blass - 1990 - Journal of Symbolic Logic 55 (2):761-778.
More on Regular Reduced Products.Juliette Cara Kennedy & Saharon Shelah - 2004 - Journal of Symbolic Logic 69 (4):1261 - 1266.
Normality and P(Κ)/J.R. Zrotowski - 1991 - Journal of Symbolic Logic 56 (3):1064-1067.
A Weak Variation of Shelah's I[Ω₂].William J. Mitchell - 2004 - Journal of Symbolic Logic 69 (1):94-100.


Added to PP index

Total views
25 ( #436,056 of 2,448,218 )

Recent downloads (6 months)
1 ( #451,050 of 2,448,218 )

How can I increase my downloads?


My notes