The informal logic of mathematical proof

In Reuben Hersh (ed.), 18 Unconventional Essays About the Nature of Mathematics. Springer Verlag. pp. 56-70 (2006)
Informal logic is a method of argument analysis which is complementary to that of formal logic, providing for the pragmatic treatment of features of argumentation which cannot be reduced to logical form. The central claim of this paper is that a more nuanced understanding of mathematical proof and discovery may be achieved by paying attention to the aspects of mathematical argumentation which can be captured by informal, rather than formal, logic. Two accounts of argumentation are considered: the pioneering work of Stephen Toulmin [The uses of argument, Cambridge University Press, 1958] and the more recent studies of Douglas Walton, [e.g. The new dialectic: Conversational contexts of argument, University of Toronto Press, 1998]. The focus of both of these approaches has largely been restricted to natural language argumentation. However, Walton’s method in particular provides a fruitful analysis of mathematical proof. He offers a contextual account of argumentational strategies, distinguishing a variety of different types of dialogue in which arguments may occur. This analysis represents many different fallacious or otherwise illicit arguments as the deployment of strategies which are sometimes admissible in contexts in which they are inadmissible. I argue that mathematical proofs are deployed in a greater variety of types of dialogue than has commonly been assumed. I proceed to show that many of the important philosophical and pedagogical problems of mathematical proof arise from a failure to make explicit the type of dialogue in which the proof is introduced.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,411
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Y. Rav (1999). Why Do We Prove Theorems? Philosophia Mathematica 7 (1):5-41.

Monthly downloads

Added to index


Total downloads

39 ( #123,663 of 1,924,718 )

Recent downloads (6 months)

4 ( #211,819 of 1,924,718 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.